USING CONOPT WITH AMPL

Using CONOPT with AMPL

AMPL/CONOPT is an optimization system for nonlinear matherahficograms in
continuous variables. It has been developed jointly by AMPL Optimizhti@nresponsible for
the AMPL/CONOPT interface, and ARKI Consulting & Developmers Aesponsible for the
CONOPT solution engine. Sales are handled by AMPL Optimizati@h LL

This supplement tAAMPL: A Modeling Language for Mathematical Programming
describes the most important features of CONOPT for users ¢1LAM

Section 1 describes the kinds of problems to which CONOPT is dplplieand section 2
explains how solver specific options can be passed from AMPL td@FONSection 3 describes
the iteration log, section 4 describes the many types of teionmatessages that CONOPT can
produce, and section 5 discusses Function Evaluation Errors. Appendigsfaghort overview
over the CONOPT algorithm. Appendix B gives a list of the optibasdontrol the interface
between AMPL and CONOPT and Appendix C gives a list of the optlatscbntrol the
CONORPT algorithm. Theolve_result_ num values and the corresponding text string in the
solve_message text is returned by a solve statement are given in AppendRel2rences are
given in Appendix E.

1 Applicability

CONOPT is designed to solve “smooth” nonlinear programs as deseritieabter 13 of
AMPL: A Modeling Language for Mathematical Programming (in the following referred to as
The AMPL Book). CONOPT can accommodate both smooth nonlineardnadti the objective
and in the constraints. When no objective is specified, CONOPT aqekat that satisfies the
given constraints and thus can be used to solve systems of nostjnadons and/or inequalities.
Non-smooth nonlinearities will also be accepted, but CONOPT idewgned for them; the
algorithm is based on the assumption that all functions are smooth \aifidin general not
produce reliable results when they are not.

CONOPT can also be used to solve linear programs, but other speeifically designed
for linear programs will in general be more efficient.

CONOPT does not solve integer programs as described in Chapteh&5AdiPL Book.
When presented with an integer program, CONOPT ignores thealitygestrictions on the
variables, as indicated by a message such as

CONOPT 3.014R: ignoring integrality of 10 variables

It then solves the continuous relaxation of the resulting problem, amdge solution in which
some of the integer variables may have fractional values. Sahagrgan handle integrality
constraints can be found at the AMPL website.

Like most other nonlinear programming solvers CONOPT will atteimind a local
optimum, i.e., a solution that is the best in a neighborhood around thersdBétter solutions
may in general exist elsewhere in the solution space. Somesiade the property that a local
optimum is also a global optimum, i.e., a solution that is theamsng all solutions. Among
these models are convex optimization models, where the setibfdesdutions is convex and

USING CONOPT WITH AMPL

the objective function is convex (minimization). It is the resporisilaf the modeler to ensure
that the model is convex, that the model for some other reason owlyénkxal solution, or that
the solution produced by CONOPT is an acceptable local solution.

Models with piecewise-linear terms as described in the AMB@kBchapter 17 of the
second edition, 14 of the first) can be used with CONOPT. AMHAlawibmatically convert the
piecewise-linear terms into a sum of linear terms (assuomtignpl_linearize has its default
value 1), send the latter to CONOPT, and convert the solution backjritersion has the effect
of adding a variable to correspond to each linear piece. The pieevdar terms are
mathematically non-smooth, but AMPL'’s expansion converts them sumaof smooth terms
that satisfies the smoothness assumptions in CONOPT. If you uea gplinearize 0
AMPL will send the non-smooth model to CONOPT and CONOPT wahgtt to solve it as if it
was smooth; the result is a high likelihood that CONOPT wilsgeck in one of the non-smooth
points.

Piecewise-linear terms can still give rise to difficidtabue to non-convexities. They are
only safe provided they satisfy certain convexity rules: Any piesselinear term in a minimized
objective must be convex, i.e., its slopes must form an inogeasguence as in:

<<-1,1,3,5; -5,-1,0,1.5,3>> X[j]

Any piecewise-linear term in a maximized objective must beaang.e., its slopes must form a
decreasing sequence as in:

<<1,3; 1.5,0.5,0.25>> X[j]

In constraints, any piecewise-linear term must be either caanaon the left-hand side of a <
constraint (or equivalently, the right-hand side ofapstraint), or else concave and on the left-
hand side of a ®onstraint (or equivalently, the right side of @enstraint). Piecewise-linear
programs that violate the above rules are converted using integdries, but CONOPT will
ignore the integrality and just issue a message like the one sibowe and it may put the pieces
together in the wrong order and return a solution that does not correspaéPt.’s definition
of the piecewise linear term.

Piecewise-linear terms can be used to convert certain non-sfoootions into a form
more suitable for CONOPT. Examples are abs, min, and maxewabs(x) can be replaced by
<<0;-1,1>>%, min(0,x) by <<0;-1,0>>x, and max(0,x) by <<0;0,1>>x.

2 Controlling CONOPT from AMPL

In many instances, you can successfully use CONOPT by simpulifyépg a model and
data, setting theolver option toconopt , and typingsolve . For larger or more difficult
nonlinear models, however, you may need to pass specific options to EDté@btain the
desired results. You will also need options to get more detaileshgessand iteration output that
may help you to diagnose problems.

To give directives to CONOPT, you must first assign an apprepiatracter string to the
AMPL option calledconopt_options . Whensolve invokes CONOPT, CONOPT breaks this
string into a series of individual options. Here is an example:

USING CONOPT WITH AMPL

ampl: model pindyck.mod;

ampl: data pindyck.dat;

ampl: option solver conopt;

ampl: option conopt_options ‘workmeg=2 \
ampl? maxiter=2000";

ampl: solve;

CONOPT 3.14R: workmeg=2

maxiter=2000

CONOPT 3.14R: Locally optimal; objective 1170.48628 5

16 iterations; evals: nf = 35, ng = 0, nc =58, nJ =15nH=2,nHv=13

All the directives described below have the form of an identdier; sign, and a value. You may
store any number of concatenated optiorsinpt_options . The example above shows how to
type all directives in one long string, using the \ charactedioate that the string continues on
the next line. Alternatively, you can list several stringsiclv AMPL will automatically
concatenate:

ampl: option conopt_options ‘workmeg=2'
ampl? ' maxiter=2000";

In this form, you must take care to supply the space that goesdretiae options; here we have
put it beforemaxiter . Alternatively, when specifying only a few options, you can syrppi
them all on one line:

ampl: option conopt_options 'workmeg=2 maxiter=2000";

If you have specified the directive above, and then want tes@te to 500 you may
think to type:

ampl: option conopt_options
ampl? ' maxtime=500';

This will replace the previousnopt_options string, however; the other previously specified
options such asorkmeg andmaxiter will revert to their default values. (CONOPT supplies a
default value for every option not explicitly specified; the defaarkksndicated in the discussion
below and in Appendices B and C.) To append new optiofisdpt_options , use this form:

ampl: option conopt_options $conopt_options
ampl? " maxtime=500";

The $ in front of an option name denotes the current value of that optitins statement
appends more options to the current option string. Note the spacemhefore .

The available options can be divided into two groups: Interface optiemslated to the
way AMPL and CONOPT communicates with each other; they aailded in Appendix B.
Algorithmic options control aspects of the CONOPT solution algorithey are described in
Appendix C.

USING CONOPT WITH AMPL

3 Iteration Output

Following the AMPL conventions CONOPT will by default display Vétle output. You
may get something like:

CONOPT 3.14R: Locally optimal; objective 1170.48628 5
16 iterations; evals: nf = 35, ng = 0, nc =58, nJ =15nH=2,nHv=13

The first line gives an identification of the solver, a classifon of the solution status, and
the final objective function value. The second line gives sometitstisumber of iterations and
number of function calls of various types: nf = number of objective fomevaluations, ng =
number of gradient evaluations (this particular model has a lineactoigj function so the
gradient is constant and is not evaluated repeatedly), nc = nundegrstfaint evaluations, nJ =
number of evaluations of the Jacobian of the constraints, nH = numbealo&tions of the

Hessian of the Lagrangian function, and nHv = number of evaluations éfetbsan of the
Lagrangian multiplied by a vector.

To get more information from CONOPT you must increase the outmifdetiev . With

outlev=2 general messages from CONOPT (except the iteration litiggoro stdout and the
model above may give something like:

CONOPT 3.14R: outlev=2

The model has 112 variables and 97 constraints

with 332 Jacobian elements, 80 of which are non linear.
The Hessian of the Lagrangian has 32 elements o n the diagonal,
48 elements below the diagonal, and 64 nonlinea r variables.
** Optimal solution. Reduced gradient less than to lerance.
CONOPT time Total 0.141 seconds
of which: Function evaluations 0.000 = 0.0%
1st Derivative evaluations 0.000 = 0.0%
2nd Derivative evaluations 0.000 = 0.0%
Directional 2nd Derivative 0.000 = 0.0%
CONOPT 3.14R: Locally optimal; objective 1170.48628 5
16 iterations; evals: nf = 35, ng = 0, nc =58, nJ =15nH=2,nHv =13

The time spend in various types of function evaluation deglli§unction evaluations correspond
to nf + nc, ¥ Derivative evaluation correspond to ng + i3 erivative evaluations correspond

to nH, and Directional™ Derivatives correspond to nHv. On problems that are solved quickly,
some times may be reported as zero, as in this example, theegi@nularity of the timer.

