
Robert Fourer, Strategies for “Not Linear” Optimization
INFORMS Opt Soc Conf — Houston 6-8 March 2014 1

Robert Fourer
AMPL Optimization

Northwestern University

4er@ampl.com — 4er@northwestern.edu

5th INFORMS Optimization Society Conference
Houston, TX — 6-8 March 2014

Session TA-01

Strategies for “Not Linear” Optimization 



Robert Fourer, Strategies for “Not Linear” Optimization
INFORMS Opt Soc Conf — Houston 6-8 March 2014 3

Can I Linearize.it?

Robert Fourer
AMPL Optimization

Northwestern University

4er@ampl.com — 4er@northwestern.edu

5th INFORMS Optimization Society Conference
Houston, TX — 6-8 March 2014

Session TA-01



Robert Fourer, Strategies for “Not Linear” Optimization
INFORMS Opt Soc Conf — Houston 6-8 March 2014

“Linear” solvers
 Linear and convex quadratic objectives & constraints

 Continuous or integer variables (or both)

 CPLEX, Gurobi, Xpress, MOSEK, SCIP, CBC, . . .

“Not Linear” problems
 Objectives & constraints in any other form

 Same continuous or integer variables

Goals
 Apply linear solvers to not linear problems

 Make this as easy as possible

4

What is Linearizing?
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Can I linearize it?
 . . . + c x y + . . .  in my objective

 where x, y are variables; c is a positive constant

It depends . . .
 What kinds of variables are x and y?

 Are you minimizing or maximizing?

10

Example 1: Product of Variables
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Case 1: Binary, Minimize
Original formulation

param c > 0;
var x binary;
var y binary;

minimize Obj: ... + c * x * y + ...

Linearization

var z;

minimize Obj: ... + c * z + ...

subject to z0Defn: z >= 0;

subject to zxyDefn: z >= x + y — 1;

Example 1

. . . z can be continuous
(minimization forces it to 0 or 1)
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Many other reformulations possible
 Best choice depends on problem and solver

 This one seems the best overall choice
 see tests in Jared Erickson’s dissertation:

JaredErickson2012@u.northwestern.edu

Extends to product of two linear terms
 Multiply them out

12

Case 1 (cont’d)
Example 1
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Case 1 (cont’d)
General model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;

minimize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Example 1
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Case 1 (cont’d)

Solved . . .

ampl: model xy1.mod;
ampl: option solver cplex;

ampl: solve;

CPLEX 12.6.0.0: optimal integer solution; objective 232.6083992
395 MIP simplex iterations
0 branch-and-bound nodes

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to solver

 Solver . . .
 transforms products of binaries to linear formulations
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Case 2: Binary, Maximize
Original formulation

param c > 0;
var x binary;
var y binary;

maximize Obj: ... + c * x * y + ...

Linearization

var z;

maximize Obj: ... + c * z + ...

subject to zxDefn: z <= x;

subject to zyDefn: z <= y;

Example 1

. . . z can be continuous
(maximization forces it to 0 or 1)
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Constraints depend on objective sense
 Minimize:  z >= 0, z >= x + y - 1

 Maximize:  z <= x, z <= y

Would it help to include all?
 No, the continuous relaxation is not tightened

 But may need all when 
extending this idea to xy in constraints

17

Case 2 (cont’d)
Example 1
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Case 3: Binary & Continuous, Minimize
Original formulation

param c > 0;
var x binary;
var y >= L, <= U;

minimize Obj: ... + c * x * y + ...

