Copyright© 2003by RobertFourer,David M. GayandBrian W. Kernighar

19

Complementarity Problems

A variety of physical and economic phenomena are most naturally modeled by saying
that certain pairs of inequality constraints must be complementary, in the sense that at
least one must hold with equality. These conditions may in principle be accompanied by
an objective function, but are more commonly used to construct complementarity prob-
lems for which a feasible solution is sought. Indeed, optimization may be viewed as a
special case of complementarity, since the standard optimality conditions for linear and
smooth nonlinear optimization are complementarity problems. Other kinds of comple-
mentarity problems do not arise from optimization, however, or cannot be conveniently
formulated or solved as optimization problems.

The AMPL operator complements permits complementarity conditions to be speci-
fied directly in constraint declarations. Complementarity models can thereby be formu-
lated in a natural way, and instances of such models are easily sent to special solvers for
complementarity problems.

To motivate the syntax of complements, we begin by describing how it would be
used to model a few simple economic equilibrium problems, some equivalent to linear
programs and some not. We then give a general definition of the complements opera-
tor for pairs of inequalities and for more general ‘‘mixed’’ complementarity conditions
via double inequalities. Where appropriate in these sections, we also comment on an
AMPL interface to the PATH solver for ‘‘square’” mixed complementarity problems. In a
final section, we describe how complementarity constraints are accommodated in several
of AMPL’s existing features, including presolve, constraint-name suffixes, and generic
synonyms for constraints.

19.1 Sources of complementarity

Economic equilibria are one of the best-known applications of complementarity con-
ditions. We begin this section by showing how a previous linear programming example
in production economics has an equivalent form as a complementarity model, and how

419

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

420 COMPLEMENTARITY PROBLEMS CHAPTER 19

set PROD; # products
set ACT; # activities

param cost {ACT} > 0; # cost per unit of each activity
param demand {PROD} >= 0; # units of demand for each product
param io {PROD,ACT} >= 0; # units of each product from

1 unit of each activity

var Level {j in ACT} >= 0;
minimize Total_Cost: sum {j in ACT} cost[j] * Levell[j];
subject to Demand {i in PROD}:

sum {j in ACT} io[i,j] * Level[j] >= demand[i];

Figure 19-1: Production cost minimization model (econmin .mod).

bounded variables are handled though an extension to the concept of complementarity.
We then describe a further extension to price-dependent demands that is not motivated by
optimization or equivalent to any linear program. We conclude by briefly describing
other complementarity models and applications.

A complementarity model of production economics

In Section 2.4 we observed that the form of a diet model also applies to a model of
production economics. The decision variables may be taken as the levels of production
activities, so that the objective is the total production cost,

minimize Total_Cost: sum {j in ACT} cost[j] * Levellj];

where cost [j] and Level [j] are the cost per unit and the level of activity j. The
constraints say that the totals of the product outputs must be at least the product demands:

subject to Demand {i in PROD}:
sum {j in ACT} io[i,3j] * Level[j] >= demand[i];

with io[i,j] being the amount of product i produced per unit of activity j, and
demand[i] being the total quantity of product i demanded. Figures 19-1 and 19-2
show this ‘‘economic’” model and some data for it.

Minimum-cost production levels are easily computed by a linear programming solver:

ampl: model econmin.mod;
ampl: data econ.dat;

ampl: solve;
CPLEX 8.0.0: optimal solution; objective 6808640.553
3 dual simplex iterations (0 in phase I)

SECTION 19.1 SOURCES OF COMPLEMENTARITY 421

param: ACT: cost =
Pl 2450 Pla 1290
P2 1850 P2a 3700 P2b 2150
P3 2200 P3c 2370
P4 2170 ;
param: PROD: demand :=
AAl 70000
AC1l 80000
BC1 90000
BC2 70000
NA2 400000
NA3 800000 ;

param io (tr):
AAl ACl1 BC1 BC2 NA2 NA3 :=

Pl 60 20 10 15 938 295
Pla 8 0 20 20 1180 770
P2 8 10 15 10 945 440

P2a 40 40 35 10 278 430
P2b 15 35 15 15 1182 315

P3 70 30 15 15 896 400
P3c 25 40 30 30 1029 370
P4 60 20 15 10 1397 450 ;

