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ABSTRACT

We describe computational experience with automatic differentiation of
mathematical programming problems expressed in the modeling language
AMPL. Nonlinear expressions are translated to loop-free code, which
makes it easy to compute gradients and Jacobians by backward automatic
differentiation. The nonlinear expressions may be interpreted or, to gain
some evaluation speed at the cost of increased preparation time, converted
to Fortran or C. We have extended the interpretive scheme to evaluate
Hessian (of Lagrangian) times vector. Detecting partially separable
structure (sums of terms, each depending, perhaps after a linear
transformation, on only a few variables) is of independent interest, as
some solvers exploit this structure. It can be detected automatically by
suitable ‘‘tree walks’’. Exploiting this structure permits an AD
computation of the entire Hessian matrix by accumulating Hessian times
vector computations for each term, and can lead to a much faster
computation of the Hessian than by computing the whole Hessian times
each unit vector.

1. Introduction

Consider the minimization problem

(1a) minimize f (x)

(1b) subject to c(x) = 0 ,

where f : I Rn →I R and c: I Rn →I Rm are differentiable. If the constraint Jacobian matrix
c ′(x *) has full row-rank, the Lagrange multiplier rule gives a necessary condition for x *
to solve (1):

(2) ∇ f (x *) = ∇c(x *) λ

_ ______________
†This paper is written as a contribution to the proceedings of the Second International Workshop on Com-
putational Differentiation, held in February, 1996 in Santa Fe, New Mexico.
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for some λ ∈ I Rm (the Lagrange multipliers), where ∇ f (x) = f ′(x) T ∈ I Rn and
∇c = c ′(x) T ∈ I Rn×m denote the gradient of f and transposed Jacobian matrix of c.
Many algorithms for solving (1) are motivated by application of Newton’s method to the
necessary conditions (1b) and (2). A central ingredient in such algorithms is an
approximation to the Hessian of the Lagrangian function,

(3) H = ∇2 f (x) −
i = 1
Σ
m

λ i ∇2 c i (x) .

There is much current interest in algorithms that require H to be provided. Thus it
is of interest to ask how efficiently we can compute (3) from a suitable symbolic
representation of f and c. This paper discusses computing (3) by automatic
differentiation (AD) and gives some computational experience with problems expressed
symbolically in the AMPL modeling language [11, 12]. For simplicity, the remainder of
this paper ignores constraints and just talks about computing ∇2 f. However, the
implementation discussed below is designed to compute (3), which is also relevant when
some of the constraints are changed to inequality constraints.

Use of AD in Hessian computations is not new; for example, Dixon [8] and
Christianson [6] discuss using AD in this context. What is new in my work is automatic
detection of partially separable structure and use of this structure to give faster Hessian
computations.

The rest of the paper is organized as follows. Section 2 briefly reviews AMPL and
AD computations of gradients of AMPL expressions. Section 3 discusses Hessian-vector
computations. Section 4 describes partially separable structure and discusses
automatically detecting it. A discussion of computing sparse Hessians appears in §5.
Section 6 presents some computational experience, and the final section offers
concluding remarks.

2. AMPL and AD for Gradients

AMPL is a language and modeling environment for expressing and working with
optimization problems that involve finitely many variables, with objectives and
constraints described by algebraic expressions. AMPL encourages separate descriptions
of a ‘‘model’’ for a class of problems and the data for a particular problem — an instance
of the model. The AMPL processor does not itself solve an instance, but rather writes a
description of the problem to a ‘‘.nl’’ file and invokes a separate solver. The solver
obtains loop-free expression graphs for the problem’s nonlinear expressions by calling
interface routines that read the .nl file. These routines walk expression graphs for the
objective and constraints and set up data structures for derivative computations. The
AMPL home page

http://www.ampl.com/ampl/

tells how to get source for the interface routines and gives pointers to other information
related to AMPL.
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The AMPL/solver interface routines provide ‘‘interpreted’’ evaluations of
objectives and constraint bodies, as well as backward AD computations of their first
derivatives. A brief overview of AMPL and a discussion of these first-derivative
computations appear in [15]. In short, an operation is represented by a structure that
provides storage for the partial derivatives of the operation and has pointers to its
operands and to a function that carries out the operation. The AD ‘‘backward sweep’’ for
computing ‘‘adjoints’’, i.e., the partial derivatives of an objective or constraint body with
respect to the results of the operations used to compute it, is carried out by the C loop

do *d->a += *d->b * *d->c;
while(d = d->next);

This is just a sequence of multiplications and additions of the form a := a + b*c.

