New and Forthcoming Developments in the AMPL Modeling Language & System

Robert Fourer*, David M. Gay**

AMPL Optimization LLC
www.ampl.com — 773-336-AMPL

* Industrial Eng & Management Sciences, Northwestern Univ
** Computer Science, University of New Mexico

INFORMS Conference on Business Analytics & Operations Research
Chicago — April 10-12, 2011 — Track 19, Software Tutorials
Motivation

Optimization modeling cycle
 - Communicate with client
 - Build model
 - Build datasets
 - Generate optimization problems
 - Feed problems to solvers
 - Run solvers
 - Process results for analysis & reporting to client

Goals
 - Do this quickly and reliably
 - Get results before client loses interest
 - Deploy for application
Example: Scheduling Optimization

Cover demands for workers

- Each “shift” requires a certain number of employees
- Each employee works a certain “schedule” of shifts

Satisfy scheduling rules

- Only “valid” schedules from given list may be used
- Each schedule that is used at all must be used for at least ___ employees

Minimize total workers needed

- Which schedules should be used?
- How many employees should work each schedule?
Algebraic modeling language: symbolic data

```
set SHIFTS;   # shifts
param Nsched; # number of schedules;
set SCHEDS = 1..Nsched;  # set of schedules
set SHIFT_LIST {SCHEDS} within SHIFTS;
param rate {SCHEDS} >= 0;  # pay rates
param required {SHIFTS} >= 0; # staffing requirements
param least_assign >= 0;  # min workers on any schedule used
```
AMPL

Algebraic modeling language: symbolic model

var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

minimize Total_Cost:
 sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}:
 sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use1 {j in SCHEDS}:
 least_assign * Use[j] <= Work[j];

subject to Least_Use2 {j in SCHEDS}:
 Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
AMPL

Explicit data independent of symbolic model

```
set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
    Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
    Mon3 Tue3 Wed3 Thu3 Fri3 ;

param Nsched := 126 ;
set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ; ........

param required :=  Mon1 100  Mon2 78  Mon3 52
    Tue1 100  Tue2 78  Tue3 52
    Wed1 100  Wed2 78  Wed3 52
    Thu1 100  Thu2 78  Thu3 52
    Fri1 100  Fri2 78  Fri3 52
    Sat1 100  Sat2 78 ;
```
AMPL

Solver independent of model & data

```
AMPL: model sched1.mod;
AMPL: data sched.dat;
AMPL: let least_assign := 7;
AMPL: option solver cplex;
AMPL: solve;

CPLEX 12.2.0.2: optimal integer solution; objective 266
1119 MIP simplex iterations
139 branch-and-bound nodes

AMPL: option omit_zero_rows 1, display_1col 0;
AMPL: display Work;

Work [*] :=
  6 28 20 9 36 7 66 11 82 18 91 25 118 18 122 36
  18 18 31 9 37 18 78 26 89 9 112 27 119 7
;
```
AMPL

Language independent of solver

```ampl
ampl: option solver gurobi;
ampl: solve;

Gurobi 4.0.1: optimal solution; objective 266
857 simplex iterations
29 branch-and-cut nodes

ampl: display Work;
Work [*] :=
   1 21  21 36  52  7  89 29  94  7  109 16  124 36
 3  7  37 29  71 13  91 16  95 13  116 36;
```
AMPL Scripts

Multiple solutions

```
param nSols default 0;
param maxSols = 20;

set D {1..nSols} within SCHEDS;
subject to exclude {k in 1..nSols}:
    sum {j in D[k]} (1-Use[j]) +
    sum {j in SCHEDS diff D[k]} Use[j] >= 1;

repeat {
    solve;
    display Work;
    let nSols := nSols + 1;
    let D[nSols] := {j in SCHEDS: Use[j] > .5};
}
until nSols = maxSols;
```
AMPL Scripts

Multiple solutions run

```
ampl: include scheds.run

Gurobi 4.0.1: optimal solution; objective 266
857 simplex iterations
29 branch-and-cut nodes

Work [*] :=
    1  21  21 36  52 7  89 29  94 7  109 16  124 36
    3  7  37 29  71 13  91 16  95 13  116 36 ;

Gurobi 4.0.1: optimal solution; objective 266
1368 simplex iterations
59 branch-and-cut nodes

Work [*] :=
    1 9  17 9  38 7  59 21  75 36  94 7  114 8  124 35
    4 20  33 27  56 7  71 27  86 8  107 9  116 36 ;
```
AMPL Scripts