With outlev=3 you will also get information about the individual iterations sintidethe
following:

USING CONOPT WITH AMPL

CONOPT 3.14R: outlev=3

The model has 112 variables and 97 constraints

with 332 Jacobian elements, 80 of which are non linear.
The Hessian of the Lagrangian has 32 elements o n the diagonal,
48 elements below the diagonal, and 64 nonlinea r variables.
iter phase numinf suminf/objval nsuper rgmax step initr mx ok
0 O 2368.91092
1 0 14.8848226
2 0 1.97454016
3 0 0 0.00414943373 1 01
4 0 0 1.10604059e-05 1 01
5 0 0 1.81205579e-08 1 01
6 3 1150.89301 16 42 0.32 101
7 3 1165.06202 16 1e+02 0.31 101
8 3 1168.00681 16 28 0.0041 01
9 3 1169.17253 16 12 0.0075 01
10 4 1170.07584 16 11 1 01
11 4 1170.48623 16 1.8 1 601
12 4 1170.48628 16 0.021 1 501
13 4 1170.48628 16 0.00014 1 401
14 4 1170.48629 16 6.3e-07 12 01
15 4 1170.48629 16 5.2e-07 1 101
16 4 1170.48629 16 4.8e-08 1 101
** Optimal solution. Reduced gradient less than to lerance.
CONOPT time Total 0.031 seconds
of which: Function evaluations 0.000 = 0.0%
1st Derivative evaluations 0.000 = 0.0%
2nd Derivative evaluations 0.000 = 0.0%
Directional 2nd Derivative 0.000 = 0.0%
CONOPT 3.14R: Locally optimal; objective 1170.48628 5
16 iterations; evals: nf = 35, ng = 0, nc =58, nJ =15 nH=2,nHv=13

The ten columns in the iterations output have the following meaning (detads on the
algorithm can be found in Appendix A):

Iter: The iteration counter. The first three lines have spawaning: iteration O refers to
the initial point as received from AMPL, iteration 1 referghe point obtained after
preprocessing, and iteration 2 refers to the same point but cHtiergs

Phase: The remaining iterations are characterized by theiRltasemn 2. During Phases
0, 1, and 2 the model is infeasible and an artificial “Sum of sibdaies” objective
function is minimized. During Phases 3 and 4 the model is feasiflthe actual Objective
function is optimized.

Numinf: Number of infeasibilities. During Phases 1 and 2 Numinf atdithe number of
infeasible constraints. CONOPT adds “Artificial” variables these constraints and
minimizes a “Sum of Infeasibility” objective function; thissisnilar to the standard phase-
1 procedure known from Linear Programming. During this process CONIRahsure
that the feasible constraints remain feasible. The distinbBbmeen Phases 1 and 2 is
related to the degree of nonlinearity: during Phase 1 CONOPTmiflimize the
infeasibilities using a completely linear approximation to tieel@h During Phase 2 some
degree of second order information is included. Phase 1 iteratiotitseeegtore cheaper
than Phase 2 iterations. Phase 0 indicates a special cheap noetfindirig a feasible
solution: A promising set of basic variables is selected and sie\@iables are changed

USING CONOPT WITH AMPL

using a Newton method. Newton’s method may not converge quicklydbtistraints are
very nonlinear; in this case CONOPT removes some of the more rasrdimestraints or
constraints with large infeasibilities from the process and taesatisfy a smaller set of
constraints. The number of constraints that has been removed frorevit@\brocess is
listed in Numinf and it will most likely grow during Phase 0.

Suminf/Objval: During Phases 0, 1, and 2 this column will lisstira of absolute values
of the infeasibilities, i.e., the artificial objective furastithat is being minimized. During
Phases 3 and 4 this column shows the user’s objective function thatgopgmized.
Nsuper: Number of super-basic variables. This number measuresriéesgin of the
space over which CONOPT is optimizing or the degrees of freedtime imodel at the
current point, taking into account the lower and upper bounds that am dttessecond
order information that CONOPT uses during Phases 2 and 4 is of domé&tsiper.
Rgmax: The absolute value of the largest reduced gradient, takethev&uper-basic
variables. The optimality conditions require the reduced gradienzerbeo this number
is a measure of the non-optimality of the current point.

Step: The steplength for the iteration. The interpretation depends@makthings: During
Phase 0 steplength 1 corresponds to a full Newton step. Duratgmesrin which Initr (see
next) is positive steplength 1 correspond to full use of the solutiontfrerhP or QP
submodel. Finally, iterations in Phase 3 with no value in the laitman steplength 1
correspond to a full Quasi-Newton step.

Initr: A number in column eight is a counter for “Inner Iteratiofis¥olumn eight is empty
CONOPT will use steepest descend iterations during Phases laaddBiasi-Newton
iterations during Phases 2 and 4. Otherwise CONOPT will userative procedure to find
a good search direction and Initr indicates the number of iteratiotiss procedure:
During Phases 1 and 3 where CONOPT uses first order informatiotherfigasibility or
optimality problem is formulated as an LP model and CONOPT usepproximate
solution to this model as a search direction. Similarly, duringé&haand 4 where second
order information is used the feasibility or optimality problefoimulated as a QP model
and CONOPT uses an approximate solution to this model as a seanttodi

Mx is 1 if the step was limited by a variable reaching a boundariderwise.

Ok is 1 if the step was “well behaved” and O if the step had tantiged because
nonlinearities of the constraints prevented CONOPT from maintaieasipility.

In the particular log file shown above the cheap Newton-based @lpaseedure finds a

feasible solution after iteration 5 without introducing anyiardifvariables. CONOPT continues
in Phase 3 which means that the iterations are based on linearatifor only. From iteration 10
CONOPT switches to Phase 4 which means that it takescoast second order information. In
several of the iterations there is a entry in the initr coluntdicating that CONOPT performs
several inner iterations trying to get a good search directiom & QP-based approximation to
the overall model.

4 CONOPT Termination Messages

CONOPT may terminate in a number of ways. Standard AMPlsages such as

USING CONOPT WITH AMPL

CONOPT 3.14R: Locally optimal; objective 1170.48628 5

have only a few classifications that are sufficient for mogtqees (see Appendix D for a list of
the solve_message text strings and the associated numerical ssiMe num values). More

detailed messages are available from CONOPT and this sedti@how most of them and

explain their meaning. Note that the detailed messages ordyaitable if you useutlev=2 or

3. The first 4 messages are used for optimal solutions:

** Optimal solution. There are no superbasic variab les.

The solution is a locally optimal corner solution. The solution isoheted by constraints only,
and it is usually very accurate.

** Optimal solution. Reduced gradient less than tol erance.

The solution is a locally optimal interior solution. The largestponent of the reduced gradient
is less than the optimality toleraneedg with default value arountle-7 . The value of the
objective function is very accurate while the values of the vagateless accurate due to a flat
objective function in the interior of the feasible area.

** Optimal solution. The error on the optimal objec tive function
value estimated from the reduced gradient and th e estimated
Hessian is less than the minimal tolerance on th e objective.

The solution is a locally optimal interior solution. The largestponent of the reduced gradient
is larger than the optimality toleraneedg . However, when the reduced gradient is scaled with
information from the estimated Hessian of the reduced objectivedartte solution seems
optimal. The objective must be large or the reduced objective muestdrge second derivatives
for this message to appear so it is advisable to scale the.model

Scaling the model will in this note mean to change the units @fblas and equations.
You should try to select units for the variables such that the soltaloas of variables that are
not at an active bound are expected to be somewhere between 0.01 tanil@fly Syou should
try to select units for the equations such that the activitiesrided by the equations are
somewhere between 0.01 and 100. These two scaling rules should @®dumnt-result in first
derivatives in the model that are not too far from 1.

The last termination message for an optimal solution is:

** Optimal solution. Convergence too slow. The chan gein
objective has been less than xx.xx for xx consec utive
iterations.

CONOPT stopped with a solution that seems optimal. The solutiorsgriscgopped because of
slow progress. The largest component of the reduced gradienatergitean the optimality
tolerancetredg , butless thanredg multiplied by a scaling factor equal to the largesbBem
element divided by 100. Again, the model must have large derivatiksSonessage to appear
so it is advisable to scale the model.

The four messages above all exist in versions where “Optimaleplaced by
“Infeasible”. The infeasible messages indicate that a Sumfexdsibility objective function is
locally minimal, but positive. If the model is convex it does not teafeasible solution; if the
model is non-convex it may have a feasible solution in a diffeegim and you should try to
start CONOPT from a different starting point.

7

USING CONOPT WITH AMPL

** Feasible solution. Convergence too slow. The cha nge in
objective has been less than xx.xx for xx consec utive
iterations.

** Feasible solution. The tolerances are minimal an d
there is no change in objective although the red uced

gradient is greater than the tolerance.

The two messages above tell that CONOPT stopped with alfeaslution. In the first case the
solution process is very slow and in the second there is no pragattsElawever, the optimality
criteria have not been satisfied. The problem can be caused by iisit@® if the model has
discontinuous functions such as abs, min, or max. In this case you sbosildec alternative,
smooth formulations. The problem can also be caused by a poorly scaleld Fnally, it can be
caused by stalling as described in section A14 in Appendix A. The ggesages also exist in a
version where “Feasible” is replaced by “Infeasible”. Thessions tell that CONOPT cannot
make progress towards feasibility, but the Sum of Infeasibltijgctive function does not have a
well defined local minimum.

Variable <var>: The variable has reached " infinity’

** Unbounded solution. A variable has reached " Infinity’.
Largest legal value (Rtmaxv) is xx.xx

CONOPT considers a solution to be unbounded if a variable exceeds tdataddialue. Check
whether the solution appears unbounded or the problem is causeddaitigecss the unbounded
variable <var> mentioned in the first line of the messag&elimodel seems correct you are
advised to scale it. There is also a lazy solution: you caresetbe largest legal valuaxv
as mentioned in the section on options. However, you will pay throughectdeilability or
increased solution times. Unlike LP models, where an unbounded modebggized by an
unbounded ray and the iterations are stopped at a solution far framtyinCONOPT will have
to follow a curved path all the way to “infinity” and it will atlly return a feasible solution with
very large values for some of the variables. On the way tafigifiterms in the model may
become very large and CONOPT may run into numerical problems apdon be able to
maintain feasibility.

The variable names will by default appear as “_svar[xx]" @hk&iis the internal index in
CONOPT. You can request AMPL to pass the proper names to CONYDERKining

option conopt_auxfiles cr;

before thesolve statement in your AMPL program and CONOPT will then use thesesian
the messages.

The message above exists in a version where “Unbounded” is ieplatiafeasible”.
You may also see a message like

Variable <var>: Free variable becomes too large
** Infeasible solution. A free variable exceeds the allowable

range. Current value is 1.10E+10 and current up per bound
(Rtmaxv) is 1.00E+10

These messages indicate that some variable became verpdéoge a feasible solution was

USING CONOPT WITH AMPL

found. You should again check whether the problem is caused by the s¢alirginbounded
variable <var> mentioned in the first line of the messagkelfitodel seems correct you should
scale it. You can also experiment with alternative stapiigts; the path towards a feasible point
depends heavily on the initial point.

