
18
__

Nonlinear Programs

Although any model that violates the linearity rules of Chapter 8 is ‘‘not linear’’, the
term ‘‘nonlinear program’’ is traditionally used in a more narrow sense. For our purposes
in this chapter, a nonlinear program, like a linear program, has continuous (rather than
integer or discrete) variables; the expressions in its objective and constraints need not be
linear, but they must represent ‘‘smooth’’ functions. Intuitively, a smooth function of
one variable has a graph like that in Figure 18-1a, for which there is a well-defined slope
at every point; there are no jumps as in Figure 18-1b, or kinks as in Figure 18-1c. Mathe-
matically, a smooth function of any number of variables must be continuous and must
have a well-defined gradient (vector of first derivatives) at every point; Figures 18-1b and
18-1c exhibit points at which a function is discontinuous and nondifferentiable, respec-
tively.

Optimization problems in functions of this kind have been singled out for several rea-
sons: because they are readily distinguished from other ‘‘not linear’’ problems, because
they have many and varied applications, and because they are amenable to solution by
well-established types of algorithms. Indeed, most solvers for nonlinear programming
use methods that rely on the assumptions of continuity and differentiability. Even with
these assumptions, nonlinear programs are typically a lot harder to formulate and solve
than comparable linear ones.

This chapter begins with an introduction to sources of nonlinearity in mathematical
programs. We do not try to cover the variety of nonlinear models systematically, but
instead give a few examples to indicate why and how nonlinearities occur. Subsequent
sections discuss the implications of nonlinearity for AMPL variables and expressions.
Finally, we point out some of the difficulties that you are likely to confront in trying to
solve nonlinear programs.

While the focus of this chapter is on nonlinear optimization, keep in mind that AMPL
can also express systems of nonlinear equations or inequalities, even if there is no objec-
tive to optimize. There exist solvers specialized to this case, and many solvers for nonlin-
ear optimization can also do a decent job of finding a feasible solution to an equation or
inequality system.

391

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

392 NONLINEAR PROGRAMS CHAPTER 18

__
__

(a) Smooth and continuous function

........

..

..

..

(b) Discontinuous function

(c) Continuous, nondifferentiable function

Figure 18-1: Classes of nonlinear functions.
__

18.1 Sources of nonlinearity

We discuss here three ways that nonlinearities come to be included in optimization
models: by dropping a linearity assumption, by constructing a nonlinear function to
achieve a desired effect, and by modeling an inherently nonlinear physical process.

As an example, we describe some nonlinear variants of the linear network flow model
net1.mod introduced in Chapter 15 (Figure 15-2a). This linear program’s objective is
to minimize total shipping cost,

minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];

where cost[i,j] and Ship[i,j] represent the cost per unit and total units shipped
between cities i and j, with LINKS being the set of all city pairs between which ship-
ment routes exist. The constraints are balance of flow at each city:

subject to Balance {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k]

= demand[k] + sum {(k,j) in LINKS} Ship[k,j];

SECTION 18.1 SOURCES OF NONLINEARITY 393

with the nonnegative parameters supply[i] and demand[i] representing the units
either available or required at city i.

Dropping a linearity assumption

The linear network flow model assumes that each unit shipped from city i to city j
incurs the same shipping cost, cost[i,j]. Figure 18-2a shows a typical plot of ship-
ping cost versus amount shipped in this case; the plot is a line with slope cost[i,j]
(hence the term linear). The other plots in Figure 18-2 show a variety of other ways,
none of them linear, in which shipping cost could depend on the shipment amount.

In Figure 18-2b the cost also tends to increase linearly with the amount shipped, but at
certain critical amounts the cost per unit (that is, the slope of the line) makes an abrupt
change. This kind of function is called piecewise-linear. It is not linear, strictly speak-
ing, but it is also not smoothly nonlinear. The use of piecewise-linear objectives is the
topic of Chapter 17.

In Figure 18-2c the function itself jumps abruptly. When nothing is shipped, the ship-
ping cost is zero; but when there is any shipment at all, the cost is linear starting from a
value greater than zero. In this case there is a fixed cost for using the link from i to j,
plus a variable cost per unit shipped. Again, this is not a function that can be handled by
linear programming techniques, but it is also not a smooth nonlinear function. Fixed
costs are most commonly handled by use of integer variables, which are the topic of
Chapter 20.

The remaining plots illustrate the sorts of smooth nonlinear functions that we want to
consider in this chapter. Figure 18-2d shows a kind of concave cost function. The incre-
mental cost for each additional unit shipped (that is, the slope of the plot) is great at first,
but becomes less as more units are shipped; after a certain point, the cost is nearly linear.
This is a continuous alternative to the fixed cost function of Figure 18-2c. It could also
be used to approximate the cost for a situation (resembling Figure 18-2b) in which vol-
ume discounts become available as the amount shipped increases.

Figure 18-2e shows a kind of convex cost function. The cost is more or less linear for
smaller shipments, but rises steeply as shipment amounts approach some critical amount.
This sort of function would be used to model a situation in which the lowest cost shippers
are used first, while shipping becomes progressively more expensive as the number of
units increases. The critical amount represents, in effect, an upper bound on the ship-
ments.

These are some of the simplest functional forms. The functions that you consider will
depend on the kind of situation that you are trying to model. Figure 18-2f shows a possi-
bility that is neither concave nor convex, combining features of the previous two exam-
ples.

Whereas linear functions are essentially all the same except for the choice of coeffi-
cients (or slopes), nonlinear functions can be defined by an infinite variety of different
formulas. Thus in building a nonlinear programming model, it is up to you to derive or
specify nonlinear functions that properly represent the situation at hand. In the objective

394 NONLINEAR PROGRAMS CHAPTER 18

__
__

(a) Linear costs

(b) Piecewise linear costs

(c) Fixed + variable linear costs

(d) Concave nonlinear costs

(e) Convex nonlinear costs

(f) Combined nonlinear costs

Figure 18-2: Nonlinear cost functions.

__

SECTION 18.1 SOURCES OF NONLINEARITY 395

of the transportation example, for instance, one possibility would be to replace the prod-
uct cost[i,j] * Ship[i,j] by

(cost1[i,j] + cost2[i,j]*Ship[i,j]) / (1 + Ship[i,j])
* Ship[i,j]

This function grows quickly at small shipment levels but levels off to essentially linear at
larger levels. Thus it represents one way to implement the curve shown in Figure 18-2d.

Another way to approach the specification of a nonlinear objective function is to
focus on the slopes of the plots in Figure 18-2. In the linear case of Figure 18-2a, the
slope of the plot is constant; that is why we can use a single parameter cost[i,j] to
represent the cost per unit shipped. In the piecewise-linear case of Figure 18-2b, the
slope is constant within each interval; we can express such piecewise-linear functions as
explained in Chapter 17.