Figure 19-2: Data for production models (econ.dat).

ampl: display Level;

Level [*] :=
Pl 0
Pla 1555.3
P2 0
P2a 0
P2b 0

P3 147.465
P3c 1889.4
P4 0

Recall (from Section 12.5) that there are also dual or marginal values — or ‘‘prices’” —
associated with the constraints:

ampl: display Demand.dual;
Demand.dual [*] :=

AAl 16.7051

AC1 5.44585

BCl 57.818

BC2 0

NA2 0

NA3 0

422 COMPLEMENTARITY PROBLEMS CHAPTER 19

In the conventional linear programming interpretation, the price on constraint i gives,
within a sufficiently small range, the change in the total cost per unit change in the
demand for product 1.

Consider now an alternative view of the production economics problem, in which we
define variables Price[i] as well as Level[j] and seek an equilibrium rather than
an optimum solution. There are two requirements that the equilibrium solution must sat-
isfy.

First, for each product, total output must meet demand and the price must be nonnega-
tive, and in addition there must be a complementarity between these relationships: where
production exceeds demand the price must be zero, or equivalently, where the price is
positive the production must equal the demand. This relationship is expressed in AMPL
by means of the complements operator:

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements
sum {j in ACT} iol[i,j] * Level[j] >= demand[i];

When two inequalities are joined by complements, they both must hold, and at least
one must hold with equality. Because our example is indexed over the set PROD, it sets
up a relationship of this kind for each product.

Second, for each activity, there is another relationship that may at first be less obvi-
ous. Consider that, for each unit of activity j, the value of the resulting product i output
in terms of the model’s prices is Price[i] * io[1i,j]. The total value of all outputs
from one unit of activity j is thus

sum {i in ACT} Price[i] * io[i,3]]

At equilibrium prices, this total value cannot exceed the activity’s cost per unit,
cost[j]. Moreover, there is a complementarity between this relationship and the level
of activity j: where cost exceeds total value the activity must be zero, or equivalently,
where the activity is positive the total value must equal the cost. Again this relationship
can be expressed in AMPL with the complements operator:

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements
sum {i in PROD} Price[i] * iol[i,j] <= cost[j];

Here the constraint is indexed over ACT, so that we have a complementarity relationship
for each activity.

Putting together the two collections of complementarity constraints, we have the lin-
ear complementarity problem shown in Figure 19-3. The number of variables and the
number of complementarity relationships are equal (to activities plus products), making
this a “‘square’’ complementarity problem that is amenable to certain solution techniques,
though not the same techniques as those for linear programs.

Applying the PATH solver, for example, the complementarity problem can be seen to
have the same solution as the related minimum-cost production problem:

SECTION 19.1 SOURCES OF COMPLEMENTARITY 423

set PROD; # products
set ACT; # activities
param cost {ACT} > O0; # cost per unit of each activity

param demand {PROD} >= 0; # units of demand for each product
param io {PROD,ACT} >= 0; # units of each product from
1 unit of each activity

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements
sum {j in ACT} io[i,j] * Level[j] >= demand[i];

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements
sum {i in PROD} Price[i] * iol[i,j] <= cost[j];

Figure 19-3: Production equilibrium model (econ .mod).

ampl: model econ.mod;

ampl: data econ.dat;

ampl: option solver path;

ampl: solve;

Path v4.5: Solution found.

7 iterations (0 for crash); 33 pivots.
20 function, 8 gradient evaluations.

ampl: display sum {j in ACT} cost[j] * Level[j];
sum{j in ACT} cost[j]l*Level[j] = 6808640

Further application of display shows that Level is the same as in the production eco-
nomics LP and that Price takes the same values that Demand . dual has in the LP.

