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ABSTRACT

Nonlinear programming problems often involve an objective and
constraints that are partially separable — the sum of terms involving only
a few variables (perhaps after a linear change of variables). This paper
discusses finding and exploiting such structure in nonlinear programming
problems expressed symbolically in the AMPL modeling language. For
some computations, such as computing Hessians by backwards automatic
differentiation, exploiting partial separability can give significant
speedups.

Overview

To set the context for this paper, it is necessary to talk about various aspects of
nonlinear programming problems and automatic differentiation. Accordingly, it is
convenient to begin with brief overviews of Newton’s method, nonlinear programming,
and automatic differentiation. Since I report computational experience with problems
expressed symbolically in the AMPL modeling language, a brief account of AMPL is
also appropriate. In the initial overviews, I will omit most references.

Newton’s Method for Nonlinear Equations

Newton’s method is in some ways an ideal algorithm for solving systems of
nonlinear equations. It is easily derived by a linearization argument, and it converges
quickly when started close to a ‘‘strong’’ solution. As a simple example, Table 1 shows
the sequence of residual errors for a square-root iteration; note how the residuals are
approximately squared in successive iterations (‘‘quadratic convergence’’).

In more detail, if f : I Rn →I Rn is a differentiable mapping of real n-space to itself,
then f (x + y) ∼∼ f (x) + f ′(x) (y − x), where f ′(x) is the Jacobian matrix of f at x, so if
f ′(x) is nonsingular and y = x − f ′(x) − 1 f (x), then f (y) ∼∼ 0, which gives Newton’s
method:

(1) x k + 1 = x k − f ′(x k ) − 1 f (x k ).

To carry out a step of Newton’s method, it is of course not necessary to explicitly
form f ′(x k ) − 1; rather it suffices to solve
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_ _____________
iter. resid.

0 1e+00
1 4e−01
2 8e−02
3 4e−03
4 1e−05
5 8−11_ _____________ 




















Table 1. Sample residuals in Newton’s method.

(2) f ′(x k ) s = − f (x k )

for s and then compute x k + 1 = x k + s. To solve (2), one can either work with f ′(x k )
explicitly or use an iterative method that just requires computing the matrix-vector
product f ′(x k ) d for certain vectors d. See, for example, [19, 23, 30].

Unfortunately, Newton’s method can only be guaranteed to work when when f ′ is
sufficiently smooth (e.g., Lipschitz continuous) and the initial iterate, x 0, is close enough
to a solution x * at which f ′(x *) is nonsingular. In practice it is usually necessary to use
some safeguarded variant of Newton’s method, such as the damped Newton method

x k + 1 = x k − λkf ′(x k ) − 1 f (x k )

in which λk is a (positive) step length that should tend to 1 (for quadratic convergence),
but that may have to be smaller initially. Trust-region methods are another popular way
to encourage convergence of Newton’s method; they maintain the radius of a region
about the current iterate in which they consider the current approximation to f valid and
restrict the steps they compute to this region. Various textbooks go into much more
detail about safeguarding Newton’s method than there is space for here; see, for example,
[2, 7, 10, 18, 28].

One reason to modify Newton’s method is to encourage convergence from poor
starting guesses. Another is that computing the requisite derivatives is sometimes
inconvenient or too costly. Indeed, much research on optimization algorithms has dealt
with ways to approximate derivatives. Perhaps the most straightforward way is to use
finite differences. For example,

(3) ∂ f i /∂x j ∼∼ [ f i (x + h i j e j ) − f i (x) ] / h i j

is a forward-difference approximation to component (i , j) of f ′(x), where e j is the j-th
standard unit vector and h i j is a suitable step length, and

(4) ∂ f i /∂x j ∼∼ [ f i (x + h i j e j ) − f i (x − h i j e j) ] / ( 2h i j )

is a corresponding central-difference approximation; (4) takes more work but is often
more accurate. Finite-difference approximations like (3) and (4) suffer from two sources
of error: round-off error (when carried out in finite-precision arithmetic), and truncation
error, which arises because of nonlinearity.
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Secant-update methods are much akin to finite-difference computations, except that
they only update their approximation A k to f ′(x k ) by a low-rank change each iteration
(e.g., by a rank-1 change for Broyden’s method). In general, secant updates satisfy the
quasi-Newton equation,

A k + 1 (x k − x k − 1 ) = f (x k ) − f (x k − 1 ) .