In the nonlinear case, however, the slope varies continuously with the amount
shipped. This suggests that we go back to our original linear formulation of the network
flow problem, and turn the parameter cost[i,j] into a variable Cost[i,j]:

var Cost {ORIG,DEST}; # shipment costs per unit
var Ship {ORIG,DEST} >= 0; # units to ship

minimize Total_Cost:
sum {i in ORIG, j in DEST} Cost[i,j] * Ship[i,j];

This is no longer a linear objective, because it multiplies a variable by another variable.
We add some equations to specify how the cost relates to the amount shipped:

subject to Cost_Relation {i in ORIG, j in DEST}:
Cost[i,j] =

(cost1[i,j] + cost2[i,j]*Ship[i,j]) / (1 + Ship[i,j]);

These equations are also nonlinear, because they involve division by an expression that
contains a variable. It is easy to see that Cost[i,j] is near cost1[i,j] where ship-
ments are near zero, but levels off to cost2[i,j]at sufficiently high shipment levels.
Thus the concave cost of Figure 18-2d is realized provided that the first cost is greater
than the second.

Assumptions of nonlinearity can be found in constraints as well. The constraints of
the network flow model embody only a weak linearity assumption, to the effect that the
total shipped out of a city is the sum of the shipments to the other cities. But in the pro-
duction model of Figure 1-6a, the constraint

subject to Time {s in STAGE}:
sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];

embodies a strong assumption that the number of hours used in each stage s of making
each product p grows linearly with the level of production.

396 NONLINEAR PROGRAMS CHAPTER 18

Achieving a nonlinear effect

Sometimes nonlinearity arises from a need to model a situation in which a linear func-
tion could not possibly exhibit the desired behavior.

In a network model of traffic flows, as one example, it may be necessary to take con-
gestion into account. The total time to traverse a shipment link should be essentially a
constant for small shipment amounts, but should increase rapidly towards infinity as the
capacity of the link is approached. No linear function has this property, so we are forced
to make travel time a nonlinear function of shipment load in order to get the desired
effect.

One possibility for expressing the travel time is given by the function

time[i,j] + (sens[i,j]*Ship[i,j]) / (1 - Ship[i,j]/cap[i,j])

This function is approximately time[i,j] for small values of Ship[i,j], but goes
to infinity as Ship[i,j] approaches cap[i,j]; a third parameter sens[i,j] gov-
erns the shape of the function between the two extremes. This function is always convex,
and so has a graph resembling Figure 18-2e. (Exercise 18-4 suggests how this travel time
function can be incorporated into a network model of traffic flows.)

As another example, we may want to allow demand to be satisfied only approxi-
mately. We can model this possibility by introducing a variable Discrepancy[k], to
represent the deviation of the amount delivered from the amount demanded. This vari-
able, which can be either positive or negative, is added to the right-hand side of the bal-
ance constraint:

subject to Balance {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k]

= demand[k] + Discrepancy[k] +
sum {(k,j) in LINKS} Ship[k,j];

One established approach for keeping the discrepancy from becoming too large is to add
a penalty cost to the objective. If this penalty is proportional to the amount of the dis-
crepancy, then we have a convex piecewise-linear penalty term,

minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j] +
sum {k in CITIES} pen * <<-1,1; 0>> Discrepancy[k];

where pen is a positive parameter. AMPL readily transforms this objective to a linear
one.

This form of penalty may not achieve the effect that we want, however, because it
penalizes each unit of the discrepancy equally. To discourage large discrepancies, we
would want the penalty to become steadily larger per unit as the discrepancy becomes
worse, but this is not a property that can be achieved by linear penalty functions (or
piecewise-linear ones that have a finite number of pieces). Instead a more appropriate
penalty function would be quadratic:

SECTION 18.2 NONLINEAR VARIABLES 397

minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j] +
sum {k in CITIES} pen * Discrepancy[k] ˆ 2;

Nonlinear objectives that are a sum of squares of some quantities are common in opti-
mization problems that involve approximation or data fitting.

Modeling an inherently nonlinear process

There are many sources of nonlinearity in models of physical activities like oil refin-
ing, power transmission, and structural design. More often than not, the nonlinearities in
these models cannot be traced to the relaxation of any linearity assumptions, but are a
consequence of inherently nonlinear relationships that govern forces, volumes, currents
and so forth. The forms of the nonlinear functions in physical models may be easier to
determine, because they arise from empirical measurements and the underlying laws of
physics (rather than economics). On the other hand, the nonlinearities in physical models
tend to involve more complicated functional forms and interactions among the variables.

As a simple example, a model of a natural gas pipeline network must incorporate not
only the shipments between cities but also the pressures at individual cities, which are
subject to certain bounds. Thus in addition to the flow variables Ship[i,j] the model
must define a variable Press[k] to represent the pressure at each city k. If the pressure
is greater at city i than at city j, then the flow is from i to j and is related to the pres-
sure by

Flow[i,j]ˆ2 = c[i,j]ˆ2 * (Press[i]ˆ2 - Press[j]ˆ2)

where c[i,j] is a constant determined by the length, diameter, and efficiency of the
pipe and the properties of the gas. Compressors and valves along the pipeline give rise to
different nonlinear flow relationships. Other kinds of networks, notably for transmission
of electricity, have their own nonlinear flow relationships that are dictated by the physics
of the situation.

If you know the algebraic form of a nonlinear expression that you want to include in
your model, you can probably see a way to write it in AMPL. The next two sections of
this chapter consider some of the specific issues and features relevant to declaring vari-
ables for nonlinear programs and to writing nonlinear expressions. Lest you get carried
away by the ease of writing nonlinear expressions, however, the last section offers some
cautionary advice on solving nonlinear programs.

18.2 Nonlinear variables

Although AMPL variables are declared for nonlinear programs in the same way as for
linear programs, two features of variables — initial values and automatic substitution —
are particularly useful in working with nonlinear models.

398 NONLINEAR PROGRAMS CHAPTER 18

Initial values of variables

You may specify values for AMPL variables. Prior to optimization, these ‘‘initial’’
values can be displayed and manipulated by AMPL commands. When you type solve,
they are passed to the solver, which may use them as a starting guess at the solution.
After the solver has finished its work, the initial values are replaced by the computed
optimal ones.

All of the AMPL features for assigning values to parameters are also available for
variables. A var declaration may also specify initial values in an optional := phrase; for
the transportation example, you can write

var Ship {LINKS} >= 0, := 1;

to set every Ship[i,j] initially to 1, or

var Ship {(i,j) in LINKS} >= 0, := cap[i,j] - 1;

to initialize each Ship[i,j] to 1 less than cap[i,j]. Alternatively, initial values
may be given in a data statement along with the other data for a model:

var Ship: FRA DET LAN WIN STL FRE LAF :=
GARY 800 400 400 200 400 200 200
CLEV 800 800 800 600 600 500 600
PITT 800 800 800 200 300 800 500 ;

Any of the data statements for parameters can also be used for variables, as explained in
Section 9.4.

All of these features for assigning values to the regular (‘‘primal’’) variables also
apply to the dual variables associated with constraints (Section 12.5). AMPL interprets an
assignment to a constraint name as an assignment to the associated dual variable or (in
the terminology more common in nonlinear programming) to the associated Lagrange
multiplier. A few solvers, such as MINOS, can make use of initial values for these multi-
pliers.

