New and Forthcoming Developments in the AMPL Modeling Language & System

Robert Fourer

AMPL Optimization LLC
www.ampl.com — 773-336-AMPL

Industrial Engineering & Management Sciences,
Northwestern University

OR2011
International Conference on Operations Research
Zürich, Switzerland — 30 August to 2 September, 2011
Session TC-22, Advances in Modeling Languages
New and Forthcoming Developments in the AMPL Modeling Language and System

This presentation describes planned and ongoing projects to extend and enhance the AMPL modeling language and system, with the aim of helping modelers to get optimization projects running sooner and more successfully. Following an introductory survey using a scheduling optimization example, projects are organized according to the primary aspects of AMPL that they will affect. Extensions to AMPL's core language will be designed to allow for more natural description of discrete models, through the introduction of logical and other non-arithmetic operators. New solver interfaces will automate sophisticated conversions from human analysts' formulations to the problem types that solvers recognize, providing enhanced access to nontraditional solvers in areas such as conic programming, global optimization, and hybrid constraint-integer programming. New interfaces to the AMPL system will facilitate "optimization as a service" and encourage business deployment.
Motivation

Optimization modeling cycle
- Communicate with problem owner
- Build model
- Build datasets
- Generate optimization problems
- Feed problems to solvers
- Run solvers
- Process results for analysis & reporting to client
- Repeat!

Goals
- Do this quickly and reliably
- Get results before client loses interest
- Deploy for application
Example: Scheduling Optimization

Cover demands for workers
- Each “shift” requires a certain number of employees
- Each employee works a certain “schedule” of shifts

Satisfy scheduling rules
- Only “valid” schedules from given list may be used
- Each schedule that is used at all must be used for at least ___ employees

Minimize total workers needed
- Which schedules should be used?
- How many employees should work each schedule?
AMPL

Algebraic modeling language: *symbolic data*

```plaintext
set SHIFTS;         # shifts
param Nsched;       # number of schedules;
set SCHEDS = 1..Nsched;   # set of schedules
set SHIFT_LIST {SCHEDS} within SHIFTS;
param rate {SCHEDS} >= 0;  # pay rates
param required {SHIFTS} >= 0;  # staffing requirements
param least_assign >= 0;  # min workers on any schedule used
```
AMPL

Algebraic modeling language: symbolic model

```plaintext
var Work {SCHEDS} >= 0 integer;  
var Use {SCHEDS} >= 0 binary;  

minimize Total_Cost:  
    sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}:  
    sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use1 {j in SCHEDS}:  
    least_assign * Use[j] <= Work[j];

subject to Least_Use2 {j in SCHEDS}:  
    Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
```
AMPL

Explicit data independent of symbolic model

```AMPL
set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
    Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
    Mon3 Tue3 Wed3 Thu3 Fri3 ;

param Nsched := 126 ;
set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ; .......

param required :=
    Mon1 100  Mon2 78  Mon3 52
    Tue1 100  Tue2 78  Tue3 52
    Wed1 100  Wed2 78  Wed3 52
    Thu1 100  Thu2 78  Thu3 52
    Fri1 100  Fri2 78  Fri3 52
    Sat1 100  Sat2 78 ;
```
AMPL

Solver independent of model & data

```ampl
ampl: model sched1.mod;
ampl: data sched.dat;
ampl: let least_assign := 7;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.2.0.2: optimal integer solution; objective 266
1119 MIP simplex iterations
139 branch-and-bound nodes
ampl: option omit_zero_rows 1, display_1col 0;
ampl: display Work;
Work [*] :=
   6 28  20  9  36  7  66 11  82 18  91 25  118 18  122 36
  18 18  31  9  37 18  78 26  89  9  112 27  119  7
;```

Robert Fourer, New & Forthcoming Developments in AMPL
OR 2011, Zürich — Aug 29-Sept 2, 2011 — TC-22, Advances in Modeling Languages
AMPL

Language independent of solver

```ampl
ampl: option solver gurobi;
ampl: solve;
Gurobi 4.0.1: optimal solution; objective 266
857 simplex iterations
29 branch-and-cut nodes
ampl: display Work;
Work [*] :=
 1 21 21 36 52 7 89 29 94 7 109 16 124 36
 3 7 37 29 71 13 91 16 95 13 116 36;
```
AMPL Scripts

Multiple solutions