An alternative considered in more detail below is so-called automatic differentiation
(AD), a mixture of analytic and numeric computation that uses partial derivatives of
elementary operations and the chain rule to avoid truncation error, and is sometimes
much more efficient than finite differences.

Nonlinear Programming

For a point x * to minimize or maximize a smooth function φ: I Rn →I R, it is
necessary that φ ′(x *) = 0. Thus at first glance, an ideal iteration for minimizing φ
would be to use Newton’s method on f (x) = ∇ φ(x) ≡ φ ′(x) T, the transpose of φ ′(x).
Of course, a complication here is that a point where ∇ φ(x *) = 0 could be a local
maximizer or saddle point, rather than a local minimizer. To encourage convergence to a
minimizer, people often use a descent method, one that requires φ(x k + 1 ) < φ(x k ), or at
least φ(x k + m ) < φ(x k ) for bounded m. (The texts cited above give more details.)

For f (x) = ∇ φ(x), we have f ′(x) = ∇2 φ(x), the so-called Hessian matrix. Much
research has gone into secant-update methods for approximating ∇2 φ. Below I describe
an alternative: use of ‘‘backwards’’ automatic differentiation for computing ∇2 φ.

Now consider imposing m equality constraints c(x) = 0, where c: I Rn →I Rm is
sufficiently smooth. For x = x * to minimize φ(x) subject to c(x) = 0, if the constraint
Jacobian matrix c ′(x *) has full row-rank, the Lagrange multiplier rule gives the
necessary condition

∇ φ(x *) = ∇c(x *) y ,

where ∇c = c ′T is the transpose of c ′(x) ∈ I Rm×n and y ∈ I Rm is a vector of Lagrange
multipliers. Aside from safeguards to prevent convergence to saddle points and local
maximizers, an ideal algorithm for this problem is Newton’s method applied to

f ( x̃) = φ(x) − y T c(x), with x̃ = 
y
x
. This requires computing (or being able to

multiply by) both the Jacobian matrix of the constraints, c ′(x), and the Hessian of the
Lagrangian function,

(5) W(x) = ∇2 φ(x) −
i = 1
Σ
m

y i ∇2 c i (x) .

Further imposing p inequality constraints d(x) ≥ 0, where d: I Rn →I Rp is smooth,
leads to more complicated necessary conditions involving the signs of the Lagrange
multipliers for d:

∇ φ(x *) = ∇c(x *) y + ∇d(x *) z ,
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with c(x *) = 0, d(x *) ≥ 0, z ≥ 0, and z i d i (x *) = 0 for 1 ≤ i ≤ p (‘‘complementary
slackness’’), i.e., z i = 0 if d i (x *) > 0. Active set methods guess which components of
d will be 0, revising the guess if it proves wrong. The currently popular interior-point
methods (which are closely related to the barrier methods) solve a sequence of problems
in which the complementary slackness condition is replaced by z i d i (x) = µ, 1 ≤ i ≤ p,
for a sequence of values of µ = µk > 0 with µk →0. Either way, an ‘‘ideal’’ algorithm
needs the Hessian of the Lagrangian function (5), which now becomes

W(x) = ∇2 φ(x) −
i = 1
Σ
m

y i ∇2 c i (x) −
i = 1
Σ
m

z i ∇2 d i (x) .

For simplicity, in what follows I will mainly discuss computing ∇2 φ(x), but the
implementation discussed below computes W(x).