Multiple solutions run (cont'd)

Gurobi 4.0.1: optimal solution; objective 266
982 simplex iterations
57 branch-and-cut nodes

Work [*] :=
 2 28 16 8 38 18 75 34 86 8 108 8 115 16 121 36
 7 18 28 10 70 18 85 18 97 18 109 10 116 18 ;

Gurobi 4.0.1: optimal solution; objective 266
144 simplex iterations

Work [*] :=
 2 29 16 7 76 36 88 29 106 16 116 7 123 7
 7 36 70 28 85 7 97 7 109 29 121 21 126 7 ;

Gurobi 4.0.1: optimal solution; objective 266
122 simplex iterations

Work [*] :=
 2 15 16 20 70 15 85 21 106 16 116 21 123 21
 7 36 53 14 76 36 97 21 109 15 121 8 126 7 ;
AMPL Solver Control

Multiple solutions

option solver cplex;
option cplex_options "poolstub=sched poolcapacity=20 \ populate=1 poolintensity=4 poolgap=0";
solve;
for {i in 1..Current.npool} {
 solution ("sched" & i & ".sol");
display Work;
}
AMPL Solver Control

Multiple solutions run

```ampl
ampl: include schedsPool.run;

CPLEX 12.2.0.2: poolstub=sched
poolcapacity=20
populate=1
poolintensity=4
poolgap=0

CPLEX 12.2.0.2: optimal integer solution; objective 266
464 MIP simplex iterations
26 branch-and-bound nodes

Wrote 20 solutions in solution pool
to files sched1.sol ... sched20.sol.

Solution pool member 1 (of 20); objective 266

Work [*] :=

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>15</td>
<td>11</td>
<td>7</td>
<td>14</td>
<td>27</td>
<td>51</td>
<td>7</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>10</td>
<td>29</td>
<td>21</td>
<td>38</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>7</td>
<td>70</td>
<td>71</td>
<td>10</td>
<td>11</td>
<td>29</td>
<td>87</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>78</td>
<td>7</td>
<td>78</td>
<td>71</td>
<td>7</td>
<td>10</td>
<td>29</td>
<td>21</td>
<td>38</td>
<td>12</td>
</tr>
<tr>
<td>103</td>
<td>7</td>
<td>7</td>
<td>106</td>
<td>38</td>
<td>115</td>
<td>14</td>
<td>106</td>
<td>38</td>
<td>121</td>
</tr>
<tr>
<td>115</td>
<td>14</td>
<td>103</td>
<td>115</td>
<td>14</td>
<td>115</td>
<td>14</td>
<td>103</td>
<td>115</td>
<td>14</td>
</tr>
</tbody>
</table>
```

AMPL Solver Control

Multiple solutions run (cont'd)

<table>
<thead>
<tr>
<th>Solution pool member 2 (of 20); objective 266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work [*] :=</td>
</tr>
<tr>
<td>1 7 5 8 18 7 70 29 78 36 87 14 115 14 121 36</td>
</tr>
<tr>
<td>2 28 7 14 65 7 72 7 83 21 106 31 116 7 ;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution pool member 3 (of 20); objective 266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work [*] :=</td>
</tr>
<tr>
<td>5 21 29 13 51 7 71 34 98 7 115 13</td>
</tr>
<tr>
<td>7 15 35 8 64 8 78 16 101 13 116 15</td>
</tr>
<tr>
<td>21 7 40 13 70 8 83 8 106 24 121 36 ;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution pool member 4 (of 20); objective 266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work [*] :=</td>
</tr>
<tr>
<td>2 7 11 7 40 7 71 29 87 15 106 31 121 28</td>
</tr>
<tr>
<td>5 22 23 8 64 7 78 13 101 8 115 14 126 7</td>
</tr>
<tr>
<td>7 14 29 14 70 14 83 7 102 7 116 7 ;</td>
</tr>
</tbody>
</table>
AMPL Algorithmic Scheme