Complementarity for bounded variables

Suppose now that we extend our models by placing bounds on the activity levels:
level_min[j] <= Level[j] <= level_max[j]. The equivalence between the
optimization problem and a square complementarity problem can be maintained, pro-
vided that the complementarity relationship for the activities is generalized to a ‘‘mixed”’
form. Where an activity’s cost is greater than its total value (per unit), the activity’s level
must be at its lower bound (much as before). Where an activity’s level is between its
bounds, its cost must equal its total value. And an activity’s cost may also be less than its
total value, provided that its level is at its upper bound. These three relationships are
summarized by another form of the complements operator:

subject to Lev_Compl {j in ACT}:
level _min[j] <= Level[j] <= level_max[]j] complements
cost[j] - sum {i in PROD} Pricel[i] * iol[i,Jj];

424 COMPLEMENTARITY PROBLEMS CHAPTER 19

set PROD; # products
set ACT; # activities

cost per unit of each activity
units of demand for each product
units of each product from

1 unit of each activity

param cost {ACT} > O0;
param demand {PROD} >= 0;
param io {PROD,ACT} >= 0;

min allowed level for each activity
max allowed level for each activity

param level_min {ACT} > O0;
param level_max {ACT} > O0;

H o W

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements
sum {j in ACT} io[i,j] * Level[j] >= demand[i];

subject to Lev_Compl {j in ACT}:
level_min[j] <= Level[j] <= level_max[j] complements
cost[j] - sum {i in PROD} Pricel[i] * iol[i,Jj];

Figure 19-4: Bounded version of production equilibrium model (econ2 . mod).

When a double inequality is joined to an expression by complements, the inequalities
must hold, and either the expression must be zero, or the lower inequality must hold with
equality and the expression must be nonnegative, or the upper inequality must hold with
equality and the expression must be nonpositive.

A bounded version of our complementarity examples is shown in Figure 19-4. The
PATH solver can be applied to this model as well:

ampl: model econ2.mod;

ampl: data econ2.dat;

ampl: option solver path;

ampl: solve;

Path v4.5: Solution found.

9 iterations (4 for crash); 8 pivots.
22 function, 10 gradient evaluations.

ampl: display level_min, Level, level_ max;
level_min Level level_max :=

Pl 240 240 1000
Pla 270 1000 1000
P2 220 220 1000
P2a 260 680 1000
P2b 200 200 1000
P3 260 260 1000
P3c 220 1000 1000

P4 240 240 1000

7

The results are the same as for the LP that is derived from our previous example (Figure
19-1) by adding the bounds above to the variables.

SECTION 19.1 SOURCES OF COMPLEMENTARITY 425

set PROD; # products
set ACT; # activities

param cost {ACT} > O0;
param io {PROD,ACT} >= 0;

cost per unit of each activity
units of each product from

1 unit of each activity
#
#

param demzero {PROD} > O0;
param demrate {PROD} >= 0;

intercept and slope of the demand
as a function of price

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements
sum {j in ACT} io[i,j] * Level[j]
>= demzero[i] - demrate[i] * Priceli];

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements
sum {i in PROD} Price[i] * io[i,3j] <= cost[j];

Figure 19-5: Price-dependent demands (econnl .mod).

Complementarity for price-dependent demands

If complementarity problems only arose from linear programs, they would be of very
limited interest. The idea of an economic equilibrium can be generalized, however, to
problems that have no LP equivalents. Rather than taking the demands to be fixed, for
example, it makes sense to view the demand for each product as a decreasing function of
its price.

The simplest case is a decreasing linear demand, which could be expressed in AMPL
as

demzero[1] - demrate[i] * Price[1i]

where demzero[i] and demrate[i] are nonnegative parameters. The resulting
complementarity problem simply substitutes this expression for demand[i], as seen in
Figure 19-5. The complementarity problem remains square, and can still be solved by
PATH, but with clearly different results:

ampl: model econnl.mod;
ampl: data econnl.dat;

ampl: option solver path;

ampl: solve;

Path v4.5: Solution found.

11 iterations (3 for crash); 11 pivots.
12 function, 12 gradient evaluations.

426 COMPLEMENTARITY PROBLEMS CHAPTER 19

ampl: display Level;

Level [*] :=
P1 240

Pla 710.156
P2 220

P2a 260

P2b 200

P3 260

P3c 939.063
P4 240

7

The balance between demands and prices now tends to push down the equilibrium pro-
duction levels.