```
param nSols default 0;
param maxSols = 20;

set USED {1..nSols} within SCHEDS;

subject to exclude {k in 1..nSols}:
 sum {j in USED[k]} (1-Use[j]) +
 sum {j in SCHEDS diff USED[k]} Use[j] >= 1;

repeat {
 solve;
 display Work;
 let nSols := nSols + 1;
 let USED[nSols] := {j in SCHEDS: Use[j] > .5};
}
until nSols = maxSols;
```
AMPL Scripts

Multiple solutions run

ampl: include scheds.run

Gurobi 4.0.1: optimal solution; objective 266
857 simplex iterations
29 branch-and-cut nodes

Work [*] :=
 1 21 21 36 52 7 89 29 94 7 109 16 124 36
 3 7 37 29 71 13 91 16 95 13 116 36 ;

Gurobi 4.0.1: optimal solution; objective 266
1368 simplex iterations
59 branch-and-cut nodes

Work [*] :=
 1 9 17 9 38 7 59 21 75 36 94 7 114 8 124 35
 4 20 33 27 56 7 71 27 86 8 107 9 116 36 ;
AMPL Scripts

Multiple solutions run (cont’d)

Gurobi 4.0.1: optimal solution; objective 266
982 simplex iterations
57 branch-and-cut nodes

Work [*] :=
   2 28  16  8  38 18  75 34  86  8  108  8  115 16  121 36
   7 18  28 10  70 18  85 18  97 18  109 10  116 18 ;

Gurobi 4.0.1: optimal solution; objective 266
144 simplex iterations

Work [*] :=
   2 29  16  7  76 36  88 29  106 16  116  7  123  7
   7 36  70 28  85  7  97  7  109 29  121 21  126  7 ;

Gurobi 4.0.1: optimal solution; objective 266
122 simplex iterations

Work [*] :=
   2 15  16 20  70 15  85 21  106 16  116 21  123 21
   7 36  53 14  76 36  97 21  109 15  121  8  126  7 ;
AMPL Solver Control

Multiple solutions

```AMPL
option solver cplex;
option cplex_options "poolstub=sched poolcapacity=20 \ populate=1 poolintensity=4 poolgap=0";

solve;

for {i in 1..Current.npool} {
 solution ("sched" & i & ".sol");
 display Work;
}
```
AMPL Solver Control

Multiple solutions run

ampl: include schedsPool.run;

CPLEX 12.2.0.2: poolstub=sched  
poolcapacity=20  
populate=1  
poolintensity=4  
poolgap=0

CPLEX 12.2.0.2: optimal integer solution; objective 266  
464 MIP simplex iterations  
26 branch-and-bound nodes

Wrote 20 solutions in solution pool  
to files sched1.sol ... sched20.sol.

Solution pool member 1 (of 20); objective 266

Work [*] :=

1 15 7 14 27 7 70 29 78 29 103 7 115 14
5 21 11 7 51 7 71 21 87 21 106 38 121 36 ;
## AMPL Solver Control

### Multiple solutions run (cont’d)

<table>
<thead>
<tr>
<th>Solution pool member 2 (of 20); objective 266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work [ (* ] :=</td>
</tr>
<tr>
<td>1 7 5 8 18 7 70 29 78 36 87 14 115 14 121 36</td>
</tr>
<tr>
<td>2 28 7 14 65 7 72 7 83 21 106 31 116 7 ;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution pool member 3 (of 20); objective 266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work [ (* ] :=</td>
</tr>
<tr>
<td>5 21 29 13 51 7 71 34 98 7 115 13</td>
</tr>
<tr>
<td>7 15 35 8 64 8 78 16 101 13 116 15</td>
</tr>
<tr>
<td>21 7 40 13 70 8 83 8 106 24 121 36 ;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution pool member 4 (of 20); objective 266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work [ (* ] :=</td>
</tr>
<tr>
<td>2 7 11 7 40 7 71 29 87 15 106 31 121 28</td>
</tr>
<tr>
<td>5 22 23 8 64 7 78 13 101 8 115 14 126 7</td>
</tr>
<tr>
<td>7 14 29 14 70 14 83 7 102 7 116 7 ;</td>
</tr>
</tbody>
</table>
AMPL Algorithmic Scheme

**Difficult case:** `least_assign = 19`