Difficult case: least_assign = 19

```ampl
ampl: model sched1.mod;
ampl: data sched.dat;
ampl: let least_assign := 19;
ampl: option solver cplex;
ampl: solve;

CPLEX 12.2.0.2: optimal integer solution; objective 269
635574195 MIP simplex iterations
86400919 branch-and-bound nodes

ampl: option omit_zero_rows 1, display_1col 0;
ampl: display Work;

Work [*] :=
  4 22  16 39  55 39  78 39  101 39  106 52  122 39
;

... 94.8 minutes
```
AMPL Algorithmic Scheme

Alternative, indirect approach

- Step 1: Relax integrality of *Work* variables
 Solve for zero-one *Use* variables
- Step 2: Fix *Use* variables
 Solve for integer *Work* variables

... not necessarily optimal, but ...
AMPL Algorithmic Scheme

Indirect approach (script)

```plaintext
model sched1.mod;
data sched.dat;
let least_assign := 19;

let {j in SCHEDS} Work[j].relax := 1;
solve;

fix {j in SCHEDS} Use[j];
let {j in SCHEDS} Work[j].relax := 0;
solve;
```
AMPL Algorithmic Scheme

Indirect approach (run)

```plaintext
ampl: include sched1-fix.run;

CPLEX 12.2.0.2: optimal integer solution; objective 268.5
32630436 MIP simplex iterations
2199508 branch-and-bound nodes

<table>
<thead>
<tr>
<th>Work [*] :=</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 24 32 19 80 19.5 107 33 126 19.5</td>
</tr>
<tr>
<td>3 19 66 19 90 19.5 109 19</td>
</tr>
<tr>
<td>10 19 72 19.5 105 19.5 121 19</td>
</tr>
</tbody>
</table>

CPLEX 12.2.0.2: optimal integer solution; objective 269
2 MIP simplex iterations
0 branch-and-bound nodes

<table>
<thead>
<tr>
<th>Work [*] :=</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 24 10 19 66 19 80 19 105 20 109 19 126 20</td>
</tr>
<tr>
<td>3 19 32 19 72 19 90 20 107 33 121 19</td>
</tr>
</tbody>
</table>

... 2.85 minutes
```
AMPL Modeling Alternatives

Linear constraints

subject to Least_Use1 {j in SCHEDS}:
 \[
 \text{least_assign} \times \text{Use}[j] \leq \text{Work}[j];
 \]

subject to Least_Use2 {j in SCHEDS}:
 \[
 \text{Work}[j] \leq (\max\{i \in \text{SHIFT_LIST}[j]\} \times \text{required}[i]) \times \text{Use}[j];
 \]

Logic constraints

subject to Least_Use {j in SCHEDS}:
 \[
 \text{Use}[j] = 1 \implies \text{Work}[j] \geq \text{least_assign} \text{ else Work}[j] = 0;
 \]

Variable domains

var \text{Work} \{j \in \text{SCHEDS}\} \text{ integer, in } \{0\} \text{ union interval } [\text{least_assign, (max } \{i \in \text{SHIFT_LIST}[j]\} \times \text{required}[i])];
Topics

The company
 - People
 - Business developments

The language
 - Varied prospective enhancements
 - More natural formulations

The solvers
 - Conic programming
 - Nontraditional alternatives

The system
 - APIs & IDEs
 - AMPL as a service (in the cloud)
The Company

Background

- AMPL at Bell Labs (1986)
 - Bob Fourer, David Gay, Brian Kernighan
- AMPL commercialization (1993)
- AMPL Optimization LLC (2002)

Developments

- People
- Business
Current Principals

Bob Fourer
 • Founder & . . .

Dave Gay
 • Founder & . . .

Bill Wells
 • Director of business development
Business Developments

AMPL intellectual property

- Full rights acquired from Alcatel-Lucent USA
 * corporate parent of Bell Laboratories
- More flexible licensing terms available

CPLEX with AMPL

- Sales transferred from IBM to AMPL Optimization
- Full lineup of licensing arrangements available

AMPL distributors

- New for Japan: October Sky Co., Ltd. →
- Others continue active
 * Gurobi, Ziena/Artelys
 * MOSEK, TOMLAB
 * OptiRisk
The Language

Versatility

- Power & convenience
 - Linear and nonlinear modeling
 - Extensive indexing and set expressions
- Prototyping & deployment
 - Integrated scripting language
- Business & research
 - Major installations worldwide
 - Hundreds of citations in scientific & engineering literature

Plans . . .
The Language

Plans

- Further set operations
 * arg min/arg max
 * sort set by parameter values
 * arbitrary selection from an unordered set

- Random parameters/variables
 * send as input to stochastic solvers

- Enhanced scripting
 * faster loops
 * functions defined by scripts

- More natural formulations . . .
Examples from my e-mail . . .