Because the Price[1] variables appear on both sides of the complements opera-
tor in this model, there is no equivalent linear program. There does exist an equivalent
nonlinear optimization model, but it is not as easy to derive and may be harder to solve as
well.

Other complementarity models and applications

This basic example can be extended to considerably more complex models of eco-
nomic equilibrium. The activity and price variables and their corresponding complemen-
tarity constraints can be comprised of several indexed collections each, and both the cost
and price functions can be nonlinear. A solver such as PATH handles all of these exten-
sions, so long as the problem remains square in the sense of having equal numbers of
variables and complementarity constraints (or being easily converted to such a form as
explained in the next section).

More ambitious models may add an objective function and may mix equality, inequal-
ity and complementarity constraints in arbitrary numbers. Solution techniques for these
so-called MPECs — mathematical programs with equilibrium constraints — are at a rela-
tively experimental stage, however.

Complementarity problems also arise in physical systems, where they can serve as
models of equilibrium conditions between forces. A complementarity constraint may
represent a discretization of the relationship between two objects, for example. The rela-
tionship on one side of the complements operator may hold with equality at points
where the objects are in contact, while the relationship on the other side holds with equal-
ity where they do not touch.

Game theory provides another class of examples. The Nash equilibrium for a bi-
matrix game is characterized by complementarity conditions, for example, in which the
variables are the probabilities with which the two players make their available moves.
For each move, either its probability is zero, or a related equality holds to insure there is
nothing to be gained by increasing or decreasing its probability.

Surveys that describe a variety of complementarity problems in detail are cited in the
references at the end of this chapter.

SECTION 19.2 FORMS OF COMPLEMENTARITY CONSTRAINTS 427

19.2 Forms of complementarity constraints

An AMPL complementarity constraint consists of two expressions or constraints sepa-
rated by the complements operator. There are always two inequalities, whose position
determines how the constraint is interpreted.

If there is one inequality on either side of complements, the constraint has the gen-
eral form

single-inequality complements single-inequality ;

where a single-inequality is any valid ordinary constraint — linear or nonlinear — con-
taining one >= or <= operator. A constraint of this type is satisfied if both of the single-
inequality relations are satisfied, and at least one is satisfied with equality.

If both inequalities are on the same side of the complements operator, the con-
straint has instead one of the forms

double-inequality complements expression ;
expression complements double-inequality ;

where double-inequality is any ordinary AMPL constraint containing two >= or two <=
operators, and expression is any numerical expression. Variables may appear nonlinearly
in either the double-inequality or the expression (or both). The conditions for a constraint
of this type to be satisfied are as follows:

o if the left side <= or the right side >= of the double-inequality holds with
equality, then the expression is greater than or equal to 0;

o if the right side <= or the left side >= of the double-inequality holds with
equality, then the expression is less than or equal to O;

o if neither side of the double-inequality holds with equality, then the expres-
sion equals 0.

In the special case where the double-inequality has the form 0 <= body <= Infinity,
these conditions reduce to those for complementarity of a pair of single inequalities.

For completeness, the special case in which the left-hand side equals the right-hand
side of the double inequality may be written using one of the forms

equality complements expression ;
expression complements equality ;

A constraint of this kind is equivalent to an ordinary constraint consisting only of the
equality; it places no restrictions on the expression.

For the use of solvers that require ‘‘square’’ complementarity systems, AMPL con-
verts to square any model instance in which the number of variables equals the number of
complementarity constraints plus the number of equality constraints. There may be any
number of additional inequality constraints, but there must not be any objective. Each
equality is trivially turned into a complementarity condition, as observed above; each

428 COMPLEMENTARITY PROBLEMS CHAPTER 19

added inequality is made complementary to a new, otherwise unused variable, preserving
the squareness of the problem overall.

19.3 Working with complementarity constraints

All of AMPL’s features for ordinary equalities and inequalities extend in a straightfor-
ward way to complementarity constraints. This section covers extensions in three areas:
expressions for related solution values, effects of presolve and related displays of prob-
lem statistics, and generic synonyms for constraints.

