
U.S.-Mexico Workshop on Optimization and its

Applications, 4–8 January 2016

Rethinking Expression

Representations for
Nonlinear AMPL Models

David M. Gay

AMPL Optimization, Inc.

dmg@ampl.com

http://www.ampl.com

1

Goal

Immediate goal: revisit expression and derivative

evaluations in the AMPL/solver interface library

(ASL) with an eye to separating expressions from data

so multiple threads can use the same expressions.

Longer-term goal: prepare for adding recursive

function declarations to AMPL.

2

Toy nonlinear example

ampl: var x; var y;

ampl: minimize f: (x - 3)^2 + (y + 4)^2;

ampl: s.t. c: x + y == 1;

ampl: solve;

MINOS 5.51: optimal solution found.

2 iterations, objective 2

Nonlin evals: obj = 6, grad = 5.

ampl: display x, y;

x = 4

y = -3

3

Operation of “solve;”

AMPL writes .nl file containing, e.g.,

• problem statistics (number of variables, etc.)

•• expression graphs for objectives and constraints

• linear parts of objectives and constraints

• starting guesses (if specified)

• suffixes, e.g., for basis (if available)

4

Expression graph representations

Several representations roughly equivalent in size and

evaluation time:

• Polish postfix (as with HP calculators)

•• Polish prefix (used in .nl files)

• executable expression graphs (current ASL)

• operation lists (considered here)

Linear time conversion from one form to another.

5

Expression graph example

Graph for f = (x− 3)2 + (y + 4)2:

f

+

()ˆ2 ()ˆ2

− +

x 3 y 4

6

Polish prefix in .nl file

O0 0 #f

o0 # +

o5 #^

o0 # +

n-3

v0 #x

n2

o5 #^

o0 # +

n4

v1 #y

n2
7

ASL first-order expression-graph node

struct expr {

real (*op)(struct expr*);

int a;

real dL;

struct expr *L, *R;

real dR;

};

8

Example “op” function

real f_OPDIV(expr *e) {

real L, R, rv;

expr *e1 = e->L;

L = (*e1->op)(e1);

e1 = e->R;

if (!(R = (*e1->op)(e1)))

zero_div(L, "/");

rv = L / R;

if (want_deriv)

e->dR = -rv * (e->dL = 1. / R);

return rv;

}
9

Operation list

List of instructions, e.g.,

w[2] = w[0] - 3; /* x - 3 */

w[2] = w[2] * w[2];

w[3] = w[1] + 4; /* y + 4 */

w[3] = w[3] * w[3];

w[2] = w[2] + w[3];

10

Operation list via switch()

real eval1(int *o, EvalWorkspace *ew) {

real *w = ew->w;

top: switch(*o) {

case nOPRET:

return w[o[1]];

case nOPPLUS:

w[o[1]] = w[o[2]] + w[o[3]];

o += 4; goto top;

case nOPMINUS:

w[o[1]] = w[o[2]] - w[o[3]];

o += 4; goto top;

case nOPMULT:

w[o[1]] = w[o[2]] * w[o[3]];

o += 4; goto top;

...

11

Chain rule: basis for automatic differentiation (AD)

Suppose for scalar x that

φ(x) = f(y1(x), y2(x), ..., yk(x)).

The chain rule gives

∂φ

∂x
=

∂φ

∂f

k∑

i=1

∂f

∂yi

∂yi

∂x
=

k∑

i=1

∂φ

∂yi

∂yi

∂x
.

In general, once we know the adjoint ∂φ
∂y

of an

intermediate variable y, we can add its contribution
∂φ
∂y

∂y
∂x

to the adjoint ∂φ
∂x

of each variable x on which y

directly depends.

12

Current Reverse AD in ASL

Reverse AD: visiting operations in reverse order, we
compute the contributions of each intermediate
variable to the adjoints of its immediate prerequisites.
Then the adjoints of the original variables are the
gradient ∇φ. In ASL, this is currently done by

struct derp {

derp *next;

real *a, *b, *c;

};

void derprop(derp *d) {

*d->b = 1.;

do *d->a += *d->b * *d->c;

while((d = d->next));

}
13

Possible data types for derprop

For performance, is it OK to use integer subscripts
rather than pointers? Consider three inner-product
alternatives:

struct Rpair { double a, b; } *rp;

==> dot += rp->a * rp->b;

struct Aoff { real *a, *b; } *p;

==> dot += *p->a * *p->b;

struct Ioff { int a, b; } *q;

real *v;

==> dot += v[q->a] * v[q->b];

14

Timing of data types for derprop

32-bit 64-bit

Rpair 1.0 1.0

Aoff sequential 1.0 1.0

Ioff sequential 1.0 1.0

Aoff permuted 1.6 1.8

Ioff permuted 1.6 1.7

Conclusion: integer subscripts are OK.