```ampl
ampl: model sched1.mod;
ampl: data sched.dat;
ampl: let least_assign := 19;
ampl: option solver cplex;
ampl: solve;

CPLEX 12.2.0.2: optimal integer solution; objective 269
63574195 MIP simplex iterations
86400919 branch-and-bound nodes

ampl: option omit_zero_rows 1, display_1col 0;
ampl: display Work;

Work [*] :=
 4 22 16 39 55 39 78 39 101 39 106 52 122 39

... 94.8 minutes
```
AMPL Algorithmic Scheme

Alternative, indirect approach

- Step 1: Relax integrality of Work variables
  Solve for zero-one Use variables
- Step 2: Fix Use variables
  Solve for integer Work variables

... not necessarily optimal, but ...
AMPL Algorithmic Scheme

Indirect approach (script)

```AMPL
model sched1.mod;
data sched.dat;
let least_assign := 19;

let {j in SCHEDS} Work[j].relax := 1;
solve;

fix {j in SCHEDS} Use[j];
let {j in SCHEDS} Work[j].relax := 0;
solve;
```
AMPL Algorithmic Scheme

*Indirect approach (run)*

```
AMPL Algorithmic Scheme

Indirect approach (run)

ampl: include sched1-fix.run;

CPLEX 12.2.0.2: optimal integer solution; objective 268.5
32630436 MIP simplex iterations
2199508 branch-and-bound nodes

Work [*] :=
 1 24 32 19 80 19.5 107 33 126 19.5
 3 19 66 19 90 19.5 109 19
 10 19 72 19.5 105 19.5 121 19;

CPLEX 12.2.0.2: optimal integer solution; objective 269
2 MIP simplex iterations
0 branch-and-bound nodes

Work [*] :=
 1 24 10 19 66 19 80 19 105 20 109 19 126 20
 3 19 32 19 72 19 90 20 107 33 121 19;