- I have been trying to write a stepwise function in AMPL but I have not been able to do so:

 $fc[wh] = 100$ if $x[wh] \leq 5$
 300 if $6 \leq x[wh] \leq 10$
 400 if $11 \leq x[wh]$

where fc and x are variables.

- I have a set of nonlinear equations to be solved, and variables are binary. Even I have an xor operator in the equations. How can I implement it and which solver is suitable for it?

- I’m a recent IE grad with just one grad level IE course under my belt. . . .

 minimize Moves: sum{emp in GROUPA}
 if $Sqrt((XEmpA[emp] - XGrpA)^2 + (YEmpA[emp] - YGrpA)^2) > Ra$ then 1 else 0

Is there some documentation on when you can and cannot use the if-then statements in AMPL (looked through the related forum posts but still a bit confused on this)?
Common Areas of Confusion

Examples from my e-mail (cont’d)

- I have a problem need to add a such kind of constraint:
 \[\text{Max[sum(Pi * Hi)]; } \text{ i is from 1 to 24;} \]
in which Pi are constant and Hi need to be optimized.
Bound is \(-180 \leq Hi \leq 270.\) One of the constraints is
 \[\text{sum(Ci) = 0; } \text{ here Ci = Hi if Hi > 0 and Ci = Hi/1.38 if Hi < 0} \]
Is it possible to solve this kind of problem with lp_solve?
and how to setup the constraint?

- . . . is there a way to write a simple “or” statement in AMPL like in
 Java or C++?

- I need to solve the following optimization problem:
 \[\text{Minimize } -|x1| - |x2| \]
subject to
 \[x1 - x2 = 3 \]
Do you know how to transform it to standard linear program?
Currently Implemented

Extension to mixed-integer solver

- CPLEX indicator constraints
 \[\text{Use}[j] = 1 \implies \text{Work}[j] \geq \text{least_assign}; \]

Translation to mixed-integer programs

- General variable domains
 \[\text{var Work \{j in SCHEDS\} integer,} \]
 \[\text{in \{0\} union interval[lo_assign, hi_assign];} \]

- Separable piecewise-linear terms
 \[<<\text{avail_min}[t]; 0,\text{time_penalty}[t]>> \text{Use}[t] \]

Translation to general nonlinear programs

- Complementarity conditions
 \[0 \leq \text{ct}[cr,u] \text{ complements} \]
 \[\text{ctcost}[cr,u] + \text{cv}[cr] \geq p["C",u]; \]
Prospective Extensions

Existing operators allowed on variables
 - Nonsmooth terms
 - Conditional expressions

New forms
 - Operators on constraints
 - New aggregate operators
 - Generalized indexing: variables in subscripts
 - New types of variables: object-valued, set-valued

Solution strategies
 - Transform to standard MIPs
 - *Send to alternative solvers* (will return to this)
Extensions

Logical Operators

Flow shop scheduling

subj to NoConflict \{i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)\}:

\[
\begin{align*}
\text{Start}[i2] & \geq \text{Start}[i1] + \text{setTime}[i1,i2] \text{ or} \\
\text{Start}[i1] & \geq \text{Start}[i2] + \text{setTime}[i2,i1];
\end{align*}
\]

Balanced assignment

subj to NoIso \{(i1,i2) in TYPE, j in ROOM\}:

\[
\begin{align*}
\text{not } (\text{Assign}[i1,i2,j] = 1 \text{ and} \\
\text{sum } \{ii1 in \text{ADJ}[i1]: (ii1,i2) in \text{TYPE}\} \text{ Assign}[ii1,i2,j] = 0);
\end{align*}
\]
Extensions