CONOPT may also stop on various resource limits:

** The time limit has been reached.

The time limit defined by optiomaxftime (default value 999999 seconds) has been reached.

** The iteration limit has been reached.

The iteration limit defined by optiomerim (default value 1000000 iterations) has been
reached.

** Domain errors in non_Iinear functions.
Check bounds on variables.

The number of function evaluation errors has reached the limit définegtionerrim. See
section 5 for more details on “Function Evaluation Errors”.

The next two messages appear if a derivative (Jacobiaarglaswvery large, either in the
initial point or in a later intermediate point.

** An initial derivative is too large (larger than X.XEXX)
Scale the variables and/or equations or add boun ds.

variable <var> appearing in constraint <equ>:
Initial Jacobian element too large = xx.xx

and

** A derivative is too large (larger than x.xExx).
Scale the variables and/or equations or add boun ds.

variable <var> appearing in constraint <equ>:
Jacobian element too large = xx.xx

A large derivative means that the constraint function changesadty with changes in the
variable and it will most likely create numerical problemsrf@ny parts of the optimization
algorithm. Instead of attempting to solve a model that most likilyail, CONOPT will stop
and you are advised to adjust the model if at all possible. Thean¢leariable and equation
pair(s) will show you where to look.

If the offending derivative is associated with a log(x) or &frityou may try to increase
the lower bound on x. If the offending derivative is associated wi#gxp(x) term you must
decrease the upper bound on x. You may also try to scale the modelisTéiso in this case a
lazy solution: increase the limit on Jacobian elemetrt&gxj ; however, you will most likely
pay through reduced reliability or longer solution times.

In addition to the messages shown above you may see messages like

** An equation in the pre-triangular part of the mo del cannot be
solved because the critical variable is at a bou nd.
** An equation in the pre-triangular part of the mo del cannot be

solved because of too small pivot.

USING CONOPT WITH AMPL

or

** An equation is inconsistent with other equations in the
pre-triangular part of the model.

These messages containing the word “Pre-triangular” adatid to infeasibilities identified by
CONOPT’s pre-processing stage and they are explained inidetaidtion A4 in Appendix A.

Usually, CONOPT will be able to estimate the amount of mgmeeded for the model
based on size statistics provided by AMPL. However, in some wédisesnusual models, e.g.,
very dense models or very large models, the estimate wdbsntall and you must request more
memory yourself using options lik@orkfactor=x.x or workmeg=x.x . Workfactor ~ will
multiply the default estimate by a factor and this is usub#ypreferred methoavorkmeg will
allocate a fixed amount of memory, measured in Mbytes. The nigeaiated messages you will
see are similar to the following:

** Fatal Error ** Insufficient memory to continue the
optimization.

You must request more memory.

Current CONOPT space = 0.29 M bytes
Estimated CONOPT space = 0.64 M bytes
Minimum CONOPT space = 0.33 M bytes

The text after “Insufficient memory to” may be different;says something about where
CONOPT ran out of memory. If the memory problem appears dunaatgl setup you will not get
any solution value back. If the memory problem appears later duriogtingzation CONOPT
will usually return primal solution values. The marginal valudsati equations and variables
will be zero.

5. Function Evaluation Errors

Many of the nonlinear functions available with AMPL are not defimedfi values of
their argumentdog is not defined for negative argumenrtgy overflows for large arguments,
and division by zero is illegal. To avoid evaluating functions outsidedbenain of definition
you should add reasonable bounds on your variables. CONOPT will in retuamigesthat the
nonlinear functions never will be evaluated with variables outsidelibairds.

In some cases bounds are not sufficient, e.g., in the expreggom{i in 1} x[i])
where each individual should be allowed to become zero, but the sum must be strictlypositi
In this case you should introduce an intermediate variable bounded awezgiro and an extra
equation, e.g.,

var xsum >= 0.01;
and

subject to xsumdef: xsum = sum {i in 1} x[i];

and usexsum as the argument to the function.
Whenever a nonlinear function is called outside its domairfioftiten, AMPLSs function
evaluator will intercept the function evaluation error and preventitbaystem crashes. AMPL

1C

USING CONOPT WITH AMPL

will report the error to CONOPT, so CONOPT can try to catiexproblem by backtracking to a
safe point. Many function evaluation errors are usually a signstiraething is wrong, so
CONOPT stops aftastrlim errors.

During Phases 0, 1, and 3 CONOPT will often use large steps astial step in a line
search and functions will very likely be called with some of thieakles at their lower or upper
bound. You are therefore likely to get a division-by-zero erravuf ynodel contains a division
by x and x has a lower bound of zero. And you are likely to get an exipatren overflow error
if your model contains exp(x) and x has no upper bound. However, CON@RIuaily not get
trapped in a point outside the domain of definition for the model. When AMiction
evaluator reports that a point is “bad,” CONOPT will decrdaesstep length, and it will for most
models be able to recover and continue to an optimal solution. It éddreesafe to use a large
value forerrlim . The default value is 500.

Even though CONOPT may be able to recover from function evaluatars #ris better
to prevent them with bounds on the model variables or with properly boundedediate
variables.

In some cases function evaluation errors may cause CONOPTstnigle for example
when there is no previous point to backtrack to, when “bad” points areluseyto “reasonable”
feasible points, or when derivatives are not defined in a feasibh. @die more common
messages are:

** Fatal Error ** Function error in initial point in Phase 0
procedure.

** Fatal Error ** Function error after small step in Phase 0
procedure.

** Fatal Error ** Function error very close to a f easible point.

** Fatal Error ** Function error while reducing to lerances.

** Fatal Error ** Function error in Pre-triangular equations.

** Fatal Error ** Function error after solving Pre -triangular
equations.

** Fatal Error ** Function error in Post-triangula r equation.

In the first four cases you must either add better bounds or defiee inéial values. If the
problem is related to a pre- or post-triangular equation as showe st three messages then
you can turn part of the pre-processing off as described in sectionAppendix A. However,
this may make the model harder to solve, so it is usually betdd bounds and/or initial values.

11

USING CONOPT WITH AMPL

APPENDIX A: ALGORITHMIC INFORMATION

The objective of this Appendix is to give technically oriented usarse understanding of what
CONOPT is doing so they can get more information out of theigaraty. This information can
be used to prevent or circumvent algorithmic difficulties or to maf@med guesses about
which options to experiment with to improve CONOPT’s performance dicpar model
classes.

Al. Overview of AMPL/CONOPT

AMPL/CONOPT is a GRG-based algorithm specifically desigrded large nonlinear
programming problems expressed in the following form

min or max f(x) Q)
subject to gx)=b (2)
and lo< _x<_up 3)

wherex is the vector of optimization variablés,andup are vectors of lower and upper bounds,
some of which may be minus or plus infinibyis a vector of right hand sides, andndg are
nonlinear functions that define the model. n will in the following derf@@timber of variables
and m the number of equations. (2) will be referred to as the &poenstraints and (3) as the
bounds.

The relationship between the mathematical model in (1)-(3) abotbke@AMPL model
is simple: The inequalities defined in the “subject to” secticgh@AMPL model with=< or=>
are converted into equalities by addition of properly bounded slackks S/l lower and upper
bound of zero are added to all AMPL equality constraints to ensutb¢h#cobian matrix, i.e.,
the matrix of first derivatives of the functiogisvith respect to the variableshas full row rank.
All these slacks together with the normal AMPL variablesirrckided inx. lo represent the
lower bounds defined in AMPL in connection with te declaration or with thear.lb
notation, as well as any bounds on the slacks. Similarlygpresent upper bounds defined in
AMPL as well as any bounds on the slagksepresent the non-constant terms of the AMPL
eguations themselves; non-constant terms appearing on the right haare sistered by AMPL
to the left hand side and constant terms on the left hand side are todlve right. The objective
functionf is simply the AMPL expression to be minimized or maximized.

The AMPL interface has routines for evaluating the nonlinear fumetas well as their
first and second derivatives. AMPL will also inform CONOPT alspatrsety pattern and about
which parts of the model are linear and which are nonlinear.

CONOPT assumes thtaindg are differentiable with smooth first derivatives. If tlaeg
not, e.g., because you have used functions like abs, min, max,sotmdk, then CONOPT will
not know about it. CONOPT will work with an approximation to the reablel based on
function values and first derivatives and it can easily get stacke points where any of these
guantities are discontinuous.

Additional comments on assumptions and design criteria can beifdiiedntroduction
to the main text.

12

USING CONOPT WITH AMPL

A2. The CONOPT Algorithm

The algorithm used in AMPL/CONOPT is based on the GRGitigofirst suggested by Abadie
and Carpentier (1969). The actual implementation has many madii€s make it efficient for
large models and for models written in the AMPL language. Betai the algorithm can be
found in Drud (1985 and 1992). Here we will just give a short verbal gésariof the major
steps in a generic GRG algorithm. The later sections wibdssome of the enhancements in
CONOPT that make it possible to solve large models efficiently

The key steps in any GRG algorithm are:

1. Initialize and Find a feasible solution.

2. Compute the Jacobian of the constraints, J.

3. Select a set of n basic variables, x b, such that B, the sub-matrix of basic
column from J, is nonsingular. Factorize B. The rem aining variables, x N
are called nonbasic.

4. Solve B Tu=dffdx | for the multipliers u.

5. Compute the reduced gradient, r = df/dx - J Tu. r will by definition be zero
for the basic variables.

6. If r projected on the bounds is small, then stop. T he current point is
close to optimal.

7. Select the set of superbasic variables, x s, as a subset of the nonbasic
variables that profitably can be changed, and find a search direction, d s
for the superbasic variables based on r s and possibly on some second order
information.

8. Perform a line search along the direction d. For ea ch step, x s is changed
in the direction d sand x is subsequently adjusted to satisfy g(x X s)=b
in a pseudo-Newton process using the factored B fro m step 3.

