Assigning People in Practice

Robert Fourer
Industrial Engineering & Management Sciences
McCormick School of Engineering and Applied Science
Northwestern University
4er@northwestern.edu

Chiang Mai University International Conference
Chiang Mai, Thailand — 4-7 January 2011
Outline

Classical assignment
- Assigning professors to offices
- Adjusting the results

Modified assignment
- Assigning students to project groups
- Modeling the complications

“Balanced” assignment
- Tests of formulations using sample data
- Scaling up to full data
Classical Assignment

Given

- P, a set of people
- Q, a set of places
- c_{pq}, cost of assigning person p to place q

Define

- $X_{pq} = 1$ if person p is assigned to place q
- $= 0$ otherwise

Minimize

$$\sum_{p \in P} \sum_{q \in Q} c_{pq} X_{pq}$$

Subject to

$$\sum_{q \in Q} X_{pq} = 1, \text{ for each } p \in P$$
$$\sum_{p \in P} X_{pq} \leq 1, \text{ for each } q \in Q$$
$$X_{pq} \geq 0, \text{ for each } p \in P \text{ and } q \in Q$$
... same, but in AMPL

```plaintext
set P;  # people
set Q;  # places

param c {P,Q} > 0;

var X {P,Q} binary;

minimize Z: sum {p in P} sum {q in Q} c[p,q] * X[p,q];

subject to P1 {p in P}: sum {q in Q} X[p,q] = 1;
subject to Q1 {q in Q}: sum {p in P} X[p,q] <= 1;
```
... same, but more readable

```
set PEOPLE;
set PLACES;

param pref {PEOPLE,PLACES} > 0;  # "preferences"

var Assign {PEOPLE,PLACES} binary;

minimize TotalPref:
    sum {p in PEOPLE} sum {q in PLACES} pref[p,q] * Assign[p,q];

subj to OnePlacePerPerson {p in PEOPLE}:
    sum {q in PLACES} Assign[p,q] = 1;

subj to OnePersonPerPlace {q in PLACES}:
    sum {p in PEOPLE} Assign[p,q] <= 1;
```
Data for Professors and Offices

set PEOPLE := Bassok Coullard Frey Hazen Hopp Hurter
 Jones Mehrotra Rieders Rath Rubenstein Spearman
 Sun Tamhane Thompson Zazanis ;

set PLACES := 1021 1049 1053 1055 1083 1087
 2009 2019 2053 2083 2087
 3021 3041 3083 3087
 4083 4087 ;

param pref: 1021 1049 1053 1055 1083 1087 2009 2019 2053 2083 2087 :=
 Bassok 7 7 7 7 7 7 7 7 6 5
 Coullard 11 14 13 12 16 15 10 11 9 8 7
 Frey 4 4 4 3 4 4 4 4 1 4 4
 Hazen 17 14 13 12 16 16 6 11 9 7 8
 Hopp 15 16 17 4 10 11 5 12 13 8 9
 Hurter 17 15 14 16 11 10 4 13 9 7 8
 Jones 5 4 14 15 16 17 1 11 10 12 13
 Mehrotra 17 14 15 9 7 8 10 11 12 3 4
 Rieders 12 17 16 15 14 13 7 8 11 10 9

........
A First Assignment

ampl: model offices.mod;
ampl: data offices.dat;
ampl: solve;

MINOS 5.5: optimal solution found.
128 iterations, objective 49

ampl: display Assign;

Assign [*,*] (tr)
$2 = Coullard
$6 = Hurter

<table>
<thead>
<tr>
<th></th>
<th>Bassok</th>
<th>'$2'</th>
<th>Frey</th>
<th>Hazen</th>
<th>Hopp</th>
<th>'$6'</th>
<th>Jones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1021</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6.38388e-17</td>
</tr>
<tr>
<td>1049</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1053</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1055</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1083</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-7.20534e-17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1087</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8.21457e-18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2019</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2053</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-5.56242e-17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

........
(displayed legibly)

```ampl
option display_1col 10000, omit_zero_rows 1;
option display_eps .000001;

display {p in PEOPLE, q in PLACES} pref[p,q] * Assign[p,q];

pref[p,q]*Assign[p,q] :=
Bassok     2019   7
Coullard   4083   2
Frey       1021   4
Hazen      3083   3
Hopp       1055   4
Hurter     3041   1
Jones      3021   3
Mehrotra   2083   3
Rath       1053   2
Rieders    3087   3
Rubenstein 1049   1
Spearman   2009   1
Sun        4087   1
Tamhane    1087   7
Thompson   2053   2
Zazanis    2087   5
```
A Seniority-Weighted Assignment

\[
\text{param base} \geq 1; \\
\text{param weight} \{\text{PEOPLE}\} > 0; \\
\text{param pref} \{\text{PEOPLE,PLACES}\} > 0; \\
\text{var Assign} \{\text{PEOPLE,PLACES}\} \text{ binary;} \\
\text{minimize TotalPref:} \\
\quad \sum \{p \text{ in PEOPLE}\} \text{ base}^{\text{weight}[p]} \ast \\
\quad \quad \sum \{q \text{ in PLACES}\} \text{ pref}[p,q] \ast \text{ Assign}[p,q];
\]

\[
\text{param base} := 10; \\
\text{param weight} := \\
\quad \text{Bassok 1} \quad \text{Hopp 3} \quad \text{Rath 4} \quad \text{Sun 2} \\
\quad \text{Coullard 3} \quad \text{Hurter 4} \quad \text{Rieders 1} \quad \text{Tamhane 4} \\
\quad \text{Frey 4} \quad \text{Jones 4} \quad \text{Rubenstein 4} \quad \text{Thompson 4} \\
\quad \text{Hazen 3} \quad \text{Mehrotra 2} \quad \text{Spearman 2} \quad \text{Zazanis 2} ;
\]
(results)

