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“Linear” solvers
 Linear and convex quadratic objectives & constraints

 Continuous or integer variables (or both)

 CPLEX, Gurobi, Xpress, MOSEK, SCIP, CBC, . . .

“Not Linear” problems
 Objectives & constraints in any other form

 Same continuous or integer variables

Goals
 Apply linear solvers to not linear problems

 Make this as easy as possible

4

What is Linearizing?
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Can I linearize it?
 . . . + c x y + . . .  in my objective

 where x, y are variables; c is a positive constant

It depends . . .
 What kinds of variables are x and y?

 Are you minimizing or maximizing?

10

Example 1: Product of Variables
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Case 1: Binary, Minimize
Original formulation

param c > 0;
var x binary;
var y binary;

minimize Obj: ... + c * x * y + ...

Linearization

var z;

minimize Obj: ... + c * z + ...

subject to z0Defn: z >= 0;

subject to zxyDefn: z >= x + y — 1;

Example 1

. . . z can be continuous
(minimization forces it to 0 or 1)
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Many other reformulations possible
 Best choice depends on problem and solver

 This one seems the best overall choice
 see tests in Jared Erickson’s dissertation:

JaredErickson2012@u.northwestern.edu

Extends to product of two linear terms
 Multiply them out

12

Case 1 (cont’d)
Example 1
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Case 1 (cont’d)
General model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;

minimize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Example 1
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Case 1 (cont’d)

Solved . . .

ampl: model xy1.mod;
ampl: option solver cplex;

ampl: solve;

CPLEX 12.6.0.0: optimal integer solution; objective 232.6083992
395 MIP simplex iterations
0 branch-and-bound nodes

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to solver

 Solver . . .
 transforms products of binaries to linear formulations
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Case 2: Binary, Maximize
Original formulation

param c > 0;
var x binary;
var y binary;

maximize Obj: ... + c * x * y + ...

Linearization

var z;

maximize Obj: ... + c * z + ...

subject to zxDefn: z <= x;

subject to zyDefn: z <= y;

Example 1

. . . z can be continuous
(maximization forces it to 0 or 1)
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Constraints depend on objective sense
 Minimize:  z >= 0, z >= x + y - 1

 Maximize:  z <= x, z <= y

Would it help to include all?
 No, the continuous relaxation is not tightened

 But may need all when 
extending this idea to xy in constraints

17

Case 2 (cont’d)
Example 1
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Case 3: Binary & Continuous, Minimize
Original formulation

param c > 0;
var x binary;
var y >= L, <= U;

minimize Obj: ... + c * x * y + ...

Linearization

var z;

minimize Obj: ... + c * z + ...

subject to zLDefn: z >= L * x;

subject to zUDefn: z >= y - U * (1 — x);

Example 1
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Extends in obvious ways
 Maximization form is symmetric

 y may be integer rather than continuous
 reduces to binary case with [L,U] = [0,1] 

Extends to product of two linear terms
 Equate the y term to a new variable (optional)

 Multiply terms out

19

Case 3 (cont’d)
Example 1
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Case 3 (cont’d)
General model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} >= 0, <= 2;

minimize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Example 1
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Case 3 (cont’d)

Solved by Gurobi 5.6

ampl: model xy3.mod;
ampl: option solver gurobi;

ampl: solve;

Gurobi 5.6.0: optimal solution; objective 177.090486
216 simplex iterations
9 branch-and-cut nodes

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to Gurobi

 Gurobi 5.6 solver . . .
 transforms products of variables to linear formulations
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Case 3 (cont’d)

Rejected by CPLEX 12.5

ampl: model xy3.mod;
ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.0.1: QP Hessian is not positive semi-definite.

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX

 CPLEX 12.5 solver . . .
 checks quadratic function for convexity
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Case 3 (cont’d)

Solved by CPLEX 12.5.1

ampl: model xy3.mod;
ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.1.0: optimal integer solution; objective 177.090486
148 MIP simplex iterations

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX

 CPLEX 12.5.1 solver . . .
 transforms products of variables to linear formulations
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Case 4: Continuous, Maximize
Original formulation

param c > 0;
var x >= Lx, <= Ux;
var y >= Ly, <= Uy;

maximize Obj: c * x * y;

Conic reformulation

maximize Obj: c * z;

subject to zDefn: z^2 <= x * y;

Example 1
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Handled by “linear” solvers
 Quadratic conic constraint region is convex

 Original objective was quasi-concave

Can’t sum terms in objective
 Optimal solutions are preserved, but

 Objective value changes (to square root of actual)
 Not a problem if maximizing  cx1/2 y1/2

Can’t do this with minimize!
 But can minimize a convex quadratic (2xy + x2 + y2)