9. Goto 2.

The individual steps are of course much more detailed in a practipédmentation like
CONOPT. Step 1 consists of several pre-processing stepalirrggorocedure, as well as a
special Phase 0 procedure as described in the following sectioagM&3The optimizing steps
are specialized in several versions according to the whetheptted appears to be almost linear
or not. For “almost” linear models some of the linear algebr& imeplving the matrices J and B
can be avoided or done using cheap LP-type updating techniques, seeondamation is not
relevant in step 7, and the line search in step 8 can be improvedbyinshat the optimal step
as in LP almost always will be determined by the first \deithat reaches a bound (the classical
“ratio-test”). Similarly, when the model appears to be yairbnlinear other aspects can be
optimized: the set of basic variables will often remain constatseveral iterations, and other
parts of the sparse matrix algebra will take advantage qstution A7 and A8). If the model is
“very” linear an improved search direction (step 7) can be computegl sfsecialized inner LP-
like iterations (section A9), and a steepest edge procedure caefoéfor certain models that
need many iterations (section A10). If the model is “very” nonliaear has many degrees of
freedom an improved search direction (step 7) can be computed usiradizpeoiner SQP-like
iterations based on exact second derivatives for the model (sedtign A

The remaining sections give some short guidelines for selestinglefault options
(section A12) and discuss miscellaneous topics such as numericalliié$ due to loss of
feasibility (A13) and slow or no progress due to stalling (A14).

A3. Iteration 0: The Initial Point

The first few “iterations” in the iteration log (see sentB in the main text for an example) are
special initialization iterations. Iteration O corresponds to tipaiti point exactly as it was

13

USING CONOPT WITH AMPL

received from AMPL. The sum of infeasibilities in the column ledd¢suminf” includes all
residuals.

A4. Iteration 1: Preprocessing

The first part of iteration 1 corresponds to a pre-proces&pgGonstraint-variable pairs that can
be solved a priori (so-called pre-triangular equations and variablessolved and the
corresponding variables are assigned their final values. Constisamtalways can be made
feasible because they contain a free variable with a constdiitien¢ (so-called post-triangular
equation-variable pairs) are excluded from the search for lea®lution, and from the
Infeasibility measure in the iteration log. Implicitly, thguations and variables are ordered as
shown in Fig. 1.

A: Zeros

Figure 1: The ordered Jacobian after Preprocessing.

A4.1 Preprocessing: Pre-triangular Variables and Constraints

The pre-triangular equations are those labeled A in Fig. 1. Teeyplred one by one along the
“diagonal” with respect to the pre-triangular variables labeléd practice, AMPL/CONOPT
looks for equations with only one non-fixed variable. If suchgaragon exists, AMPL/CONOPT
tries to solve it with respect to this non-fixed variablehil is not possible the overall model is
infeasible, and the exact reason for the infeasibility is taslentify as shown in the examples
below. Otherwise, the final value of the variable has been dekediihe variable can for the rest
of the optimization be considered fixed, and the equation can be remaredfurther
consideration. The result is that the model has one equation and onratbvafiiable less. As
variables are fixed new equations with only one non-fixed variabjeemarge, and CONOPT
repeats the process until no more equations with one non-fixed varéablee found.

This pre-processing step will often reduce the effective sitieeofnodel to be solved.
Although the pre-triangular variables and equations are removed fromaitiel during the
optimization, CONOPT keeps them around until the finaltewius found. The dual variables for

14

USING CONOPT WITH AMPL

the pre-triangular equations are then computed so they become aviailAMPL.

You should note that AMPL has a similar preprocessing step. HoweM&L will only
solve a variable/constraint pair if the variable appearardiyand the solution therefore is unique.
CONOPT will also attempt to solve the variable/constraintipthe relationship is nonlinear,
usually reaching a solution that is close to the initial point provigatie modeler.

The following small AMPL model shows an example of a model wightriangular
variables and equations:

var x1 >=0.1;

var x2;
var x3;

minimize obj: x1/2 + 2*x2"2 + 3*x3"2;
subject to

el:log(x1l) + x2 = 1.6;
e2:5*x2 = 3;

Equatiore2 is first solved with respect i@ (result 3/5 = 0.6). Since the relationship is linear and
the solution is unigue this is done by AMRL.is fixed by AMPL, the equation is removed, and
CONOPT will not even see it. AMPLs preprocessor will not makéher changes. Once
CONOPT receives the model equatianis a candidate for preprocessing sirteas the only
remaining non-fixed variable in the equation. Har@ppears nonlinearly and the valuenis
found using an iterative scheme based on Newton's method with seafsgliards. The
iterations are started from the value provided by the modeler otfiaefault initial value. In
this case1 is started from the default initial value, i.e., the lower booin@l 1, and the result
after some iterations id = 2.718 = exp(1).

During the recursive solution process it may not be possible toawvaf the equations.
If the lower bound or1 in the model above is changed to 3.0 you will get the following output:

** An equation in the pre-triangular part of the m odel cannot
be solved because the critical variable is at a bound.
Residual= 9.86122887E-02
Tolerance (Rtnwtr)= 2.00000000E-08

constraint el: Infeasibility in pre-triangular part of model.

variable x1: Infeasibility in pre-triangular part o f model.

The problem is as indicated that the variable to be solved fordasbaund, and the value
suggested by Newton's method is on the infeasible side of the bourditiaévariable i1
and the critical equation &, i.e.,x1 tries to exceed its bound when CONOPT solves equation
el with respect tad.

Another type of infeasibility is shown by the following model:

var x1,

var x2;

var x3 >=0.1;
var x4,

minimize obj: X172 + 2*x2"2 + 3*x3"2 + 4*x4"2;

subject to

15

USING CONOPT WITH AMPL

el: x1"2 + x2 = 1.6;
e2: 5*x2 = 3*x3;
e3: x3"2 =1,

where we have included an extra variable and constegiit) has been replaced k2 , and
the lower bound or1l has been removed. This model gives the message:
** An equation in the pre-triangular part of the m odel cannot

be solved because the pivot is too small.
Adding a bound or initial value may help.

Residual= 1.0000000

Tolerance (Rtnwtr)= 2.00000000E-08
constraint el: Infeasibility in pre-triangular part of model.
variable x1: Infeasibility in pre-triangular part o f model.
The solution order for the critical equations and v ariables is:

Equation e3 solved with respect to variable x3

Solution value = 1

Equation e2 solved with respect to variable x2

Solution value = 0.6

Equation el could not be solved with respect to var iable x1
Final solution value = 0

el remains infeasible with residual -1

To help you analyze the problem, especially for larger modelJ@FT reports the solution
sequence that led to the infeasibility (assunoutgv>=3): In this case equatic#B was first
solved with respect to variabte, then equatior2 was solved with respect to variakie (the
linear equation has not been removed by AMPL this time since it depends from a
nonlinear equation that AMPL did not remove), and finally CON@f@mpted to solve equation
el with respect tal at which stage the problem appeared. The initial value ©f the default
value zero. The derivative ef with respect tx1 is therefore zero, and it is not possible for
CONOPT to determine whether to increase or decsaasex1 is given a nonzero initial value
the model will solve. Ik1 is given a positive initial value the equation will gize1, and ifx1 is
given a negative initial value the equation will give=-1 . To make the analysis easier
CONOPT will always report the minimal set of triangular eumes and variables that caused the
infeasibility so parts of the model that are irrelevant forgperted infeasibility can be ignored.

The last type of infeasibility that can be detected duringdtuign of the pre-triangular
or recursive equations is shown by the following example

var x1>=0.1;

var x2;

var x3 >=0.1;
var x4,

minimize obj: X172 + 2*x2/2 + 3*x3"2 + 4*x4"2;
subject to

el:log(x1) + x2 = 1.6;

e2: 5*x2 = 3*x3;

e3: x3"2 =1,
e4: x1 + x2 = 3.318;

that is derived from the previous models by the addition of a lower bourd and by the
addition of equatior4. This model produces the following output:

16

USING CONOPT WITH AMPL

** An equation is inconsistent with other equation s in the
pre-triangular part of the model.

Residual= 1.03684271E-04
Tolerance (Rtnwtr)= 2.00000000E-08

constraint el: Inconsistency in pre-triangular part of model.
The solution order for the critical equations and v ariables is:

Equation e3 solved with respect to variable x3

Solution value = 1

Equation e2 solved with respect to variable x2

Solution value = 0.6

Equation e4 solved with respect to variable x1

Solution value = 2.718

All variables in equations el are now fixed

and the equation is infeasible. Residual = -0.00010 3684

Firste3 is solved with respect @, ande2 is solved with respect t@ . At this pointx1 appear
as the only variable in both equatien ande4 and sincee4 is linear it is selected and is
solved with respect tal. Now all variables that appear in equatéan namelyxl andx2, are
fixed, but the equation is not feasibde. is therefore inconsistent with the other constraints as
indicated by the first part of the message. In this casadtbeasistency is fairly small, 1.03E-04,
so it could be a tolerance problem. CONOPT will always repertalerance that was used,
rtnwtr , the triangular Newton tolerance, and if the infeasibilisnmll it will also tell how the
tolerance can be relaxed.

You can turn the identification and solution of pre-triangular varssdohel equations off
with the optionspret=0 . This can be useful in some special cases where thalpéimed by the
pre-triangular equations gives a function evaluation error in the mergaequations. The
following example shows this:

var x1;

var x2;

var x3 >=0.1;

var x4 >= -1,
var x5;

minimize obj: X172 + sqrt(0.01+x2-x4) + 4*x5"2;
subject to

el:log(1+x1) + x2 = 0;
e2: 5*x2 = -3*x3;

e3d: x3"2 =1;

e4: x4 <=x2;

All the nonlinear functions are defined in the initial point in whitlvariables except3 have
their default value of zero. The pre-processor will comge#e from e3, x2 =-0.6 frome2
andx1=0.822 fromel. When CONOPT continues and attempts to evahitethe argument to
thesqgrt function is negative when these new solution values are used togéth#re initial
x4=0, and CONOPT cannot backtrack to some safe point since the functioateraerror
appears the first timabj is evaluated. When the pre-triangular preprocessor is turned affd
x4 are changed at the same time and the argument tegthefunction remains positive
throughout the computations. Note, that although the purposeesf ithequality is to guarantee
that the argument of thgrt function is positive in all points, and althoughis satisfied in the

17

USING CONOPT WITH AMPL

initial point, it is not satisfied after the pre-triangular daaiats have been solved. CONOPT will
only guarantee that simple bounds are strictly enforced atraétiAlso note that if the option
Ispret=0 is used then feasible linear constraints will in fact rerfeasible.