MINOS 5.5: optimal solution found.
128 iterations, objective 102330

ampl: display {p in PEOPLE, q in PLACES} pref[p,q] * Assign[p,q];

pref[p,q]*Assign[p,q] :=

<table>
<thead>
<tr>
<th>Name</th>
<th>1087</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassok</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coullard</td>
<td>3087</td>
<td>3</td>
</tr>
<tr>
<td>Frey</td>
<td>2053</td>
<td>1</td>
</tr>
<tr>
<td>Hazen</td>
<td>3083</td>
<td>3</td>
</tr>
<tr>
<td>Hopp</td>
<td>1055</td>
<td>4</td>
</tr>
<tr>
<td>Hurter</td>
<td>4083</td>
<td>2</td>
</tr>
<tr>
<td>Jones</td>
<td>2009</td>
<td>1</td>
</tr>
<tr>
<td>Mehrotra</td>
<td>1083</td>
<td>7</td>
</tr>
<tr>
<td>Rath</td>
<td>1053</td>
<td>2</td>
</tr>
<tr>
<td>Rieders</td>
<td>3021</td>
<td>6</td>
</tr>
<tr>
<td>Rubenstein</td>
<td>1049</td>
<td>1</td>
</tr>
<tr>
<td>Spearman</td>
<td>2083</td>
<td>2</td>
</tr>
<tr>
<td>Sun</td>
<td>2019</td>
<td>8</td>
</tr>
<tr>
<td>Tamhane</td>
<td>4087</td>
<td>1</td>
</tr>
<tr>
<td>Thompson</td>
<td>3041</td>
<td>1</td>
</tr>
<tr>
<td>Zazanis</td>
<td>2087</td>
<td>5</td>
</tr>
</tbody>
</table>
A Politically-Sensitive Assignment

set GIVEN within \{PEOPLE, PLACES\};

\ldots
dsubj to PoliticalDecisions \{(p,q) \text{ in GIVEN}\}:
Assign[p,q] = 1;

set given := (Rubenstein, 1049) (Rath, 1053) (Frey, 2019);
A More Equitable Assignment

\[
\text{param worst integer } \leq \text{ card } \{\text{PLACES}\};
\]

\[
\ldots.
\]

\[
\text{subj to NotTooAwful}
\]

\[
\{p \text{ in PEOPLE, } q \text{ in PLACES: } \text{pref}[p,q] > \text{worst}\}:
\]

\[
\text{Assign}[p,q] = 0;
\]

\[
\text{ampl: } \text{let worst} := 7;
\]

\[
\text{ampl: solve;}
\]

\[
\text{MINOS 5.5: optimal solution found.}
\]

\[
46 \text{ iterations, objective 130830}
\]

\[
\text{ampl: } \text{let worst} := 6;
\]

\[
\text{ampl: solve;}
\]

\[
\text{MINOS 5.5: infeasible problem.}
\]

\[
4 \text{ iterations}
\]
Observation #1

Use a small assignment model to generate assignments

Then go with the one you prefer
Observation #2

Generate the assignments for yourself

Announce only the assignment you choose
Modified Assignment

Given

- Students and projects
- Preferences of students for projects
- Subgroups of students wanting the same project
- List of students who have cars

Assign

- 3 or 4 students per project
- At least one car per project
- Students in each subgroup to the same project
- ... with preference to students not in subgroups
Student Data

```plaintext
set STU ordered;

param car {STU} binary;

param ngroup integer >= 0;

set GRP = 1..ngroup;

set MEM {GRP} ordered by STU;

    check {g1 in GRP, g2 in g1+1..ngroup}:
        card (MEM[g1] inter MEM[g2]) = 0;

set SAMEGRP = union {g in GRP}

    {s1 in MEM[g], s2 in MEM[g]: ord(s1) < ord(s2)};
```
Project Data

set PRJ;

param cars_needed {PRJ} integer >= 0;
param min_team {PRJ} integer >= 0;
param max_team {p in PRJ} integer >= min_team[p];

param rank {STU,PRJ} integer >= 0, <= card {PRJ};

check {(s1,s2) in SAMEGRP, p in PRJ}:
 rank[s1,p] = rank[s2,p];
Objective

var Assign \{STU,PRJ\} binary;

set GROUPED = union \{g in GRP\} MEM[g];

param group_weight >= 1;

minimize Total_Rank:

\[
\sum \{s \in STU, p \in PRJ\} \text{rank}[s,p] \times \text{Assign}[s,p] \times \\
(\text{if } s \text{ in GROUPED then } \text{group_weight else 1});
\]
General Constraints

subject to Assign_Students \{s \in STU\}:
 \[
 \sum_{p \in PRJ} Assign[s,p] = 1;
 \]

subject to Assign_Projects \{p \in PRJ\}:
 \[
 \text{min}_\text{team}[p] \leq \sum_{s \in STU} Assign[s,p] \leq \text{max}_\text{team}[p];
 \]

subject to Enough_Cars \{p \in PRJ\}:
 \[
 \sum_{s \in STU} \text{car}[s] \times Assign[s,p] \geq \text{cars}_\text{needed}[p];
 \]