You can often speed up the work of the solver by suggesting good initial values. This
can be so even for linear programs, but the effect is much stronger in the nonlinear case.
The choice of an initial guess may determine what value of the objective is found to be
‘‘optimal’’ by the solver, or even whether the solver finds any optimal solution at all.
These possibilities are discussed further in the last section of this chapter.

If you don’t give any initial value for a variable, then AMPL will tentatively set it to
zero. If the solver incorporates a routine for determining initial values, then it may re-set
the values of any uninitialized variables, while making use of the values of variables that
have been initialized. Otherwise, uninitialized variables will be left at zero. Although
zero is an obvious starting point, it has no special significance; for some of the examples
that we will give in Section 18.4, the solver cannot optimize successfully unless the initial
values are reset away from zero.

SECTION 18.2 NONLINEAR VARIABLES 399

Automatic substitution of variables

The issue of substituting variables has already arisen in an example of the previous
section, where we declared variables to represent the shipping costs, and then defined
them in terms of other variables by use of a constraint:

subject to Cost_Relation {(i,j) in LINKS}:
Cost[i,j] =

(cost1[i,j] + cost2[i,j]*Ship[i,j]) / (1 + Ship[i,j]);

If the expression to the right of the = sign is substituted for every appearance of
Cost[i,j], the Cost variables can be eliminated from the model, and these con-
straints need not be passed to the solver. There are two ways in which you can tell AMPL
to make such substitutions automatically.

First, by changing option substout from its default value of zero to one, you can
tell AMPL to look for all ‘‘defining’’ constraints that have the form shown above: a sin-
gle variable to the left of an = sign. When this alternative is employed, AMPL tries to use
as many of these constraints as possible to substitute variables out of the model. After
you have typed solve and a nonlinear program has been generated from a model and
data, the constraints are scanned in the order that they appeared in the model. A con-
straint is identified as ‘‘defining’’ provided that

• it has just one variable to the left of an = sign;
• the left-hand variable’s declaration did not specify any restrictions, such as inte-
grality or bounds; and
• the left-hand variable has not already appeared in a constraint identified as defin-
ing.

The expression to the right of the = sign is then substituted for every appearance of the
left-hand variable in the other constraints, and the defining constraint is dropped. These
rules give AMPL an easy way to avoid circular substitutions, but they do imply that the
nature and number of substitutions may depend on the ordering of the constraints.

As an alternative, if you want to specify explicitly that a certain collection of variables
is to be substituted out, use an = phrase in the declarations of the variables. For the pre-
ceding example, you could write:

var Cost {(i,j) in LINKS}
= (cost1[i,j] + cost2[i,j]*Ship[i,j]) / (1 + Ship[i,j]);

Then the variables Cost[i,j] would be replaced everywhere by the expression follow-
ing the = sign. Declarations of this kind can appear in any order, subject to the usual
requirement that every variable appearing in an = phrase must be previously defined.

Variables that can be substituted out are not mathematically necessary to the opti-
mization problem. Nevertheless, they often serve an essential descriptive purpose; by
associating names with nonlinear expressions, they permit more complicated expressions
to be written understandably. Moreover, even though these variables have been removed
from the problem sent to the solver, their names remain available for use in browsing
through the results of optimization.

400 NONLINEAR PROGRAMS CHAPTER 18

When the same nonlinear expression appears more than once in the objective and con-
straints, introducing a defined variable to represent it may make the model more concise
as well as more readable. AMPL also processes such a substitution efficiently. In gener-
ating a representation of the nonlinear program for the solver, AMPL does not substitute a
copy of the whole defining expression for each occurrence of a defined variable. Instead
it breaks the expression into a linear and a nonlinear part, and saves one copy of the non-
linear part together with a list of the locations where its value is to be substituted; only the
terms of the linear part are substituted explicitly in multiple locations. This separate
treatment of linear terms is advantageous for solvers (such as MINOS) that handle the lin-
ear terms specially, but it may be turned off by setting option linelim to zero.

From the solver’s standpoint, substitutions reduce the number of constraints and vari-
ables, but tend to make the constraint and objective expressions more complex. As a
result, there are circumstances in which a solver will perform better if defined variables
are not substituted out. When developing a new model, you may have to experiment to
determine which substitutions give the best results.

18.3 Nonlinear expressions

Any of AMPL’s arithmetic operators (Table 7-1) and arithmetic functions (Table 7-2)
may be applied to variables as well as parameters. If any resulting objective or constraint
does not satisfy the rules for linearity (Chapter 8) or piecewise-linearity (Chapter 17),
AMPL treats it as ‘‘not linear’’. When you type solve, AMPL passes along instructions
that are sufficient for your solver to evaluate every expression in every objective and con-
straint, together with derivatives if appropriate.

If you are using a typical nonlinear solver, it is up to you to define your objective and
constraints in terms of the ‘‘smooth’’ functions that the solver requires. The generality of
AMPL’s expression syntax can be misleading in this regard. For example, if you are try-
ing to use variables Flow[i,j] representing flow between points i and j, it is tempt-
ing to write expressions like

cost[i,j] * abs(Flow[i,j])

or

if Flow[i,j] = 0 then 0 else base[i,j] + cost[i,j]*Flow[i,j]

These are certainly not linear, but the first is not smooth (its slope changes abruptly at
zero) and the second is not even continuous (its value jumps suddenly at zero). If you try
to use such expressions, AMPL will not complain, and your solver may even return what
it claims to be an optimal solution — but the results could be wrong.

Expressions that apply nonsmooth functions (such as abs, min, and max) to vari-
ables generally produce nonsmooth results; the same is true of if-then-else expres-
sions in which a condition involving variables follows if. Nevertheless, there are useful
exceptions where a carefully written expression can preserve smoothness. As an exam-

SECTION 18.3 NONLINEAR EXPRESSIONS 401

__
__

(a) x 2 if x ≥ 0, − x 2 if x < 0

..

..

..

..

..

..

..

.

1.0

(b) log (x) / (x − 1)

Figure 18-3: Smooth nonlinear functions.
__

ple, consider again the flow-pressure relationship from Section 18.1. If the pressure is
greater at city i than at city j, then the flow is from i to j and is related to the pressure
by

Flow[i,j]ˆ2 = c[i,j]ˆ2 * (Press[i]ˆ2 - Press[j]ˆ2)

If instead the pressure is greater at city j than at city i, a similar equation can be written:

Flow[j,i]ˆ2 = c[j,i]ˆ2 * (Press[j]ˆ2 - Press[i]ˆ2)

But since the constants c[i,j] and c[j,i] refer to the same pipe, they are equal.
Thus instead of defining a separate variable for flow in each direction, we can let
Flow[i,j] be unrestricted in sign, with a positive value indicating flow from i to j
and a negative value indicating the opposite. Using this variable, the previous pair of
flow-pressure constraints can be replaced by one:

(if Flow[i,j] >= 0 then Flow[i,j]ˆ2 else -Flow[i,j]ˆ2)
= c[i,j]ˆ2 * (Press[i]ˆ2 - Press[j]ˆ2)

Normally the use of an if expression would give rise to a nonsmooth constraint, but in
this case it gives a function whose two quadratic halves ‘‘meet’’ smoothly where
Flow[i,j] is zero, as seen in Figure 18-3a.