An alternative (and preferable) way of avoiding the function evaluatiror is to define
an intermediate variable equaldo1+x2-x4 and add a lower bound 0Db1 on this variable.
The inequalitye4 could then be removed and the overall model would have the same number of
constraints.

A4.2 Preprocessing: Post-triangular Variables and Constraints

CONOPT has some routines for eliminating pairs of unbounded varaidesquality
constraints that effectively define intermediate terms foottjective function. This so-called
post-triangular preprocessing step will often move several nanloastraints into the objective
function where they are much easier to handle, and the effea&v/efshe model will decrease.
In some cases the result can even be a model without any gemetahints. The name post-
triangular is derived from the way the equations and variables dppkampermuted Jacobian in
fig. 1. The post-triangular equations and variables are the ones lmvéreright hand corner
labeled B and I, respectively.

This part of CONOPT is less important with AMPL since titerimediate variables are
much better treated using AMPL's “defined variables,” which @escribed in Appendix A of
the AMPL book (8A8.1 of the second edition, 8A15 of the first).

A4.3 Preprocessing: The Optional Crash Procedure

In the initial point given to CONOPT the variables are usualliy Bgb a group with initial
values provided by the modeler (in the following called the assign&bies) and a group of
variables for which no initial values have been provided (in the followatigd the default
variables). The objective of the optional crash procedure is to finmhtin which as many of the
constraints as possible are feasible, primarily by assigningv#o the default variables and by
keeping the assigned variables at their initial values. Thedingdisumption in this procedure is
that if the modeler has assigned an initial value to a varibbfethis value is “better” then a
default initial value.

The crash procedure is an extension of the triangular pre-procpssieglure described
above and is based on a simple heuristic: As long as there is dgioeguth only one non-fixed
variable (a singleton row) then we should assign a value to theleastthe equation is satisfied
or satisfied as closely as possible, and we should then tempdrarilye variable. When
variables are fixed additional singleton rows may emerge amepgat the process. When there
are no singleton rows we fix one or more variables at theirlimdiae until a row becomes a
singleton row appears, or until all variables have been fixed. Triabies to be fixed at their
initial value are selected using a heuristic that both wiesstate many row singletons and tries to
select variables with “good values”. Since the values of manghtas will come to depend on
the fixed variables, the procedure favors assigned variables and #maeadt favors variables
that appear in many feasible constraints.

18

USING CONOPT WITH AMPL

A: Zeros
C:
D:
B:
I 1l Vv: I:

Figure 2: The ordered Jacobian after Preprocessing and Crashing.

Fig. 2 shows a reordered version of fig. 1. The variables labékae the variables that
are kept at their initial values, primarily selected from assigned variables. The equations
labeled C are then solved with respect to the variables labéledlléd the crash-triangular
variables. The crash-triangular variables will often be vaghllithout initial values, e.g.,
intermediate variables.

The result of the crash procedure is usually an updated initial ipoivitich a large
number of equations will be feasible, namely all equations labelBdakd C in Fig. 2. There is
no guarantee that the sum of infeasibilities will be reducedf lsubften the case, and the point
will often provide a good starting point for the following proceduresfithas an initial feasible
solution.

The crash procedure is activated by adding the optios=1 . The default value of
Isters (= Logical Switch for Triangular CRSh) is 0 or false, i.e., the crash procedure is not
normally used.

A5. Scaling

After preprocessing the model is scaled, if scaling is turnedvbith is the default. The
Infeasibility column in the iteration log shows the scaled sumfefsibilities, except for the
initial value in iteration 0 and the value after preprocessing@iation 1.

Most models are solved faster and more reliably with the autostaling procedure
turned on. However, it can be difficult to scale models with daureof very large and very small
variables and/or derivatives so you should in all cases be card#fuheiselection af units for the
variables and equations in your models (see the hints in section 4nmaitiéext).

The scaling procedure multiplies all variables in group Il ahdaaistraints in group C
(see Fig. 1) by scale factors computed as follows:

1. CONOPT computes the largest term for each constraint, § iBhdefined as the
maximum of the constant right hand side, the slack (if any), arfdieaifisj)*X(j)) where

Jac(i,j) is the derivative and X(j) is the variable.

18

USING CONOPT WITH AMPL

2. The constraint scale factor is defined as the largest tetime iconstraint, projected on the
interval [tmins , rtmaxs]. The constraint is divided by the constraint scale factor.
Ignoring the projection, the result is a model in which the latgastin each constraint is
exactly 1. The purpose of the projection is to prevent extrerniagcBhe default value
of rtmins is 1 which implies that we do not scale the constraints up. Constveth
only small terms remain unchanged. The default valuenafs is around 1.e9 so terms
much larger than this will still remain large.

3. The terms after constraint scaling measure the importancacbf \ariable in the
particular constraint. The variable scale is selected soatgest importance of the
variable over all constraints is 1. This gives a very simgi@ble scale factor, namely the
absolute value of the variable. The variables are divided by thable@scale factor. To
avoid extreme scaling we again project on the interwahp |, rtmaxs]. Variables less
thanrtmins (default1) are therefore not scaled up and variables awmexs (default
1.e9) are only partially scaled down.

You should be aware of the implications of this scaling procefareonstraint has large
terms then the accuracy (i.e., the feasibility tolerana#) which it is satisfied is measured
relative to the large terms. Depending on the dual variabéefeakibility tolerance is somewhere
betweentnwma=1.e-7 andrtnwmi=4.e-10 . This means that if you have terms around 1.e9 then
the absolute feasibility tolerance will be between 0.4 and 100. Gatlibehand, if a constraint
only has small terms then it is not scaled up and the feastbilésance works as an absolute
tolerance. So if all terms are around 1.e-5 you may only hawe sideificant digits.

To avoid difficulties with rapidly varying variables and derivati@®NOPT keeps
moving averages of the variables and derivatives and uses thegeawvestead of the variables
and derivatives themselves in the scaling procedure described alads@ rétcomputes the scale
factors at regular intervals (seésal). Usually the moving average procedure works well.
However, if the size of some variables or derivatives in thialipibint deviates by several orders
of magnitude from their size in the final point then the scalefacnay not catch up with these
changes and parts of the solution may become inaccurate. Initiab puitht very large
derivatives, e.g., 1/x started at x = 1.e-6, should thereforedideal.

The options that control scalingisscal , Ifscal , rtmins , and rtmaxs , are all
described in Appendix B.

A6. Finding a Feasible Solution: Phase 0

The GRG algorithm used by CONOPT is a feasible path algorithmm.means that once it has
found a feasible point it tries to remain feasible and follow ka phimproving feasible points
until it reaches a local optimum. CONOPT starts with the pwimtided by AMPL. This point
will always satisfy the bounds (3): the AMPL/CONOPT drivdl simply move a variable that
is outside its bounds to the nearest bound before it is presented to”ROONGhe general
constraints (2) also are feasible then CONOPT will work véitsible solutions throughout the
optimization. However, the initial point may not satisfy the galrmnstraints (2), in which case
CONOPT must first find an initial feasible point. For modelthaiit an objective function,
feasibility is the only problem. Finding a feasible point camubegs hard as finding an optimum
in problems that have an objective function.

CONOPT has two methods for finding an initial feasible point. fireemethod is not

2C

USING CONOPT WITH AMPL

very reliable but it is fast when it works; the second methodligbte but slower. The fast
method is called Phase 0 and it is described in this sectisruded first. The reliable method,
called Phases 1 and 2, will be used if Phase 0 terminates watffeagible solution.

Phase 0 is based on the observation that Newton's method for solgtngf aguations
usually is very fast; however, sometime is does not convergdoNsunethod in its pure form is
defined for a model with the same number of variables as equati@hsoabounds on the
variables. With our type of model there are usually too many vasaiod., too many degrees of
freedom, and there are bounds. To get around the problem of too manyegai@ONOPT
selects a subset with exactly m “basic” variables to be @dhrighe rest of the variables will
remain fixed at their current values, that are not necessarbbjpunds. To accommodate the
bounds, CONOPT will try to select variables that are away their bounds as basic, subject to
the requirement that the Basis matrix, consisting of the gmneng columns in the Jacobian,
must have full rank and be well conditioned.

The Newton equations are solved to yield a vector of proposed changlee fiasic
variables. If the full proposed step can be applied we can hope ftastheonvergence of
Newton's method. However, several things may go wrong:

a) The infeasibilities, measured by the 1-norm of g (i.e., theduhe absolute infeasibilities,
excluding the pre- and post-triangular equations), may not decreasgested due to
nonlinearities.

b) The maximum step length may have to be reduced if a basic variabtevise would exceed
one of its bounds.

In case a) CONOPT tries various heuristics to find a moreopppte set of basic variables. If
this does not work, some “difficult” equations, i.e., equations véthd infeasibilities and
significant nonlinearities, are temporarily removed from the made Newton's method is
applied to the remaining set of “easy” equations.

In case b) CONOPT will remove the basic variable thatf@athes one of its bounds
from the basis and replace it by one of the nonbasic variablesoiswtethod is then applied to
the new set of basic variables. The logic is very close toflia¢ dual simplex method. In cases
where some of the basic variables are exactly at a bound CON&#Tan anti degeneracy
procedure based on Ryan and Osborne (1988) to prevent cycling.

Phase 0 will end when all equations except possibly some “diffiequations are
feasible within some small tolerance. If there are no diffiequations, AMPL/CONOPT has
found a feasible solution and it will proceed to Phases 3 and 4. @&¢beRhases 1 and 2 are
used to make the difficult equations feasible.