subject to Preserve_Groups \{(s1,s2) \in \text{SAMEGRP}, p \in PRJ\}:
 Assign[s1,p] = Assign[s2,p];
Ad Hoc Constraints

\[
\text{param cutoff } \geq 1, \leq \text{card } \{\text{PRJ}\};
\]

\[
\text{subject to } \text{Not}_\text{Too}_\text{Bad} \{s \text{ in } \text{STU}, p \text{ in } \text{PRJ}: \text{rank}[s,p] > \text{cutoff}\}:
\]

\[
\text{Assign}[s,p] = 0;
\]

\[
\text{set } \text{PRJ}_\text{PREF} \text{ within } \{\text{STU,PRJ}\};
\]

\[
\text{subject to } \text{Project}_\text{Preference} \{(s,p) \text{ in } \text{PRJ}_\text{PREF}\}:
\]

\[
\text{Assign}[s,p] = 1;
\]
Project and Student Data

param: PRJ: cars_needed min_team max_team :=

"Ameritech" 1 4 4
"DSC" 1 4 4
"Motorola" 1 4 4
"NMH" 1 4 4
"S&C Elec" 1 4 4
"TreeHouse" 1 4 4
"UPS" 1 4 4 ;

param: STU: car :=

Bhandari_Elsa 0
Black_Andrew 1
Croke_Michael 0
Ellis_Mary_Beth 1
Fernandez_Jason 0
Friedlander_Jeffrey 1
Gambell_Anthony 1
Iwase_Yoshinori 0
Katen_Philip 1
........
Subgroup and Rank Data

param ngroup := 7 ;

set MEM[1] := Bhandari_Elsa Vargas_Lorena Wise_David ;
set MEM[3] := Ellis_Mary_Beth Xu_Ping ;
set MEM[5] := Gambell_Anthony McCune_Christopher McCune_Jason ;
set MEM[6] := Kim_Rita Black_Andrew Shemluck_Matt Fernandez_Jason ;

param rank:

"Ameritech" "DSC" "Motorola" "NMH" "S&C Elec" "TreeHouse" "UPS" :=

Bhandari_Elsa 1 4 5 6 2 7 3
Black_Andrew 7 3 2 6 4 5 1
Croke_Michael 5 1 2 6 3 7 4
Ellis_Mary_Beth 7 2 1 3 5 6 4
Fernandez_Jason 7 3 2 6 4 5 1
Friedlander_Jeffrey 7 2 5 3 4 1 6
Gambell_Anthony 1 7 6 3 4 2 5
Iwase_Yoshinori 4 5 1 7 2 6 3

.......
Miscellaneous Data

param group_weight 3 ;

param cutoff := 4 ;

set PRJ_PREF := "McCune_Christopher" Ameritech ;
Solution

ampl: option display_icol 10000, omit_zero_rows 1;
ampl: option display_eps .000001;
ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 101

ampl: display {p in PRJ, s in STU} Assign[s,p];
Assign[s,p] :=

Ameritech Bhandari_Elsa 0.333333
Ameritech Gambell_Anthony 1
Ameritech McCune_Christopher 1
Ameritech McCune_Jason 1
Ameritech Vargas_Lorena 0.333333
Ameritech Wise_David 0.333333
DSC Bhandari_Elsa 0.666667
DSC Black_Andrew 0.25
DSC Croke_Michael 1
DSC Fernandez_Jason 0.25
........
(with integer variables)

CPLEX 9.0.0: optimal integer solution; objective 116
22 MIP simplex iterations
0 branch-and-bound nodes

ampl: display {p in PRJ, s in STU} rank[s,p] * Assign[s,p];
rank[s,p]*Assign[s,p] :=
Ameritech Gambell_Anthony 1
Ameritech Iwase_Yoshinori 4
Ameritech McCune_Christopher 1
Ameritech McCune_Jason 1
DSC Bhandari_Elsa 4
DSC Croke_Michael 1
DSC Vargas_Lorena 4
DSC Wise_David 4
NMH King_Nancy 1
NMH Mehawich_Michael 1
NMH Starr_Cathy 1
NMH Terrell_Eric 3
........
Observation #3

Assignment problems are seldom linear programs

They require discrete optimization technologies
Observation #4

Assignment models
make intensive use of sets

Their modeling language formulations
make extensive use of set features
“Balanced” Assignment

Setting

- meeting of employees from around the world at New York offices of a Wall Street firm

Given

- title, location, department, sex, for each of about 1000 people

Assign

- these people to around 25 dinner groups

So that

- the groups are as “diverse” as possible,
- but no one is unduly “isolated”
Plan of Attack

Year 1

- Dump it on a (human) database administrator
- Apply some ad hoc heuristics, by hand

Year 2

- Hire a consultant (me), to:
 - build some optimization models
 - test simple models on small subsets of data
 - scale up to more complex models on the full data

Year 3, 4, 5, ...