Linearization

var z;

minimize Obj: ... + c * z + ...

subject to zLDefn: z >= L * x;

subject to zUDefn: z >= y - U * (1 — x);

Example 1
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Extends in obvious ways
 Maximization form is symmetric

 y may be integer rather than continuous
 reduces to binary case with [L,U] = [0,1] 

Extends to product of two linear terms
 Equate the y term to a new variable (optional)

 Multiply terms out

19

Case 3 (cont’d)
Example 1
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Case 3 (cont’d)
General model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} >= 0, <= 2;

minimize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Example 1
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Case 3 (cont’d)

Solved by Gurobi 5.6

ampl: model xy3.mod;
ampl: option solver gurobi;

ampl: solve;

Gurobi 5.6.0: optimal solution; objective 177.090486
216 simplex iterations
9 branch-and-cut nodes

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to Gurobi

 Gurobi 5.6 solver . . .
 transforms products of variables to linear formulations
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Case 3 (cont’d)

Rejected by CPLEX 12.5

ampl: model xy3.mod;
ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.0.1: QP Hessian is not positive semi-definite.

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX

 CPLEX 12.5 solver . . .
 checks quadratic function for convexity
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Case 3 (cont’d)

Solved by CPLEX 12.5.1

ampl: model xy3.mod;
ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.1.0: optimal integer solution; objective 177.090486
148 MIP simplex iterations

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX

 CPLEX 12.5.1 solver . . .
 transforms products of variables to linear formulations
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Case 4: Continuous, Maximize
Original formulation

param c > 0;
var x >= Lx, <= Ux;
var y >= Ly, <= Uy;

maximize Obj: c * x * y;

Conic reformulation

maximize Obj: c * z;

subject to zDefn: z^2 <= x * y;

Example 1
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Handled by “linear” solvers
 Quadratic conic constraint region is convex

 Original objective was quasi-concave

Can’t sum terms in objective
 Optimal solutions are preserved, but

 Objective value changes (to square root of actual)
 Not a problem if maximizing  cx1/2 y1/2

Can’t do this with minimize!
 But can minimize a convex quadratic (2xy + x2 + y2)

 But can minimize product of negative powers

. . . more with conics in example 3

25

Case 4 (cont’d)
Example 1
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Case 4 (cont’d)
General model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;

maximize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Example 1
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Case 4 (cont’d)

Rejected by Gurobi

ampl: model xy4a.mod;
ampl: option solver gurobi;

ampl: solve;

Gurobi 5.6.0: quadratic objective is not positive definite

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to Gurobi

 Gurobi solver . . .
 checks quadratic function for convexity
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Case 4 (cont’d)
Model transformed “by hand” . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;

var ZX >= 0;
var ZY >= 0;
var Z;

maximize Obj: Z;

subject to ZXdef: ZX = sum {j in 1..n} c[j]*X[j];
subject to ZYdef: ZY = sum {j in 1..n} d[j]*Y[j];

subject to Zdef: Z^2 <= ZX * ZY; # still not positive semidefinite

subject to SumX: .......

Example 1
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Case 4 (cont’d)

Solved by Gurobi barrier

ampl: model xy4b.mod;
ampl: option solver gurobi;

ampl: solve;

Gurobi 5.6.0: optimal solution; objective 29.78950231
11 barrier iterations

ampl: display ZX*ZY;
ZX*ZY = 887.414   # equals Obj^2

Example 1

Transformed automatically
 AMPL interface . . .

 detects quadratic constraint terms
 sends quadratic coefficient list to Gurobi

 Gurobi solver . . .
 detects conic constraint structure
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Case 4 (cont’d)

Solved by CPLEX branch-and-bound

ampl: model xy4a.mod;
ampl: option solver cplex, cplex_options 'reqconvex 3';

ampl: solve;

CPLEX 12.6.0.0: optimal integer solution; objective 887.4144789
24 MIP simplex iterations
5 branch-and-bound nodes

ampl: option cplex_options 'reqconvex 3 minimize';

ampl: solve;

CPLEX 12.6.0.0: optimal integer solution; objective 88.62097665
67 MIP simplex iterations
15 branch-and-bound nodes

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX
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Key Questions
Example 1

Can it be transformed?
 Yes or no?

 Transformed to what?

. . . very sensitive to mathematical form

Who will make the transformation?
 The human modeler?

 The modeling system?

 The solver interface?

 The solver?