The iteration output will during Phase 0 have the following columrseiitération log:
iter, phase, numinf, suminf, step, mx, and ok. The number in the ngolinhn counts the
number of “difficult” infeasible equations, and the number in the sucoiltinn shows the sum
of the absolute infeasibilities in all the general constrabas) in the easy and in the difficult
ones. Suminf will decrease while numinf may increase. Artiteravith a full Newton step will
be represented by step = 1, mx = 0 and ok = 1. An iteration withpadstermined by a basic
variable reaching a bound will be represented by mx = 1 and ok = 1ljtaveostep value
represents the fraction of the Newton step that was possille, zero step indicates a degenerate
iteration. And an iteration in which suminf could not be reduced due to nantias will be
represented by step = 0, mx = 0, and ok = 0.

21

USING CONOPT WITH AMPL

The success of the Phase 0 procedure is based on being able to gjomasbasis that
ideally will allow a full Newton step. It is therefore impanmt that as many variables as possible
have been assigned reasonable initial values so CONOPT has mabiegaaway from their
bounds to choose from.

In addition to the crash option described in 8A4.3, the start anctth8ans of Phase 0
can be controlled by three optiofdack , Ismxbs , andlmmxsf , which are described in
Appendix B.

A7. Finding a Feasible Solution: Phase 1 and 2

All but numinf equations are feasible when phase 0 ends. To reher@maining infeasibilities,
CONORPT uses a procedure similar to the Phase 1 procedure usetean BProgramming:
artificial variables are added to the infeasible equations diffectilt” equations), and the sum of
these artificial variables is minimized subject to the fdasionstraints remaining feasible. The
artificial variables are already part of the model askslariables; their bounds are simply relaxed
temporarily.

This infeasibility minimization problem is similar to the oveagtimization problem:
minimize an objective function subject to equality constraints and bourttls wariables. The
feasibility problem is therefore solved with the ordinary GRG ogtition procedure. As the
artificial variables gradually become zero, i.e., as thesaible equations become feasible, they
are taken out of the auxiliary objective function and the original boaredseestablished. The
number of infeasibilities (shown in the numinf column of the iteratom) Bnd the sum of
infeasibilities (in the suminf column) will therefore both decesa®notonically.

The iteration output will label these iterations as Phase 1 dPldésie 2. The distinction
between Phases 1 (linear mode) and 2 (nonlinear mode) is simifa tlistinction between
Phase 3 and 4 that is described in the next sections.

A8. Linear and Nonlinear Mode: Phases 1to 4

The optimization itself follows step 2 to 9 of the GRG algorithwvn in section A2 above. The
factorization in step 3 is performed using an efficient sparstattdrization similar to the one
described by Suhl and Suhl (1990). The matrix operations in steps 4 emdl|Saaperformed

sparsely.

Step 7, selection of the search direction, has several vadapending on how nonlinear
the model appears to be locally. When the model appears to bédifi@alyin the area in which
the optimization is performed, i.e., when the function and constrdims/are close to their
linear approximations for the steps that are taken, then CONGKHEE advantages of the
linearity: The derivatives (the components of the Jacobian marexnot computed every
iteration. Instead, the basis factorization is updated using ¢liréechniques as described by
Reid (1982), the search direction is determined without use of secondrdadmation, i.e.,
similar to a steepest descent algorithm, and the initipllstgyth is estimated as the step length
where the first variable reaches a bound; very often, this igrilyestep length that has to be
evaluated. These cheap almost linear iterations are refermddnear Mode and they are labeled
Phase 1 or Phase 3. Phase 1 means that the model is infeasiblgeatige is the sum of
infeasibilities and Phase 3 means that the model is feasiblth@mdal objective function is
optimized.

When the constraints and/or the objective appear to bermalinear, CONOPT will still

22

USING CONOPT WITH AMPL

follow steps 2 to 9 of the GRG algorithm. However, the detadetent of each step is different.
In step 2, the Jacobian must be recomputed every iteration simentimearities imply that the
derivatives change. On the other hand, the set of basic variatilesten be the same and
CONOPT will take advantage of this during the factorization obtsgs. In step 7 CONOPT
uses the BFGS algorithm to estimate second order information archdet search directions.
And in step 8 it will often be necessary to perform more than eparsthe line search. These
nonlinear iterations are labeled Phase 2 or Phase 4: during PhassRition is infeasible, and
during Phase 4 it is feasible. The iterations in Phases 2 aad™gameral more expensive than
the iteration in Phases 1 and 3.

Some models will remain in Phase 1 (linear mode) until adfieesblution is found and
then continue in Phase 3 until the optimum is found, even if the modtkeilysnonlinear.
However, most nonlinear models will have several iterations inePhas 4 (nonlinear mode).
Phases 2 and 4 indicate that the model has significant nonlinearaeyund the current point:
the objective or the constraints deviate significantly from aatimeodel for the steps that are
taken. To improve the rate of convergence CONOPT tries toagstgacond order information in
the form of an estimated reduced Hessian using the BFGS foromuis,uses explicit @
derivatives computed by AMPL.

A9. Linear Mode: The SLP Procedure

When the model continues to appear linear CONOPT will often takg small steps, each
determined by a new variable reaching a bound. Although the line searehiest in linear
mode, each require one or more evaluations of the nonlinear conssmadhtise overall cost may
become high relative to the progress. In order to avoid the many nomlamnsdraint evaluations
CONOPT may replace the steepest descent direction in stegh@ GRG algorithm with a
sequential linear programming (SLP) technique to find a seardattidirdhat anticipates the
bounds on all variables and therefore gives a larger expected chasigjective in each line
search. The search direction and the last basis from the SL&preare used in an ordinary
GRG-type line search in which the solution is made feasiblecatsiep. The SLP procedure is
only used to generate good directions; the usual feasibility pregesteps in CONOPT are
maintained, so CONOPT is still a feasible path method wiitsalblvantages, especially related
to reliability.

Iterations in this so-called SLP-mode are identified by numheise column labeled
“initr” in the iteration log. The number in the initr column is thember of non-degenerate SLP
iterations. This number is adjusted dynamically accordirftgteiccess of the previous iterations
and the perceived linearity of the model.

CONOPT will by default determine if it should use the SLP ptoce or not, based on
progress information. You may turn it off completely with the optseslp=0 . The default
value ofiseslp (= Logical Svitch Enabling_ SLPmode) is 1 (trug, i.e., the SLP procedure is
enabled and CONOPT may use it when considered appropriate ldiossgecessary to define
Iseslp , but it can be useful if CONOPT repeatedly turns SLP on dniceofif you see a mixture
of lines in the iteration log with and without numbers in the Iratumn.

A10. Linear Mode: The Steepest Edge Procedure

When optimizing in linear mode (Phase 1 or 3) CONOPT will by deifesal a steepest descent
algorithm to determine the search direction. CONOPT allows gousé a Steepest Edge

23

USING CONOPT WITH AMPL

Algorithm as an alternative. The idea, borrowed from Linear Brogring, is to scale the
nonbasic variables according to the Euclidean norm of the “updated colmstandard LP
tableau, the so-called edge length. A unit step for a nonbasabhewiill give rise to changes in
the basic variables proportional to the edge length. A unit stepnfambasic variable with a large
edge length will therefore give large changes in the basic vesiatshich has two adverse effects
relative to a unit step for a nonbasic variable with a small leshggh: a basic variable is more
likely to reach a bound after a very short step length, and theedaemge in basic variables is
more likely to give rise to larger nonlinear terms.

The steepest edge algorithm has been very successful fordingeams, and our initial
experience has also shown that it will give fewer iterationsibst nonlinear models. However,
the cost of maintaining the edge lengths can be more expensivernortleear case and it
depends on the model whether steepest edge results in faster sokerabn times or not.
CONOPT uses updating methods for the edge lengths borrowed from itfnbst re-initialize
the edge lengths more frequently, e.g., when an inversion faiish Wwappens more frequently
for nonlinear models than for linear models, especially for mod&éigwany product terms, e.g.,
blending models, where the rank of the Jacobian can change from poinitto poi

Steepest edge is turned on with the opiamrm=1 . The default value daganrm (=
Logical Switch for A-NoRM) is 0 (false), i.e., the steepest edge procedure is turned off.

The steepest edge procedure is mainly useful during linear necakioihs. However, it
has some influence in Phases 2 and 4 also: The estimated redusiad Heéke BFGS method is
initialized to a diagonal matrix with elements on the diagonalpcted from the edge lengths,
instead of the usual scaled unit matrix.

All. Nonlinear Mode: The SQP Procedure

When progress is determined by nonlinearities CONOPT will need kord of second order
information to make good progress. The second order information canrbatedtover many
iterations using Quasi-Newton updating methods like BFGS. Howe@MQOPT can also use
exact second order information about the functions and this informatietivered by AMPL.
The second order information is used in a Sequential Quadratic ProgrguSQP) procedure
that much like the SLP procedure described above finds a good seactibrdard a good basis;
the usual feasibility preserving steps in CONOPT are mairttasezeCONOPT is still a feasible
path method with all its advantages, especially related aibrky.

lterations in this so-called SQP-mode are identified by numbehe column labeled
“initr” in the iteration log. The number in the initr column is thenber of non-degenerate SQP
iterations. This number is adjusted dynamically accordirftgteuccess of the previous iterations
and the reduction in reduced gradient in the quadratic model.

CONOPT will by default determine if it should use the SQP mhaeeor not, based on
progress information. You may turn it off completely with the optsesgp=0 . The default
value ofisesqp (= Logical Swvitch Enabling SQRmode) ist (true), i.e., the SQP procedure is
enabled and CONOPT may use it when considered appropriate ldtomsgecessary to define
Isesqp , but it can be used for experimentation.

The AMPL/CONOPT interface can generate two types"dfoder information: the
matrix of 2" derivatives (the Hessian) of a linear combination of the obgeatid the constraints
(the Lagrangian), or the Lagrangian of the Hessian multipliedMegtor, also called directional
2" derivatives. The generation is controlled by the interfaceroptis . By default both types of

24

USING CONOPT WITH AMPL

2" derivatives are generated correspondintets= 3. You can ask for only the Hessian as a
sparse matrixngss=1) or only the directional™ derivatives ffess= 2) or no 2%derivatives at all
(hess=0).