Automatic Differentiation

There are several ways to compute (exact or approximate) derivatives. Perhaps
most familiar is symbolic computation: we apply the rules of calculus to find expressions
for the desired derivatives, then evaluate these expression. Finite-difference
approximations such as (3) and (4) have often been used in numerical computations, as
they are easy to program and do not require detailed knowledge of the expressions being
differentiated. Recently there has been growing interest in automatic differentiation. For
example, some 31 papers on AD appear in the proceedings book [1], including a history
[25] with many further references.

Consider computing first derivatives by AD. Most straightforward is the ‘‘forward
mode’’, in which we compute the partials of each elementary operation with respect to
the independent variables. For example, if operation o = o( ,r) depends on operands
and r, and we know the partials ∂ /∂x i and ∂r /∂x i of and r with respect to the
independent variables x i , 1 ≤ i ≤ n, then we can use the chain rule to compute

∂x i

∂o_ ___ =
∂
∂o_ __ .

∂x i

∂_ ___ +
∂r
∂o_ __ .

∂x i

∂r_ ___ .

Forward AD is straightforward and is readily extended to recur higher derivatives,
but it can turn an expression evaluation that requires O(k) operations into one that takes
O(k 2 ) operations. (The same criticism applies to straightforward symbolic computation
of derivatives, though fancier symbolic analysis can sometimes overcome this
‘‘expression swell’’.) Backward AD for computing ∇ φ(x) recurs the partials ∂ φ/∂o of φ
with respect to each operation o involved in evaluating φ(x). To do this, it is necessary
to visit the elementary operations first in ‘‘forward’’ order to compute φ(x), then in
‘‘reverse’’ order to recur the partials. At the end of this ‘‘reverse sweep’’, we have
∂ φ/∂x i , the components of ∇ φ(x). Backward AD has the advantage of computing both
φ(x) and ∇ φ(x) in at most a small multiple of the time needed to compute φ(x) alone. It
has the disadvantage of needing to save information for the reverse sweep. Thus it may
involve considerably more storage than does forward AD.
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It is conceptually straightforward to extend a backward AD computation of ∇ φ(x)
to a Hessian-times-vector computation, i.e., ∇2 φ(x) v for arbitrary (constant) vectors v;
all we need do is apply backward AD to the computation of v T ∇ φ(x). Bruce
Christianson [5] has described another another way to arrange this computation: use
forward AD to compute ψ( 0 ) and ψ ′( 0 ), where ψ : I R→I R is the scalar function given by

(6) ψ(τ) = φ(x + τv) ,

and apply backward AD to compute ∇2 φ(x) v, which is the gradient with respect to x of
∇ ψ. I have found Christianson’s scheme easier to think about (than applying AD to
v T ∇ φ(x)) and have used it in the programming behind the computations reported below.

We can compute ∇2 φ(x) a column at a time by computing ∇2 φ(x) e i for each of
the standard unit vectors e i , 1 ≤ i ≤ n. This is O(n) times more expensive than a single
evaluation of φ(x), which may be prohibitive. Fortunately, as discussed in more detail
below, many problems exhibit partially separable structure, and exploiting this structure
can make Hessian computations considerably cheaper.

AD with AMPL, a Modeling Language for Mathematical Programming

AMPL [11, 12] is a language and modeling environment for expressing linear and
nonlinear programming problems in a notation close to what one writes on a blackboard.
It encourages one to think separately about modeling a class of phenomena and providing
data for a particular instance. Thus an AMPL model describes a class of constrained
optimization problems, and separate data sets provide details (numeric or symbolic
parameters and sets of tuples of such entities) needed to instantiate a particular problem.
Models usually depend on some fundamental parameters and sets that will appear in a
data set; most models specify computing other parameters and sets from fundamental or
previously computed ones. After the AMPL processor has instantiated a particular
instance, it makes the instance available to solvers (which are independent of the AMPL
processor) by writing a ‘‘.nl’’ file describing the instance. In particular, the .nl file
contains expression graphs for the problem’s nonlinear expressions. Solvers invoke
interface routines that read the .nl file and can arrange for derivative computations. The
AMPL home page

http://www.ampl.com/ampl
gives pointers to source for the interface routines and to more information on AMPL in
general.

