Modeling and Solving Nontraditional Optimization Problems
Session 1b: Current Features

Robert Fourer
Industrial Engineering & Management Sciences
Northwestern University
AMPL Optimization LLC
4er@northwestern.edu — 4er@AMPL.com

Chiang Mai University International Conference Workshop
Chiang Mai, Thailand — 4-5 January 2011
Session 1b: Current Features

Focus

- Simple nontraditional features already implemented
- Incorporation in the AMPL language
- Handling by solvers

Topics

- Networks
- Separable piecewise-linear terms
- Disconnected variable domains
 * union of points
 * union of points & intervals
 * zero or interval
- Implications
 * indicator constraints
 * piecewise-nonlinear terms
Network Flows

Definition

- Minimize total cost of flows
- Subject to
 - Flow balance at nodes
 - Flow limits on arcs

Representations

- Algebraic variable-constraint
 - Define arc variables
 - Define node flow balances using variables
- Network node-arc
 - Define network nodes
 - Define arcs connecting the nodes

... arguably more natural
Generic Model

Variable-constraint formulation

```plaintext
set CITIES;
set LINKS within (CITIES cross CITIES);

param supply {CITIES} >= 0;   # amounts available at cities
param demand {CITIES} >= 0;   # amounts required at cities
   check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];

param cost {LINKS} >= 0;      # shipment costs/1000 packages
param capacity {LINKS} >= 0;  # max packages that can be shipped

var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j];
   # packages to be shipped

minimize Total_Cost:
   sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];

subject to Balance {k in CITIES}:
   supply[k] + sum {(i,k) in LINKS} Ship[i,k]
   = demand[k] + sum {(k,j) in LINKS} Ship[k,j];
      # supply plus total flow in equals
      # demand plus total flow out
```

Network Flows
Generic Model

Node-arc formulation

set CITIES;
set LINKS within (CITIES cross CITIES);

param supply {CITIES} >= 0; # amounts available at cities
param demand {CITIES} >= 0; # amounts required at cities

check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];

param cost {LINKS} >= 0; # shipment costs/1000 packages
param capacity {LINKS} >= 0; # max packages that can be shipped

minimize Total_Cost;

node Balance {k in CITIES}: net_in = demand[k] - supply[k];

arc Ship {(i,j) in LINKS} >= 0, <= capacity[i,j],
 from Balance[i], to Balance[j], obj Total_Cost cost[i,j];
Network Flows

AMPL Applications (1)

Product distribution (nodes)

minimize cost;

node RT: rtmin <= net_out <= rtmax;

 # Source of all regular-time crews

node OT: otmin <= net_out <= otmax;

 # Source of all overtime hours

node P_RT {fact}; # Sources of regular-time crews at factories
node P_OT {fact}; # Sources of overtime hours at factories

node M {prd,fact}; # Sources of manufacturing

node D {prd,dctr}; # Sources of distribution:

node W {p in prd, w in whse}: net_in = dem[p,w];

 # Locations of warehousing
Network Flows

AMPL Applications (1)

Product distribution (arcs)

```plaintext
arc Work_RT {f in fact}
  from RT  to P_RT[f]  >= rmin[f],  <= rmax[f];
  # Regular-time crews allocated to each factory

arc Work_OT {f in fact}
  from OT  to P_OT[f]  >= omin[f],  <= omax[f];
  # Overtime hours allocated to each factory

arc Manu_RT {p in prd, f in fact: rpc[p,f] <> 0}  >= 0
  # Regular-time crews allocated to
  # manufacture of each product at each factory

arc Manu_OT {p in prd, f in fact: opc[p,f] <> 0}  >= 0
  from P_OT[f]  to M[p,f]  (1 / pt[p,f])  obj cost (opc[p,f] / pt[p,f]);
  # Overtime hours allocated to
  # manufacture of each product at each factory
```
Network Flows

AMPL Applications (1)

