/******************************************************************* Copyright (C) 2016 AMPL Optimization, Inc.; written by David M. Gay. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that the copyright notice and this permission notice and warranty disclaimer appear in supporting documentation. The author and AMPL Optimization, Inc. disclaim all warranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall the author be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software. *******************************************************************/ /* After qp_read() or fg_wread(), degree(asl, co, pv) determines whether the indicated objective (co >= 0, 0 <= co < n_obj) or constraint (co < 0 indicates constraint 1 - co, 0 <= 1-co < n_con) is linear, quadratic, or higher-order. In contrast to nqpcheck() and variants, this routine does not attempt to compute the number of nonzeros in the Hessian, so it can run much faster. Possible return values: -1 ==> invalid co value 0 ==> constant 1 ==> linear 2 ==> quadratic 3 ==> more general nonlinear The pv argument (of type void **pv) should be NULL if degree_ASL(...) is to be called just once (e.g., to see if the objective is quadratic). If multiple calls are expected (e.g., for objectives and constraints), it may save time to use the pattern void *v = 0; for(...) { ... degree(asl, co, &v); ... } if (v) free(v); */ #include "nlp.h" #include "obj_adj.h" #include "r_qp.hd" typedef struct Dhelp { cexp *c0; cexp1 *c1; expr_v *vare; int *vk, nc0, nv; } Dhelp; static int kind(expr *e, Dhelp *h) { cexp *c0; cexp1 *c1; expr **ep, **epe; int i, j; top: switch(Intcast e->op) { case OPNUM: return 0; case OPPLUS: case OPMINUS: i = kind(e->L.e, h); if (i < 3) { j = kind(e->R.e, h); if (i < j) i = j; } return i; case OPUMINUS: e = e->L.e; goto top; case OPMULT: i = kind(e->L.e, h); if (i < 3) i += kind(e->R.e, h); return i; case OPDIV: i = kind(e->L.e, h); if (i <= 2) { j = kind(e->R.e, h); if (j > 0) i = 3; } return i; case OPSUMLIST: ep = e->L.ep; epe = e->R.ep; i = kind(*ep, h); while(i < 3 && ++ep < epe) { j = kind(*ep, h); if (i < j) i = j; } return i; case OP2POW: i = kind(e->L.e, h); if (i > 1) i = 3; else i <<= 1; return i; case OPVARVAL: i = (expr_v *)e - h->vare; if ((i -= h->nv) < 0) return 1; if ((j = h->vk[i]) == -2) { if (i >= h->nc0) { c1 = &h->c1[i-h->nc0]; if (!(j = kind(c1->e, h)) && c1->nlin) j = 1; } else { c0 = &h->c0[i]; if (!(j = kind(c0->e, h)) && c0->nlin) j = 1; } h->vk[i] = j; } return j; } return 3; /* nonlinear */ } int degree_ASL(ASL *a, int co, void **pv) { ASL_fg *asl; Dhelp h; Objrep *od, **pod; cde *c; cgrad *cg; int *cm, i, ncom, rv; ograd *og; ASL_CHECK(a, ASL_read_fg, "degree"); asl = (ASL_fg*)a; if (co >= n_obj || co < -n_con) return -1; h.nv = n_var; h.vare = var_e; h.vk = 0; h.nc0 = ncom0; if ((ncom = h.nc0 + ncom1)) { h.c0 = cexps; h.c1 = cexps1; if (!pv || !(h.vk = *(int**)pv)) { h.vk = (int*)Malloc(ncom*sizeof(int)); for(i = 0; i < ncom; ++i) h.vk[i] = -2; if (pv) *pv = h.vk; } } od = 0; if (co >= 0) { if ((pod = asl->i.Or) && (od = pod[co])) { co = od->ico; goto use_Cgrad; } c = obj_de + co; og = Ograd[co]; cg = 0; } else { co = -1 - co; if ((cm = asl->i.cmap)) co = cm[co]; use_Cgrad: c = con_de + co; cg = Cgrad[co]; og = 0; } rv = kind(c->e, &h); if (h.vk && !pv) free(h.vk); if (rv > 3) rv = 3; else if (rv == 0) { while(og) { if (og->coef) { rv = 1; goto ret; } og = og->next; } while(cg) { if (cg->coef) { rv = 1; goto ret; } cg = cg->next; } } ret: return rv; }