The backward AD computations of gradients in the AMPL/solver interface routines
are described in [15]. Briefly, partials of operations are computed and stored when the
operations are executed, and in ‘‘interpreted’’ evaluations, the AD backward sweep is
simply a sequence of multiplications and additions of the form a := a + b*c, which
are carried out by the C loop

do *d->a += *d->b * *d->c;
while(d = d->next);
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The ‘‘a’’ variables are ‘‘adjoints,’’ partials of the form ∂ φ/∂o; they are initialized to zero
(except for the adjoints corresponding to the independent variables x: linear terms are
computed separately, and the adjoints for ∂ φ/∂x i are initialized to the coefficients in the
linear terms).

The interpreted evaluations themselves take the form

value = e->op(e);

in which e points to a structure representing an operation. The op field of this structure
points to a function that carries out the operation and stores its partial derivatives.

‘‘Compiled’’ evaluations are also possible. A program called nlc turns the .nl file
into a C or Fortran routine for evaluating the objective function, constraints, and their
first derivatives. Nlc arranges to avoid some operations that arise in the interpreted
evaluation, which can lead to faster gradient computations. However, because of the
extra compilation and linking that compiled evaluations involve, they only save overall
time if the function and gradient are evaluated a great many times. Compiled evaluations
are discussed briefly in [16].

For backwards computation of Hessian-vector products, some elementary
operations in the evaluation of φ engender several multiplications and additions in
∇2 φ(x) v, so it seems reasonable to switch on the operation type and carry out several
operation-specific adjoint computations at once. There is a forward sweep to compute
ψ ′( 0 ) for (6), and a backward sweep, both with switching on operation type. More
details appear in [17].

Partially Separable Structure

Many nonlinear programming problems involve objectives (and constraint bodies)
of the form

(7) φ(x) =
i = 1
Σ
q

φ i (U i x) ,

where U i ∈ I Rm i ×n is a matrix with a small number m i of rows. For example, some
computational results for the protein-folding problem appear below; when this problem is
expressed in Cartesian coordinates, only the differences of the coordinates of pairs of
atoms appear in the various objective terms, so a row of U i contains all zeros except for
one + 1 and one − 1, and m i = 3, 6, or 9.

There is interesting structure in the gradient and Hessian of (7):

(8) ∇ φ(x) =
i = 1
Σ
q

Ui
T ∇ φ i (U i x)

and
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(9) ∇2 φ(x) =
i = 1
Σ
q

Ui
T ∇2 φ i (U i x) U i .

Griewank and Toint [21, 22] originally pointed out the possibility for exploiting the
structure in (7 − 9) and proposed using secant updates to approximate each ∇2 φ i

separately.

In general, a secant-update scheme for approximating an n×n Hessian matrix only
gains information about one direction per update (even though most symmetric secant
updates involve rank-2 changes), so even for secant updates to approximate the Hessian
of a quadratic function (i.e., a function whose Hessian is constant), it can take n updates
before a secant approximation to the Hessian is ‘‘good’’ in all directions. (Fortunately, it
is not always necessary for them to be good in all directions. Indeed, when used in
quasi-Newton methods, secant updates can lead to superlinear convergence, even though
the Hessian approximations are ‘‘bad’’ in some directions. But that is another story.)
Since the Hessians ∇2 φ i in (9) are only m i ×m i matrices, secant approximations to them
can give good approximations in only m i << n steps. Thus after

i
max m i updates,

secant approximations to ∇2 φ i may give a very good overall Hessian approximation.

Use of partially separable structure can speed the Hessian computation described
above. Rather than computing n matrix vector products ∇2 φ(x) e i , we separately
compute each ∇2 φ i with m i Hessian-vector products, and accumulate
Ui

T ∇2 φ i (U i x) U i . The computational results reported below show that this can give a
substantially faster Hessian evaluation than n Hessian-vector products ∇2 φ(x) e i .