- Re-run with new complications
Minimum “Sameness” Model

set PEOPLE; # individuals to be assigned
set CATEG;
param type {PEOPLE,CATEG} symbolic;

 # categories by which people are classified;
 # type of each person in each category

set SAMETYPE = {i1 in PEOPLE, i2 in PEOPLE diff {i1},
 k in CATEG: type[i1,k] = type[i2,k]};

 # set of triples (i1,i2,k) such that individuals
 # i1 and i2 have the same type in category k

param numberGrps integer > 0;
param minInGrp integer > 0;
param maxInGrp integer >= minInGrp;

 # number of groups; bounds on size of groups
(quadratic objective)

\[
\text{var Assign \{i in PEOPLE, j in 1..numberGrps\} binary;}
\]

\# Assign[i,j] is 1 if and only if
\# person i is assigned to group j

\text{minimize TotalSameness:}
\[
\sum \{(i1,i2,k) \text{ in SAMETYPE, } j \text{ in 1..numberGrps}\}
\text{Assign[i1,j] \times Assign[i2,j];}
\]

\# Product of variables is 1 iff both are 1

\text{subj to AssignAll \{i in PEOPLE\}:}
\[
\sum \{j \text{ in 1..numberGrps}\} \text{Assign[i,j] = 1;}
\]

\# Each person assigned to one group

\text{subj to GroupSize \{j in 1..numberGrps\}:}
\[
\text{minInGrp} \leq \sum \{i \text{ in PEOPLE}\} \text{Assign[i,j]} \leq \text{maxInGrp};
\]

\# Each group has an acceptable size
(linearized objectives)

Simple Linearization

minimize TotalSameness:
 \[\sum_{(i1,i2,k) \in \text{SAMETYPE}, \, j \in 1..\text{numberGrps}} \text{Same}[i1,i2,j]; \]

subj to SameDefn
 \[\{i1 \in \text{PEOPLE}, \, i2 \in \text{PEOPLE}, \, j \in 1..\text{numberGrps} \}: \]
 \[\text{Same}[i1,i2,j] \geq \text{Assign}[i1,j] + \text{Assign}[i2,j] - 1; \]

Concise Linearization

minimize TotalSameness:
 \[\sum_{j \in \text{GRP}} \sum_{i \in \text{PEOPLE}} \text{Sameness}[i,j]; \]

subj to SamenessDefn \(\{i \in \text{PEOPLE}, \, j \in \text{GRP} \}: \)
 \[\text{Sameness}[i,j] \geq \sum_{(i,i2,k) \in \text{SAMETYPE}} \text{Assign}[i2,j] \]
 \[- \max\text{Sameness} \ast (1 - \text{Assign}[i,j]); \]
Solving as Continuous Quadratic

100 people, 10 groups

ampl: solve;

1000 variables, all nonlinear
110 constraints, all linear; 2000 nonzeros
1 nonlinear objective; 1000 linear nonzeros.

MINOS 5.4: ignoring integrality of 1000 variables

MINOS times:
read: 11.35
solve: 279.73 excluding minos setup: 279.67
write: 0.02
total: 291.10

MINOS 5.4: optimal solution found.
349 iterations, objective 1744

... all variables turn out integer !!!
Solving as Continuous Quadratic

100 people, 10 groups (more recent run)

ampl: solve;

1000 variables, all nonlinear
110 constraints, all linear; 2000 nonzeros
1 nonlinear objective; 1000 linear nonzeros.

MINOS 5.5: ignoring integrality of 1000 variables

MINOS times:
 read: 0.29
 solve: 3.10 excluding minos setup: 3.10
 write: 0.00
 total: 3.39

MINOS 5.5: optimal solution found.
279 iterations, objective 1714

... all variables still turn out integer !!!
Solving as Integer Quadratic

ampl: solve;

1000 variables, all nonlinear
110 constraints, all linear; 2000 nonzeros
1 nonlinear objective; 1000 nonzeros.

.......
73900 73196 1573.1903 383 1724.0000 1343.6630 454152 22.06%
74000 73296 1695.0051 119 1724.0000 1343.6630 455487 22.06%
* 74000+72612 0 1720.0000 1343.6630 455487 21.88%

Times (seconds):
Input = 0.981
Solve = 6458.19
Output = 0.411

CPLEX 9.0.0: feasible integer solution; objective 1720
455487 MIP simplex iterations
74000 branch-and-bound nodes
Solving the Simple Linearization

ampl: solve;

96520 variables:
 1000 binary variables
 95520 linear variables
95630 constraints, all linear; 288560 nonzeros
1 linear objective; 95520 nonzeros.

CPLEX 3.0:

.......

... wait forever with no solution !!!
Solving the Concise Linearization

ampl: solve;

2000 variables:
 1000 binary variables
 1000 linear variables
1110 constraints, all linear; 99520 nonzeros
1 linear objective; 1000 nonzeros.

CPLEX 3.0:

No MIP presolve or aggregator reductions.
Elapsed time = 30.30 sec.

......

... now branch-and-bound begins \rightarrow
(continued)

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Cuts/ Best Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td>274</td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>78.0862</td>
<td>300</td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>123.6578</td>
<td>288</td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>208.7162</td>
<td>271</td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>348.8889</td>
<td>241</td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>447.9946</td>
<td>219</td>
<td></td>
<td>0.0000</td>
</tr>
</tbody>
</table>

............

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>260</td>
<td>1416.4902</td>
<td>53</td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>280</td>
<td>280</td>
<td>1561.0237</td>
<td>34</td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>1757.6146</td>
<td>8</td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>*</td>
<td>305</td>
<td>1792.0000</td>
<td>0</td>
<td>1792.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>320</td>
<td>316</td>
<td>32.0996</td>
<td>310</td>
<td>1792.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

............