If the interface generate§2lerivatives as a sparse matrix the log file will a have fe
extra lines:

The model has 537 variables and 457 constraints

with 1597 Jacobian elements, 380 of which are nonli near.
The Hessian of the Lagrangian has 152 elements on t he diagonal,
228 elements below the diagonal, and 304 nonlinear variables.

The first two lines give information about the size of the modefiestdbrder information and
the last two lines describe second order information. The Hesdilamlodigrangian is symmetric
and the statistics show that it has 152 elements on the diagonal amel@28or a total of 380
elements in this case. This compares favorably to the numbemoémts in the matrix of first
derivatives (the Jacobian) so it should be cheap to use the Hesdlsis foodel.

In some cases you will find that the Hessian has a large nwwhbEments. This can
make the generation and use of the Hessian very expensive and nrger@iye. In this case
you should consider only to use direction¥lderivative without computing the Hessian itself
(hess=2). The directional %' derivative approach will require one direction8! @erivative
evaluation call per inner SQP iteration instead of one Hessiamatioal per SQP sub-model.

If your model is not likely to benefit fronf2derivative information or if you know you
will run out of memory anyway you can save some setup costs byaminghess=0 .

A12. How to Select Non-default Options

The non-default options have an influence on different phases of the @piomiand you must
therefore first observe whether most of the time is speritand>0, Phases 1 and 3, or in Phases 2
and 4.

Phase 0The quality of Phase 0 depends on the number of iterations and on the anchbaem

of infeasibilities after Phase 0. The iterations in Phase fhach faster than the other iterations,
but the overall time spent in Phase 0 may still be rathge.ldf this is the case or if the

infeasibilities after Phase O are large, i.e., many itiff’ equations are excluded from the
Newton process then you may try to use the triangular crash options:

Istcrs=1

Observe if the initial sum of infeasibility after iteratiohds been reduced, and if the number of
Phase 0 iterations and the number of infeasibilities at theo$t@hase 1 have been reduced. If
Isters reduces the initial sum of infeasibilities but the number ddiitens still is large you may
also try:

Islack=1

CONOPT will add artificial variables to all constraints thatnain infeasible after the
preprocessor, so Phase 0 will be eliminated, but the sum and nunmijeasibilities at the start
of Phase 1 will be larger. You are in reality trading Phater&ions for Phase 1 iterations, but
the SLP procedure may pay off.

You may also try the experimental bending line search with

25

USING CONOPT WITH AMPL

Immxsf=1

With this option, the line search in Phase 0 will be differentlamthfeasibilities may be reduced
faster than with the defaultmxsf=0 . This option may be combined with the triangular crash,
Isters=1 . Usually, linear constraints that are feasible will reni@asible. However, you should
note that with the bending linesearch linear feasible constraint$ secbme infeasible.

Phases 1 and $he number of iterations in Phase 1 and Phase 3 will probably be deftiyme
use steepest edgepm=1 , but the overall time may increase. Steepest edge sebmbést for
models with less than 5000 constraints, but there are large @asiatiry it when the number of
iterations is very large.

The default SLP mode is usually an advantage, but it is too expdasa few models. If
you observe frequent changes between SLP mode and non-SLP mode, tebetlmstter to
turn SLP off withiseslp=0

Phases 2 and Zhere are currently not many options available when most oftleagispent in
Phase 2 and Phase 4. You can try to chaige as discussed in Appendix C. If the change in
objective during the final iterations is very small, you may redwsnmputer time in return for a
slightly worse objective by reducing the optimality toleranesig

A13. Loss of Feasibility

During the optimization you may sometimes see a Phase Odtesattl in rare cases you will see
the message “Loss of Feasibility - Return to Phase 0”. Télggb@und for this is as follows:

To work efficiently, CONOPT uses dynamic tolerances foriliddg and during the
initial part of the optimization where the objective changes rafadly large infeasibilities may
be acceptable. As the change in objective in each iteration besomaber it will be necessary to
solve the constraints more accurately so the “noise” in objective ¥eom the inaccurate
constraints will remain smaller than the real change. The rsaiseasured as the scalar product
of the constraint residuals with the constraint marginal values.

Sometimes it is necessary to revise the accuracy of thsosolfor example because the
algorithmic progress has slowed down or because the marginalrd@uiate constraint has
grown significantly after a basis change, e.g., when an ingghatiomes binding. In these cases
CONOPT will tighten the feasibility tolerance and perform onmore Newton iterations on the
basic variables. This will usually be very quick and it happenstkileHowever, Newton’s
method may fail, for example in cases where the model is degeaad Newton tries to move a
basic variable outside a bound. In this case CONOPT uses sona geeation similar to those
discussed in section A6: “Finding a Feasible Solution: Phase Ohagpdte labeled Phase 0.

These Phase 0 iterations may not converge, for example ifgaeatacy is significant, if
the model is very nonlinear locally, if the model has many produostavolving variables at
zero, or if the model is poorly scaled and some constraints contginavge terms. If the
iterations do not converge, CONOPT will issue the “Loss ofiiddgi...” message, return to the
real Phase O procedure, find a feasible solution with the snalégance, and resume the
optimization.

In rare cases you will see that CONOPT cannot find éleadlution after the tolerances
have been reduced, even though it has declared the model feasibkadiesrstage. We are

26

USING CONOPT WITH AMPL

working on reducing this problem. If this happens with your model youram@ueaged to (1)
consider if bounds on some degenerate variables can be chantyexk é2¥caling of constraints
with large terms, and (3) experiment with the two feasibibitgrancesitnwma andrtnwmi
(usually by tighteningtnwma).

Al4. Stalling

CONOPT will usually make steady progress towards the finatisal A degeneracy breaking
strategy and the monotonicity of the objective function in other ibeaishould ensure that
CONORPT cannot cycle. Unfortunately, there are a few placé#sei code where the objective
function may move in the wrong direction and CONOPT may in fadée oyanove very slowly.

Due to small infeasibilities and round-off errors, the objestalee used to compare two
points, in the following called the adjusted objective value, is cord@mst¢éhe true objective plus
a noise adjustment term equal to the scalar product of the residilretise marginal values (see
8A13, where this noise term is also used). The noise adjustenenistvery useful in allowing
CONOPT to work smoothly with fairly inaccurate intermediateisohs. However, there is a
disadvantage: the noise adjustment term can change even though theglbduet not change,
namely when the marginals change in connection with a basis ciiéwegedjusted objective is
therefore not always monotone. When CONOPT looses feasibilitgaurds to Phase 0 there is
an even larger chance of non-monotonic behavior.

To avoid infinite loops and to allow the modeler to stop in cases/eiijtslow progress,
CONOPT has an anti-stalling option. An iteration is counted aaslladsiteration if it is not
degenerate and (1) the adjusted objective is worse than the bestdadpjective seen so far, or
(2) the step length was zero without being degenerate. CONQOP3tay if the number of
consecutive stalled iterations (again not counting degenerateoisjaexceedsistal and
Ifstal is positive. The default value iftal is 100. The message will be:

** Feasible solution. The tolerances are minimal an d

there is no change in objective although the red uced
gradient is greater than the tolerance.

Large models with very flat optima can sometimes be stopped pratyadue to stalling. If it is
important to find a local optimum fairly accurately then you mayeha increase the value of
Ifstal

27

USING CONOPT WITH AMPL

APPENDIX B: Options for the AMPL/CONOPT interface

The interface options are listed in the table below. “int” ing&an integer value and “fp” a
floating point value. You can use an e-exponent with floating pointsh&rdrtran d-exponent
is illegal. All non-default options should be included@ien=value pairs inconopt_options

Keyword

errlim

hess

iterlim
logfreq

maxftime
maxfwd

maximize
maxiter
minimize
objno

outlev

superbasics

timing

version
workfactor

workmeg

Type
int

int

int
int

fp
int
none
int
none
int

int

int

int

none
fp

fp

Meaning

Limit on function evaluation errors (default = 500). If the objeative
constraints cannot be evaluated at a proposed next iC@GNOPT will
try a shorter step at mostim times.

Whether to use the Hessian of the Lagrangian:

0=no

1 = use explicit Hessian (explicit®erivatives)

2 = use Hessian-vector products (directiofak2rivatives)

3 = use both explicit Hessian and Hessian-vector products (default).
Iteration limit (default 2000000).

Foroutlev=3 print one summary line evepgireq iterations (default =
1).

Limit on cpu seconds (default = 999999).

Use forward automatic differentiation for defined variablesdbpend
on at mostaxfwd other variables (default = 5)

Maximize the objective (even if the model says to minirtjize i
Iteration limit (default 2000000). Synonym fiafiim

Minimize the objective (even if the model says to maxiit)ize
Which objective to optimize:

1 = first objective (default),

2 = second objective, etc.

0 = just satisfy the constraints.

0 = no options echoed on stdout.

1 = options but no iteration log (default).

2 = CONOPT *“screen” output on stdout.

3 =as 2 plus a log line eveapgfreq iterations.

Limit on number of superbasic variables for which a Reddesdian is
estimated and stored. (Default >= 500).

0 = no timing report.

1 = timing report on stdout.

2 = timing report on stderr.

3 =timing report on both.

Show version and CONOPT banner.

If workfactor > 1 then multiply the standard memory estimate by this
factor.

0: Let CONOPT decide how much memory to allocate (default).
> 0: means allocaterkmeg megabytes of memory.

28

USING CONOPT WITH AMPL

APPENDIX C: Options Controlling the CONOPT Algorithm

The CONOPT options that an AMPL user can access are listew.l@ptions starting on R
assume floating point values, options starting on LS assume logloak (use for true an

for false), and all other options starting on L assume integaesaFloating point values can be
written with or without a decimal point and with or without an e-exporiére Fortran type d-
exponents are not allowed. All non-default options should be includgdaasvalue pairsin
conopt_options

Ifilog

Ifilos

Ifmxns

Ifnicr

Ifnsup

Ifscal

Ifstal

Iteration Log frequency. A log line is printed to the screen eflegy iterations
(see alsdtrilos). The default value depends on the size of the model: it is 10 for
models with less than 500 constraints, 5 for models between 501 and 2000
constraints and 1 for larger models. The log itself can be turnaalcooif with the
interface optiorutlev .

lteration Log frequency for SLP and SQP iterations. A log knprinted to the
screen everifilos iterations while using the SLP or SQP mode. The default
value depends on the size of the model: it is 1 for large moddiswaite than
2000 constraints or 3000 variables, 5 for medium sized models wigthaor 500
constraints or 1000 variables, and 10 for smaller models

Limit on new superbasics. When there has been a sufficient redirctibe
reduced gradient in one subspace, CONOPT tests if any nonbaditesasizould

be made superbasic. The ones with largest reduced gradient of pigipare
selected, up to a limit. The limitliigxns if Ifmxns is positive and the square root
of the number of structural variablesfifixns is zero. The default value is zero.
Limit for slow progress / no increase. The optimization is stopptda “Slow
Progress” message if the change in objective is less than ridbjr* *
max(1,abs(FOBJ)) famicr ~ consecutive iterations where FOBJ is the value of
the current objective function. The default valuéradr is12.