Recognizing more structure may be worthwhile. For example, LANCELOT [6] is a
solver that exploits the structure in

(10) φ(x) =
i = 1
Σ
q

θ i (
j = 1
Σ
r i

φ i j (U i j x) ) ,

where θ i : I R→I R is a unary operator. This φ has

∇2 φ(x) =
i = 1
Σ
q

θ i ′(
j = 1
Σ
r i

φ i j (U i j x) )
j = 1
Σ
r i

Ui j
T ∇2 φ i j (U i j x) U i j

+
i = 1
Σ
q

θ i ′ ′(
j = 1
Σ
r i

φ i j (U i j x) ) Ω i Ωi
T

with

Ω i =
j = 1
Σ
r i

Ui j
T ∇ φ i j (U i j x) .

For simplicity, the rest of this paper focuses on (7) rather than (10).

Automatic detection of partially separable structure seems worthwhile, as it should
encourage exploitation of this structure. Users are likely to find automatic detection
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much more convenient than, say, explicitly stating this structure by expressing the
problem in the input format SIF associated with LANCELOT [6]. Given the expression
graphs written by the AMPL processor, it is conceptually straightforward to find partially
separable structure (including the structure in (10)): we find φ i and U i by walking the
graph for φ. In so doing, we accumulate linear terms (rows of a U i) as long as possible
— until they appear in a nonlinear operation. Once we have found a linear term, we put
it into a canonical form (sorting its coefficients and scaling them so the largest coefficient
is 1) and enter it into a hash table, so we can find duplicate appearances of U i in φ i .
Similarly, once we have found a term φ i , we put U i into a canonical form and hash it, so
we can easily tell if a subsequent φ j has U j = U i , in which case we can merge φ j into
φ i . The computations described below involve walking the expressions for φ (and for
any constraints) once to determine the partially separable structure, and a second time to
arrange for derivative and (where appropriate) Hessian times vector computations.

Computational Comparisons

For simplicity, the results reported here are for a single objective, the empirical
energy function for a protein-folding problem. The function started life as a Fortran
subroutine that Teresa Head-Gordon provided in connection with [24], and it is
interesting to compare the function and gradient evaluation times for this hand-coded
Fortran with those for interpreted evaluations of an AMPL version of the energy
function. For much more on the protein-folding problem and many pointers to the
literature, see Neumaier’s excellent survey [29]. The results reported in this section also
appear in [17], along with some other results.

My AMPL model for the protein-folding problem makes heavy use of ‘‘defined
variables’’, which amount to named common expressions. For example, the van-der-
Waals term for a pair of atoms involves σ2 ρ − 12 − 2σ ρ − 6, where ρ is the distance
between the atoms and σ is a scale factor. The AMPL model gives the names ‘‘rinv’’
and ‘‘r6’’ to ρ − 1 and σ ρ − 6:

var rinv{i in Pairs} = 1. / sqrt(
sum{j in D3} (x[inb[i],j] - x[jnb[i],j])ˆ2 );

var r6{i in Pairs} =
((sigma[inb[i]] + sigma[jnb[i]]) * rinv[i])ˆ6;

and later uses both of these defined variables in declaring another one, pair_energy,
the overall contribution from pairwise interactions:

var pair_energy =
sum{i in Pairs} (

332.1667*q[inb[i]]*q[jnb[i]]*rinv[i]
+ sqrt(eps[inb[i]]*eps[jnb[i]])

*(r6[i]ˆ2 - 2*r6[i]) );
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This, in turn, appears in the overall objective:

minimize energy: bond_energy + angle_energy
+ torsion_energy + improper_energy
+ pair14_energy + pair_energy;

Some of the other terms involve if-then-else expressions and other forms that make this
example a good stress-test for derivative computations. (The set D3 is that of the three
spatial dimensions, and for convenience in debugging and providing data, the double
subscripting of various parameters follows that in the hand-coded Fortran.)