15

Alternative implementations of derprop

Simple loop:

struct derp { int a, b, c; } *d, *de;

for(d = ...; d < de; ++d)

s[d->a] += s[d->b] * w[d->c];

Disadvantages:

• must initialize much of s array to zeros

•• big s array.

16

Alternative implementations of derprop

Switch variant:

for(;;)

switch(*u) {

case ASL_derp_copy: s[u[1]] = s[u[2]];

u += 3; break;

case ASL_derp_add: s[u[1]] += s[u[2]];

u += 3; break;

case ASL_derp_copyneg: s[u[1]] = -s[u[2]];

u += 3; break;

case ASL_derp_addneg: s[u[1]] -= s[u[2]];

u += 3; break;

case ASL_derp_copymult: s[u[1]] = s[u[2]]*w[u[3]];

u += 4; break;

case ASL_derp_addmult: s[u[1]] += s[u[2]]*w[u[3]];

u += 4; break;
17

Alternative implementations of derprop

Currently prefer simple loop with if:

for(d = ...; d < de; ++d) {

t = s[d->b] * w[d->c];

if ((a = d->a) >= a0)

s[a] = t;

else

s[a] += t;

}

No need to initialize s array to zeros; can use much

smaller s array; smaller u array.

18

Organization of w array

const1

· · ·

constm

w → var1

var2

· · ·

varn

result1

· · ·

19

Relative times for derprop alternatives

Relative times: “simple loop with if” divided by

current ASL:

32-bit 64-bit

Ex1 f , ∇f 0.52 0.42

Ex1 c, ∇c 0.98 0.96

Ex2 f , ∇f 0.43 0.43

Ex3 f , ∇f 0.42 0.31

Ex3 c, ∇c 0.52 0.39

20

Relative times for derprop alternatives

More relative times: “simple loop with if” divided by

current ASL:

32-bit 64-bit

pfold3 f , ∇f 0.80 0.65

ch50 f , ∇f 0.62 0.69

ch50b f , ∇f 1.01 0.67

ch50b c, ∇c 6.47 3.68

21

ch50b.mod

MINPACK Chebyquad 50 as both objective and connstraints

param n > 0 default 50;

var x {j in 1..n} := j/(n+1);

var Tj{j in 1..n} = 2*x[j] - 1;

var T{i in 0..n, j in 1..n} =

if (i = 0) then 1

else if (i = 1) then Tj[j]

else 2 * Tj[j] * T[i-1,j] - T[i-2,j];

minimize ssq: sum{i in 1..n} ((1/n) * sum {j in 1..n} T[i,j]

- if (i mod 2 = 0) then 1/(1-i^2))^2;

s.t. eqn {i in 1..n}:

(1/n) * sum{j in 1..n} T[i,j] =

if (i mod 2 = 0) then 1/(1-i^2) else 0;

22

Why the sloth with some defined variables?

AD can be viewed as a product of matrices

[Griewank?]. Applying the associative law can lead to

different numbers of operations. The draft revised ASL

is recurring shared defined variables differently than

the current ASL. This may change...

23

Relative net memory use: new/old

32-bit 64-bit

Ex1 0.93 0.62

Ex2 0.82 0.41

Ex3 0.71 0.45

pfold3 0.83 0.63

ch50 0.87 0.57

ch50b 1.08 0.63

24

Comparison of alternative derprop implementations

Of the derprop alternatives, “simple loop with if” is

often slightly faster than the others and sometimes

outperforms the current ASL implementation.

Still to come: adjustments to “funneling” gradient

contributions by defined variables used in several

constraints and objectives; Hessian computations with

separate workspace so multiple threads can use the

same problem representation but different workspaces.

25

Adjusting qpcheck() routines

The existing ASL qpcheck() routines require special

preparation — invoking qp read() rather than

fg read() and calling qp opify() before doing

nonlinear evaluations. With the operations-list

approach, we can dispense with qp read() and

qp opify().

The modified qpcheck() routines carry out an

“evaluation” that computes expression information

rather than numeric values.

26

Conclusion

After more testing, hope to replace ASL evaluations

with a form that is more convenient for parallel

executions and is somewhat faster on many problems.

Style of expression walks in updated qpcheck()

routines may be grist for setting up gradient and

Hessian computations in multi-level problems.

27