Product distribution (arcs)

```AMPL
arc Prod_L {p in prd, f in fact} >= 0
    from M[p,f] to W[p,f];
    # Manufacture of each product at each factory
    # to satisfy local demand, in 1000s of units

arc Prod_D {p in prd, f in fact} >= 0
    from M[p,f] to D[p,f]; \\Sa
    # Manufacture of each product at each factory,
    # for distribution elsewhere, in 1000s of units

arc Ship {p in prd, (d,w) in rt} >= 0
    from D[p,d] to W[p,w] obj cost (sc[d,w] * wt[p]);
    # Shipments of each product on each allowed route

arc Trans {p in prd, d in dctr} >= 0
    from W[p,d] to D[p,d] obj cost (tc[p]);
    # Transshipments of each product at each
    # distribution center
```
Network Flows

AMPL Applications (2)

Train car allocation (nodes)

minimize cars; # Number of cars in the system:
 # sum of unused cars and cars in trains during
 # the last time interval of the day

minimize miles; # Total car-miles run by
 # all scheduled trains in a day

node N {cities,times}; # For every city and time:
 # unused cars in present interval will equal
 # unused cars in previous interval,
 # plus cars just arriving in trains,
 # minus cars just leaving in trains
Train car allocation (arcs)

\[
\text{arc } U \{c \text{ in cities, } t \text{ in times}\} \geq 0 \\
\text{from } N[c,t] \text{ to } N[c,\text{next}(t)] \\
\text{obj } \{\text{if } t = \text{last}\} \text{ cars 1;}
\]

\(U[c,t]\) is the number of unused cars stored
at city \(c\) in the interval beginning at time \(t\)

\[
\text{arc } X \{(c_1,t_1,c_2,t_2) \text{ in schedule}\} \\
\geq \text{low}[c_1,t_1,c_2,t_2] \leq \text{high}[c_1,t_1,c_2,t_2] \\
\text{from } N[c_1,t_1] \text{ to } N[c_2,t_2] \\
\text{obj } \{\text{if } t_2 < t_1\} \text{ cars 1} \\
\text{obj miles distance}[c_1,c_2];
\]

\(X[c_1,t_1,c_2,t_2]\) is the number of cars assigned
to the scheduled train that leaves \(c_1\) at \(t_1\)
and arrives in \(c_2\) at \(t_2\)
Network Flows

Conversion for Solver

Equivalent linear program
- Generate variables & constraints
- Mark as network
 * facilitate solution by specialized network simplex method

Extensions
- Multipliers
 * gains or losses
 * change of units
- Network embedded in larger model
 * side constraints
 * side variables
Network Flows

Conversion for Solver (cont’d)

Train car allocation (simplex solve)

```
ampl: model train2.mod;
ampl: data train2.dat;
ampl: option solver cplexamp;
ampl: solve;

Presolve eliminates 219 constraints and 1 variable.  
Adjusted problem:  
410 variables, all linear  
192 constraints, all linear; 820 nonzeros  
2 objectives, all linear; 235 nonzeros.

CPLEX 12.2.0.0: LP Presolve eliminated 0 rows and 50 columns.  
Reduced LP has 85 rows, 253 columns, and 506 nonzeros.

optimal solution; objective 129  
57 dual simplex iterations (0 in phase I)
```
Network Flows

Conversion for Solver *(cont’d)*

Train car allocation *(network simplex solve)*

```
ampl: model train2.mod;
ampl: data train2.dat;
ampl: option solver cplexamp:
ampl: option cplex_options 'netopt 2';
ampl: solve;

Presolve eliminates 219 constraints and 1 variable.
Adjusted problem:
410 variables, all linear
192 constraints, all linear; 820 nonzeros
2 objectives, all linear; 235 nonzeros.

CPLEX 12.2.0.0: netopt 2
CPLEX 12.2.0.0: optimal solution; objective 129

Network extractor found 192 nodes and 410 arcs.
333 network simplex iterations.
```
Piecewise-Linear

Definition

- Function of one variable
- Linear on intervals
- Continuous

Issues

- Describing the function
 - choice of specification
 - syntax in the modeling language
- Communicating the function to a solver
 - direction description
 - transformation to linear or linear-integer
Possibilities

- List of breakpoints and either:
 - change in slope at each breakpoint
 - value of the function at each breakpoint

- List of slopes and either:
 - distance between breakpoints bounding each slope
 - value of intercept associated with each slope