Counting Operators

Transportation

subj to MaxServe {i in ORIG}:

\[\text{card} \ {j \text{ in DEST}}: \sum \ {p \text{ in PRD}} \ Trans[i,j,p] > 0 \} \leq mxsrv; \]

subj to MaxServe {i in ORIG}:

\[\text{count} \ {j \text{ in DEST}} \ (\sum \ {p \text{ in PRD}} \ Trans[i,j,p] > 0) \leq mxsrv; \]

subj to MaxServe {i in ORIG}:

\[\text{atmost} \ mxsrv \ {j \text{ in DEST}} \ (\sum \ {p \text{ in PRD}} \ Trans[i,j,p] > 0); \]
Extensions

“Structure” Operators

Assignment

subj to OneJobPerMachine:

\texttt{alldiff}\ {\texttt{j in JOBS}}\ (\texttt{MachineForJob}[j]);

subj to CapacityOfMachine \{\texttt{k in MACHINES}\}:

\texttt{numberof}\ k\ \{\texttt{j in JOBS}\}\ (\texttt{MachineForJob}[j])\ \leq\ \texttt{cap}[k];

\ldots argument in () may be a more general list
Extensions

Variables in Subscripts

Assignment

\[
\text{minimize TotalCost:} \\
\quad \text{sum } \{j \text{ in JOBS}\} \text{ cost}[j, \text{MachineForJob}[j]];
\]

Sequencing

\[
\text{minimize CostPlusPenalty:} \\
\quad \text{sum } \{k \text{ in } 1..nSlots\} \text{ setupCost}[\text{JobForSlot}[k-1], \text{JobForSlot}[k]] + \\
\quad \text{sum } \{j \text{ in } 1..nJobs\} \text{ duePen}[j] \times (\text{dueTime}[j] - \text{ComplTime}[j]);
\]

\[
\text{subj to TimeNeeded } \{k \text{ in } 0..nSlots-1\}: \\
\quad \text{ComplTime}[\text{JobForSlot}[k]] = \\
\quad \min(\text{dueTime}[\text{JobForSlot}[k]], \\
\quad \text{ComplTime}[\text{JobForSlot}[k+1]] \\
\quad - \text{setupTime}[\text{JobForSlot}[k], \text{JobForSlot}[k+1]] \\
\quad - \text{procTime}[\text{JobForSlot}[k+1]]);
\]
The Solvers

Communication while solver is active
- Speed up multiple solves
- Support callbacks

Conic programming
- Barrier solvers available
- Stronger modeling support needed

Nontraditional alternatives
- Global optimization
- Constraint programming
- Varied hybrids
Conic Programming

Standard cone

\[x^2 \leq y^2 \]

\[y \geq 0 \]

\[x^2 \leq y^2, \ y \geq 0 \]

... convex region, nonsmooth boundary

Rotated cone

\[x^2 \leq yz, \ y \geq 0, \ z \geq 0 \]
Conic Quadratic

Conic vs. Ordinary Quadratic

Convex quadratic constraint regions

- Ball: \[x_1^2 + \ldots + x_n^2 \leq b \]
- Cone: \[x_1^2 + \ldots + x_n^2 \leq y^2, \ y \geq 0 \]
- Cone: \[x_1^2 + \ldots + x_n^2 \leq yz, \ y \geq 0, \ z \geq 0 \]

...second-order cone programs (SOCPs)

Similarities

- Describe by lists of coefficients
- Solve by extensions of LP barrier methods; extend to MIP

Differences

- Quadratic part not positive semi-definite
- Nonnegativity is essential
- Many convex problems can be reduced to these...
Conic Quadratic

Equivalent Problems: Minimize

Sums of . . .

- norms or squared norms
 \[\sum_i \|F_i x + g_i\| \]
 \[\sum_i (F_i x + g_i)^2 \]
- quadratic-linear fractions
 \[\sum_i \frac{(F_i x + g_i)^2}{a_i x + b_i} \]

Max of . . .

- norms
 \[\max_i \|F_i x + g_i\| \]
- logarithmic Chebychev terms
 \[\max_i |\log(F_i x) - \log(g_i)| \]
Conic Quadratic

Equivalent Problems: Objective

Products of . . .

- negative powers
 - \(\min \prod_i (F_i x + g_i)^{-\alpha_i} \) for rational \(\alpha_i > 0 \)

- positive powers
 - \(\max \prod_i (F_i x + g_i)^{\alpha_i} \) for rational \(\alpha_i > 0 \)

Combinations by . . .