As another example, the convex function in Figure 18-3b is most easily written
log(Flow[i,j]) / (Flow[i,j]-1), but unfortunately if Flow[i,j] is 1 this
simplifies to 0/0, which would be reported as an error. In fact, this expression does not
evaluate accurately if Flow[i,j] is merely very close to zero. If instead we write

402 NONLINEAR PROGRAMS CHAPTER 18

if abs(Flow[i,j]-1) > 0.00001 then
log(Flow[i,j])/(Flow[i,j]-1)

else
1.5 - Flow[i,j]/2

a highly accurate linear approximation is substituted at small magnitudes of
Flow[i,j]. This alternative is not smooth in a literal mathematical sense, but it is
numerically close enough to being smooth to suffice for use with some solvers.

In the problem instance that it sends to a solver, AMPL distinguishes linear from non-
linear constraints and objectives, and breaks each constraint and objective expression into
a sum of linear terms plus a not-linear part. Additional terms that become linear due to
the fixing of some variables are recognized as linear. For example, in our example from
Section 18.1,

minimize Total_Cost:
sum {i in ORIG, j in DEST} Cost[i,j] * Ship[i,j];

each fixing of a Cost[i,j] variable gives rise to a linear term; if all the Cost[i,j]
variables are fixed, then the objective is represented to the solver as linear. Variables
may be fixed by a fix command (Section 11.4) or through the actions of the presolve
phase (Section 14.1); although the presolving algorithm ignores nonlinear constraints, it
works with any linear constraints that are available, as well as any constraints that
become linear as variables are fixed.

AMPL’s built-in functions are only some of the ones most commonly used in model
formulations. Libraries of other useful functions can be introduced when needed. To use
cumulative normal and inverse cumulative normal functions from a library called
statlib, for example, you would first load the library with a statement such as

load statlib.dll;

and declare the functions by use of AMPL function statements:

function cumnormal;
function invcumnormal;

Your model could then make use of these functions to form expressions such as
cumnormal(mean[i],sdev[i],Inv[i,t]) and invcumnormal(6). If these
functions are applied to variables, AMPL also arranges for function evaluations to be car-
ried out during the solution process.

A function declaration specifies a library function’s name and (optionally) its
required arguments. There may be any number of arguments, and even iterated collec-
tions of arguments. Each function’s declaration must appear before its use. For your
convenience, a script containing the function declarations may be supplied along with
the library, so that a statement such as include statlib is sufficient to provide
access to all of the library’s functions. Documentation for the library will indicate the
functions available and the numbers and meanings of their arguments.

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 403

Determining the correct load command may involve a number of details that depend
on the type of system you’re using and even its specific configuration. See Section A.22
for further discussion of the possibilities and the related AMPLFUNC option.

If you are ambitious, you can write and compile your own function libraries. Instruc-
tions and examples are available from the AMPL web site.

18.4 Pitfalls of nonlinear programming

While AMPL gives you the power to formulate diverse nonlinear optimization models,
no solver can guarantee an acceptable solution every time you type solve. The algo-
rithms used by solvers are susceptible to a variety of difficulties inherent in the complexi-
ties of nonlinear functions. This is in unhappy contrast to the linear case, where a well-
designed solver can be relied upon to solve almost any linear program.

This section offers a brief introduction to the pitfalls of nonlinear programming. We
focus on two common kinds of difficulties, function range violations and multiple local
optima, and then mention several other traps more briefly.

For illustration we begin with the nonlinear transportation model shown in Figure
18-4. It is identical to our earlier transportation example (Figure 3-1a) except that the
terms cost[i,j] * Trans[i,j] are replaced by nonlinear terms in the objective:

minimize Total_Cost:
sum {i in ORIG, j in DEST}

rate[i,j] * Trans[i,j] / (1 - Trans[i,j]/limit[i,j]);

Each term is a convex increasing function of Trans[i,j] like that depicted in Figure
18-2e; it is approximately linear with slope rate[i,j] at relatively small values of
Trans[i,j], but goes to infinity as Trans[i,j] approaches limit[i,j]. Asso-
ciated data values, also similar to those used for the linear transportation example in
Chapter 3, are given in Figure 18-5.

Function range violations

An attempt to solve using the model and data as given proves unsuccessful:

ampl: model nltrans.mod;
ampl: data nltrans.dat;

ampl: solve;
MINOS 5.5 Error evaluating objective Total_Cost
can’t compute 8000/0
MINOS 5.5: solution aborted.
8 iterations, objective 0

The solver’s message is cryptic, but strongly suggests a division by zero while evaluating
the objective. That could only happen if the expression

1 - Trans[i,j]/limit[i,j]

404 NONLINEAR PROGRAMS CHAPTER 18

__
__

set ORIG; # origins
set DEST; # destinations

param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST} >= 0; # amounts required at destinations

check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];

param rate {ORIG,DEST} >= 0; # base shipment costs per unit
param limit {ORIG,DEST} > 0; # limit on units shipped

var Trans {i in ORIG, j in DEST} >= 0; # units to ship

minimize Total_Cost:
sum {i in ORIG, j in DEST}

rate[i,j] * Trans[i,j] / (1 - Trans[i,j]/limit[i,j]);

subject to Supply {i in ORIG}:
sum {j in DEST} Trans[i,j] = supply[i];

subject to Demand {j in DEST}:
sum {i in ORIG} Trans[i,j] = demand[j];

Figure 18-4: Nonlinear transportation model (nltrans.mod).

param: ORIG: supply :=
GARY 1400 CLEV 2600 PITT 2900 ;

param: DEST: demand :=
FRA 900 DET 1200 LAN 600
WIN 400 STL 1700 FRE 1100
LAF 1000 ;

param rate : FRA DET LAN WIN STL FRE LAF :=
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20 ;

param limit : FRA DET LAN WIN STL FRE LAF :=
GARY 500 1000 1000 1000 800 500 1000
CLEV 500 800 800 800 500 500 1000
PITT 800 600 600 600 500 500 900 ;

Figure 18-5: Data for nonlinear transportation model (nltrans.dat).
__

is zero at some point. If we use display to print the pairs where Trans[i,j] equals
limit[i,j]:

ampl: display {i in ORIG, j in DEST: Trans[i,j] = limit[i,j]};
set {i in ORIG, j in DEST: Trans[i,j] == limit[i,j]}

:= (GARY,LAF) (PITT,LAN);

ampl: display Trans[’GARY’,’LAF’], limit[’GARY’,’LAF’];
Trans[’GARY’,’LAF’] = 1000
limit[’GARY’,’LAF’] = 1000

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 405

we can see the problem. The solver has allowed Trans[GARY,LAF] to have the value
1000, which equals limit[GARY,LAF]. As a result, the objective function term

rate[GARY,LAF] * Trans[GARY,LAF]
/ (1 - Trans[GARY,LAF]/limit[GARY,LAF])

evaluates to 8000/0. Since the solver is unable to evaluate the objective function, it gives
up without finding an optimal solution.