... 2.85 minutes
```
AMPL Modeling Alternatives

Linear constraints

subject to Least_Use1 \{j in SCHEDS\}:
  \text{least Assign} \cdot \text{Use}[j] \leq \text{Work}[j];

subject to Least_Use2 \{j in SCHEDS\}:
  \text{Work}[j] \leq (\max \{i in \text{SHIFT_LIST}[j]\} \cdot \text{required}[i]) \cdot \text{Use}[j];

Logic constraints

subject to Least_Use \{j in SCHEDS\}:
  \text{Use}[j] = 1 \implies \text{Work}[j] \geq \text{least Assign} \text{ else } \text{Work}[j] = 0;

Variable domains

\text{var Work} \{j in SCHEDS\} \text{ integer, in } \{0\} \text{ union}
\text{interval } [\text{least Assign}, (\max \{i in \text{SHIFT_LIST}[j]\} \cdot \text{required}[i])];
Topics

The company
- People
- Business developments

The language
- Varied prospective enhancements
- More natural formulations

The solvers
- Conic programming
- Nontraditional alternatives

The system
- APIs & IDEs
- AMPL as a service (in the cloud)
The Company

Background
- AMPL at Bell Labs (1986)
  * Bob Fourer, David Gay, Brian Kernighan
- AMPL commercialization (1993)
- AMPL Optimization LLC (2002)

Developments
- People
- Business
Current Principals

Bob Fourer
  ❖ Founder & . . .

Dave Gay
  ❖ Founder & . . .

Bill Wells
  ❖ Director of business development

???
  ❖ Currently looking for someone to join us in software development and customer support
Business Developments

AMPL intellectual property

- Full rights acquired from Alcatel-Lucent USA
  - corporate parent of Bell Laboratories
- More flexible licensing terms available

CPLEX & Gurobi for AMPL

- CPLEX sales transferred from IBM to AMPL Optimization
- Full lineup of licensing arrangements available

AMPL distributors

- New for Japan: October Sky Co., Ltd. →
- Others continue active
  - Gurobi, Ziena/Artelys
  - MOSEK, TOMLAB
  - OptiRisk
Academic Developments

Highly discounted prices for academic use

- AMPL
- Nonlinear solvers: KNITRO, MINOS, SNOPT, CONOPT

Free MIP solvers to academic users

- Gurobi & CPLEX
- 1-year licenses

Free AMPL & solvers for courses

- One-page application (www.ampl.com/courses.html)
- Single file for distribution to students
- Streamlined installation — no license file
- Expires when the course is over
The Language

Versatility

- Power & convenience
  - Linear and nonlinear modeling
  - Extensive indexing and set expressions
- Prototyping & deployment
  - Integrated scripting language
- Business & research
  - Major installations worldwide
  - Hundreds of citations in scientific & engineering literature

Plans . . .
The Language

Plans

- Further set operations
  - \textit{arg min/arg max}
  - sort set by parameter values
  - arbitrary selection from an unordered set

- Random parameters/variables
  - send as input to stochastic solvers

- Enhanced scripting
  - faster loops
  - functions defined by scripts

- \textit{More natural formulations} . . .
Common Areas of Confusion

Examples from my e-mail . . .

- I have been trying to write a stepwise function in AMPL but I have not been able to do so:

  \[
  fc[wh] = \begin{cases} 
  100 & \text{if } x[wh] \leq 5 \\
  300 & \text{if } 6 \leq x[wh] \leq 10 \\
  400 & \text{if } 11 \leq x[wh] 
  \end{cases}
  \]

  where \( fc \) and \( x \) are variables.

- I have a set of nonlinear equations to be solved, and variables are binary. Even I have an xor operator in the equations. How can I implement it and which solver is suitable for it?

- I’m a recent IE grad with just one grad level IE course under my belt. . . .

  \[
  \text{minimize Moves: } \sum_{\text{emp in GROUPA}} \left( \begin{array}{l}
  \text{if } \sqrt{(X\text{EmpA}[\text{emp}] - X\text{GrpA})^2 + (Y\text{EmpA}[\text{emp}] - Y\text{GrpA})^2} > Ra \text{ then 1 else 0} \end{array} \right)
  \]

  Is there some documentation on when you can and cannot use the if-then statements in AMPL (looked through the related forum posts but still a bit confused on this)?
Common Areas of Confusion

Examples from my e-mail (cont’d)

- I have a problem need to add a such kind of constraint:
  \[
  \text{Max}\left[ \text{sum}(\text{Pi} \times \text{Hi}) \right]; \text{ i is from 1 to 24};
  \]
  in which Pi are constant and Hi need to be optimized.
  Bound is \(-180 \leq \text{Hi} \leq 270\). One of the constraints is
  \[
  \text{sum(Ci)} = 0; \text{ here Ci = Hi if Hi} > 0 \text{ and Ci = Hi/1.38 if Hi} < 0
  \]
  Is it possible to solve this kind of problem with lp_solve?
  and how to setup the constraint?

- … is there a way to write a simple “or” statement in AMPL like in Java or C++?

- I need to solve the following optimization problem:
  \[
  \text{Minimize} - |x1| - |x2|
  \]
  subject to
  \[
  x1 - x2 = 3
  \]
  Do you know how to transform it to standard linear program?
Currently Implemented

Extension to mixed-integer solver

- CPLEX indicator constraints
  * Use[j] = 1 ==> Work[j] >= least_assign;

Translation to mixed-integer programs

- General variable domains
  * var Work {j in SCHEDS} integer,
    in {0} union interval[lo_assign, hi_assign];

- Separable piecewise-linear terms
  * <<avail_min[t]; 0, time_penalty[t]>> Use[t]

Translation to general nonlinear programs

- Complementarity conditions
  * 0 <= ct[cr,u] complements
    ctcost[cr,u] + cv[cr] >= p["C",u];
Prospective Extensions

Existing operators allowed on variables
- Nonsmooth terms
- Conditional expressions

New forms
- Operators on constraints
- New aggregate operators
- Generalized indexing: variables in subscripts
- New types of variables: object-valued, set-valued

Solution strategies
- Transform to standard MIPs
- Send to alternative solvers (will return to this)
Extensions

Piecewise-Linear Terms

Transportation (multiple rates)

\[
\begin{align*}
\text{minimize Total Cost:} & \quad \text{sum \{i in ORIG, j in DEST\}} \\
& \quad \llimit1[i,j], \llimit2[i,j]; \\
& \quad \lrate1[i,j], \lrate2[i,j], \lrate3[i,j] \gg \text{Trans}[i,j]; \\
\end{align*}
\]

\[
\begin{align*}
\text{minimize Total Cost:} & \quad \text{sum \{i in ORIG, j in DEST\}} \\
& \quad \llimit1[i,j], \llimit2[i,j]; \\
& \quad \llimit[i,j,p]; \\
& \quad \lrate[i,j,p] \gg \text{Trans}[i,j]; \\
\end{align*}
\]

Production (overtime)

\[
\begin{align*}
\text{maximize Total Profit:} & \quad \text{sum \{p in PROD, t in 1..T\}} \\
& \quad (\lrev[p,t]*\lSell[p,t] - \lpcost[p]*\lMake[p,t] - \licost[p]*\lInv[p,t]) - \\
& \quad \text{sum \{t in 1..T\}} \ll \lavail_min[t]; 0, \ltime_penalty[t] \gg \lUse[t]; \\
\end{align*}
\]
Extensions

General Variable Domains

Workforce Scheduling