- Lists of breakpoints and slopes

Also needed in some cases

- One particular breakpoint
- One particular slope
- Value at one particular point
Piecewise-Linear

AMPL Specification: Examples

<<0; -1,1>> x[j]

<<-1,1,3,5; -5,-1,0,1.5,3>> x[j]

<<3,5; 0.25,1.00,0.50>> x[j]
Piecewise-Linear

AMPL Specification: Syntax

General forms

- `<breakpoint-list; slope-list> variable`
 * Zero at zero
 * Bounds on variable specified independently
- `<breakpoint-list; slope-list> (variable, zero-point)`
 * Zero at `zero-point`
- `<breakpoint-list; slope-list> variable + constant`
 * Has value `constant` at zero

Breakpoint & slope list forms

- Simple list
 * `<<lim1[i,j],lim2[i,j]; r1[i,j],r2[i,j],r3[i,j]>>`
- Indexed list
 * `<< {k in 1..nlim[i,j]} lim[i,j,k]; {k in 1..nlim[i,j]+1} r[i,j,k]>>`
Design of a planar structure

```
var Force {bars};  # Forces on bars:
                 # positive in tension, negative in compression

minimize TotalWeight: (density / yield_stress) * 
                    sum {(i,j) in bars} length[i,j] * <<0; -1,+1>> Force[i,j];
                   # Weight is proportional to length
                   # times absolute value of force

subject to Xbal {k in joints: k <> fixed}:
          sum {(i,k) in bars} xcos[i,k] * Force[i,k] 
          - sum {(k,j) in bars} xcos[k,j] * Force[k,j] = xload[k];

subject to Ybal {k in joints: k <> fixed and k <> rolling}:
          sum {(i,k) in bars} ycos[i,k] * Force[i,k] 
          - sum {(k,j) in bars} ycos[k,j] * Force[k,j] = yload[k];
                   # Forces balance in
                   # horizontal and vertical directions
```
Piecewise-Linear

AMPL Applications (2)

Data fitting for credit scoring

```AMPL
var Wt_const;             # Constant term in computing all scores
var Wt {j in factors} >= if wttyp[j] = 'pos' then 0 else -Infinity
<= if wttyp[j] = 'neg' then 0 else +Infinity;
    # Weights on the factors
var Sc {i in people};     # Scores for the individuals
minimize Penalty:         # Sum of penalties for all individuals
    Gratio * sum {i in Good} << {k in 1..Gpce-1} if Gbktyp[k] = 'A'
        then Gbkfac[k]*app_amt
        else Gbkfac[k]*bal_amt[i];
    {k in 1..Gpce} Gslope[k] >> Sc[i] +
    Bratio * sum {i in Bad} << {k in 1..Bpce-1} if Bbktyp[k] = 'A'
        then Bbkfac[k]*app_amt
        else Bbkfac[k]*bal_amt[i];
    {k in 1..Bpce} Bslope[k] >> Sc[i];
```

Robert Fourer, Modeling & Solving Nontraditional Optimization Problems
Session 1b: Current Features—Chiang Mai, 4-5 January 2011
Conversion for Solver: Example

Transportation costs

```
param rate1 {i in ORIG, j in DEST} >= 0;
param rate2 {i in ORIG, j in DEST} >= rate1[i,j];
param rate3 {i in ORIG, j in DEST} >= rate2[i,j];

param limit1 {i in ORIG, j in DEST} >= 0;
param limit2 {i in ORIG, j in DEST} >= limit1[i,j];

var Trans {ORIG,DEST} >= 0;

minimize Total_Cost:
    sum {i in ORIG, j in DEST}
        <<limit1[i,j], limit2[i,j];
        rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];
```
Minimizing Convex Costs