‘‘Compiled’’ evaluations are also possible. To arrange for them, one runs a
program called nlc , which turns a .nl file into C or Fortran for computing the objective
function, constraint bodies, and their first derivatives. Because of the compilation and
linking times they entail, compiled evaluations only save time for expressions that are to
be evaluated a great many times. A brief discussion of nlc appears in [17].

The interpreted evaluations are fast enough to be useful in many situations. Some
comparisons with hand-coded Fortran evaluations appear in [15], and more appear below
in §6.

3. Hessian Times Vector Computations

Many iterative methods for solving linear equations require only matrix-vector
products. In particular, we can compute the search direction in Newton’s method for
minimizing f : I Rn →I R by computing Hessian-vector products, ∇2 f (x) v for suitable
vectors v. We can also compute the entire Hessian by computing ∇2 H(x) e i for each of
the n standard unit vectors e i . Thus it is of interest to consider how to compute Hessian-
vector products.

Computing ∇2 f (x) v by backward AD is conceptually straightforward: we just
apply backward AD to compute the gradient of v T ∇ f (x), with v constant. I find it
slightly easier to think about an alternative interpretation of this calculation that
Christianson [6] has described: consider the scalar function ψ(τ) = f (x + τv); compute
ψ( 0 ) and ψ ′( 0 ) by forward AD, then apply backward AD to compute the derivative with
respect to x of ψ ′( 0 ). Both approaches result in the same calculation [6]. Figure 1
depicts the situation at a typical binary operation, o( ,r), during the computation of ψ
and ψ ′. The dashed arrows represent derivatives with respect to τ; only they depend on
the direction v. For each new v, it is necessary to make a ‘‘forward’’ pass to recompute
the results represented by the dashed arrows. (If we reversed the dashed arrows, we
would obtain a figure that shows the forward computation of o( ,r) and the reverse
computation of the adjoints ∂ f /∂o, ∂ f /∂ , and ∂ f /∂r. Specifically, the ‘‘+’’ node would
accumulate the adjoint ∂ f /∂o, and the ‘‘∗’’ nodes would represent multiplications whose
results are added to the adjoints ∂ f /∂ and ∂ f /∂r.)
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Figure 1. A binary operation, o( ,r).

Figure 1 shows that six operations are associated with o( ,r) in the computation of
ψ ′( 0 ): o( ,r) itself, ∂o /∂ , ∂o /∂r, the two ‘‘∗’’ nodes, and the ‘‘+’’ node. The partial
derivatives of these operations (including the second partials of o) are involved in the
backward AD computation of the derivative of ψ ′( 0 ). Because a single operation o
contributes several operations to this backward AD computation, and because there are
many special cases in which the general computation in Figure 1 can be simplified, it
seems reasonable to switch on the type of operation and do all the operations at once that
are associated with o( ,r) in the backward sweep. Figure 2 shows the C structure used
in the computations reported below to represent a general binary operation o( ,r). It
contains fields for the first and second partials of o, including dO = ∂o /∂ τ in the
computation of ψ ′( 0 ), and for two adjoints: aO = ∂ ψ ′/∂o and adO = ∂ ψ ′/∂(∂o /∂ τ).
The structure also contains forward and backward pointers to permit visiting operations
in a suitable order, pointers L and R to the operands, an adjoint index used in setting up
the data structures, and a pointer to the function that computes o( ,r) and its partials: in
the current implementation, o and its partials are computed at the same time. Since some
algorithms compute function values at several points before they require any new
gradient information, it might sometimes be worthwhile to compute the partials
separately, but this detail remains for future research.