 But can minimize product of negative powers

. . . more with conics in example 3

25

Case 4 (cont’d)
Example 1
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Case 4 (cont’d)
General model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;

maximize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Example 1
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Case 4 (cont’d)

Rejected by Gurobi

ampl: model xy4a.mod;
ampl: option solver gurobi;

ampl: solve;

Gurobi 5.6.0: quadratic objective is not positive definite

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to Gurobi

 Gurobi solver . . .
 checks quadratic function for convexity
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Case 4 (cont’d)
Model transformed “by hand” . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;

var ZX >= 0;
var ZY >= 0;
var Z;

maximize Obj: Z;

subject to ZXdef: ZX = sum {j in 1..n} c[j]*X[j];
subject to ZYdef: ZY = sum {j in 1..n} d[j]*Y[j];

subject to Zdef: Z^2 <= ZX * ZY; # still not positive semidefinite

subject to SumX: .......

Example 1



Robert Fourer, Strategies for “Not Linear” Optimization
INFORMS Opt Soc Conf — Houston 6-8 March 2014 29

Case 4 (cont’d)

Solved by Gurobi barrier

ampl: model xy4b.mod;
ampl: option solver gurobi;

ampl: solve;

Gurobi 5.6.0: optimal solution; objective 29.78950231
11 barrier iterations

ampl: display ZX*ZY;
ZX*ZY = 887.414   # equals Obj^2

Example 1

Transformed automatically
 AMPL interface . . .

 detects quadratic constraint terms
 sends quadratic coefficient list to Gurobi

 Gurobi solver . . .
 detects conic constraint structure
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Case 4 (cont’d)

Solved by CPLEX branch-and-bound

ampl: model xy4a.mod;
ampl: option solver cplex, cplex_options 'reqconvex 3';

ampl: solve;

CPLEX 12.6.0.0: optimal integer solution; objective 887.4144789
24 MIP simplex iterations
5 branch-and-bound nodes

ampl: option cplex_options 'reqconvex 3 minimize';

ampl: solve;

CPLEX 12.6.0.0: optimal integer solution; objective 88.62097665
67 MIP simplex iterations
15 branch-and-bound nodes

Example 1

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX
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Key Questions
Example 1

Can it be transformed?
 Yes or no?

 Transformed to what?

. . . very sensitive to mathematical form

Who will make the transformation?
 The human modeler?

 The modeling system?

 The solver interface?

 The solver?

. . . often some combination of these
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Can I linearize it?
 If x isn’t zero then I want it to be at least L

 where x ൒ 0 is a variable and L ൐ 0 is a constant

Yes, and . . .
 You can also express it as a discontinuous domain

 You can also express it as a logical condition

32

Example 2: Zero or Range
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Minimize number of workers needed
 How many workers are assigned to each schedule?

 If a schedule is used at all,
at least L workers must be assigned to it

Data: shifts in each schedule; least assignment L

33

Scheduling
Example 2

set SHIFTS;

param Nsched;
set SCHEDS = 1..Nsched;

set SHIFT_LIST {SCHEDS} within SHIFTS;

param rate {SCHEDS} >= 0;
param required {SHIFTS} >= 0;

param least_assign >= 0;
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var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

minimize Total_Cost:
sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}: 
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use1 {j in SCHEDS}:
least_assign * Use[j] <= Work[j];

subject to Least_Use2 {j in SCHEDS}:
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];

Zero-one variables and inequalities

Case 1: Traditional MIP
Example 2
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ampl: model sched1.mod;
ampl: data sched.dat;

ampl: option solver cplex;
ampl: let least_assign := 17;

ampl: solve;

Reduced MIP has 269 rows, 252 columns, and 1134 nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 0 indicators.

Total (root+branch&cut) = 563.38 sec. (138138.56 ticks)

CPLEX 12.6.0.0: optimal integer solution; objective 267
24903192 MIP simplex iterations
3816760 branch-and-bound nodes

Solved by CPLEX

Case 1 (cont’d)
Example 2
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var Work {j in SCHEDS} integer in {0} union 
interval[least_assign, max {i in SHIFT_LIST[j]} required[i]];

minimize Total_Cost:
sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}: 
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

Union of a point and an interval

Case 2: Discontinuous Domain
Example 2
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Case 2 (cont’d)

Solved by CPLEX as usual

Reduced MIP has 269 rows, 252 columns, and 1134 nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 0 indicators.

Total (root+branch&cut) = 342.49 sec. (85757.81 ticks)

CPLEX 12.6.0.0: optimal integer solution; objective 267
15087185 MIP simplex iterations
2306392 branch-and-bound nodes

Example 2

Transformed automatically
 AMPL processor . . .

 adds auxiliary zero-one variables
 generates appropriate constraints
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ampl: solexpand;

. . . . . . .

subject to (Work[1]+IUlb):
Work[1] - 17*(Work[1]+b) >= 0;

subject to (Work[1]+IUub):
-Work[1] + 100*(Work[1]+b) >= 0;

subject to (Work[2]+IUlb):
Work[2] - 17*(Work[2]+b) >= 0;

subject to (Work[2]+IUub):
-Work[2] + 100*(Work[2]+b) >= 0;

. . . . . . .