Because the behavior of a nonlinear optimization algorithm can be sensitive to the
choice of starting guess, we might hope that the solver will have greater success from a
different start. To ensure that the comparison is meaningful, we first set

ampl: option send_statuses 0;

so that status information about variables that was returned by the previous solve will not
be sent back to help determine a starting point for the next solve. Then AMPL’s let
command may be used to suggest, for example, a new initial value for each
Trans[i,j] that is half of limit[i,j]:

ampl: let {i in ORIG, j in DEST} Trans[i,j] := limit[i,j]/2;
ampl: solve;
MINOS 5.5: the current point cannot be improved.
32 iterations, objective -7.385903389e+18

This time the solver runs to completion, but there is still something wrong. The objective
is less than − 1018, or − ∞ for all practical purposes, and the solution is described as ‘‘can-
not be improved’’ rather than optimal.

Examining the values of Trans[i,j]/limit[i,j] in the solution that the solver
has returned gives a clue to the difficulty:

ampl: display {i in ORIG, j in DEST} Trans[i,j]/limit[i,j];
Trans[i,j]/limit[i,j] [*,*] (tr)
: CLEV GARY PITT :=
DET -6.125e-14 0 2
FRA 0 1.5 0.1875
FRE 0.7 1 0.5
LAF 0.4 0.15 0.5
LAN 0.375 7.03288e-15 0.5
STL 2.9 0 0.5
WIN 0.125 0 0.5
;

These ratios show that the shipments for several pairs, such as Trans[CLEV,STL],
significantly exceed their limits. More seriously, Trans[GARY,FRE] seems to be right
at limit[GARY,FRE], since their ratio is given as 1. If we display them to full preci-
sion, however, we see:

ampl: option display_precision 0;
ampl: display Trans[’GARY’,’FRE’], limit[’GARY’,’FRE’];
Trans[’GARY’,’FRE’] = 500.0000000000028
limit[’GARY’,’FRE’] = 500

406 NONLINEAR PROGRAMS CHAPTER 18

__
__

Figure 18-6: Singularity in cost function y = x /(1 − x / c).
__

The variable is just slightly larger than the limit, so the cost term has a huge negative
value. If we graph the entire cost function, as in Figure 18-6, we see that indeed the cost
function goes off to − ∞ to the right of the singularity at limit[GARY,FRE].

The source of error in both runs above is our assumption that, since the objective goes
to + ∞ as Trans[i,j] approaches limit[i,j] from below, the solver will keep
Trans[i,j] between 0 and limit[i,j]. At least for this solver, we must enforce
such an assumption by giving each Trans[i,j] an explicit upper bound that is slightly
less than limit[i,j], but close enough not to affect the eventual optimal solution:

var Trans {i in ORIG, j in DEST} >= 0, <= .9999 * limit[i,j];

With this modification, the solver readily finds an optimum:

ampl: option display_precision 6;
ampl: model nltransb.mod; data nltrans.dat; solve;
MINOS 5.5: optimal solution found.
81 iterations, objective 1212117
ampl: display Trans;
Trans [*,*] (tr)
: CLEV GARY PITT :=
DET 586.372 187.385 426.242
FRA 294.993 81.2205 523.787
FRE 365.5 369.722 364.778
LAF 490.537 0 509.463
LAN 294.148 0 305.852
STL 469.691 761.672 468.637
WIN 98.7595 0 301.241
;

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 407

These values of the variables are well away from any singularity, with
Trans[i,j]/limit[i,j] being less than 0.96 in every case. (If you change the
starting guess to be limit[i,j]/2 as before, you should find that the solution is the
same but the solver needs only about half as many iterations to find it.)

The immediate lesson here is that nonlinear functions can behave quite badly outside
the intended range of the variables. The incomplete graph in Figure 18-2e made this cost
function look misleadingly well-behaved, whereas Figure 18-6 shows the need for a
bound to keep the variable away from the singularity.

A more general lesson is that difficulties posed by a nonlinear function may lead the
solver to fail in a variety of ways. When developing a nonlinear model, you need to be
alert to bizarre results from the solver, and you may have to do some detective work to
trace the problem back to a flaw in the model.

Multiple local optima

To illustrate a different kind of difficulty in nonlinear optimization, we consider a
slightly modified objective function that has the following formula:

minimize Total_Cost:
sum {i in ORIG, j in DEST}

rate[i,j] * Trans[i,j]ˆ0.8 / (1 - Trans[i,j]/limit[i,j]);

By raising the amount shipped to the power 0.8, we cause the cost function to be concave
at lower shipment amounts and convex at higher amounts, in the manner of Figure 18-2f.
Attempting to solve this new model, we again initially run into technical difficulties:

ampl: model nltransc.mod; data nltrans.dat; solve;
MINOS 5.5: Error evaluating objective Total_Cost:

can’t evaluate pow’(0,0.8)
MINOS 5.5: solution aborted.
8 iterations, objective 0

This time our suspicion naturally centers upon Trans[i,j]ˆ0.8, the only expression
that we have changed in the model. A further clue is provided by the error message’s ref-
erence to pow’(0,0.8), which denotes the derivative of the exponential (power) func-
tion at zero. When Trans[i,j] is zero, this function has a well-defined value, but its
derivative with respect to the variable — the slope of the graph in Figure 18-2f — is infi-
nite. As a result, the partial derivative of the total cost with respect to any variable at zero
cannot be returned to the solver; since the solver requires all the partial derivatives for its
optimization algorithm, it gives up.

This is another variation on the range violation problem, and again it can be remedied
by imposing some bounds to keep the solution away from troublesome points. In this
case, we move the lower bound from zero to a very small positive number:

var Trans {i in ORIG, j in DEST}
>= 1e-10, <= .9999 * limit[i,j], := 0;

408 NONLINEAR PROGRAMS CHAPTER 18

We might also move the starting guess away from zero, but in this example the solver
takes care of that automatically, since the initial values only suggest a starting point.

With the bounds adjusted, the solver runs normally and reports a solution:

ampl: model nltransd.mod; data nltrans.dat; solve;
MINOS 5.5: optimal solution found.
65 iterations, objective 427568.1225
ampl: display Trans;
Trans [*,*] (tr)
: CLEV GARY PITT :=
DET 689.091 1e-10 510.909
FRA 1e-10 199.005 700.995
FRE 385.326 326.135 388.54
LAF 885.965 114.035 1e-10
LAN 169.662 1e-10 430.338
STL 469.956 760.826 469.218
WIN 1e-10 1e-10 400
;

We can regard each 1e-10 as a zero, since such a small value is negligible in compari-
son with the rest of the solution.