```plaintext
param least_assign >= 0;

var Work {j in SCHEDS} integer, in {0} union
 interval [least_assign, (max {i in SHIFT_LIST[j]} required[i])];
```
Extensions

Logical Operators

Flow shop scheduling

subj to NoConflict {i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:

Start[i2] >= Start[i1] + setTime[i1,i2] or
Start[i1] >= Start[i2] + setTime[i2,i1];

Balanced assignment

subj to NoIso {(i1,i2) in TYPE, j in ROOM}:

not (Assign[i1,i2,j] = 1 and
sum {ii1 in ADJ[i1]: (ii1,i2) in TYPE} Assign[ii1,i2,j] = 0);
Extensions

Implication Operator

Multicommodity flow with fixed costs

subject to DefineUsedA {i in ORIG, j in DEST}:
   Use[i,j] = 0 ==> sum {p in PROD} Trans[i,j,p] = 0;

subject to DefineUsedB {i in ORIG, j in DEST, p in PROD}:
   Use[i,j] = 0 ==> Trans[i,j,p] = 0;

Workforce planning

var NoShut {m in MONTHS} binary;
var LayoffCost {m in MONTHS} >=0;
subj to NoShutDefn1 {m in MONTHS}:
   NoShut[m] = 1 ==> LayoffCost[m] = 0;
subj to NoShutDefn2 {m in MONTHS}:
   NoShut[m] = 0 ==> LayoffCost[m] =
   snrLayoffWages * ShutdownDays[m] * maxNumberSnrEmpl;
Extensions

Counting Operators

Transportation

subj to MaxServe \{i \in \text{ORIG}\}:
\[
\text{card}\ \{j \in \text{DEST}: \sum \{p \in \text{PRD}\} \ Trans[i,j,p] > 0\} \leq \text{mxsrv};
\]

subj to MaxServe \{i \in \text{ORIG}\}:
\[
\text{count}\ \{j \in \text{DEST}\} \ (\sum \{p \in \text{PRD}\} \ Trans[i,j,p] > 0) \leq \text{mxsrv};
\]

subj to MaxServe \{i \in \text{ORIG}\}:
\[
\text{atmost}\ \text{mxsrv}\ \{j \in \text{DEST}\} \ (\sum \{p \in \text{PRD}\} \ Trans[i,j,p] > 0) ;
\]
Extensions

“Structure” Operators

Assignment

subj to OneJobPerMachine:

\[ \text{alldiff } \{j \text{ in JOBS}\} (\text{MachineForJob}[j]) ; \]

subj to CapacityOfMachine \{k \text{ in MACHINES}\}:

\[ \text{numberof } k \{j \text{ in JOBS}\} (\text{MachineForJob}[j]) \leq \text{cap}[k] ; \]

... argument in ( ) may be a more general list
Extensions

Variables in Subscripts

Assignment

minimize TotalCost:
   sum {j in JOBS} cost[j,MachineForJob[j]];

Sequencing

minimize CostPlusPenalty:
   sum {k in 1..nSlots} setupCost[JobForSlot[k-1],JobForSlot[k]] +
   sum {j in 1..nJobs} duePen[j] * (dueTime[j] - ComplTime[j]);

subj to TimeNeeded {k in 0..nSlots-1}:
   ComplTime[JobForSlot[k]] =
      min( dueTime[JobForSlot[k]],
            ComplTime[JobForSlot[k+1]]
            - setupTime[JobForSlot[k],JobForSlot[k+1]]
            - procTime[JobForSlot[k+1]] );
Extensions

Object-Valued Variables

Location