Related solution values

AMPL’s built-in suffixes for values related to a problem and its solution extend to
complementarity constraints, but with two collections of suffixes — of the form
cname . Lsuf and cname . Rsuf — corresponding to the left and right operands of com-
plements, respectively. Thus after econ2 .mod (Figure 19-4) has been solved, for
example, we can use the following display command to look at values associated with
the constraint Lev_Compl:

ampl: display Lev_Compl.Llb, Lev_Compl.Lbody,

ampl? Lev._Compl.Rbody, Lev_Compl.Rslack;
Lev_Compl.Llb Lev_Compl.Lbody Lev_Compl.Rbody Lev_Compl.Rslack :=

Pl 240 240 1392.86 Infinity
Pla 270 1000 -824.286 Infinity
P2 220 220 264.286 Infinity
P2a 260 680 5.00222e-12 Infinity
P2b 200 200 564.286 Infinity
P3 260 260 614.286 Infinity
P3c 220 1000 -801.429 Infinity

P4 240 240 584.286 Infinity

7

Because the right operand of Lev_Compl is an expression, it is treated as a ‘‘constraint™’
with infinite lower and upper bounds, and hence infinite slack.

A suffix of the form cname . slack is also defined for complementarity constraints.
For complementary pairs of single inequalities, it is equal to the lesser of
cname .Lslack and cname.Rslack. Hence it is nonnegative if and only if both
inequalities are satisfied and is zero if the complementarity constraint holds exactly. For
complementary double inequalities of the form

expr complements lbound <= body <= ubound
lbound <= body <= ubound complements expr

cname . slack is defined to be

SECTION 19.3 WORKING WITH COMPLEMENTARITY CONSTRAINTS 429

min (expr, body - lbound) if body <= Ibound
min (—expr, ubound - body) if body >= ubound
-abs (expr) otherwise

Hence in this case it is always nonpositive, and is zero when the complementarity con-
straint is satisfied exactly.

If cname for a complementarity constraint appears unsuffixed in an expression, it is
interpreted as representing cname . slack.

Presolve

As explained in Section 14.1, AMPL incorporates a presolve phase that can substan-
tially simplify some linear programs. In the presence of complementarity constraints,
several new kinds of simplifications become possible.

As an example, given a constraint of the form

expr; >= 0 complements expr, >= 0

if presolve can deduce that expr, is strictly positive for all feasible points — in other
words, that it has a positive lower bound — it can replace the constraint by expr, = 0.
Similarly, in a constraint of the form

lbound <= body <= ubound complements expr
there are various possibilities, including the following:

If presolve can deduce for all Then the constraint can be replaced by
feasible points that

body < ubound lbound <= body complements expr >= 0
lbound < body < ubound expr = 0
expr < 0 body = ubound

Transformations of these kinds are carried out automatically, unless option presolve
0 is used to turn off the presolve phase. As with ordinary constraints, results are reported
in terms of the original model.

By displaying a few predefined parameters:

_ncons the number of ordinary constraints before presolve
_nccons the number of complementarity conditions before presolve
_sncons the number of ordinary constraints after presolve

_snccons the number of complementarity conditions after presolve

or by setting option show_stats 1, you can get some information on the number of
simplifying transformations that presolve has made:

ampl: model econ2.mod; data econ2.dat;
ampl: option solver path;

ampl: option show stats 1;

ampl: solve;

430 COMPLEMENTARITY PROBLEMS CHAPTER 19

Presolve eliminates 16 constraints and 2 variables.

Presolve resolves 2 of 14 complementarity conditions.

Adjusted problem:

12 variables, all linear

12 constraints, all linear; 62 nonzeros

12 complementarity conditions among the constraints:
12 linear, 0 nonlinear.

0 objectives.

Path v4.5: Solution found.
7 iterations (1 for crash); 30 pivots.