Next we again try a starting guess at limit[i,j]/2, in the hope of speeding things
up. This is the result:

ampl: let {i in ORIG, j in DEST} Trans[i,j] := limit[i,j]/2;
ampl: solve;
MINOS 5.5: optimal solution found.
40 iterations, objective 355438.2006

ampl: display Trans;
Trans [*,*] (tr)
: CLEV GARY PITT :=
DET 540.601 265.509 393.89
FRA 328.599 1e-10 571.401
FRE 364.639 371.628 363.732
LAF 491.262 1e-10 508.738
LAN 301.741 1e-10 298.259
STL 469.108 762.863 468.029
WIN 104.049 1e-10 295.951
;

Not only is the solution completely different, but the optimal value is 17% lower! The
first solution could not truly have minimized the objective over all solutions that are fea-
sible in the constraints.

Actually both solutions can be considered correct, in the sense that each is locally
optimal. That is, each solution is less costly than any other nearby solutions. All of the
classical methods of nonlinear optimization, which are the methods considered in this
chapter, are designed to seek a local optimum. Started from one specified initial guess,
these methods are not guaranteed to find a solution that is globally optimal, in the sense
of giving the best objective value among all solutions that satisfy the constraints. In gen-
eral, finding a global optimum is much harder than finding a local one.

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 409

Fortunately, there are many cases in which a local optimum is entirely satisfactory.
When the objective and constraints satisfy certain properties, any local optimum is also
global; the model considered at the beginning of this section is one example, where the
convexity of the objective, together with the linearity of the constraints, guarantees that
the solver will find a global optimum. (Linear programming is an even more special case
with this property; that’s why in previous chapters we never encountered local optima
that were not global.)

Even when there is more than one local optimum, a knowledge of the situation being
modeled may help you to identify the global one. Perhaps you can choose an initial solu-
tion near to the global optimum, or you can add some constraints that rule out regions
known to contain local optima.

Finally, you may be content to find a very good local optimum, even if you don’t
have a guarantee that it is global. One straightforward approach is to try a series of start-
ing points systematically, and take the best among the solutions. As a simple illustration,
suppose that we declare the variables in our example as follows:

param alpha >=0, <= 1;

var Trans {i in ORIG, j in DEST}
>= 1e-10, <= .9999 * limit[i,j], := alpha * limit[i,j];

For each choice of alpha we get a different starting guess, and potentially a different
solution. Here are some resulting objective values for alpha ranging from 0 to 1:

alpha Total_Cost

0.0 427568.1
0.1 366791.2
0.2 366791.2
0.3 366791.2
0.4 366791.2
0.5 355438.2
0.6 356531.5
0.7 376043.3
0.8 367014.4
0.9 402795.3
1.0 365827.2

The solution that we previously found for an alpha of 0.5 is still the best, but in light of
these results we are now more inclined to believe that it is a very good solution. We
might also observe that, although the reported objective value varies somewhat erratically
with the choice of starting point — a feature of nonlinear programs generally — the
second-best value of Total_Cost was found by setting alpha to 0.6. This suggests
that a closer search of alpha values around 0.5 might be worthwhile.

Some of the more sophisticated methods for global optimization attempt to search
through starting points in this way, but with a more elaborate and systematic procedure
for deciding which starting points to try next. Others treat global optimization as more of
a combinatorial problem, and apply solution methods motivated by those for integer pro-

410 NONLINEAR PROGRAMS CHAPTER 18

gramming (Chapter 20). Global optimization methods are still at a relatively early stage
of development, and are likely to improve as experience accumulates, new ideas are tried,
and available computing power further increases.

Other pitfalls

Many other factors can influence the efficiency and success of a nonlinear solver,
including the way that the model is formulated and the choice of units (or scaling) for the
variables. As a rule, nonlinearities are more easily handled when they appear in the
objective function rather than in the constraints. AMPL’s option to substitute variables
automatically, described earlier in this chapter, may help in this regard. Another rule of
thumb is that the values of the variables should differ by at most a few orders of magni-
tude; solvers can be misled when some variables are, say, in millions and others are in
thousandths. Some solvers automatically scale a problem to try to avoid such a situation,
but you can help them considerably by judiciously picking the units in which the vari-
ables are expressed.

Nonlinear solvers also have many modes of failure besides the ones we have dis-
cussed. Some methods of nonlinear optimization can get stuck at ‘‘stationary’’ points
that are not optimal in any sense, can identify a maximum when a minimum is desired (or
vice-versa), and can falsely give an indication that there is no feasible solution to the con-
straints. In these cases your only recourse may be to try a different starting guess; it can
sometimes help to specify a start that is feasible for many of the nonlinear constraints.
You may also improve the solver’s chances of success by placing realistic bounds on the
variables. If you know, for instance, that an optimal value of 80 is plausible for some
variables, but a value of 800 is not, you may want to give them a bound of 400. (Once an
indicated optimum is at hand, you should be sure to check whether these ‘‘safety’’
bounds have been reached by any of the variables; if so, the bounds should be relaxed and
the problem re-solved.)

The intent of this section has been to illustrate that extra caution is advisable in work-
ing with nonlinear models. If you encounter a difficulty that cannot be resolved by any of
the simple devices described here, you may need to consult a textbook in nonlinear pro-
gramming, the documentation for the particular solver that you are using, or a numerical
analyst versed in nonlinear optimization techniques.

Bibliography

Roger Fletcher, Practical Methods of Optimization. John Wiley & Sons (New York, NY, 1987). A
concise survey of theory and methods.

Philip E. Gill, Walter Murray and Margaret H. Wright, Practical Optimization. Academic Press
(New York, NY, 1981). Theory, algorithms and practical advice.

Jorge Nocedal and Stephen J. Wright, Numerical Optimization. Springer Verlag (Heidelberg,
1999). A text on methods for optimization of smooth functions.

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 411

Richard P. O’Neill, Mark Williard, Bert Wilkins and Ralph Pike, ‘‘A Mathematical Programming
Model for Allocation of Natural Gas.’’ Operations Research 27, 5 (1979) pp. 857–873. A source
for the nonlinear relationships in natural gas pipeline networks described in Section 18.1.

Exercises

18-1. In the last example of Section 18.4, try some more starting points to see if you can find an
even better locally optimal solution. What is the best solution you can find?

18-2. The following little model fence.mod determines the dimensions of a rectangular field of
maximum area that can be surrounded by a fence of given length:

param fence > 0;

var Xfield >= 0;
var Yfield >= 0;

maximize Area: Xfield * Yfield;
subject to Enclose: 2*Xfield + 2*Yfield <= fence;

It’s well known that the optimum field is a square.

(a) When we tried to solve this problem for a fence of 40 meters, with the default initial guess of
zero for the variables, we got the following result:

ampl: solve;
MINOS 5.5: optimal solution found.
0 iterations, objective 0

ampl: display Xfield, Yfield;
Xfield = 0
Yfield = 0

What could explain this unexpected outcome? Try the same problem on any nonlinear solver
available to you, and report the behavior that you observe.