Equivalent linear program

```ampl
ampl: model trpl2.mod; data trpl.dat; solve;
Substitution eliminates 15 variables.
21 piecewise-linear terms replaced by 35 variables and 15 constraints.
Adjusted problem:
41 variables, all linear
10 constraints, all linear; 82 nonzeros
1 linear objective; 41 nonzeros.

CPLEX 10.1.0: optimal solution; objective 199100
12 dual simplex iterations (0 in phase I)

ampl: display Trans;

<table>
<thead>
<tr>
<th></th>
<th>DET</th>
<th>FRA</th>
<th>FRE</th>
<th>LAF</th>
<th>LAN</th>
<th>STL</th>
<th>WIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEV</td>
<td>500</td>
<td>0</td>
<td>200</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>GARY</td>
<td>0</td>
<td>0</td>
<td>900</td>
<td>300</td>
<td>0</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>PITT</td>
<td>700</td>
<td>900</td>
<td>0</td>
<td>200</td>
<td>100</td>
<td>1000</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Minimizing Non-Convex Costs

Equivalent mixed-integer program

```
model trpl3.mod; data trpl.dat; solve;

Substitution eliminates 18 variables.
21 piecewise-linear terms replaced by 87 variables and 87 constraints.

Adjusted problem:
90 variables:
   41 binary variables
   49 linear variables

79 constraints, all linear; 251 nonzeros
1 linear objective; 49 nonzeros.

CPLEX 10.1.0: optimal integer solution; objective 256100
189 MIP simplex iterations
144 branch-and-bound nodes
```

```
ampl: display Trans;