8 function, 8 gradient evaluations.

ampl: display _ncons, _nccons, _sncons, _snccons;

_ncons = 28
_nccons = 14
_sncons = 12
_snccons = 12

When first instantiating the problem, AMPL counts each complementarity constraint
as two ordinary constraints (the two arguments to complements) and also as a comple-
mentarity condition. Thus _nccons equals the number of complementarity constraints
before presolve, and _ncons equals twice _nccons plus the number of any non-
complementarity constraints before presolve. The presolve messages at the beginning of
the show_stats output indicate how much presolve was able to reduce these numbers.

In this case the reason for the reduction can be seen by comparing each product’s
demand to the minimum possible output of that product — the amount that results from
setting each Level[j] to level_min[j]:

ampl: display {i in PROD}

ampl? (sum{j in ACT} iol[i,j]l*level_min[j], demand[i]);
sum{j in ACT} io[i,jl*level_min[j] demand[i] 1=

AAl 69820 70000

AC1 45800 80000

BC1 37300 90000

BC2 29700 70000

NA2 1854920 4e+05

NA3 843700 8e+05

i

We see that for products NA2 and NA3, the total output exceeds demand even at the low-
est activity levels. Hence in the constraint

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements
sum {j in ACT} io[i,j] * Level[j] >= demand[i];

the right-hand argument to complements never holds with equality for NA2 or NA3.
Presolve thus concludes that Price["NA2"] and Price["NA3"] can be fixed at
zero, removing them from the resulting problem.

SECTION 19.3 WORKING WITH COMPLEMENTARITY CONSTRAINTS 431

Generic synonyms

AMPL’s generic synonyms for constraints (Section 12.6) extend to complementarity
conditions, mainly through the substitution of ccon for con in the synonym names.
From the modeler’s view (before presolve), the ordinary constraint synonyms remain:

_ncons number of ordinary constraints before presolve
_conname names of the ordinary constraints before presolve
_con synonyms for the ordinary constraints before presolve

The complementarity constraint synonyms are:

_nccons number of complementarity constraints before presolve
_cconname names of the complementarity constraints before presolve
_ccon synonyms for the complementarity constraints before presolve

Because each complementarity constraint also gives rise to two ordinary constraints, as
explained in the preceding discussion of presolve, there are two entries in _conname
corresponding to each entry in _cconname:

ampl: display (i in 1..6} (_conname[i], _cconname[i]);

: _conname [1] _cconname [1] i =
1 "Pri_Compl[’AAl’].L" "Pri_Compl[’AAl’]™"
2 "Pri_Compl[’AAl’].R" "Pri_Compl[’AC1"]"
3 "Pri_Compl[’AC1l’].L" "Pri_Compl[’BCl’]"
4 "Pri_Compl[’'ACl’].R" "Pri_Compl[’/BC2’]1"
5 "Pri_Compl[’'BC1l’].L" "Pri_Compl[’'NA2’]"
6 "Pri_Compl[’BCl’].R" "Pri_Compl[’/NA3’]"

7

For each complementarity constraint cname, the left and right arguments to the comple-
ments operator are the ordinary constraints named cname . L and cname . R. This is con-
firmed by using the synonym terminology to expand the complementarity constraint
Pri_Compl[’AAl’] and the corresponding two ordinary constraints from the example
above:

ampl: expand Pri_Compl[’AAl’];
subject to Pri_Compl[’AAl’]:
Price[’AAl’] >= 0
complements
60*Level['P1l’] + 8*Level[’Pla’] + 8*Level[’'P2'] +
40*Level[’'P2a’] + 15*Level[’'P2b’] + 70*Level[’'P3’'] +
25*Level['P3c’] + 60*Level[’P4’] >= 70000;

ampl: expand _con[1l], _con[2];

subject to Pri_Compl.L[’AAl’]:
Price[’'AAl’] >= 0;

subject to Pri_Compl.R[’AA1’]:
60*Level[’'P1’] + 8*Level[’Pla’] + 8*Level[’'P2'] +
40*Level[’'P2a’] + 15*Level[’'P2b’] + 70*Level[’'P3’'] +
25*Level ["P3c’] + 60*Level[’P4’] >= 70000;

From the solver’s view (after presolve), a more limited collection of synonyms is defined:

432 COMPLEMENTARITY PROBLEMS CHAPTER 19

_sncons number of all constraints after presolve

_snccons number of complementarity constraints after presolve
_sconname names of all constraints after presolve

_scon synonyms for all constraints after presolve

Necessarily _snccons is less than or equal to _sncons, with equality only when all
constraints are complementarity constraints.