For more simplicity and speed of testing, the results below are for a very small
instance: 22 atoms, with 66 variables in Cartesian coordinates. I carried out timings on
an SGI Indy with one 100 MHz IP22 processor (MIPS R4010 floating-point chip and
MIPS R4000 processor), with separate 8 kilobyte primary instruction and data caches and
a unified secondary instruction/data cache of one megabyte, running IRIX 5.2. Some
caveats are in order. Cache details can strongly affect relative timings, as does the mix of
algebraic and transcendental operations (such as trigonometric functions and
exponentials) appearing in the expressions. The protein-folding objective is rich in
transcendental operations, which mask some overhead.

Table 2 compares some ways of computing the protein-folding objective φ and its
gradient ∇ φ. It shows times relative to that for the original hand-coded Fortran, which
gives the fastest evaluations. It also shows the maximum working-set size (in kilobytes)
for each test program. This size may affect some results, as larger values may imply
more cache misses. The interpreted evaluations are those of the AMPL/solver interface
[16]; the compiled evaluations are for Fortran produced by the nlc program [16].
ADIFOR [4, 3] is an ambitious Fortran 77 preprocessor, the result of a collaboration
among people at Argonne National Laboratory and Rice University. It has ‘‘dense’’ and
‘‘sparse’’ modes, each of which is sometimes preferable. Table 2 shows ADIFOR
evaluations for the Fortran objective produced by nlc and for the original hand-coded
objective. The Fortran from nlc is loop-free, whereas the hand-coded Fortran has various
loops, which may permit the ADIFOR evaluations to operate with less overhead. Finally,
the ADOL-C evaluations show the very general C++ package ADOL-C [20] working on
two variants of C for the objective: C from nlc and C from the Fortran-to-C converter
f2 c[9], applied to the original hand-coded Fortran.

In part, at least, the ADIFOR evaluations are slower than those with the
AMPL/solver interface because ADIFOR mainly uses the forward AD mode; it does use
backward AD to deal with a single Fortran statement. The ADOL-C evaluations involve
recording a ‘‘tape’’ and replaying it to carry out a backward AD gradient evaluation.
When conditional outcomes do not change, ADOL-C can also compute f (x) at a new x
by replaying the tape. As Table 2 suggests, the tape handling involves significant
overhead, but replaying the tape to compute f (x) is faster than recording the tape.
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_ _____________________________________________
rel. kilo-

Evaluation method time bytes
Hand-coded Fortran 1.0 860
Interpreted 2.6 856
Compiled 2.0 964
Dense ADIFOR on nlc func 40.5 2064
Sparse ADIFOR on nlc func 35.7 2880
Dense ADIFOR on hand-coded func 10.0 1036
Sparse ADIFOR on hand-coded func 33.3 1380
ADOL-C record on nlc func 26.4 1772
ADOL-C replay on nlc func 12.3 1772
ADOL-C record on f2c func 17.6 1176
ADOL-C replay on f2c func 9.6 1176_ _____________________________________________ 


































Table 2. Relative φ + ∇ φ evaluation times
for a 22-atom instance of the protein-folding problem.

On the 22-atom protein-folding problem, the automatic extraction of partially
separable structure sketched above finds

6 defined variables split into 242
483 or more initial elements
609 distinct linear terms
600 duplicate linear terms in different elements
192 duplicate linear terms in the same element
242 adjusted elements.