... continues for a long time with no improvement
Applying a Greedy Heuristic

```plaintext
param conflict; param min_conflict; param min_group;

for {p in PEOPLE} {
    let min_conflict := Infinity;
    for {j in 1..numberGrps} {
        let conflict := sum {(p,i,k) in SAMETYPE} Assign[i,j];
        if conflict < min_conflict then {
            let min_conflict := conflict;
            let min_group := j;
        }
    }
    let Assign[p,min_group] := 1;
}

ampl: include balAssignGreedy.run;
TotalSameness = 1762
```
Minimum “Variation” Model

```plaintext
set PEOPLE;  # individuals to be assigned
set CATEG;
param type {PEOPLE,CATEG} symbolic default "";
set TYPES {k in CATEG} = setof {i in PEOPLE} type[i,k];
    # categories by which people are classified;
    # type of each person in each category

param numberGrps integer > 0;
param minInGrp integer > 0;
param maxInGrp integer >= minInGrp;
    # number of groups; bounds on size of groups
```


Thanks also to Collette Coullard.
(variables and objective)

\[
\text{var Assign } \{i \text{ in PEOPLE, } j \text{ in 1..numberGrps} \} \text{ binary;}
\]

assignments of people to groups

\[
\text{var MinType } \{k \text{ in CATEG, } t \text{ in TYPES}[k]\}
\leq \text{floor} \left(\frac{\text{card } \{i \text{ in PEOPLE: type}[i,k] = t\} }{\text{numberGrps}} \right);
\]

\[
\text{var MaxType } \{k \text{ in CATEG, } t \text{ in TYPES}[k]\}
\geq \text{ceil} \left(\frac{\text{card } \{i \text{ in PEOPLE: type}[i,k] = t\} }{\text{numberGrps}} \right);
\]

min/max of each type over all groups

\[
\text{minimize TotalVariation:}
\]

\[
\text{sum } \{k \text{ in CATEG, } t \text{ in TYPES}[k]\}
\]

\[
(\text{MaxType}[k,t] - \text{MinType}[k,t]);
\]

Sum of variation over all types
(constraints)

subj to AssignAll {i in PEOPLE}:
 sum {j in 1..numberGrps} Assign[i,j] = 1;

subj to GroupSize {j in 1..numberGrps}:
 minInGrp <= sum {i in PEOPLE} Assign[i,j] <= maxInGrp;

subj to MinTypeDefn
 {j in 1..numberGrps, k in CATEG, t in TYPES[k]}:
 MinType[k,t] <= sum {i in PEOPLE: type[i,k] = t} Assign[i,j];

subj to MaxTypeDefn
 {j in 1..numberGrps, k in CATEG, t in TYPES[k]}:
 MaxType[k,t] >= sum {i in PEOPLE: type[i,k] = t} Assign[i,j];

 # Defining constraints for
 # min and max type variables
Solving for Minimum Variation

1054 variables:
 1000 binary variables
 54 linear variables
560 constraints, all linear; 12200 nonzeros
1 linear objective; 54 nonzeros.

CPLEX 3.0:

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Objective</th>
<th>IIInf</th>
<th>Best Integer</th>
<th>Cuts/Best Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>17.0000</td>
<td>299</td>
<td>17.0000</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>17.0000</td>
<td>322</td>
<td>17.0000</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>17.0000</td>
<td>332</td>
<td>17.0000</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>17.0000</td>
<td>328</td>
<td>17.0000</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>17.0000</td>
<td>329</td>
<td>17.0000</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>17.0000</td>
<td>329</td>
<td>17.0000</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>17.0000</td>
<td>339</td>
<td>17.0000</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>17.0000</td>
<td>344</td>
<td>17.0000</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>17.0000</td>
<td>342</td>
<td>17.0000</td>
</tr>
</tbody>
</table>

.......
<table>
<thead>
<tr>
<th>Node</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Cuts/Best Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>250</td>
<td>43.6818</td>
<td>74</td>
<td></td>
<td>17.0000</td>
</tr>
<tr>
<td>260</td>
<td>260</td>
<td>46.5000</td>
<td>58</td>
<td></td>
<td>17.0000</td>
</tr>
<tr>
<td>*</td>
<td>265</td>
<td>47.0000</td>
<td>0</td>
<td>47.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>270</td>
<td>266</td>
<td>17.0000</td>
<td>314</td>
<td>47.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>280</td>
<td>276</td>
<td>17.0000</td>
<td>351</td>
<td>47.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>290</td>
<td>286</td>
<td>17.0000</td>
<td>340</td>
<td>47.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>300</td>
<td>296</td>
<td>17.0000</td>
<td>337</td>
<td>47.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>310</td>
<td>306</td>
<td>17.0000</td>
<td>341</td>
<td>47.0000</td>
<td>17.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Cuts/Best Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>630</td>
<td>609</td>
<td>21.5208</td>
<td>243</td>
<td>47.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>640</td>
<td>618</td>
<td>23.3028</td>
<td>244</td>
<td>47.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>650</td>
<td>626</td>
<td>17.3796</td>
<td>269</td>
<td>47.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>660</td>
<td>636</td>
<td>17.7981</td>
<td>271</td>
<td>47.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>*</td>
<td>666</td>
<td>19.0000</td>
<td>0</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>670</td>
<td>440</td>
<td>17.0000</td>
<td>147</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>680</td>
<td>446</td>
<td>17.0714</td>
<td>213</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>690</td>
<td>454</td>
<td>17.5000</td>
<td>186</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
</tbody>
</table>
(concluded)