Figure 3 shows fragments of the C code used in the computing reported below.
They carry out operations in the backward AD sweep for computing the gradient of
ψ ′( 0 ). The first fragment (case Hv_binaryLR) shows calculations for a general binary
operation o( ,r). In many common operations, such as addition and multiplication,
some partials always vanish and others have special values, such as 1 or − 1. For
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struct
expr2 {

efunc2 *op;
int a; /* adjoint index (in gradient comp.) */
expr2 *fwd;
expr2 *bak;
uir dO; /* deriv of op w.r.t. t in x + t*v */
real aO; /* adjoint (in Hv comp.) of op */
real adO; /* adjoint (in Hv comp.) of dO */
real dL; /* deriv of op w.r.t. L */
ei2 L, R; /* left and right operands */
real dR; /* deriv of op w.r.t. R */
real dL2; /* second partial w.r.t. L, L */
real dLR; /* second partial w.r.t. L, R */
real dR2; /* second partial w.r.t. R, R */
};

Figure 2. C structure representing o( ,r).

example, the second fragment in Figure 3 shows code for the operation of adding a
constant to the left operand.

case Hv_binaryLR: /* general binary op */
e1 = e->L.e;
e2 = e->R.e;
adO = e->adO;
t1 = adO * e1->dO.r;
t2 = adO * e2->dO.r;
e1->aO += e->aO*e->dL + t1*e->dL2 + t2*e->dLR;
e2->aO += e->aO*e->dR + t1*e->dLR + t2*e->dR2;
e1->adO += adO * e->dL;
e2->adO += adO * e->dR;
break;

case Hv_plusL: /* Left + constant */
e1 = e->L.e;
e1->aO += e->aO;
e1->adO += e->adO;
break;

Figure 3. C fragments for backward AD of ψ ′( 0 ).

4. Detecting and Using Partial Separability

Many optimization problems involve objectives (and constraint bodies) that have
the form

(4) f (x) =
i = 1
Σ
q

f i (U i x) ,

in which U i is an m i ×n matrix with a small number m i of rows. For instance, the
protein-folding problem discussed later involves minimizing the energy of a
configuration of atoms. When the locations of the atoms are expressed in Cartesian
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coordinates, only the differences of the coordinates of pairs of atoms appear in the
various objective terms, so a row of U i contains all zeros except for one + 1 and one − 1.
In this class of problems, m i = 3, 6, or 9.

The gradient and Hessian of (4) exhibit useful structure:

(5) ∇ f (x) =
i = 1
Σ
q

Ui
T ∇ f i (U i x)

and

(6) ∇2 f (x) =
i = 1
Σ
q

Ui
T ∇2 f i (U i x) U i .

Griewank and Toint [19, 20] originally pointed out the structure in (4 − 6) and proposed
using secant updates to approximate each ∇2 f i separately. Since the Hessians ∇2 f i in
(6) are m i ×m i matrices, secant updates often give a good approximation to ∇2 f i in only
m i << n steps, resulting in an excellent overall Hessian approximation in

i
max m i steps.

Use of partially separable structure can make explicit Hessian computations by
Hessian-vector products relatively fast — much faster than computing n products
∇2 f (x) e i . For m i < n, we can compute the contribution Ui

T ∇2 f i (U i x) U i to ∇2 f by
first using m i Hessian-vector products to compute ∇2 f i , then forming

(7) Ui
T ∇2 f i (U i x) U i =

j k
Σ (∇2 f i ) j k (Ui

T e j ) (e kT U i ) ,

which is a sum of outer products.

Automatic detection of partially separable structure is appealing. It should make
life easier for users than, say, having to state this structure explicitly in the input format
SIF associated with LANCELOT [7], a solver that exploits partially separable structure.

The computations described below involve automatic detection of partially
separable structure, starting with the expression graphs written by the AMPL processor.
We find f i and U i by walking the graph for f. In doing so, we accumulate linear terms
(rows of a U i) as long as possible — until they appear in a nonlinear operation. Having
found a linear term, we put it into a canonical form, sorting its coefficients and scaling
them so the largest coefficient is 1, and enter this canonical form into a hash table, so we
can find duplicate appearances of U i in f i . Similarly, once we have found a term f i , we
put U i into a canonical form and hash it, so we can easily tell if a subsequent f j has
U j = U i , in which case we can merge f j into f i . The process involves walking the
expressions for f (and for any constraints) once to determine the partially separable
structure, and a second time to arrange for derivative and Hessian-vector computations.