How worthwhile is finding this structure? The answer depends on the use to which it is
put. Table 3 shows the times (Indy seconds) for several solvers to solve the 22-atom
protein-folding problem. Mng, Mnh and mnhp use the current PORT library [13]
versions of SUMSOL (mng) and HUMSOL [14]; these versions are available from
netlib[8] as ‘‘dmngb dmnhb from port’’. SUMSOL uses the BFGS secant-update
to approximate the Hessian, whereas HUMSOL carries out Newton’s method, both with
trust-region regularizations. The HUMSOL variants differ in that mnh computes the
Hessian by n Hessian-times-vector products, ignoring the partially separable structure,
whereas mnhp exploits this structure, summing the element Hessians to compute the
overall Hessian. In this instance, finding the partially separable structure speeds the
overall HUMSOL computation by over an order of magnitude, making it faster than
SUMSOL. (In contrast to the solvers discussed next, neither SUMSOL nor HUMSOL is
suitable for high dimensional problems, since they use dense-matrix techniques. On a
problem with n variables, SUMSOL’s overhead is O(n 2 ) per iteration, and HUMSOL’s
is O(n 3 ).)

Finding the partially separable structure in this example takes 0.22 seconds, the time
of about 8.3 function and gradient evaluations. This is about the same time it takes to
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read the problem in and build data structures for just function and gradient evaluations.
In other words, finding the partially separable structure roughly doubles the setup time, at
least in this instance. (The graph walks and hashing to find partially separable structure
are essentially linear-time algorithms. Many of the algorithms within the AMPL
processor also have this character; computing the original expression graphs and writing
them out took AMPL about 0.7 seconds.)

_ __________________
Solver seconds
mng 8.1
mnh 13.9
mnhp 4.5
ve08 8.3
v8 15.4
tn 5.0
htn-fd 6.6
htn-hv 5.3_ __________________ 
























Table 3. Indy solve times.

Ve08 and v8 are based on Phillipe Toint’s partially-separable solver VE08AD,
which is available from netlib as ‘‘ve08 from opt’’. It uses a secant update to
approximate each element Hessian and applies a truncated preconditioned conjugate
gradient algorithm to compute an approximate Newton step. Ve08 and v8 differ in that
ve08 ignores partially separable structure, whereas v8 uses it. Table 3 shows that in
this particular case the extra overhead needed to deal with 242 elements costs more time
than it saves. Table 3 does not show that v8 solves the problem in considerably fewer
iterations and function evaluations than ve08: 57 quasi-Newton iterations and 68 overall
function evaluations for v8 versus 277 iterations and 287 function evaluations for ve08.

Solvers tn, htn-fd and htn-hv use Stephen Nash’s truncated-Newton code TN
[26, 27], which is available from netlib as ‘‘tn from opt’’. It approximates
Hessian-times-vector products by finite differences of gradients as it runs a
preconditioned linear conjugate-gradient algorithm to compute an approximate Newton
step. As Table 3 shows, TN can be very efficient. The three variants of TN differ in that
tn only does the work needed for interpreted gradient evaluations, whereas the htn
variants include the overhead during function evaluations of saving second partials for
use in Hessian-times-vector computations. Htn-fd still computes finite differences of
gradients, whereas htn-hv replaces them with an analytic Hessian-times-vector
computation. It is slightly disappointing that the latter does not save time in this
example. Htn-hv does happen to save some Hessian-times-vector products (327 versus
359 for htn-fd), but takes three more iterations (39 versus 36). Another variant is
possible: we could compute the element Hessians and use them in computing Hessian-
times-vector products for TN. This remains for future research.
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Conclusions

There is much current interest in using explicit Hessians in algorithms for
constrained optimization. Exploiting partially separable structure can lead to
considerable time savings in their computation. By walking the expression graphs
representing the objective and constraints, it is possible to detect partially separable
structure at the cost of only a few function-and-gradient evaluation times. Such
automatic detection should prove much more convenient to many users than schemes that
require explicitly specifying this structure.

The preliminary computational results reported above are encouraging, but need to
be augmented by more testing. The interpreted evaluations provided by the
AMPL/solver interface are somewhat memory-intensive, requiring about 64 bytes per
binary operation (with both operands differentiable) and 48 bytes per unary operation on
a 32-bit machine. Thus, while interpreted AMPL evaluations of expressions and their
first and perhaps second derivatives are relatively fast and convenient for some
applications, they are impractical for others.
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