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Cuts/Best Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>461</td>
<td>17.1364</td>
<td>268</td>
<td>19.0000</td>
</tr>
<tr>
<td>710</td>
<td>468</td>
<td>17.3117</td>
<td>267</td>
<td>19.0000</td>
</tr>
<tr>
<td>720</td>
<td>475</td>
<td>17.0000</td>
<td>211</td>
<td>19.0000</td>
</tr>
<tr>
<td>730</td>
<td>484</td>
<td>17.2652</td>
<td>226</td>
<td>19.0000</td>
</tr>
<tr>
<td>740</td>
<td>490</td>
<td>17.0000</td>
<td>106</td>
<td>19.0000</td>
</tr>
<tr>
<td>750</td>
<td>497</td>
<td>17.0000</td>
<td>24</td>
<td>19.0000</td>
</tr>
<tr>
<td>* 752</td>
<td>0</td>
<td>17.0000</td>
<td>0</td>
<td>17.0000</td>
</tr>
</tbody>
</table>

Times (seconds):
Input = 0.266667
Solve = 864.733
Output = 0.166667

CPLEX 3.0: optimal integer solution; objective 17
45621 simplex iterations
752 branch-and-bound nodes
Solving for Minimum Variation

1054 variables:
 1000 binary variables
 54 linear variables
560 constraints, all linear; 12200 nonzeros
1 linear objective; 54 nonzeros.

CPLEX 9.0.0:
Clique table members: 100
MIP emphasis: balance optimality and feasibility

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Cuts/Best Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Left</td>
<td>Objective IInf</td>
</tr>
<tr>
<td>0 0</td>
<td>17.0000 212</td>
</tr>
<tr>
<td>1 1</td>
<td>17.0000 183</td>
</tr>
<tr>
<td>2 2</td>
<td>17.0000 146</td>
</tr>
<tr>
<td>3 3</td>
<td>17.0000 170</td>
</tr>
<tr>
<td>4 4</td>
<td>17.0000 153</td>
</tr>
<tr>
<td>5 5</td>
<td>17.0000 103</td>
</tr>
<tr>
<td>6 6</td>
<td>17.0000 81</td>
</tr>
<tr>
<td>7 7</td>
<td>17.0000 72</td>
</tr>
</tbody>
</table>
Solving for Minimum Variation

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>17.0000</td>
<td>88</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>17.0000</td>
<td>69</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>17.0000</td>
<td>69</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>17.0000</td>
<td>77</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>17.0000</td>
<td>73</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>17.0000</td>
<td>68</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>17.0000</td>
<td>99</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>17.0000</td>
<td>98</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>17.0000</td>
<td>128</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17.0000</td>
<td>140</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>17.0000</td>
<td>95</td>
<td>19.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>*</td>
<td>19</td>
<td>1</td>
<td></td>
<td>0</td>
<td>17.0000</td>
</tr>
</tbody>
</table>

Gomory fractional cuts applied: 10

Times (seconds):
Input = 0.02
Solve = 16.844
Output = 0.02

CPLEX 9.0.0: optimal integer solution; objective 17
5624 MIP simplex iterations
19 branch-and-bound nodes
Summary of Results on Simple Data

<table>
<thead>
<tr>
<th></th>
<th>Total same-ness</th>
<th>Max variation</th>
<th>Total variation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greedy</td>
<td>1762</td>
<td>3</td>
<td>45</td>
<td>seconds</td>
</tr>
<tr>
<td>Quadratic</td>
<td>1744</td>
<td>2</td>
<td>39</td>
<td>4.7 min</td>
</tr>
<tr>
<td>Min total variation</td>
<td>1706</td>
<td>1</td>
<td>17</td>
<td>14.4 min</td>
</tr>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadr continuous</td>
<td>1752</td>
<td>2</td>
<td>44</td>
<td>4.07 sec</td>
</tr>
<tr>
<td>Quadr integer</td>
<td>1720</td>
<td>2</td>
<td>27</td>
<td>107 min *</td>
</tr>
<tr>
<td>Min total variation</td>
<td>1706</td>
<td>1</td>
<td>17</td>
<td>16.8 sec</td>
</tr>
</tbody>
</table>
Scaling Up

Model is more complicated

- Rooms hold from 20–25 to 50–55 people
- Must avoid isolating assignments:
 - a person is “isolated” in a group that contains no one from the same location with the same or “adjacent” title

Problem is too big

- Aggregate people who match in all categories (986 people, but only 287 different kinds)
- Solve first for title and location only, then for refinement to department and sex
- Stop at first feasible solution to title-location problem
set PEOPLE ordered;

param title {PEOPLE} symbolic;
param loc {PEOPLE} symbolic;

set TITLE ordered;
 check {i in PEOPLE}: title[i] in TITLE;
set LOC = setof {i in PEOPLE} loc[i];

set TYPE2 = setof {i in PEOPLE} (title[i],loc[i]);
param number2 {(i1,i2) in TYPE2} =
 card {i in PEOPLE: title[i]=i1 and loc[i]=i2};

set REST ordered;

param loDine {REST} integer > 10;
param hiDine {j in REST} integer >= loDine[j];

param loCap := sum {j in REST} loDine[j];
param hiCap := sum {j in REST} hiDine[j];