```plaintext
set CLIENTS;
set WHSES;

param srvCost {CLIENTS, WHSES} > 0;
param bdgCost > 0;

var Serve {CLIENTS} in WHSES;
var Open {WHSES} binary;

minimize TotalCost:
 sum {i in CLIENTS} srvCost[i,Serve[i]] +
 bdgCost * sum {j in WHSES} Open[j];

subject to OpenDefn {i in CLIENTS}:
 Open[Serve[i]] = 1;
```
Extensions

Set-Valued Variables

Crew scheduling

set SKILLset {SKILLS} within STAFF;
var CREWset {FLIGHTS} within STAFF;

subject to CrewSize {j in FLIGHTS}:
\[\text{card (CREWset}[j]\text{) = nbCrew}[j]\text{;}\]

subject to SkillReq {i in SKILLS, j in FLIGHTS}:
\[\text{card (SKILLset}[i]\text{ inter CREWset}[j]\text{) >= nbSkills}[i,j]\text{;}\]

subject to NonConsecutive {j in FLIGHTS}:
\[\text{CREWset}[j]\text{ inter CREWset}[\text{next}(j)] = \{ \};\]
The Solvers

Communication while solver is active
  - Speed up multiple solves
  - Support callbacks

Conic programming
  - Barrier solvers available
  - Stronger modeling support needed

Nontraditional alternatives
  - Global optimization
  - Constraint programming
  - Varied hybrids
Conic Programming

Standard cone

\[ x^2 + y^2 \leq z^2 \]
\[ z \geq 0 \]

Rotated cone

\[ x^2 \leq yz, \ y \geq 0, \ z \geq 0 \ldots \]
**Conic Quadratic**

**Conic vs. Ordinary Quadratic**

**Convex quadratic constraint regions**
- Ball: \( x_1^2 + \ldots + x_n^2 \leq b \)
- Cone: \( x_1^2 + \ldots + x_n^2 \leq y^2, \ y \geq 0 \)
- Cone: \( x_1^2 + \ldots + x_n^2 \leq y z, \ y \geq 0, \ z \geq 0 \)

\[ \text{... second-order cone programs (SOCPs)} \]

**Similarities**
- Describe by lists of coefficients
- Solve by extensions of LP barrier methods; extend to MIP

**Differences**
- Quadratic part not positive semi-definite
- Nonnegativity variables essential
- Boundary not quite differentiable
- Many convex problems can be reduced to these . . .
Conic Quadratic

Equivalent Problems: Minimize

Sums of . . .

- norms or squared norms
  - $\sum_i \| F_i x + g_i \|
  - $\sum_i (F_i x + g_i)^2$
- quadratic-linear fractions
  - $\sum_i \left( \frac{(F_i x + g_i)^2}{a_i x + b_i} \right)$

Max of . . .

- norms
  - $\max_i \| F_i x + g_i \|
- logarithmic Chebychev terms
  - $\max_i | \log(F_i x) - \log(g_i) |$
Conic Quadratic

Equivalent Problems: Objective

Products of . . .

- negative powers
  \* \( \min \prod_i (F_i x + g_i)^{-\alpha_i} \) for rational \( \alpha_i > 0 \)

- positive powers
  \* \( \max \prod_i (F_i x + g_i)^{\alpha_i} \) for rational \( \alpha_i > 0 \)

Combinations by . . .

- sum, max, positive multiple
  \* except log Chebychev and some positive powers

\[
\text{minimize } \max \left\{ \sum_{i=1}^{p} (a_i x + b_i)^2, \sum_{j=1}^{q} \frac{\|F_j x + g_j\|^2}{y_j} \right\} + \prod_{k=1}^{r} (c_k x)^{-\pi_k}
\]
\textit{Conic Quadratic}

Equivalent Problems: Constraints

\textbf{Sums of . . .}

\begin{itemize}
  \item norms or squared norms
    \begin{align*}
    \sum_i \|F_i x + g_i\| &\leq F_0 x + g_0 \\
    \sum_i (F_i x + g_i)^2 &\leq (F_0 x + g_0)^2
    \end{align*}
  \item quadratic-linear fractions
    \begin{align*}
    \sum_i \frac{(F_i x + g_i)^2}{a_i x + b_i} &\leq F_0 x + g_0
    \end{align*}
\end{itemize}

\textbf{Max of . . .}

\begin{itemize}
  \item norms
    \begin{align*}
    \max_i \|F_i x + g_i\| &\leq F_0 x + g_0
    \end{align*}
\end{itemize}
Conic Quadratic

Equivalent Problems: Constraints

Products of . . .

- negative powers
  \[ \sum_i \prod_j (F_{ji}x + g_{ji})^{-\alpha_{ji}} \leq F_0 x + g_0 \quad \text{for rational } \alpha_{ji} > 0 \]

- positive powers
  \[ \sum_i - \prod_j (F_{ji}x + g_{ji})^{\alpha_{ji}} \leq F_0 x + g_0 \quad \text{for rational } \alpha_{ji} > 0, \sum_i \alpha_{ji} \leq 1 \]

Combinations by . . .

- sum, max, positive multiple
Conic Quadratic

Applications

Portfolio optimization with loss risk constraints

Traffic flow optimization

Engineering design of many kinds

Conic Quadratic

Example: Sum of Norms