- sum, max, positive multiple
 - except log Chebychev and some positive powers

\[
\text{minimize } \max \{ \sum_{i=1}^{p} (a_i x + b_i)^2, \sum_{j=1}^{q} \frac{\|F_j x + g_j\|^2}{y_j}, \prod_{k=1}^{r} (c_k x)^{-\pi_k} \}
\]
Conic Quadratic

Equivalent Problems: Constraints

Sums of . . .

- norms or squared norms
 \[\sum_i \| F_i x + g_i \| \leq F_0 x + g_0 \]
 \[\sum_i (F_i x + g_i)^2 \leq (F_0 x + g_0)^2 \]

- quadratic-linear fractions
 \[\sum_i \frac{(F_i x + g_i)^2}{a_i x + b_i} \leq F_0 x + g_0 \]

Max of . . .

- norms
 \[\max_i \| F_i x + g_i \| \leq F_0 x + g_0 \]
Conic Quadratic

Equivalent Problems: Constraints

Products of . . .

- negative powers
 \[\sum_j \prod_i (F_{ji} x + g_{ji})^{-\alpha_{ji}} \leq F_0 x + g_0 \quad \text{for rational } \alpha_{ji} > 0 \]

- positive powers
 \[\sum_j - \prod_i (F_{ji} x + g_{ji})^{\alpha_{ji}} \leq F_0 x + g_0 \quad \text{for rational } \alpha_{ji} > 0, \sum_i \alpha_{ji} \leq 1 \]

Combinations by . . .

- sum, max, positive multiple
Conic Quadratic

Applications

Portfolio optimization with loss risk constraints

Traffic flow optimization

Engineering design of many kinds

Conic Quadratic

Example: Sum of Norms

```AMPL
param p integer > 0;
param m {1..p} integer > 0;
param n integer > 0;

param F {i in 1..p, 1..m[i], 1..n};
param g {i in 1..p, 1..m[i]};

param p := 2;
param m := 1 5 2 4;
param n := 3;

param g (tr): 1 2 :=
  1 12 2
  2 7 11
  3 7 1
  4 8 0
  5 4 .;

param F := ...
```
Conic Quadratic

Example: Original Formulation

\begin{verbatim}
var x {1..n};

minimize SumOfNorms:
 sum {i in 1..p} sqrt(
 sum {k in 1..m[i]} (sum {j in 1..n} F[i,k,j] * x[j] + g[i,k])^2)

3 variables, all nonlinear
0 constraints
1 nonlinear objective; 3 nonzeros.

CPLEX 12.2.0.0: at12228.nl contains a nonlinear objective.
\end{verbatim}
Conic Quadratic

Example: Converted to Quadratic

\[
\begin{align*}
\text{var } x \{1..n\}; \\
\text{var Max } \{1..p\} \geq 0; \\
\text{minimize SumOfNorms: } \sum \{i \in 1..p\} \text{Max}[i]; \\
\text{subj to MaxDefinition } \{i \in 1..p\}:
\sum \{k \in 1..m[i]\} \left(\sum \{j \in 1..n\} F[i,k,j] \times x[j] + g[i,k]\right)^2 \\
\leq \text{Max}[i]^2;
\end{align*}
\]

5 variables, all nonlinear
2 constraints, all nonlinear; 8 nonzeros
1 linear objective; 2 nonzeros.

CPLEX 12.2.0.0: QP Hessian is not positive semi-definite.
Conic Quadratic

Example: Simpler Quadratic

\begin{verbatim}
var x {1..n};
var Max {1..p} >= 0;
var Fxplusg {i in 1..p, 1..m[i]};

minimize SumOfNorms: sum {i in 1..p} Max[i];

subj to MaxDefinition {i in 1..p}:
 sum {k in 1..m[i]} Fxplusg[i,k]^2 <= Max[i]^2;

subj to FxplusgDefinition {i in 1..p, k in 1..m[i]}:
 Fxplusg[i,k] = sum {j in 1..n} F[i,k,j] * x[j] + g[i,k];
\end{verbatim}

14 variables:
 11 nonlinear variables
 3 linear variables
11 constraints; 41 nonzeros
 2 nonlinear constraints
 9 linear constraints
1 linear objective; 2 nonzeros.