param loFudge := ceil ((loCap less card {PEOPLE}) / card {REST});
param hiFudge := ceil ((card {PEOPLE} less hiCap) / card {REST});
(variables)

```plaintext
param frac2title {i1 in TITLE}
   = sum {(i1,i2) in TYPE2} number2[i1,i2] / card {PEOPLE};

param frac2loc {i2 in LOC}
   = sum {(i1,i2) in TYPE2} number2[i1,i2] / card {PEOPLE};

param expDine {j in REST}
   = if loFudge > 0 then loDine[j] else
     if hiFudge > 0 then hiDine[j] else (loDine[j] + hiDine[j]) / 2;

param loTargetTitle {i1 in TITLE, j in REST} :=
   floor (round (frac2title[i1] * expDine[j], 6));
param hiTargetTitle {i1 in TITLE, j in REST} :=
   ceil (round (frac2title[i1] * expDine[j], 6));

param loTargetLoc {i2 in LOC, j in REST} :=
   floor (round (frac2loc[i2] * expDine[j], 6));
param hiTargetLoc {i2 in LOC, j in REST} :=
   ceil (round (frac2loc[i2] * expDine[j], 6));
```
(variables, objective, assign constraints)

```plaintext
var Assign2 {TYPE2,REST} integer >= 0;
var Dev2Title {TITLE} >= 0;
var Dev2Loc {LOC} >= 0;

minimize Deviation:
    sum {i1 in TITLE} Dev2Title[i1] + sum {i2 in LOC} Dev2Loc[i2];

subject to Assign2Type {(i1,i2) in TYPE2}:
    sum {j in REST} Assign2[i1,i2,j] = number2[i1,i2];

subject to Assign2Rest {j in REST}:
    loDine[j] - loFudge
    <= sum {((i1,i2) in TYPE2} Assign2[i1,i2,j]
    <= hiDine[j] + hiFudge;
```
(constraints to define “variation”)

\[
\text{subject to Lo2TitleDefn \{i1 \text{ in TITLE, j in REST}\}:}
\text{Dev2Title[i1] } \geq \text{ loTargetTitle[i1,j] - sum \{(i1,i2) in TYPE2\} Assign2[i1,i2,j];}
\]

\[
\text{subject to Hi2TitleDefn \{i1 \text{ in TITLE, j in REST}\}:}
\text{Dev2Title[i1] } \geq \text{ sum \{(i1,i2) in TYPE2\} Assign2[i1,i2,j] - hiTargetTitle[i1,j];}
\]

\[
\text{subject to Lo2LocDefn \{i2 \text{ in LOC, j in REST}\}:}
\text{Dev2Loc[i2] } \geq \text{ loTargetLoc[i2,j] - sum \{(i1,i2) in TYPE2\} Assign2[i1,i2,j];}
\]

\[
\text{subject to Hi2LocDefn \{i2 \text{ in LOC, j in REST}\}:}
\text{Dev2Loc[i2] } \geq \text{ sum \{(i1,i2) in TYPE2\} Assign2[i1,i2,j] - hiTargetLoc[i2,j];}
\]
(parameters for ruling out “isolation”)

set ADJACENT {i1 in TITLE} =
 (if i1 <> first(TITLE) then {prev(i1)} else {}) union
 (if i1 <> last(TITLE) then {next(i1)} else {});

set ISO = {(i1,i2) in TYPE2: (i2 <> "Unknown") and
 ((number2[i1,i2] >= 2) or
 (number2[i1,i2] = 1 and
 sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2}
 number2[ii1,i2] > 0)) };

param give {ISO} default 2;
param giveTitle {TITLE} default 2;
param giveLoc {LOC} default 2;

param upperbnd {(i1,i2) in ISO, j in REST} =
 min (ceil((number2[i1,i2]/card {PEOPLE}) * hiDine[j]) + give[i1,i2],
 hiTargetTitle[i1,j] + giveTitle[i1],
 hiTargetLoc[i2,j] + giveLoc[i2],
 number2[i1,i2]);
(constraints to rule out “isolation”)

\[
\begin{align*}
\text{var} & \ \text{Lone} \ \{(i1,i2) \ \text{in} \ \text{ISO}, \ j \ \text{in} \ \text{REST}\} \ \text{binary}; \\
\text{subj} \ \text{to} \ \text{Isolation1} \ \{(i1,i2) \ \text{in} \ \text{ISO}, \ j \ \text{in} \ \text{REST}\}: \\
& \quad \text{Assign2}[i1,i2,j] \ \leq \ \text{upperbnd}[i1,i2,j] \ \times \ \text{Lone}[i1,i2,j]; \\
\text{subj} \ \text{to} \ \text{Isolation2a} \ \{(i1,i2) \ \text{in} \ \text{ISO}, \ j \ \text{in} \ \text{REST}\}: \\
& \quad \text{Assign2}[i1,i2,j] + \\
& \quad \ \sum \{(i11,i2) \ \text{in} \ \text{ADJACENT}[i1]: \ (i11,i2) \ \text{in} \ \text{TYPE2}\} \ \text{Assign2}[i11,i2,j] \\
& \quad \ \geq \ 2 \ \times \ \text{Lone}[i1,i2,j]; \\
\text{subj} \ \text{to} \ \text{Isolation2b} \ \{(i1,i2) \ \text{in} \ \text{ISO}, \ j \ \text{in} \ \text{REST}\}: \\
& \quad \text{Assign2}[i1,i2,j] \ \geq \ \text{Lone}[i1,i2,j];
\end{align*}
\]
Success

First problem
- using OSL: 128 “supernodes”, 6.7 hours
- using CPLEX 2.1: took too long

Second problem
- using CPLEX 2.1: 864 nodes, 3.6 hours
- using OSL: 853 nodes, 4.3 hours

Finish
- Refine to individual assignments: a trivial LP
- Make table of assignments using AMPL printf command
- Ship table to client, who imports to database
Observation #5

Assignment of people is a social, not physical, problem

Clients can invent and change the rules as they wish
“Oh, we forgot to mention . . .”