To simplify the problem description that is sent to the solver, AMPL converts every
complementarity constraint into one of the following canonical forms:

expr complements [bound <= var <= ubound
expr <= 0 complements var <= ubound
expr >= 0 complements lbound <= var

where var is the name of a different variable for each constraint. (Where an expression
more complicated than a single variable appears on both sides of complements, this
involves the introduction of an auxiliary variable and an equality constraint defining the
variable to equal one of the expressions.) By using solexpand in place of expand,
you can see the form in which AMPL has sent a complementarity constraint to the solver:

ampl: solexpand Pri_Compl[’AAl’];

subject to Pri_Compl[’AAl’]:
-70000 + 60*Level['P1l’] + 8*Level[’'Pla’] + 8*Level[’'P2'] +
40*Level[’'P2a’] + 15*Level[’'P2b’] + 70*Level[’P3’'] +
25*Level ["P3c’] + 60*Level[’'P4'] >= 0

complements
0 <= Price[’'AAl’];

A predefined array of integers, _scvar, gives the indices of the complementing vari-
ables in the generic variable arrays _var and _varname. This terminology can be used
to display a list of names of such variables:

ampl: display {i in 1..3} (_sconname[i], svarname[scvar([i]]):

: _sconname [1] _svarname[_scvar([i]] 1=
1 "Pri_Compl[’AAl’].R" "Price['AAl’]"
2 "Pri_Compl[’AC1l’].R" "Price['AC1l’]"
3 "Pri_Compl[’BC1l’].R" "Price[’BCl’]"

7

When constraint i is an ordinary equality or inequality, _scvar [i] is 0. The names of
complementarity constraints in _sconname are suffixed with .L or .R according to
whether the expr in the constraint sent to the solver was derived from the left or right
argument to complements in the original constraint.

Bibliography

Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone, The Linear Complementarity Problem,
Academic Press (San Diego, CA, 1992). An encyclopedic account of linear complementarity prob-
lems with a nice overview of how these problems arise.

SECTION 19.3 WORKING WITH COMPLEMENTARITY CONSTRAINTS 433

Steven P. Dirkse and Michael C. Ferris, ‘“‘MCPLIB: A Collection of Nonlinear Mixed Complemen-
tarity Problems.”” Optimization Methods and Software 5, 4 (1995) pp. 319-345. An extensive sur-
vey of nonlinear complementarity, including problem descriptions and mathematical formulations.

Michael C. Ferris and Jong-Shi Pang, ‘‘Engineering and Economic Applications of Complementar-
ity Problems.”” SIAM Review 39, 4 (1997) pp. 669-713. A variety of complementarity test prob-
lems, originally written in the GAMS modeling language but now in many cases translated to
AMPL.

Exercises

19-1. The economics example in Section 19.1 used a demand function that was linear in the
price. Construct a nonlinear demand function that has each of the characteristics described below.
Define a corresponding complementarity problem, using the data from Figure 19-2 as much as pos-
sible.

Use a solver such as PATH to compute an equilibrium solution. Compare this solution to those for
the constant-demand and linear-demand alternatives shown in Section 19.1.

(a) For price i near zero the demand is near demzero[i] and is decreasing at a rate near
demrate[i]. After price i has increased substantially, however, both the demand and the rate
of decrease of the demand approach zero.

(b) For price i near zero the demand is approximately constant at demzero[i], but as price i
approaches demlim([i] the demand drops quickly to zero.

(c) Demand for i actually rises with price, until it reaches a value demmax[i] at a price of
demarg[i]. Then demand falls with price.

19-2. For each scenario in the previous problem, experiment with different starting points for the
Level and Price values. Determine whether there appears a unique equilibrium point.