For simplicity, we find U i even when m i ≥ n i , where n i is the number of variables
involved in f i , i.e., n i = { j : 1 ≤ j ≤n , U i e j ≠ 0} . In this case, rather than using (7)
to compute the contribution to the overall Hessian, it is better to compute n i Hessian-
vector products
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(8) (Ui
T ∇2 f i U i ) e j , 1 ≤ j ≤ n i .

Sometimes there are many ways to express a function in partially separable form.
The above process detects the ‘‘finest’’ partially separable structure one can find without
applying the distributive law to nonlinear expressions. This does not necessarily lead to
the most efficient computations. For example, as Andreas Griewank has pointed out
[private communication, 1996], an expensive common expression might be involved in
two or more of the f i , and dealing separately with these f i may take more work than
handling them jointly. In AMPL models, ‘‘defined variables’’ give rise to common
expressions. The implementation discussed below checks for expensive defined
variables that appear in more than one f i , and if doing so appears worthwhile, arranges to
compute the Hessians of these defined variables before dealing with the f i and to use the
defined-variable Hessians in the computations for the f i . How important this
optimization is in practice remains to be seen. It does not play a role in the testing
reported below.

5. Sparse Hessians

Problems involving a large number n of variables often have sparse Hessians, and
some solvers that require explicit Hessians will need them in sparse form. By using a
column-dispatch scheme much like the one described in [16], we can compute a Hessian
column by column. This involves structures representing the current state of
contributions from (7) and from (8); after processing a contribution to the current
column, we dispatch its structure to the next column to which it will contribute.

It is helpful to determine the sparsity pattern of the Hessian in advance, in part
because some solvers will need to know the sparsity pattern before they request any
Hessian evaluations. Although this pattern is contained in the sparsity pattern of

(9)
i = 1
Σ
q

Ui
T ee T U i ,

where e is a vector of ones, this may be an overestimate. For example, consider the
AMPL model

var x{1..6};
var y{i in 0..2} = sum{j in 1..2} x[2*i+j];
minimize silly: sum{i in 1..6} (x[i] - i)ˆ2

+ if (x[1] > 1) then y[0]*y[1] else y[1]*y[2];

For this problem, q = 7, U i = e iT for 1 ≤ i ≤ 6, and

U 7 =


0
0
1

0
0
1

0
1
0

0
1
0

1
0
0

1
0
0



,

so (9) would give a completely dense ‘‘sparsity’’ pattern, whereas the true pattern is
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






*
*

*

*
*
*

*
*

*
*
*

*
*
*

*
*

*
*
*

*

*
*








.

A straightforward way to compute the sparsity structure is to carry out a variation of the
column-wise Hessian computation in which all partial derivatives that could be nonzero
are treated as having the value 1. By summing contributions into a vector that is initially
all zeros and noting the cells that become nonzero (a common manipulation in sparse-
matrix computations), we can determine the ‘‘true’’ sparsity structure of the Hessian.

On small problems, it is faster to sum each ∇2 f i directly into a dense upper triangle,
bypassing the overhead of column dispatching.

Griewank and Toint point out in [19] that sparsity implies partially separable
structure. The implied representations are ones in which (9) would give the correct
sparsity structure. Finding such representations involves applying the distributive law to
nonlinear expressions, which could change the work of computing some functions and
gradients from O(k) to O(k 2 ) operations.

6. Computational Results

Some comparisons of the ‘‘interpreted’’ evaluations summarized in §2 of functions
and gradients with hand-coded Fortran evaluations appear in [15]. In the meantime,
various new AD packages have become available, so it is of interest to see a few more
comparative timings. I will present these new timings first, before considering Hessian
computations, to give some scale and argue that the general approach described here is
competitive, at least when sufficient memory is available. I carried out the present
timings on an SGI Indy with one 100 MHz IP22 processor (MIPS R4010 floating-point
chip and MIPS R4000 processor), with separate 8 kilobyte primary instruction and data
caches and a unified secondary instruction/data cache of one megabyte, running IRIX 5.2.
Compilations were by the SGI C and Fortran compilers; except for the C or Fortran from
nlc , which was too large to optimize, compilations were with compiler flag -O
(requesting optimization).