:       DET   FRA  FRE  LAF   LAN  STL   WIN  :=
CLEV    1200   0    0  1000   0    0   400
GARY     0     0  1100  0   300   0    0
PITT     0   900   0   0  300  1700   0
```
Minimizing Non-Convex Costs (*cont’d*)

... with SOS type 2 markers in output file

<table>
<thead>
<tr>
<th>SOS</th>
<th>Value</th>
<th>Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>87 sos</td>
<td>3 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 18</td>
</tr>
<tr>
<td>S1</td>
<td>64 sos</td>
<td>10 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 35</td>
</tr>
<tr>
<td>S4</td>
<td>46 sosref</td>
<td>3 -501</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 751</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 -501</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 500</td>
</tr>
</tbody>
</table>
Piecewise-Linear

Conversion for Solver: Principles

Equivalent linear program if . . .

- Objective
 - minimizes convex (increasing slopes) or
 - maximizes concave (decreasing slopes)

- Constraints expressions
 - convex and on the left-hand side of a ≤ constraint
 - convex and on the right-hand side of a ≥ constraint
 - concave and on the left-hand side of a ≥ constraint
 - concave and on the right-hand side of a ≤ constraint

Equivalent mixed-integer program otherwise

- At least one binary variable per piece
- Enhanced branching in solver
 - “special ordered sets of type 2”
Discrete Variable Domains

Continuous domain

\[
\text{var } \text{Buy} \ {j \ in \ \text{FOOD}} \ >= \ 0;
\]

Semi-continuous domain

\[
\text{var } \text{Buy} \ {j \ in \ \text{FOOD}} \ in \ \{0\} \ union \ \text{interval}[30,40];
\]

Discrete domain

\[
\text{var } \text{Buy} \ {j \ in \ \text{FOOD}} \ in \ \{1,2,5,10,20,50\};
\]

... many generalizations possible
Semi-Continuous Domain

Continuous

<table>
<thead>
<tr>
<th>BUY</th>
<th>BEEF</th>
<th>FISH</th>
<th>MCH</th>
<th>SPG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>46.6667</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUY</th>
<th>CHK</th>
<th>HAM</th>
<th>MTL</th>
<th>TUR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CPLEX 10.1.0: optimal solution; objective 88.2
1 dual simplex iterations (0 in phase I)
ampl: display Buy;

Semi-Continuous

<table>
<thead>
<tr>
<th>BUY</th>
<th>BEEF</th>
<th>FISH</th>
<th>MCH</th>
<th>SPG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUY</th>
<th>CHK</th>
<th>HAM</th>
<th>MTL</th>
<th>TUR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

CPLEX 10.1.0: optimal integer solution; objective 116.4
65 MIP simplex iterations
27 branch-and-bound nodes
ampl: display Buy;
Semi-Continuous Domain (cont’d)

Converted to MIP with extra variables . . .

minimize Total_Cost:
95.7*(Buy[BEEF]+lambdaL) + 127.6*(Buy[BEEF]+lambdaU) +
77.7*(Buy[CHK]+lambdaL) + 103.6*(Buy[CHK]+lambdaU) +
68.7*(Buy[FISH]+lambdaL) + 91.6*(Buy[FISH]+lambdaU) +
86.7*(Buy[HAM]+lambdaL) + 115.6*(Buy[HAM]+lambdaU) +
56.7*(Buy[MCH]+lambdaL) + 75.6*(Buy[MCH]+lambdaU) +
59.7*(Buy[MTL]+lambdaL) + 79.6*(Buy[MTL]+lambdaU) +
59.7*(Buy[SPG]+lambdaL) + 79.6*(Buy[SPG]+lambdaU) +
74.7*(Buy[TUR]+lambdaL) + 99.6*(Buy[TUR]+lambdaU);

subject to Diet['A']:
700 <= 1800*(Buy[BEEF]+lambdaL) + 2400*(Buy[BEEF]+lambdaU) +
240*(Buy[CHK]+lambdaL) + 320*(Buy[CHK]+lambdaU) +
240*(Buy[FISH]+lambdaL) + 320*(Buy[FISH]+lambdaU) +
1200*(Buy[HAM]+lambdaL) + 1600*(Buy[HAM]+lambdaU) +
450*(Buy[MCH]+lambdaL) + 600*(Buy[MCH]+lambdaU) +
2100*(Buy[MTL]+lambdaL) + 2800*(Buy[MTL]+lambdaU) +
750*(Buy[SPG]+lambdaL) + 1000*(Buy[SPG]+lambdaU) +
1800*(Buy[TUR]+lambdaL) + 2400*(Buy[TUR]+lambdaU) <= 10000; . . .
Semi-Continuous Domain \textit{(cont’d)}

and extra constraints

\begin{align*}
\text{subject to } (\text{Buy[BEEF]+ldef}): \\
-(\text{Buy[BEEF]+b}) + (\text{Buy[BEEF]+lambdaL}) + (\text{Buy[BEEF]+lambdaU}) &= 0; \\
\text{subject to } (\text{Buy[CHK]+ldef}): \\
-(\text{Buy[CHK]+b}) + (\text{Buy[CHK]+lambdaL}) + (\text{Buy[CHK]+lambdaU}) &= 0; \\
\text{subject to } (\text{Buy[FISH]+ldef}): \\