One more complication
 ➢ No group may have only 1 woman

Not a problem, though
 ➢ Women are between 18% and 22% of every group in solution already sent!
Observation #6

Client’s ad hoc solutions can be pretty bad
Solver Improvements

CPLEX 3.0
- First problem: 1200 nodes, 1.1 hours
- Second problem: 1021 nodes, 1.3 hours

CPLEX 4.0
- First problem: 517 nodes, 5.4 minutes
- Second problem: 1021 nodes, 21.8 minutes

CPLEX 9.0
- First problem: 560 nodes, 83.1 seconds
- Second problem: 0 nodes, 17.9 seconds
Solver Improvements

CPLEX 12.1
- First problem: 0 nodes, 9.5 seconds
- Second problem: 0 nodes, 1.5 seconds

Gurobi 2.0
- First problem: 0 nodes, 13.5 seconds
- Second problem: 0 nodes, 1.6 seconds
Subsequent Cases

Balanced series of assignments

Sequence of workshop assignments

Balanced class seat assignments
Observation #7

Subsequent problems may get harder

But they may just as well get easier
Another Example . . .

The Progressive Party Problem

Another Example . . .

Optimizing freshman happiness

A few years ago it would have been hard to decide who was most unhappy with the process of assigning freshmen to required seminars.

Mark Daskin

"I looked at the old system and knew there had to be a better way," says Reingold. Daskin solved the semester assignment puzzle in much the same way he approaches the more complex problem of designing simple linear models for General Motors using linear programming to create an optimization model, a technique based on the work of mathematician George Dantzig. Daskin applied a network algorithm to solve an assignment problem," says Daskin, referring to the out-of-the-box algorithm developed 30 years ago by Lester Ford Jr. and Deborah Fulkerson. "I almost had the underlying code written for other work, so I took only a few days to get the computer interface up and running," adds Daskin, who volunteered his time to the Weinberg College project.

"This program has changed the lives of Northwestern students," says Reingold. "It gives them a sense of being listened to." Gone are the old postcards. In the spring of their senior year in high school incoming students log on to a password-protected Web site to read descriptions of seminars and student evaluations of those classes before listing their preferences. This early electronic linkage to the University helps to personal relationships as students sign online discussion groups with student classmates and seminar professors, who will serve as their freshman advisers—well before students even arrive on campus.

"Reingold notes that students now can rank only their top 20 preferences, rather than 20, and receive one of their top 3 or 4 choices, resulting in a dramatic increase in student satisfaction. Demos can preassign seminars for students with special scheduling needs, meeting gender balance, and admit seminar offerings to match student interest. The latest software is that students may express equal preferences for multiple seminars. The program is no longer the college's program to assign freshman seminars on a first-come, first-served basis but throughout the year.

"Music's program was a revolution, and he keeps refining it in wonderful ways," says Reingold. "This work has enabled preferred changes in how Northwestern communicates with its students."

—Laura Fox

Hard to know who was most unhappy with process of assigning freshmen to required seminars.

After ranking their top 20 choices out of 70 seminar sections, many students still found themselves assigned to classes at the bottom of their lists.

But perhaps the top prize for misery went to the department assistant forced to spend all summer sorting 1,100 postcards listing 22,000 preferences.
Another Example . . .

Students log on to a website to read descriptions & evaluations, join discussion groups with classmates & professors, rank their choices. Students receive one of their top 3 or 4 choices. New refinements are added every year.

“Mark’s program has enabled profound changes in how Northwestern communicates with its students.”

Mark Daskin

"I looked at the old system and knew there had to be a better way,” says Reingold.
Daskin solved the assignment problem in much the same way he approaches the more complex problem of designing people class models for General Motors using linear programming to create an optimization model, a technique based on the work of mathematician George Dantzig.
“I applied a network algorithm to solve the assignment problem,” says Daskin, referring to the cut-and-flow algorithm developed 30 years ago by Lester Ford Jr. and Delbert Fulkerson. "I altered the underlying code written for other work, so it took only a few days to get the computer interface up and running,” says Daskin, who volunteered his time to the Weinberg College project.

What Daskin may have found simple, administrators found simply amazing.
"His program has changed the lives of Northwestern students,” says Reingold. "It gives them a sense of being listened to.”
Some are the old purists, in the spring of their senior year in high school targeting students log on to a personalized-protected website to read descriptions of seminars and student evaluations of those classes before listing their preferences. This easy electronic linkage to the University leads to personal relationships, as students join online discussion forums with seminar classmates and seminar professors, who will serve as their freshman advisors - all before students even arrive on campus.
Reingold notes that students now rank only their top 10 preferences, rather than 20, and receive one of their top 3 or 4 choices, resulting in a dramatic increase in student satisfaction. Students can preselect seminars for students with special scheduling needs, meeting gender balance, and add seminar offerings to match student interest. The latest science is that students may express equal preferences for multiple seminars. The program is so successful that the college now uses it to assign freshman seminars not only in the fall quarter but throughout the year.
"Mark’s program has been a revelation, and he keeps refining it in wonderful ways,” says Reingold. "His work has enabled profound changes in how Northwestern communicates with its students.”

—Luann Fier