The first comparisons are with a small instance (22 atoms) of the protein-folding
problem. The objective for this problem started out as a Fortran subroutine (the hand-
coded Fortran in timings below, which evaluates an all-atom representation [22] of the
empirical force field CHARMM [5]) that Teresa Head-Gordon and Frank Stillinger
provided in connection with [21]; the AMPL model for the problem has various features,
such as ‘‘if’’ expressions and heavy use of defined variables (in effect, named common
subexpressions), that make it a good stress-test. Though partially separable, the problem
has a completely dense Hessian matrix (parts of which, corresponding to atoms that are
widely separated, will essentially be zero — but which parts depends on the
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_ _____________________________________________
rel. kilo-

Evaluation method time bytes
Hand-coded Fortran 1.0 860
Interpreted 2.6 856
Compiled code from nlc 2.0 964
Dense ADIFOR on nlc func 40.5 2064
Sparse ADIFOR on nlc func 35.7 2880
Dense ADIFOR on hand-coded func 10.0 1036
Sparse ADIFOR on hand-coded func 33.3 1380
ADOL-C record on nlc func 26.4 1772
ADOL-C replay on nlc func 12.3 1772
ADOL-C record on f2c func 17.6 1176
ADOL-C replay on f2c func 9.6 1176_ _____________________________________________ 


































Table 1. Relative f + ∇ f evaluation times
for a 22-atom instance of the protein-folding problem.

conformation of the atoms). For much more on the protein-folding problem and many
pointers to the literature, see Neumaier’s excellent survey [25].

Table 1 compares several ways of computing the protein-folding objective f and its
gradient ∇ f. The times in Table 1 are relative to that for the original hand-coded Fortran,
which gives the fastest evaluations. The table also shows the maximum working-set size
(in kilobytes) for each test program. Since larger values may imply more cache misses,
this size may affect some results.

The interpreted evaluations in Table 1 are those of the AMPL/solver interface [17];
the compiled evaluations are for C and Fortran produced by the nlc program [17].

The Fortran preprocessor ADIFOR [3, 2] offers both ‘‘dense’’ and ‘‘sparse’’ modes,
each of which is sometimes preferable. Table 1 shows ADIFOR evaluations for the
Fortran objective produced by nlc and for the original hand-coded objective. The Fortran
from nlc is loop-free, whereas the hand-coded Fortran has various loops, which permit
the ADIFOR evaluations to operate with less overhead. I expected ADIFOR gradient
evaluations to be about as fast as those from nlc , but then I learned that ADIFOR does
not make direct provision for computing gradients. Rather, it computes JS, where J is a
Jacobian matrix and S is a specified matrix; to compute ∇ f (x), one can use S = I (the
identity matrix), but this leads to considerable overhead when n is large. Much of this
overhead could be avoided if one could specify S when ADIFOR processed the Fortran,
but currently one can only provide S as a run-time argument.

With more programming work, it should be possible to make the ADIFOR
evaluations faster. Specifically, Bischof, Bouaricha, Khademi, and Mor ́  e [4] have
described a way to use partially separable structure to speed up ADIFOR evaluations. On
the minimal-surface problem considered below, for example, this idea is easy to apply,
and it leads to ADIFOR evaluations that are only about a factor of 3 slower than hand-
coded Fortran evaluations.
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The last four lines in Table 1 are for gradient evaluations by the very general C++
package ADOL-C [18], working with C from variants of the protein-folding objective
produced by nlc and and by the Fortran-to-C converter f2c[10], applied to the original
hand-coded Fortran. In its derivative computations, ADOL-C uses some internal ‘‘tape’’
arrays recorded during during its evaluation of the function f (x). ADOL-C can also
replay the tape to evaluate f at a new x, though the result is only correct if no conditional
outcomes change, i.e., if all relevant ‘‘if’’ tests give the same truth value as when the tape
was recorded, and all ‘‘min’’ and ‘‘max’’ expressions give results from the same
arguments. Evaluations that replay the tape are faster than those that record it, as the
contrast between the ‘‘ADOL-C record’’ and ‘‘ADOL-C replay’’ lines in Table 1 shows.
(The protein-folding problem involves some ‘‘if’’ expressions, so some rerecording of
the tape would probably be necessary in the course of optimizing the protein-folding
objective with ADOL-C tape evaluations.) The contrast in times between the interpreted
and ADOL-C tape evaluations suggests there may be room to speed up the latter. (The
‘‘ADOL-C record’’ lines involve calls on ADOL-C’s lower level vec_jac routines,
rather than the higher-level gradient routine; with the latter, the first ‘‘ADOL-C
record’’ line would have shown a ratio of 30.)