Same as interface optiamperbasics . Maximum Hessian dimension. If the
number of superbasics exceéasip CONOPT will no longer store a Reduced
Hessian matrix. However, it can still use second derivativesmbination with a
conjugate gradient algorithm. The default valuenetip is at leas00 and it is
larger for very large models. If you experience many it@matin Phases 2 or 4
with a large number of superbasic variables you may try to ipeffesup to a
value above the number of superbasics, but it is not always a godd ide@ase
linsup much beyond its default value unless you have a very large model. The
time used to manipulate a very large reduced Hessiarxmoatrbe large compared
to the potential reduction in the number of iterationgndfip is increased the
default memory allocation may not be sufficient, and you may hawveltae a
workfactor ~ Orworkmeg interface option.

Frequency for scaling. The scale factors are recomputed &dtar
recomputations of the Jacobian. The default valae.is

Maximum number of stalled iterations.ftal is positive then CONOPT wiill
stop with a“No change in objecti' message when the number of sta

29

Immxsf

Islack

Ismxbs

Ispost
Ispret
Isscal

Istcrs

rtmaxj

rtmaxv

rtmaxs

USING CONOPT WITH AMPL

iterations as defined in section A14 exceets . The default value ofstal

iS 100.

Method for finding the maximal step while searching for a feasiblution. The
step in the Newton direction is usually either the ideal steadrithe step that
will bring the first basic variable exactly to its bound. Areaiative procedure
uses “bending”: All variables are moved a step s and the varthblese outside
their bounds after this step are projected back to the bound. Thersjépike
determined as the step where the sum of infeasibilities, comfsatada linear
approximation model, starts to increase again. The advantdgemithod is that
it often can make larger steps and therefore better reductiotie isum of
infeasibilities, and it is not very sensitive to degenerakiesever, feasible linear
constraints can become infeasible. The alternative method is mmriBdsetting
Immxsf to1, and it is turned off by settingmxsf to 0. The method is by default
turned off.

Logical switch for slack basis.Hflack=1 then the first basis after preprocessing
will have slacks in all infeasible constraints and Phase Qusuilally be bypassel
This is sometimes useful together wiskers=1 if the number of infeasible
constraints after the crash procedure is small. This is iefipecue if the SLP
procedure described in section A9 quickly can remove these remaining
infeasibilities. It is necessary to experiment with the maoadeletermine if this
option is useful.

Logical Switch for Maximal Basissmxbs determines whether CONOPT should
try to improve the condition number of the initial bas)defore starting the Phase
0 iterations or just use the initial basis immediate)yThe default value i, i.e.,
CONOPT tries to improve the basis. There is a computationzdsesciated with
the procedure, but there will usually be a net savings, becausketts
conditioning will give rise to fewer Phase 0 iterations and otsnta fewer large
residuals at the end of Phase 0. The option is ignoreack s 1.

Logical switch for the Post-triangular preprocessaspdbt=0 (default is1) then
the post-triangular preprocessor discussed in section A4.2 is turned off
Logical switch for the Pre-triangular preprocessasptet=0 (default is1) then
the pre-triangular preprocessor discussed in section A4.1 is turned off

A logical switch that turns scaling on (with the valjer off (with the valu®).
The default value is, i.e., scaling is turned on.

A logical switch that turns the triangular crash (see seé#B) on (with the
valuel) or off (with the valu®). The default value g, i.e., the triangular crash is
turned off.

Maximum Jacobian element. The optimization is stopped if a Jacel@ment
exceeds this value. The default valuerexj is1.e10 . If you need alarger value
then your model is poorly scaled and CONOPT may find it difficuttaive.
Maximum size for a variable. The model is considered unbounded ifadhear
exceedstmaxv in absolute value. The default valuertafaxv is1.e10 . If you
need a larger value then your model is poorly scaled and CONOPTinday

difficult to solve. Explicit bounds on variables are not allowed téalger than
rtmaxv.

Scale factors larger thamaxs are rounded down tomaxs . The default value is

3C

rtmins

rtnwma

rtnwmi

rtnwtr

rtobjr

rtoned

rtpiva

rtpivr

rtpivt

rtredg

rvstim

USING CONOPT WITH AMPL

around 1.e9 (to avoid rounding it is a power of 2, namedy"3) .

Scale factors smaller thamins are rounded up tamins . The default value is
1, i.e., CONOPT does by default not round small terms up.

Maximum feasibility tolerance. A constraint will only be consatkfeasible if the
residual is less thannwma times MaxJac, independent on the dual variable.
MaxJac is an overall scaling measure for the constraints codhpage
max(1,maximal Jacobian element/100). The default value-is .

Minimum feasibility tolerance. A constraint will always bensidered feasible if
the residual is less thanwmi times MaxJac (see above), independent of the dual
variable. The default value4s:-10 . You should only increase this number if you
have inaccurate function values and you get an infeasible solutioa very small
sum of infeasibility, or if you have very large terms in somgoaf constraints (in
which case scaling may be more appropriate).

Triangular feasibility tolerance. If you solve a model, fix gaofithe variables at
their optimal value and solve again and the model then is reportesilohéga the
pre-triangular part, then you should increasetr . The infeasibilities in some
unimportant constraints in the “Optimal” solution have been largerriietn

The default value ig.e-8 .

Relative objective tolerance. CONOPT assumes thatdlieed objective function
can be computed to an accuracyadfir * max(1,abs(FOBJ)) where FOBJ is the
value of the current objective function. The default valueigf is3.e-13 . The
value is used in tests for “Slow Progress”; isee

Relative accuracy of one-dimensional search. The one-dimensiomeh sea
stopped if the expected further decrease in objective estimatadafiquadratic
approximation is less thawned times the decrease obtained so far. The default
value is0.2 . A smaller value will result in more accurate but more experisie
searches and this may result in an overall decrease in the nohitezations.
Values above.7 or belowo.01 should not be used.

Absolute pivot tolerance. A pivot element is only considered accepfaitde
absolute value is larger thapiva . The default value ise-10 . You may have to
decrease this value towartls-11 or1.e-12 on poorly scaled models.

Relative pivot tolerance. A pivot element is only considered adueptlative to
other elements in the column if its absolute value is atlpast * the largest
absolute value in the column. The default valweos . You may have to increase
this value towards 1 on poorly scaled models. Increasgityg will result in
denser L and U factors of the basis, i.e., you may also haviotata more
memory.

Triangular pivot tolerance. A nonlinear triangular pivot elemerntoissidered
acceptable if its absolute value is larger thgim . The default value ise-5 .
Linear triangular pivots must be larger thaiiva

Optimality tolerance. The reduced gradient is considered zerchargblution
optimal if the largest superbasic component is lessrtieely . The default value
is 1.e-7 . If you have problems with slow progress or stalling you may asere
rtredg . This is especially relevant for very large models.

Step length multiplier. The step length in the one-dimensional éiaels is not

31

USING CONOPT WITH AMPL
allowed to increased by a factor of more thaim between steps for models

with nonlinear constraints and a factor of 108stim for models with linear
constraints. The default valuedis

32

USING CONOPT WITH AMPL

APPENDIX D: Solve result_num values

In addition to the solution to the model, AMPL’s “solve” command wio return a
“solve_result_num” value that characterizes the solution. The vdoeg with the text that
appears in the associated solve_message are shown in theltabldfalues larger than the ones
shown here indicate some kind of bug.

Value
0

100
101
200
201
202
300
400
401
500
501
504
505
506
507
508
521
522
523
524
525
526
529

Message

Optimal.

Locally optimal.

Bogus “Termination by solver” (CONOPT bug).
Infeasible.

Locally infeasible.

Intermediate infeasible.

Unbounded.

Iteration limit.

Time limit.

CONOPT bug: unknown Model Status
Intermediate non-optimal.

Unknown type of error

Error no solution.

Evaluation error.

Evaluation error limit.

objno = nnn is not >=0 and <= nnn.

Not enough memory for CONOPT’s initial allocations.
Too many constraints.

Too many variables.

Too many variables + constraints.

Too many nonzeros.

Size permitted by demo license exceeded.
CONOPT ran out of memory.

33

USING CONOPT WITH AMPL

APPENDIX E: REFERENCES

J. Abadie and J. Carpentier, Generalization of the Wolfe Redaradient Method to the Case of
Nonlinear Constraints, i@ptimization, R. Fletcher (ed.), Academic Press, New York, 37-
47 (1969).

A. Drud, A GRG Code for Large Sparse Dynamic Nonlinear Opétium Problems,
Mathematical Programming 31, 153-191 (1985).

A.S. Drud, CONOPT - A Large-Scale GRG Co@&RSA Journal on Computing 6, 207-216
(1992).

R. Fourer, D.M. Gay, and B.W. Kernighan, AMPA:Modeling Language for Mathematical
Programming, The Scientific Press, (2003 22dition; ' = 1993).

J.K. Reid, A Sparsity Exploiting Variant of Bartels-Golub Dexposition for Linear
Programming Base#jathematical Programming 24, 55-69 (1982).

D.M. Ryan and M.R. Osborne, On the Solution of Highly Degeneriateat. Programmes,
Mathematical Programming 41, 385-392 (1988).

U.H. Suhl and L.M. Suhl, Computing Sparse LU Factorizations fogd-&cale Linear
Programming Base§RSA Journal on Computing 2, 325-335 (1990).

34