```plaintext
param p integer > 0;
param m {1..p} integer > 0;
param n integer > 0;

param F {i in 1..p, 1..m[i], 1..n};
param g {i in 1..p, 1..m[i]};

param p := 2 ;
param m := 1 5 2 4 ;
param n := 3 ;

param g (tr): 1 2 :=
 1 12 2
 2 7 11
 3 7 1
 4 8 0
 5 4 . ;

param F := ...
```

Robert Fourer, New & Forthcoming Developments in AMPL
OR 2011, Zürich — Aug 29-Sept 2, 2011 — TC-22, Advances in Modeling Languages
Conic Quadratic

Example: Original Formulation

\[ \begin{align*}
\text{var } & \ x \ \{1..n\}; \\
\text{minimize SumOfNorms:} & \\
\ & \ \sum_{i \in 1..p} \sqrt{\sum_{k \in 1..m[i]} (\sum_{j \in 1..n} F[i,k,j] \ast x[j] + g[i,k])^2}; \\
\end{align*} \]

3 variables, all nonlinear
0 constraints
1 nonlinear objective; 3 nonzeros.

CPLEX 12.2.0.0: at12228.nl contains a nonlinear objective.
Example: Converted to Quadratic

```
var x {1..n};
var Max {1..p} >= 0;
minimize SumOfNorms: sum {i in 1..p} Max[i];
subj to MaxDefinition {i in 1..p}:
 sum {k in 1..m[i]} (sum {j in 1..n} F[i,k,j] * x[j] + g[i,k])^2 <= Max[i]^2;
```

5 variables, all nonlinear
2 constraints, all nonlinear; 8 nonzeros
1 linear objective; 2 nonzeros.

**CPLEX 12.2.0.0**: QP Hessian is not positive semi-definite.
Example: Simpler Quadratic

```plaintext
var x {1..n};
var Max {1..p} >= 0;
var Fxplusg {i in 1..p, 1..m[i]};

minimize SumOfNorms: sum {i in 1..p} Max[i];
subj to MaxDefinition {i in 1..p}:
 sum {k in 1..m[i]} Fxplusg[i,k]^2 <= Max[i]^2;
subj to FxplusgDefinition {i in 1..p, k in 1..m[i]}:
 Fxplusg[i,k] = sum {j in 1..n} F[i,k,j] * x[j] + g[i,k];
```

14 variables:

- 11 nonlinear variables
- 3 linear variables

11 constraints; 41 nonzeros

- 2 nonlinear constraints
- 9 linear constraints

1 linear objective; 2 nonzeros.

**CPLEX 12.2.0.0:** primal optimal; objective 11.03323293

11 barrier iterations
Conic Quadratic

Example: Integer Quadratic