. . . often some combination of these
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Can I linearize it?
 If x isn’t zero then I want it to be at least L

 where x  0 is a variable and L  0 is a constant

Yes, and . . .
 You can also express it as a discontinuous domain

 You can also express it as a logical condition

32

Example 2: Zero or Range
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Minimize number of workers needed
 How many workers are assigned to each schedule?

 If a schedule is used at all,
at least L workers must be assigned to it

Data: shifts in each schedule; least assignment L

33

Scheduling
Example 2

set SHIFTS;

param Nsched;
set SCHEDS = 1..Nsched;

set SHIFT_LIST {SCHEDS} within SHIFTS;

param rate {SCHEDS} >= 0;
param required {SHIFTS} >= 0;

param least_assign >= 0;
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var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

minimize Total_Cost:
sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}: 
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use1 {j in SCHEDS}:
least_assign * Use[j] <= Work[j];

subject to Least_Use2 {j in SCHEDS}:
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];

Zero-one variables and inequalities

Case 1: Traditional MIP
Example 2
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ampl: model sched1.mod;
ampl: data sched.dat;

ampl: option solver cplex;
ampl: let least_assign := 17;

ampl: solve;

Reduced MIP has 269 rows, 252 columns, and 1134 nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 0 indicators.

Total (root+branch&cut) = 563.38 sec. (138138.56 ticks)

CPLEX 12.6.0.0: optimal integer solution; objective 267
24903192 MIP simplex iterations
3816760 branch-and-bound nodes

Solved by CPLEX

Case 1 (cont’d)
Example 2
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var Work {j in SCHEDS} integer in {0} union 
interval[least_assign, max {i in SHIFT_LIST[j]} required[i]];

minimize Total_Cost:
sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}: 
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

Union of a point and an interval

Case 2: Discontinuous Domain
Example 2
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Case 2 (cont’d)

Solved by CPLEX as usual

Reduced MIP has 269 rows, 252 columns, and 1134 nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 0 indicators.

Total (root+branch&cut) = 342.49 sec. (85757.81 ticks)

CPLEX 12.6.0.0: optimal integer solution; objective 267
15087185 MIP simplex iterations
2306392 branch-and-bound nodes

Example 2

Transformed automatically
 AMPL processor . . .

 adds auxiliary zero-one variables
 generates appropriate constraints
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ampl: solexpand;

. . . . . . .

subject to (Work[1]+IUlb):
Work[1] - 17*(Work[1]+b) >= 0;

subject to (Work[1]+IUub):
-Work[1] + 100*(Work[1]+b) >= 0;

subject to (Work[2]+IUlb):
Work[2] - 17*(Work[2]+b) >= 0;

subject to (Work[2]+IUub):
-Work[2] + 100*(Work[2]+b) >= 0;

. . . . . . .

Same formulation as case 1

Case 2 (cont’d)
Example 2
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var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

minimize Total_Cost:
sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}: 
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use {j in SCHEDS}:
Use[j] = 1 ==> Work[j] >= least_assign else Work[j] = 0;

CPLEX indicator constraint

Case 3: Implication
Example 2
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Case 3 (cont’d)

Solved by CPLEX with extensions

Reduced MIP has 143 rows, 252 columns, and 882 nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 126 indicators.

Total (root+branch&cut) = 5936.45 sec. (1533625.65 ticks)

CPLEX 12.6.0.0: optimal integer solution; objective 267
250228203 MIP simplex iterations
29437722 branch-and-bound nodes

Example 2

Logic passed to solver
 AMPL writes “logical” constraints as expression trees
 AMPL-CPLEX driver “walks” the trees

 detects indicator forms
 converts to CPLEX library calls
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var Work {j in SCHEDS} >= 0 integer;

minimize Total_Cost:
sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}: 
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use {j in SCHEDS}:
Work[j] = 0 or Work[j] >= least_assign;

Logical constraint using “or” operator

Example 2

Case 4: Disjunction 
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Case 4 (cont’d)

Rejected by CPLEX

ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.0.1: logical constraint not indicator constraint.