-(\text{Buy[FISH]+b}) + (\text{Buy[FISH]+lambdaL}) + (\text{Buy[FISH]+lambdaU}) &= 0; \ldots
\end{align*}

\ldots \text{ with extra binary variables}
Discrete Domain

Continuous

CPLEX 10.1.0: optimal solution; objective 88.2
1 dual simplex iterations (0 in phase I)
ampl: display Buy;

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BEEF</td>
<td>0</td>
<td>FISH</td>
<td>0</td>
<td>MCH</td>
</tr>
<tr>
<td>CHK</td>
<td>0</td>
<td>HAM</td>
<td>0</td>
<td>MTL</td>
</tr>
<tr>
<td>SPG</td>
<td>0</td>
<td>TUR</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Discrete

CPLEX 10.1.0: optimal integer solution; objective 95.49
47 MIP simplex iterations
8 branch-and-bound nodes
ampl: display Buy;

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BEEF</td>
<td>1</td>
<td>FISH</td>
<td>1</td>
<td>MCH</td>
</tr>
<tr>
<td>CHK</td>
<td>20</td>
<td>HAM</td>
<td>1</td>
<td>MTL</td>
</tr>
<tr>
<td>SPG</td>
<td>5</td>
<td>TUR</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Discrete Domain (cont’d)

Converted to MIP with extra binary variables . . .

\[
\text{minimize Total Cost:}
\]
\[
3.19 \times (\text{Buy[BEEF]+b})[0] + 6.38 \times (\text{Buy[BEEF]+b})[1] + \\
15.95 \times (\text{Buy[BEEF]+b})[2] + 31.9 \times (\text{Buy[BEEF]+b})[3] + \\
63.8 \times (\text{Buy[BEEF]+b})[4] + 159.5 \times (\text{Buy[BEEF]+b})[5] + \\
2.59 \times (\text{Buy[CHK]+b})[0] + 5.18 \times (\text{Buy[CHK]+b})[1] + \\
12.95 \times (\text{Buy[CHK]+b})[2] + 25.9 \times (\text{Buy[CHK]+b})[3] + \\
51.8 \times (\text{Buy[CHK]+b})[4] + 129.5 \times (\text{Buy[CHK]+b})[5] + \ldots
\]

subject to Diet['A']:

\[
700 \leq 60 \times (\text{Buy[BEEF]+b})[0] + 120 \times (\text{Buy[BEEF]+b})[1] + \\
300 \times (\text{Buy[BEEF]+b})[2] + 600 \times (\text{Buy[BEEF]+b})[3] + \\
1200 \times (\text{Buy[BEEF]+b})[4] + 3000 \times (\text{Buy[BEEF]+b})[5] + \\
8 \times (\text{Buy[CHK]+b})[0] + 16 \times (\text{Buy[CHK]+b})[1] + 40 \times (\text{Buy[CHK]+b})[2] + \\
80 \times (\text{Buy[CHK]+b})[3] + 160 \times (\text{Buy[CHK]+b})[4] + 400 \times (\text{Buy[CHK]+b})[5] + \ldots
\]
Discrete Domain (cont’d)

and SOS type 1 constraints . . .

subject to (Buy[BEEF]+sos1):

(Buy[BEEF]+b)[0] + (Buy[BEEF]+b)[1] + (Buy[BEEF]+b)[2] +

subject to (Buy[CHK]+sos1):

(Buy[CHK]+b)[0] + (Buy[CHK]+b)[1] + (Buy[CHK]+b)[2] +
Discrete Domain *(cont’d)*

with SOS type 1 markers in output file

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>48</td>
<td>sos</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>S4</td>
<td>48</td>
<td>sosref</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Discrete Domain

Conversion for Solver: Principles

General case
- Arbitrary union of points and intervals
- Auxiliary binary variable for each point or interval
- 3 auxiliary constraints for each variable

Union of points
- Auxiliary binary variable for each point
- Auxiliary constraint for each variable
- Enhanced branching in solver
 * “special ordered sets of type 1”

Zero union interval (semi-continuous)
- Auxiliary binary variable for each variable
- 2 auxiliary constraints for each variable
- Enhanced branching in solver
Implications

General possibilities

- Conditional expression
- Conditional constraint
- Conditional command

AMPL syntax choices

- if condition then expr1 else expr2
- condition ==> constraint1 else constraint2
 * also <= and <=>
- if condition then \{commands\} else \{commands\}

Currently supported forms

- Nonlinear if-then-else
- CPLEX indicator constraints
Implications

Nonlinear if-then-else

More stable expression near zero

subject to logRel {j in 1..N}:

\[
\begin{align*}
&(\text{if } X[j] < -\delta \; \text{||} \; X[j] > \delta \\
&\quad \text{then } \frac{\log(1+X[j])}{X[j]} \; \text{else } 1 - \frac{X[j]}{2} \leq \logLim;
\end{align*}
\]
Implications

CPLEX Indicator Constraints

Indicator constraints

- \((\text{binary variable} = 0)\) implies constraint
- \((\text{binary variable} = 1)\) implies constraint