The protein-folding objective is rich in trigonometric functions, square roots, and
exponentiations, which are expensive enough to mask some overhead. As an example
with less expensive expressions and a sparse Hessian, we now consider the minimal-
surface problem of MINPACK-2 [1, §4.2]. Figure 4 shows an AMPL model for this
problem. Figure 5 shows some timings, relative to hand-coded Fortran function and
gradient evaluation times, for some square meshes (M = N = 2k + 1, giving n = 4k

variables for several integers k). The solid line depicts interpreted evaluations with data
structures that only provide for computing f and ∇ f. The dashed line shows
corresponding evaluations with data structures that store second partial derivatives for
use in Hessian evaluations. As these structures are considerably larger, they cause cache
misses for smaller n values; the runs for the dashed line allocated about 2.8 times as
much memory as did the corresponding runs for the solid line. The runs with the largest
n values involved some paging.

The dotted line in Figure 5 shows relative times to compute the Hessian, ∇2 f, from
the partial derivatives stored when f was evaluated. The Hessian has at most 4 nonzeros
per column. Evaluating it costs less than 3 interpreted function and gradient evaluations
(of the more expensive variety).

Figure 6 shows the time it takes, relative to an interpreted function and gradient
evaluation, to read the .nl files for the minimal-surface problems and create the data
structures that permit function, gradient, and (for the dashed line) Hessian evaluations.
The times for the smallest n are small enough that they are probably not very accurate.
The times in the dashed line include expression walks to find the partially separable
structure.

Minimization algorithms involve varying amounts of overhead in addition to the
time needed for function and derivatives evaluations. Table 2 shows a range of overall
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# Minimal surface problem, after MINPACK 2

param M integer > 0; # discretization:
param N integer > 0; # regular M x N grid

var v{0..M, 0..N};

param bdx{0..N, 0..1}; # boundary data, x axis
param bdy{0..M, 0..1}; # boundary data, y axis

param hx := 1 / N;
param hy := 1 / M;

var lower = 0.5*hx*hy
*sum{i in 0 .. M-1, j in 0 .. N-1}

sqrt(1 + ((v[i+1,j] - v[i,j])/hx)ˆ2
+ ((v[i,j+1] - v[i,j])/hy)ˆ2);

var upper = 0.5*hx*hy
*sum{i in 1..M, j in 1..N}

sqrt(1 + ((v[i-1,j] - v[i,j])/hx)ˆ2
+ ((v[i,j-1] - v[i,j])/hy)ˆ2);

minimize surface: lower + upper;

# Constraints to fix the boundary values:
s.t. xbdry{i in 0..N, j in 0..1}: v[j*M,i] == bdx[i,j];
s.t. ybdry{i in 1..M-1, j in 0..1}: v[i,N*j] == bdy[i,j];

Figure 4. AMPL model for minimal-surface problem.
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Figure 5. Evaluation-time ratios, minimal-surface problems with M = N.
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Figure 6. Relative setup times, minimal-surface problems.