Example 2

Logic passed to solver
 AMPL writes “logical” constraints as expression trees
 AMPL-CPLEX driver “walks” the trees

 looks for indicator forms
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Case 4 (cont’d)

Accepted by CPLEX after internal transformation

ampl: option solver ilogcp;
ampl: option ilogcp_options 'optimizer cplex mipdisplay 2';

ampl: solve;

Reduced MIP has 269 rows, 252 columns, and 1134 nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 252 indicators.

<BREAK> (ilogcp)

Total (root+branch&cut) = 95272.30 sec. (23592380.69 ticks)

CPLEX 12.6.0.0: aborted, integer solution exists; objective 267
2.89e+009 MIP simplex iterations
351291725 branch-and-bound nodes

Example 2

Logic passed to solver
 AMPL writes “logical” constraints as expression trees
 AMPL-CPLEX driver “walks” the trees

 passes constraints as written to C++ “Concert” interface
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Can I linearize it?
 Minimize  ∑ ܶሺ,ሻ∈	/	࢚࢞

 Where  ࢚ ൌ ܾ  ሺ1	/	࢞ݏ െ (/ܿ࢞
 where 0  ࢞ ൏ ܿ is a variable

Yes, but . . .
 The transformation isn’t so obvious

 You will need conic quadratic constraints

46

Example 3: Ratio
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Minimize average travel time for given throughput
 How much traffic is routed on each link?

 Travel time increases nonlinearly with traffic

 Flow is conserved at nodes

47

Traffic Network
Example 3
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Traffic Network (cont’d)

Model: flows and associated travel times

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Example 3
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Traffic Network (cont’d)

Data: Braess network

set INTERS := b c ;

param EN := a ;
param EX := d ;

param: ROADS: base cap sens :=
a b    4   10   .1
a c    1   12   .7
c b    2   20   .9
b d    1   15   .5
c d    6   10   .1 ;

param through := 20 ;

Example 3
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Case 1: General Nonlinear Solver

Solved “locally” by KNITRO

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver knitro;
ampl: solve;

KNITRO 9.0.0: Locally optimal solution.
objective 61.04695019; feasibility error 1.24e-13
13 iterations; 20 function evaluations

ampl: display Flow, Time;

:       Flow       Time   :=
a b    9.55146   25.2948
a c   10.4485    57.5709
b d   11.0044    21.6558
c b    1.45291    3.41006
c d    8.99562   14.9564
;

Example 3
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Case 1 (cont’d)

Same with integer-valued variables

ampl: solve;

KNITRO 9.0.0: Locally optimal solution.
objective 76.26375; integrality gap 1.56e-13
1 nodes; 2 subproblem solves

ampl: display Flow, Time;

:   Flow   Time  :=
a b    9   13
a c   11   93.4
b d   11   21.625
c b    2   4
c d    9   15
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Example 3
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Case 2: “Linear” Solver 

Rejected by CPLEX

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.6.0.0: 
Constraint _scon[1] is not convex quadratic 
since it is an equality constraint.

Example 3
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Case 2 (cont’d)

Look at the model again . . .

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Example 3
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Case 2 (cont’d)

Quadratically constrained reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Example 3
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Case 2 (cont’d)

Rejected by CPLEX as nonconvex

ampl: model trafficQUAD.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.6.0.0: 
QP Hessian is not positive semi-definite.

Example 3

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX

 CPLEX solver . . .
 applies numerical test for elliptic quadratic constraints
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Case 2 (cont’d)

Quadratically constrained re-reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
Slack[i,j] = 1 - Flow[i,j]/cap[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Example 3
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Case 2 (cont’d)

Solved (globally) by CPLEX

ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.6.0.0: primal optimal; objective 61.04693968
15 barrier iterations

Example 3

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX

 CPLEX solver . . .
 applies symbolic test for conic quadratic constraints
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Case 2 (cont’d)

Same with integer-valued variables

ampl: solve;

CPLEX 12.6.0.0: optimal integer solution within mipgap or absmipgap; 
objective 76.26375017

19 MIP simplex iterations
0 branch-and-bound nodes

ampl: display Flow;