... handled directly by solver

AMPL “implies” operator

- Use \(\Rightarrow\) for “implies”
- Also recognize an else clause
- Similarly define \(\Leftarrow\) and \(\iff\)
 - * if-then-else expressions & statements as before
Example 1

Multicommoditiy flow with fixed costs

set ORIG; # origins
set DEST; # destinations
set PROD; # products

param supply {ORIG,PROD} >= 0; # amounts available at origins
param demand {DEST,PROD} >= 0; # amounts required at destinations
param limit {ORIG,DEST} >= 0;

param vcost {ORIG,DEST,PROD} >= 0; # variable shipment cost on routes
param fcost {ORIG,DEST} > 0; # fixed cost on routes

var Trans {ORIG,DEST,PROD} >= 0; # actual units to be shipped
var Use {ORIG, DEST} binary; # = 1 iff link is used

minimize total_cost:
 sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p]
 + sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];
Example 1 (cont’d)

Conventional constraints

subject to Supply \{i \in ORIG, p \in PROD\}:
 \sum \{j \in DEST\} Trans[i,j,p] = supply[i,p];

subject to Demand \{j \in DEST, p \in PROD\}:
 \sum \{i \in ORIG\} Trans[i,j,p] = demand[j,p];

subject to Multi \{i \in ORIG, j \in DEST\}:
 \sum \{p \in PROD\} Trans[i,j,p] \leq limit[i,j] \times Use[i,j];
Example 1 (cont’d)

User cuts

subject to Multi {i in ORIG, j in DEST}:
 sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];

subject to UseDefinition {i in ORIG, j in DEST, p in PROD}:
 Trans[i,j,p] <= min(supply[i,p], demand[j,p]) * Use[i,j];
Example 1 (cont’d)

Indicator constraint formulations

subject to DefineUsedA \{i \in \text{ORIG}, j \in \text{DEST}\}:
\[\text{Use}[i,j] = 0 \implies \sum \{p \in \text{PROD}\} \text{Trans}[i,j,p] = 0; \]

subject to DefineUsedB \{i \in \text{ORIG}, j \in \text{DEST}, p \in \text{PROD}\}:
\[\text{Use}[i,j] = 0 \implies \text{Trans}[i,j,p] = 0; \]

subject to DefineUsedC \{i \in \text{ORIG}, j \in \text{DEST}\}:
\[\text{Use}[i,j] = 0 \implies \sum \{p \in \text{PROD}\} \text{Trans}[i,j,p] = 0 \]
\[\text{else} \sum \{p \in \text{PROD}\} \text{Trans}[i,j,p] \leq \text{limit}[i,j]; \]
Example 1 \textit{(cont’d)}

Results for 3 origins, 7 destinations, 3 products

<table>
<thead>
<tr>
<th></th>
<th>iters</th>
<th>nodes</th>
<th>cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>no cuts</td>
<td>374</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>all cuts</td>
<td>317</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>user cuts</td>
<td>295</td>
<td>42</td>
<td>18</td>
</tr>
<tr>
<td>indic A</td>
<td>355</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>indic B</td>
<td>406</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>indic C</td>
<td>277</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>
Example 2

Assignment to groups with “no one isolated”

\[
\text{var Lone } \{(i1,i2) \text{ in ISO, } j \text{ in REST}\} \text{ binary;}
\]
param give \{ISO\} default 2;
param giveTitle \{TITLE\} default 2;
param giveLoc \{LOC\} default 2;
param upperbnd \{(i1,i2) \text{ in ISO, } j \text{ in REST}\} :=
\begin{align*}
\min \left(\text{ceil} \left(\frac{\text{number2}[i1,i2]}{\text{card} \{\text{PEOPLE}\}} \right) \times \text{hiDine}[j] \right) + \text{give}[i1,i2], \\
\text{hiTargetTitle}[i1,j] + \text{giveTitle}[i1], \\
\text{hiTargetLoc}[i2,j] + \text{giveLoc}[i2], \text{number2}[i1,i2] \right);
\end{align*}
subj to Isolation1 \{(i1,i2) \text{ in ISO, } j \text{ in REST}\}:
\begin{align*}
\text{Assign2}[i1,i2,j] & \leq \text{upperbnd}[i1,i2,j] \times \text{Lone}[i1,i2,j];
\end{align*}
subj to Isolation2a \{(i1,i2) \text{ in ISO, } j \text{ in REST}\}:
\begin{align*}
\text{Assign2}[i1,i2,j] & \geq \text{Lone}[i1,i2,j];
\end{align*}
subj to Isolation2b \{(i1,i2) \text{ in ISO, } j \text{ in REST}\}:
\begin{align*}
\text{Assign2}[i1,i2,j] & + \\
\sum \{ii1 \text{ in ADJACENT}[i1]: (ii1,i2) \text{ in TYPE2}\} \text{Assign2}[ii1,i2,j] & \geq 2 \times \text{Lone}[i1,i2,j];
\end{align*}
Example 2

Same using indicator constraints