CPLEX 12.2.0.0: primal optimal; objective 11.03323293
11 barrier iterations
Conic Quadratic

Example: Integer Quadratic

```ampl
var xint {1..n} integer;
var x {j in 1..n} = xint[j] / 10;
```

Substitution eliminates 3 variables.

14 variables:
- 11 nonlinear variables
- 3 integer variables

11 constraints; 41 nonzeros
- 2 nonlinear constraints
- 9 linear constraints

1 linear objective; 2 nonzeros.

CPLEX 12.2.0.0: optimal integer solution; objective 11.12932573

88 MIP simplex iterations

19 branch-and-bound nodes
Conic Quadratic

Example: Traffic Network

Nonlinear objective due to congestion effects

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
  (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
  Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
  sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
  sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

... sum of squares / linear
Conic Quadratic

AMPL Design for SOCPs

Current situation

- Each solver recognizes some elementary forms
- Modeler must convert to these forms

Goal

- Recognize many equivalent forms
- Automatically convert to a canonical form
- Further convert as necessary for each solver
Nontraditional Solvers

Global nonlinear

- BARON *
- LINDO Global *
- LGO

Constraint programming

- IBM ILOG CP
- ECLiPSe
- SCIP *

* combined with mixed-integer
Nontraditional Solvers

Implementation Challenges

Requirements

- Full description of functions
- Hints to algorithm
 - convexity, search strategy

Variability

- Range of expressions recognized
 - hence range of conversions needed
- Design of interface
The System

APIs & IDEs

- Current options
- Alternatives under consideration

AMPL in the cloud

- AMPL & solver software as a service
- Issues to be resolved
APIs (Programming Interfaces)

Current options
- AMPL scripting language
- put/get C interface
- OptiRisk Systems COM objects

Alternatives under consideration
- multiplatform C interface
- object-oriented interfaces in C++, Java, Python, . . .
Scripting Language

Programming extensions of AMPL syntax

for {i in WIDTHS} {
 let nPAT := nPAT + 1;
 let nbr[i,nPAT] := floor (roll_width/i);
 let {i2 in WIDTHS: i2 <> i} nbr[i2,nPAT] := 0;
};
repeat {
 solve Cutting_Opt;
 let {i in WIDTHS} price[i] := Fill[i].dual;
 solve Pattern_Gen;
 printf "\n%7.2f%11.2e\n", Number, Reduced_Cost;
 if Reduced_Cost < -0.00001 then {
 let nPAT := nPAT + 1;
 let {i in WIDTHS} nbr[i,nPAT] := Use[i];
 } else break;
 for {i in WIDTHS} printf "%3i", Use[i];
};
put/get C Interface

Send AMPL commands & receive output

- Ulong `put(GetputInfo *g, char *s)`
- int `get(GetputInfo *g, char **kind, char **msg, Ulong *len)`

Limitations

- Low-level unstructured interface
- Communication via strings
OptiRisk COM Objects

Object-oriented API

- Model management
- Data handling
- Solving

Limitations

- Windows only
- Older technology
- Built on put/get interface
API Development Directions

Multiplatform C interface
- Native to AMPL code
- Similar scope to COM objects

Object-oriented interfaces
- Built on C interface
IDEs (Development Environments)

Previous & current options

- AMPL Plus
- AMPL Studio

Alternatives under consideration

- Multiplatform graphical interface
- Spreadsheet interface
AMPL Plus

Menu-based GUI (1990s)

- Created by Compass Modeling Solutions
- Discontinued by ILOG
AMPL Studio

Menu-based GUI (2000s)
- Created by OptiRisk Systems
- Windows-based
IDE Development Directions

Multiplatform graphical interface

- Focused on command-line window
 - Same rationale as MATLAB
- Implemented using new API
- Tools for debugging, scripting, option selection . . .

Spreadsheet interface

- Data in spreadsheet tables (like Excel solver)
- AMPL model in embedded application
AMPL in the Cloud

AMPL as a service

- Solvers included
 * optional automated solver choice
- Charges per elapsed minute
- Latest versions available

Issues to be resolved

- Licensing arrangements with solvers
- Uploading & security of data
- Limitations of cloud services