Flow :=
a b    9
a c   11
b d   11
c b    2
c d    9
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Example 3
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Case 3

Works just as well with Gurobi

ampl: solve;

Gurobi 5.6.0: optimal solution; objective 76.26374998
32 simplex iterations

ampl: display Flow;

Flow :=
a b    9
a c   11
b d   11
c b    2
c d    9
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Example 3
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Quadratic
 Constraints (already seen)

 Objectives

SOC-representable
 Quadratic-linear ratios

 Generalized geometric means

 Generalized p-norms

Other objective functions
 Generalized product-of-powers

 Logarithmic Chebychev
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Standard cone constraints
 ∑ ܽሺܠ  ݃ሻଶ

ୀଵ  ܽାଵሺାଵܠ  ݃ାଵሻଶ,
ܽଵ, . . . , ܽାଵ  0, ܠାଵ  ݃ାଵ  0

Rotated cone constraints
 ∑ ܽ ܠ  ݃ ଶ

ୀଵ  ܽାଵ ܠାଵ  ݃ାଵ ܠାଶ  ݃ାଶ ,
ܽଵ, . . . , ܽାଵ  0, ܠାଵ		  ݃ାଵ  ܠାଶ	 ,0  ݃ାଶ  0

Sum-of-squares objectives
 Minimize  ∑ ܽ ܠ  ݃ ଶ

ୀଵ

 Minimize ݒ
Subject to ∑ ܽ ܠ  ݃ ଶ

ୀଵ  ݒ  ,ଶݒ  0

Quadratic
SOCP-solvable
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Definition
 Function ݏ ݔ is SOC-representable iff . . .

 ݏ ݔ  ܽሺାଵܠ  ݃ାଵሻ	is equivalent to some 
combination of linear and quadratic cone constraints

Minimization property
 Minimize ݏ ݔ is SOC-solvable

 Minimize ାଵݒ
Subject to ሻݔሺݏ  ାଵݒ

Combination properties
 ܽ ∙ ݏ ݔ is SOC-representable for any ܽ  0
 ∑ ݏ ݔ

ୀଵ is SOC-representable

 ୀଵݔܽ݉ ݏ	 ݔ is SOC-representable
. . . requires a recursive detection algorithm!
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SOC-Representable (1)
Vector norm

 ܉ ∙ ܠ۴   ൌ ∑ ܽଶ ܠ  ݃ ଶ
ୀଵ  ܽାଵ ܠାଵ  ݃ାଵ

 square both sides to get standard SOC
∑ ܽଶ ܠ  ݃ ଶ
ୀଵ  ܽାଵଶ ܠାଵ  ݃ାଵ ଶ

Quadratic-linear ratio


∑  	ା	ܠ మ

సభ
శమ	ା	ܠశమ

 ܽାଵ ܠାଵ  ݃ାଵ

 where ାଶܠ  ݃ାଶ  0

 multiply by denominator to get rotated SOC
∑ ܽ	 ܠ  ݃ ଶ
ୀଵ  ܽାଵ	 ܠାଵ  ݃ାଵ ܠାଶ  ݃ାଶ
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SOC-Representable (2)
Negative geometric mean

 െ∏ ܠ  ݃ ଵ ⁄
ୀଵ  ܠାଵ  ݃ାଵ,   ∈ Ժା

 െݔଵ
ଵ/ସݔଶ

ଵ/ସݔଷ
ଵ/ସݔସ

ଵ/ସ  െݔହ becomes rotated SOCs:

ହଶݔ  ଵଶݒ ,ଶݒଵݒ  ଶଶݒ ,ଶݔଵݔ  ସݔଷݔ
 apply recursively logଶ  times

Generalizations
 െ∏ ܠ  ݃ ఈ

ୀଵ  ܽାଵ ܠାଵ  ݃ାଵ :		∑ ߙ  1
ୀଵ ߙ , ∈ ℚା

 ∏ ܠ  ݃ ିఈ
ୀଵ  ܽାଵ ܠାଵ  ݃ାଵ ߙ	 , ∈ ℚା

 all require ܠ  ݃	to	have	proper	sign
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SOC-Representable (3)
p-norm