```plaintext
var Lone {(i1,i2) in ISO, j in REST} binary;

subj to Isolation1 {(i1,i2) in ISO, j in REST}:
   Lone[i1,i2,j] = 0 ==> Assign2[i1,i2,j] = 0;

subj to Isolation2b {(i1,i2) in ISO, j in REST}:
   Lone[i1,i2,j] = 1 ==> Assign2[i1,i2,j] +
   sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j] >= 2;
```
Example 3

Workforce planning

\[
\begin{align*}
\text{var} & \quad \text{LayoffCost}\ {m\ \text{in}\ \text{MONTHS}}\ \geq & 0; \\
\text{subj to} & \quad \text{LayoffCostDefn1}\ {m\ \text{in}\ \text{MONTHS}}:\ \\
& \quad \text{LayoffCost}[m] \\
& \quad \leq \text{snrLayOffWages} \times 31 \times \text{maxNbrSnrEmpl} \times (1 - \text{NoShut}[m]); \\
\text{subj to} & \quad \text{LayoffCostDefn2a}\ {m\ \text{in}\ \text{MONTHS}}:\ \\
& \quad \text{LayoffCost}[m] - \text{snrLayOffWages} \times \text{ShutdownDays}[m] \times \text{maxNbrSnrEmpl} \\
& \quad \leq \text{maxNbrSnrEmpl} \times 2 \times \text{dayAvail}[m] \times \text{snrLayOffWages} \times \text{NoShut}[m]; \\
\text{subj to} & \quad \text{LayoffCostDefn2b}\ {m\ \text{in}\ \text{MONTHS}}:\ \\
& \quad \text{LayoffCost}[m] - \text{snrLayOffWages} \times \text{ShutdownDays}[m] \times \text{maxNbrSnrEmpl} \\
& \quad \geq -\text{maxNbrSnrEmpl} \times 2 \times \text{dayAvail}[m] \times \text{snrLayOffWages} \times \text{NoShut}[m];
\end{align*}
\]
Example 3

Same using indicator constraints

\[
\text{var LayoffCost } \{m \text{ in MONTHS} \} \geq 0;
\]

subj to LayoffCostDefn1 \{m \text{ in MONTHS}\}:
\[
\text{NoShut}[m] = 1 \implies \text{LayoffCost}[m] = 0;
\]

subj to LayoffCostDefn2 \{m \text{ in MONTHS}\}:
\[
\text{NoShut}[m] = 0 \implies \text{LayoffCost}[m] = \\
\text{snrLayoffWages} \ast \text{ShutdownDays}[m] \ast \text{maxNumberSnrEmpl};
\]
Example 4

Standard mixed-integer formulation

```
param least_assign >= 0;
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

subject to Least_Use1 {j in SCHEDS}:
    Work[j] >= least_assign * Use[j];

subject to Least_Use2 {j in SCHEDS}:
    Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
```
Example 4 (cont’d)

Formulation using variable-domain specification

\[
\text{param least_assign } >= 0;\\
\text{var Work \{j in SCHEDS\} integer, in \{0\} union interval \{least_assign, (max \{i in SHIFT_LIST[j]\} required[i])\};}
\]
Example 4 (cont’d)

Formulation using “implies” operator

\[
\text{param } \text{least_assign } \geq 0; \\
\text{var Work } \{\text{SCHEDS}\} \geq 0 \text{ integer;}
\text{var Use } \{\text{SCHEDS}\} \geq 0 \text{ binary;}
\]

subject to Least_Use1_logical \{j in SCHEDS\}:
 \text{Use}[j] = 1 \implies \text{Work}[j] \geq \text{least_assign;}

subject to Least_Use2_logical \{j in SCHEDS\}:
 \text{Use}[j] = 0 \implies \text{Work}[j] = 0;

\[
\text{param } \text{least_assign } \geq 0; \\
\text{var Work } \{\text{SCHEDS}\} \geq 0 \text{ integer;}
\text{var Use } \{\text{SCHEDS}\} \geq 0 \text{ binary;}
\]

subject to Least_Use_logical \{j in SCHEDS\}:
 \text{Use}[j] = 1 \implies \text{least_assign } \leq \text{Work}[j] \text{ else Work}[j] = 0;