19-3. A bimatrix game between players A and B is defined by two m by n ‘‘payoff’” matrices,
whose elements we denote by a;; and b;;. In one round of the game, player A has a choice of m
alternatives and player B a choice of n alternatives. If A plays (chooses) i and B plays j, then A
and B win amounts a;; and b ;, respectively; negative winnings are interpreted as losses.

We can allow for ‘‘mixed’’ strategies in which A plays i with probability p? and B plays j with
probability p_f . Then the expected value of player A’s winnings is:

3

Z;a,-j x p¥, if A plays i

=

and the expected value of player B’s winnings is:
m
> by x pt, if B plays
i=1

A “‘pure’’ strategy is the special case in which each player has one probability equal to 1 and the
rest equal to 0.

A pair of strategies is said to represent a Nash equilibrium if neither player can improve his
expected payoff by changing only his own strategy.

434 COMPLEMENTARITY PROBLEMS CHAPTER 19

(a) Show that the requirement for a Nash equilibrium is equivalent to the following
complementarity-like conditions:

for all i such that p? > 0, A’s expected return when playing i equals A’s maximum
expected return over all possible plays

for all j such that pf > 0, B’s expected return when playing j equals B’s maximum
expected return over all possible plays

(b) To build a complementarity problem in AMPL whose solution is a Nash equilibrium, the param-
eters representing the payoff matrices can be defined by the following param declarations:

param nA > 0; # actions available to player A
param nB > 0; # actions available to player B

param payoffA {1..nA, 1..nB}; # payoffs to player A
param payoffB {1..nA, 1..nB}; # payoffs to player B

The probabilities that define the mixed strategies are necessarily variables. In addition it is conve-
nient to define a variable to represent the maximum expected payoff for each player:

var PlayA {i in 1..nA}; # player A’s mixed strategy
var PlayB {j in 1..nB}; # player B’s mixed strategy

var MaxEXpA; # maximum expected payoff to player A
var MaxExpB; # maximum expected payoff to player B

Write AMPL declarations for the following constraints:

- The probabilities in any mixed strategy must be nonnegative.
- The probabilities in each player’s mixed strategy must sum to 1.
- Player A’s expected return when playing any particular i
must not exceed A’s maximum expected return over all possible plays
- Player B’s expected return when playing any particular j
must not exceed B’s maximum expected return over all possible plays

(c) Write an AMPL model for a square complementarity system that enforces the constraints in (b)
and the conditions in (a).

(d) Test your model by applying it to the ‘‘rock-scissors-paper’’ game in which both players have
the payoff matrix

0 1 -1
-1 0 1
1 -1 0

Confirm that an equilibrium is found where each player chooses between all three plays with equal
probability.
(e) Show that the game for which both players have the payoff matrix

-3 1 3 -1
2 3 -1 -5

has several equilibria, at least one of which uses mixed strategies and one of which uses pure

strategies.

Running a solver such as PATH will only return one equilibrium solution. To find more, experi-
ment with changing the initial solution or fixing some of the variables to O or 1.

SECTION 19.3 WORKING WITH COMPLEMENTARITY CONSTRAINTS 435

19-4. Two companies have to decide now whether to adopt standard 1 or standard 2 for future
introduction in their products. If they decide on the same standard, company A has the greater pay-
off because its technology is superior. If they decide on different standards, company B has the
greater payoff because its market share is greater. These considerations lead to a bimatrix game
whose payoff matrices are

A =10 3 B =4 6
2 9 7 5

(a) Use a solver such as PATH to find a Nash equilibrium. Verify that it is a mixed strategy, with
A’s probabilities being 1/2 for both standards and B’s probabilities being 3/7 and 4/7 for standards
1 and 2, respectively.
Why is a mixed strategy not appropriate for this application?
(b) You can see what happens when company A decides on standard 1 by issuing the following
commands:

ampl: fix PlayA[l] := 1;

ampl: solve;

presolve, constraint ComplA[l].L:
all variables eliminated, but upper bound = -1 < 0

Explain how AMPL’s presolve phase could deduce that the complementarity problem has no feasi-
ble solution in this case.

(c) Through further experimentation, show that there are no Nash equilibria for this situation that
involve only pure strategies.