 ∑ ܠ  ݃ 
ୀଵ

ଵ ⁄  ܠାଵ  ݃ାଵ,   ∈ ℚା,    1

 ଵݔ ହ  ଶݔ ହ ଵ ହ⁄  ଷݔ can be written

ଵݔ ହ ⁄ଷସݔ  ଶݔ ହ ⁄ଷସݔ 	 ଷݔ which becomes

ଵݒ  ଶݒ  ଷݔ with  െݒଵ
ଵ ହ⁄ ଷݔ

ସ ହ⁄  േݔଵ, െݒଵ
ଵ ହ⁄ ଷݔ

ସ ହ⁄  േݔଶ
 reduces to product of powers

Generalizations
 ∑ ܠ  ݃ ఈ

ୀଵ
ଵ ఈబ⁄  ܠାଵ  ݃ାଵ,  α ∈ ℚା,  ߙ  ߙ	  1

 ∑ ܠ  ݃ ఈ
ୀଵ  ܠାଵ  ݃ାଵ ఈబ

 Minimize  ∑ ܠ  ݃ ఈ
ୀଵ

. . . standard SOCP has ࢻ ≡ 
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Other Objective Functions
Unrestricted product of powers

 Minimize  െ∏ ܠ  ݃ ఈ
ୀଵ for any ߙ ∈ ℚା

Logarithmic Chebychev approximation
 Minimize  maxୀଵ log ܠ െ log	ሺ݃ሻ 	

Why no constraint versions?
 Not SOC-representable

 Transformation changes objective value (but not solution)
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Challenges
Applying “linear” solvers to these forms

 Recursive detection tree-walk

 Recursive transformation tree-walk

 Heuristic nonnegativity check for linear expressions

Assessing usefulness . . .
 Results from Jared Erickson’s dissertation:

JaredErickson2012@u.northwestern.edu
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Survey of Test Problems (1)
12% of 1238 nonlinear problems were SOC-solvable!

 not counting QPs with sum-of-squares objectives

 from Vanderbei’s CUTE & non-CUTE, and netlib/ampl

A variety of forms detected
 hs064 has 4 ⁄ଵݔ  32 ⁄ଶݔ  120 ⁄ଷݔ  	1
 hs036 minimizes െݔଵݔଶݔଷ

 hs073 has 1.645	 ଵଶݔ0.28  ଶଶݔ0.19	  ଷଶݔ20.5	  ସଶݔ0.62	 	. . .

 polak4 is a max of sums of squares

 hs049 minimizes	 ଵݔ െ ଶݔ ଶ 	 ଷݔ െ 1 ଶ 	 ସݔ െ 1 ସ 	 ହݔ െ 1 

 emfl_nonconvex has ∑ ݔ െ ܽ
ଶଶ

ୀଵ  	 ଶݏ
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Survey of Test Problems (2)
Counted number of test problems . . .

 Solvable already by a “linear” solver

 Detected as SOCP-equivalent by our routines
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The AMPL user

The AMPL processor

The AMPL-solver interface

The solver
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Advantages
 Can exploit special knowledge of the problem

 Doesn’t have to be programmed

Disadvantages
 May not know the best way to linearize

 May have better ways to use the time

 Can make mistakes
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The AMPL User
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Advantages
 Makes the same linearization available to all solvers

 Has a high-level view of the problem

Disadvantages
 Is a very complicated program

 Can’t take advantage of special solver features
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The AMPL Processor
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Advantages
 Works on simplified problem instances

 Can use same ideas for many solvers, but also

 Can tailor linearization to solver features

Disadvantages
 Creates an extra layer of complication
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The AMPL-Solver Interface
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Advantages
 Ought to know what’s best for it

 Can integrate linearization with other activities

Disadvantages
 May not incorporate best practices

 Is complicated enough already
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The Solver