(b) Using a different starting point if necessary, run your solver to confirm that the optimal dimen-
sions for 40 meters of fence are indeed 10 × 10.

(c) Experiment with an analogous model for determining the dimensions of a box of maximum vol-
ume that can be wrapped by paper of a given area.

(d) Solve the same problem as in (c), but for wrapping a cylinder rather than a box.

18-3. A falling object on a nameless planet has been observed to have approximately the follow-
ing heights h j at (mostly) one-second intervals t j:

t j 0.0 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.0_ ___
h j 100 95 87 76 66 56 47 38 26 15 6 0




According to the laws of physics on this planet, the height of the object at any time should be given
by the formula

h j = a 0 − a 1 t j − 1⁄2 a 2 tj
2,

where a 0 is the initial height, a 1 is the initial velocity, and a 2 is the acceleration due to gravity.
But since the observations were not made exactly, there exists no choice of a 0, a 1, and a 2 that will

412 NONLINEAR PROGRAMS CHAPTER 18

cause all of the data to fit this formula exactly. Instead, we wish to estimate these three values by
choosing them so as to minimize the ‘‘sum of squares’’

j = 1
Σ
n

[h j − (a 0 − a 1 t j − 1⁄2 a 2 tj
2)]2.

where t j and h j are the observations from the jth entry of the table, and n is the number of observa-
tions. This expression measures the error between the ideal formula and the observed behavior.

(a) Create an AMPL model that minimizes the sum of squares for any number n of observations t j

and h j . This model should have three variables and an objective function, but no constraints.

(b) Use AMPL data statements to represent the sample observations given above, and solve the
resulting nonlinear program to determine the estimates of a 0, a 1, and a 2.

18-4. This problem involves a very simple ‘‘traffic flow’’ network:

a

c

b

d

Traffic proceeds in the direction of the arrows, entering at intersection a, exiting at d, and passing
through b or c or both. These data values are given for the roads connecting the intersections:

From To Time Capacity Sensitivity
a b 5.0 10 0.1
a c 1.0 30 0.9
c b 2.0 10 0.9
b d 1.0 30 0.9
c d 5.0 10 0.1

To be specific, we imagine that the times are in minutes, the capacities are in cars per minute, and
the sensitivities are in minutes per (car per minute).

The following AMPL statements can be used to represent networks of this kind:

set inters; # road intersections

param EN symbolic in inters; # entrance to network
param EX symbolic in inters; # exit from network

set roads within {i in inters, j in inters: i <> EX and j <> EN};

param time {roads} > 0;
param cap {roads} > 0;
param sens {roads} > 0;

(a) What is the shortest path, in minutes, from the entrance to the exit of this network? Construct a
shortest path model, along the lines of Figure 15-7, that verifies your answer.

(b) What is the maximum traffic flow from entrance to exit, in cars per minute, that the network
can sustain? Construct a maximum flow model, along the lines of Figure 15-6, that verifies your
answer.

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 413

(c) Question (a) above was concerned only with the speed of traffic, and question (b) only with the
volume of traffic. In reality, these quantities are interrelated. As the traffic volume on a road
increases from zero, the time required to travel the road also increases.

Travel time increases only moderately when there are just a few cars, but it increases very rapidly
as the traffic approaches capacity. Thus a nonlinear function is needed to model this phenomenon.
Let us define T[i,j], the travel time on road (i,j), by the following constraints:

var X {roads} >= 0; # cars per minute entering road (i,j)
var T {roads}; # travel time for road (i,j)

subject to Travel_Time {(i,j) in roads}:
T[i,j] = time[i,j] + (sens[i,j]*X[i,j]) / (1-X[i,j]/cap[i,j]);

You can confirm that the travel time on (i,j) is close to time[i,j] when the road is lightly
used, but goes to infinity as the use approaches cap[i,j] cars per minute. The magnitude of
sens[i,j] controls the rate at which travel time increases, as more cars try to enter the road.

Suppose that we want to analyze how the network can best handle some number of cars per minute.
The objective is to minimize average travel time from entrance to exit:

param through > 0; # cars per minute using the network

minimize Avg_Time:
(sum {(i,j) in roads} T[i,j] * X[i,j]) / through;

The nonlinear expression T[i,j] * X[i,j] is travel minutes on road (i,j) times cars per
minute entering the road — hence, the number of cars on road (i,j). The summation in the
objective thus gives the total cars in the entire system. Dividing by the number of cars per minute
getting through, we have the average number of minutes for each car.

Complete the model by adding the following:

– A constraint that total cars per minute in equals total cars per minute out at each intersection,
except the entrance and exit.

– A constraint that total cars per minute leaving the entrance equals the total per minute (repre-
sented by through) that are using the network.

– Appropriate bounds on the variables. (The example in Section 18.4 should suggest what bounds
are needed.)

Use AMPL to show that, for the example given above, a throughput of 4.0 cars per minute is opti-
mally managed by sending half the cars along a→b→d and half along a→c→d, giving an aver-
age travel time of about 8.18 minutes.

(d) By trying values of parameter through both greater than and less than 4.0, develop a graph of
minimum average travel time as a function of throughput. Also, keep a record of which travel
routes are used in the optimal solutions for different throughputs, and summarize this information
on your graph.

What is the relationship between the information in your graph and the solutions from parts (a) and
(b)?

(e) The model in (c) assumes that you can make the cars’ drivers take certain routes. For example,
in the optimal solution for a throughput of 4.0, no drivers are allowed to ‘‘cut through’’ from c to
b.

What would happen if instead all drivers could take whatever route they pleased? Observation has
shown that, in such a case, the traffic tends to reach a stable solution in which no route has a travel
time less than the average. The optimal solution for a throughput of 4.0 is not stable, since — as

414 NONLINEAR PROGRAMS CHAPTER 18

you can verify — the travel time on a→c→b→d is only about 7.86 minutes; some drivers would
try to cut through if they were permitted.

To find a stable solution using AMPL, we have to add some data specifying the possible routes
from entrance to exit:

param choices integer > 0; # number of routes
set route {1..choices} within roads;

Here route is an indexed collection of sets; for each r in 1..choices, the expression
route[r] denotes a different subset of roads that together form a route from EN to EX. For our
network, choices should be 3, and the route sets should be {(a,b),(b,d)},
{(a,c),(c,d)} and {(a,c),(c,b),(b,d)}. Using these data values, the stability condi-
tions may be ensured by one additional collection of constraints, which say that the time to travel
any route is no less than the average travel time for all routes:

subject to Stability {r in 1..choices}:
sum {(i,j) in route[r]} T[i,j] >=

(sum {(i,j) in roads} T[i,j] * X[i,j]) / through;

Show that, in the stable solution for a throughput of 4.0, a little more than 5% of the drivers cut
through, and the average travel time increases to about 8.27 minutes. Thus traffic would have been
faster if the road from c to b had never been built! (This phenomenon is known as Braess’s para-
dox, in honor of a traffic analyst who noticed that when a certain link was added to Munich’s road
system, traffic seemed to get worse.)