```
var xint {1..n} integer;
var x {j in 1..n} = xint[j] / 10;
```

Substitution eliminates 3 variables.

14 variables:
- 11 nonlinear variables
- 3 integer variables
11 constraints; 41 nonzeros
- 2 nonlinear constraints
- 9 linear constraints
1 linear objective; 2 nonzeros.

CPLEX 12.2.0.0: optimal integer solution; objective 11.12932573
88 MIP simplex iterations
19 branch-and-bound nodes
Conic Quadratic

Example: Traffic Network

Nonlinear objective due to congestion effects

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
 (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
 Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
 sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
 sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

... sum of squares / linear
Conic Quadratic

AMPL Design for SOCPs

Current situation

- Each solver recognizes some elementary forms
- Modeler must convert to these forms

Goal

- Recognize many equivalent forms
- Automatically convert to a canonical form
- Further convert as necessary for each solver
Nontraditional Solvers

*Global nonlinear*
- BARON *
- LINDO Global *
- LGO

*Constraint programming*
- IBM ILOG CP
- ECLiPSe
- SCIP *

*combined with mixed-integer*
Nontraditional Solvers

Implementation Challenges

Requirements

- Full description of functions
- Hints to algorithm
  * convexity, search strategy

Variability

- Range of expressions recognized
  * hence range of conversions needed
- Design of interface
The System

APIs & IDEs
- Current options
- Alternatives under consideration

AMPL in the cloud
- AMPL & solver software as a service
- Issues to be resolved
APIs (Programming Interfaces)

Current options
- AMPL scripting language
- put/get C interface
- OptiRisk Systems COM objects

Alternatives under consideration
- multiplatform C interface
- object-oriented interfaces in C++, Java, Python, ...
Scripting Language

Programming extensions of AMPL syntax

```AMPL
for {i in WIDTHS} {
 let nPAT := nPAT + 1;
 let nbr[i,nPAT] := floor (roll_width/i);
 let {i2 in WIDTHS: i2 <> i} nbr[i2,nPAT] := 0;
};
repeat {
 solve Cutting_Opt;
 let {i in WIDTHS} price[i] := Fill[i].dual;
 solve Pattern_Gen;
 printf "\n%7.2f%11.2e ", Number, Reduced_Cost;
 if Reduced_Cost < -0.00001 then {
 let nPAT := nPAT + 1;
 let {i in WIDTHS} nbr[i,nPAT] := Use[i];
 } else break;
 for {i in WIDTHS} printf "%3i", Use[i];
};
```
put/get C Interface

Send AMPL commands & receive output

- Ulong `put(GetputInfo *g, char *s)`
- int `get(GetputInfo *g, char **kind, char **msg, Ulong *len)`

Limitations

- Low-level unstructured interface
- Communication via strings
OptiRisk COM Objects

Object-oriented API
- Model management
- Data handling
- Solving

Limitations
- Windows only
- Older technology
- Built on put/get interface
API Development Directions

**Multiplatform C interface**
- Native to AMPL code
- Similar scope to COM objects

**Object-oriented interfaces**
- Built on C interface
IDEs (Development Environments)

*Previous & current options*
- AMPL Plus
- AMPL Studio

*Alternatives under consideration*
- Multiplatform graphical interface
- Spreadsheet interface
AMPL Plus

Menu-based GUI (1990s)

- Created by Compass Modeling Solutions
- Discontinued by ILOG
AMPL Studio

Menu-based GUI (2000s)

- Created by OptiRisk Systems
- Windows-based
AMPLDev

Menu-based GUI (2010s)

- Created by OptiRisk Systems
- Multi-platform
IDE Development Directions

Multiplatform graphical interface
   ❖ Focused on command-line window
     ✶ Same rationale as MATLAB
   ❖ Implemented using new API
   ❖ Tools for debugging, scripting, option selection . . .

Spreadsheet interface
   ❖ Data in spreadsheet tables (like Excel solver)
   ❖ AMPL model in embedded application
AMPL in the Cloud

AMPL as a service
- Solvers included
  - optional automated solver choice
- Charges per elapsed minute
- Latest versions available

Issues to be resolved
- Licensing arrangements with solvers
- Uploading & security of data
- Limitations of cloud services