solution times for some solvers to solve the 22-atom protein-folding problem discussed
above, and for three instances of the minimal-surface problem. Solvers mnh and mnhp
are variants of HUMSOL [14], which factors a dense Hessian matrix to carry out
Newton’s method and is thus impractical when n is large. The HUMSOL variants differ
in that mnhp exploits partially separable structure in computing the Hessian matrix,
whereas mnh simply computes n Hessian-vector products ∇2 f (x) e i . Solvers ve08 and
v8 are based on Toint’s VE08 [26], which is designed to exploit partially separable
structure; it uses a secant update to approximate each element Hessian and applies a
truncated preconditioned conjugate gradient algorithm to compute an approximate
Newton step. The variants differ in that ve08 treats the problem as having just one
element, thus reducing VE08 to a simple secant-update (quasi-Newton) method, whereas
v8 exploits the structure. The final three solvers, tn , htn-fd and htn-hv , are variants of
Nash’s truncated-Newton code TN [23, 24], which approximates Hessian-times-vector
products by finite differences of gradients as it runs a preconditioned linear conjugate-
gradient algorithm to compute an approximate Newton step. Variant tn runs without the
overhead of data structures to compute Hessian-vector products, while the other two
variants incur this overhead; htn-fd still uses finite-differences of gradients to
approximate Hessian-vector products, and htn-hv uses backward AD to compute these
products.

The mnh and mnhp times for small n show significant savings from using the
partially-separable structure in computing the Hessian; for larger n, extra cache misses
overwhelm this savings. The protein-folding results show there is nontrivial overhead in
VE08: ignoring the structure of the problem caused it to take less time but substantially
more iterations and function evaluations (277 iterations rather than 57 for v8 , and 287
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_____________________________________
Protein

Problem folding minimal surface
Solver/n 66 81 256 1521

mnh 13.9 2.3 33.8
mnhp 4.5 1.1 34.1
ve08 8.3 0.8 10.8
v8 15.4 0.6 2.8 28.2
tn 5.0 0.4 1.6 21.4
htn-fd 6.6 0.4 2.0 29.5
htn-hv 5.3 0.4 1.6 27.8_____________________________________ 




























Table 2. Indy solve times (seconds).

overall function evaluations rather than 68). For the other problems, exploiting the
structure was worthwhile for VE08; indeed, for n = 1521 v8 ran quickly, but ve08 took
so much time that I did not complete the run.

Although TN is a very efficient solver, I was hoping it would run still faster when
modified to use analytic Hessian-vector products. A comparison of the results for htn-fd
and htn-hv suggests the disappointing conclusion that with my current implementation, it
is better to use finite differences in this context.

Source for the basic solvers underlying the variants in Table 2 is available from
netlib[9]: mnh and mnhp use ‘‘dmnhb from port’’, the current PORT Library [13]
variant of HUMSOL, which enforces simple-bound constraints; both VE08 and TN are
available from netlib’s opt directory as ‘‘ve08 from opt’’ and ‘‘tn from opt’’.

7. Concluding Remarks

One can detect partially separable structure automatically by walking expression
graphs. Detecting this structure facilitates explicit Hessian computations, and should
help make various algorithms more convenient for people to use.

The style of backward AD for Hessian-vector products described in this paper is
somewhat memory-intensive, requiring about 64 bytes to represent a binary operation
(with both operands differentiable) on a 32-bit machine, and about 48 bytes for a unary
operation. Thus the approach described here is not universally applicable, but it is
convenient and relatively fast for some applications. I hope soon to add to [17] an
explanation of using routines that implement this approach.

For simplicity, I have been evaluating partial derivatives while carrying out the
associated operations. In the ideal case where Newton’s method is converging nicely and
one computes ∇ f and ∇2 f as often as f, this costs no extra time, but in many calculations
there is probably an opportunity to save time by postponing computation of partials until
they are needed. How much time this might save remains a topic for further research.
Would it, for example, make analytic Hessian-vector products preferable to finite
differences of gradients in the solver TN discussed above? Would computing (by
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backward AD) and storing the ∇2 f i , then, for several vectors v, computing

i = 1
Σ
q

Ui
T ( (∇2 f i ) (U i v) ) be faster than using backward AD to compute ∇2 f i (U i v)

directly?

Another topic for future research is seeing how worthwhile exploiting ‘‘group
partially separable structure’’ might be. This is the structure in functions of the form

f (x) =
i = 1
Σ
q

θ i (
j = 1
Σ
r i

f i j (U i j x) ) ,

where θ i : I R→I R is a unary operator. LANCELOT [7], for example, is prepared to
handle such structure. Automatically recognizing this structure is a relatively
straightforward extension to the work reported in this paper.
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