(f) By trying throughput values both greater than and less than 4.0, develop a graph of the stable
travel time as a function of throughput. Indicate, on the graph, for which throughputs the stable
time is greater than the optimal time.

(g) Suppose now that you have been hired to analyze the possibility of opening an additional wind-
ing road, directly from a to d, with travel time 5 minutes, capacity 10, and sensitivity 1.5. Working
with the models developed above, write an analysis of the consequences of making this change, as
a function of the throughput value.

18-5. Return to the model constructed in (e) of the previous exercise. This exercise asks about
reducing the number of variables by substituting some out, as explained in Section 18.2.

(a) Set the option show_stats to 1, and solve the problem. From the extra output you get, verify
that there are 10 variables.

Next repeat the session with option substout set to 1. Verify from the resulting messages that
some of the variables are eliminated by substitution. Which of the variables must these be?

(b) Rather than setting substout, you can specify that a variable is to be substituted out by plac-
ing an appropriate = phrase in its var declaration. Modify your model from (a) to use this feature,
and verify that the results are the same.

(c) There is a long expression for average travel time that appears twice in this model. Define a
new variable Avg to stand for this expression. Verify that AMPL also substitutes this variable out
when you solve the resulting model, and that the result is the same as before.

18-6. In Modeling and Optimization with GINO , Judith Liebman, Leon Lasdon, Linus Schrage
and Allan Waren describe the following problem in designing a steel tank to hold ammonia. The
decision variables are

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 415

T the temperature inside the tank
I the thickness of the insulation

The pressure inside the tank is a function of the temperature,

P = e − 3950/(T + 460) + 11. 86

It is desired to minimize the cost of the tank, which has three components: insulation cost, which
depends on the thickness; the cost of the steel vessel, which depends on the pressure; and the cost
of a recondensation process for cooling the ammonia, which depends on both temperature and insu-
lation thickness. A combination of engineering and economic considerations has yielded the fol-
lowing formulas:

C I = 400I 0. 9

C V = 1000 + 22 (P − 14. 7)1. 2

C R = 144 (80 − T)/ I

(a) Formulate this problem in AMPL as a two-variable problem, and alternatively as a six-variable
problem in which four of the variables can be substituted out. Which formulation would you prefer
to work with?

(b) Using your preferred formulation, determine the parameters of the least-cost tank.

(c) Increasing the factor 144 in C R causes a proportional increase in the recondensation cost. Try
several larger values, and describe in general terms how the total cost increases as a function of the
increase in this factor.

18-7. A social accounting matrix is a table that shows the flows from each sector in an economy
to each other sector. Here is simple five-sector example, with blank entries indicating flows known
to be zero:

LAB H1 H2 P1 P2 total
LAB 15 3 130 80 220
H1 ? ?
H2 ? ?
P1 15 130 20 190
P2 25 40 55 105

If the matrix were estimated perfectly, it would be balanced: each row sum (the flow out of a sec-
tor) would equal the corresponding column sum (the flow in). As a practical matter, however,
there are several difficulties:

– Some entries, marked ? above, have no reliable estimates.

– In the estimated table, the row sums do not necessarily equal the column sums.

– We have separate estimates of the total flows into (or out of) each sector, shown to the right of
the rows in our table. These do not necessarily equal the sums of the estimated rows or columns.

Nonlinear programming can be used to adjust this matrix by finding the balanced matrix that is
closest, in some sense, to the one given.

For a set S of sectors, let E T ⊆S be the subset of sectors for which we have estimated total flows,
and let E A ⊆S×S contain all sector pairs (i , j) for which there are known estimates. The given
data values are:

416 NONLINEAR PROGRAMS CHAPTER 18

t i estimated row/column sums, i ∈E T

a i j estimated social accounting matrix entries, (i , j) ∈E A

Let S A ⊆S×S contain all row-column pairs (i , j) for which there should be entries in the matrix —
this includes entries that contain ? instead of a number. We want to determine adjusted entries A i j ,
for each (i , j) ∈S A , that are truly balanced:

Σ j ∈S: (i , j) ∈SA

A i j = Σ j ∈S: (j ,i) ∈SA

A j i

for all i ∈S. You can think of these equations as the constraints on the variables A i j .

There is no best function for measuring ‘‘close’’, but one popular choice is the sum of squared dif-
ferences between the estimates and the adjusted values — for both the matrix and the row and col-
umn sums — scaled by the estimated values. For convenience, we write the adjusted sums as
defined variables:

T i = Σ j ∈S: (i , j) ∈SA

A i j

Then the objective is to minimize

Σ (i , j) ∈E A

(a i j − A i j)
2 / a i j + Σ i ∈E T

(t i − T i)
2 / t i

Formulate an AMPL model for this problem, and determine an optimal adjusted matrix.

18-8. A network of pipes has the following layout:

2

1

9

4

8

3

10

6

5

7

The circles represent joints, and the arrows are pipes. Joints 1 and 2 are sources of flow, and joint
9 is a sink or destination for flow, but flow through a pipe can be in either direction. Associated
with each joint i is an amount w i to be withdrawn from the flow at that joint, and an elevation e i:

1 2 3 4 5 6 7 8 9 10_ ___
w i 0 0 200 0 0 200 150 0 0 150
e i 50 40 20 20 0 0 0 20 20 20

Our decision variables are the flows F i j through the pipes from i to j, with a positive value repre-
senting flow in the direction of the arrow, and a negative value representing flow in the opposite
direction. Naturally, flow in must equal flow out plus the amount withdrawn at every joint, except
for the sources and the sink.

The ‘‘head loss’’ of a pipe is a measure of the energy required to move a flow through it. In our
situation, the head loss for the pipe from i to j is proportional to the square of the flow rate:

H i j = Kc i j Fi j
2 if F i j > 0,

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 417

H i j = − Kc i j Fi j
2 if F i j < 0,

where K = 4.96407 × 10 − 6 is a conversion constant, and c i j is a factor computed from the diameter,
friction, and length of the pipe:

from to c i j

1 3 6.36685
2 4 28.8937
3 10 28.8937
3 5 6.36685
3 8 43.3406
4 10 28.8937
4 6 28.8937
5 6 57.7874
5 7 43.3406
6 7 28.8937
8 4 28.8937
8 9 705.251

For two joints i and j at the same elevation, the pressure drop for flow from i to j is equal to the
head loss. Both pressure and head loss are measured in feet, so that after correcting for differences
in elevation between the joints we have the relation:

H i j = (P i + e i) − (P j + e j)

Finally, we wish to maintain the pressure at both the sources and the sink at 200 feet.

(a) Formulate a general AMPL model for this situation, and put together data statements for the data
given above.

(b) There is no objective function here, but you can still employ a nonlinear solver to seek a feasi-
ble solution. By setting the option show_stats to 1, confirm that the number of variables equals
the number of equations, so that there are no ‘‘degrees of freedom’’ in the solution. (This does not
guarantee that there is just one solution, however.)

Check that your solver finds a solution to the equations, and display the results.