Same formulation as case 1

Case 2 (cont’d)
Example 2
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var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

minimize Total_Cost:
sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}: 
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use {j in SCHEDS}:
Use[j] = 1 ==> Work[j] >= least_assign else Work[j] = 0;

CPLEX indicator constraint

Case 3: Implication
Example 2
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Case 3 (cont’d)

Solved by CPLEX with extensions

Reduced MIP has 143 rows, 252 columns, and 882 nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 126 indicators.

Total (root+branch&cut) = 5936.45 sec. (1533625.65 ticks)

CPLEX 12.6.0.0: optimal integer solution; objective 267
250228203 MIP simplex iterations
29437722 branch-and-bound nodes

Example 2

Logic passed to solver
 AMPL writes “logical” constraints as expression trees
 AMPL-CPLEX driver “walks” the trees

 detects indicator forms
 converts to CPLEX library calls
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var Work {j in SCHEDS} >= 0 integer;

minimize Total_Cost:
sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}: 
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use {j in SCHEDS}:
Work[j] = 0 or Work[j] >= least_assign;

Logical constraint using “or” operator

Example 2

Case 4: Disjunction 
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Case 4 (cont’d)

Rejected by CPLEX

ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.0.1: logical constraint not indicator constraint.

Example 2

Logic passed to solver
 AMPL writes “logical” constraints as expression trees
 AMPL-CPLEX driver “walks” the trees

 looks for indicator forms
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Case 4 (cont’d)

Accepted by CPLEX after internal transformation

ampl: option solver ilogcp;
ampl: option ilogcp_options 'optimizer cplex mipdisplay 2';

ampl: solve;

Reduced MIP has 269 rows, 252 columns, and 1134 nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 252 indicators.

<BREAK> (ilogcp)

Total (root+branch&cut) = 95272.30 sec. (23592380.69 ticks)

CPLEX 12.6.0.0: aborted, integer solution exists; objective 267
2.89e+009 MIP simplex iterations
351291725 branch-and-bound nodes

Example 2

Logic passed to solver
 AMPL writes “logical” constraints as expression trees
 AMPL-CPLEX driver “walks” the trees

 passes constraints as written to C++ “Concert” interface
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Can I linearize it?
 Minimize  ∑ ܶሺ௜,௝ሻ∈஺	/	௜௝࢞௜௝࢚

 Where  ࢚௜௝ ൌ ܾ௜௝ ൅ ሺ1	/	௜௝࢞௜௝ݏ െ (௜௝/ܿ௜௝࢞
 where 0 ൑ ௜௝࢞ ൏ ܿ௜௝ is a variable

Yes, but . . .
 The transformation isn’t so obvious

 You will need conic quadratic constraints

46

Example 3: Ratio
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Minimize average travel time for given throughput
 How much traffic is routed on each link?

 Travel time increases nonlinearly with traffic

 Flow is conserved at nodes

47

Traffic Network
Example 3
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Traffic Network (cont’d)

Model: flows and associated travel times

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Example 3
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Traffic Network (cont’d)

Data: Braess network

set INTERS := b c ;

param EN := a ;
param EX := d ;

param: ROADS: base cap sens :=
a b    4   10   .1
a c    1   12   .7
c b    2   20   .9
b d    1   15   .5
c d    6   10   .1 ;

param through := 20 ;

Example 3
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Case 1: General Nonlinear Solver

Solved “locally” by KNITRO

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver knitro;
ampl: solve;

KNITRO 9.0.0: Locally optimal solution.
objective 61.04695019; feasibility error 1.24e-13
13 iterations; 20 function evaluations

ampl: display Flow, Time;

:       Flow       Time   :=
a b    9.55146   25.2948
a c   10.4485    57.5709
b d   11.0044    21.6558
c b    1.45291    3.41006
c d    8.99562   14.9564
;

Example 3
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Case 1 (cont’d)

Same with integer-valued variables

ampl: solve;

KNITRO 9.0.0: Locally optimal solution.
objective 76.26375; integrality gap 1.56e-13
1 nodes; 2 subproblem solves

ampl: display Flow, Time;

:   Flow   Time  :=
a b    9   13
a c   11   93.4
b d   11   21.625
c b    2   4
c d    9   15
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Example 3
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Case 2: “Linear” Solver 

Rejected by CPLEX

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.6.0.0: 
Constraint _scon[1] is not convex quadratic 
since it is an equality constraint.

Example 3
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Case 2 (cont’d)

Look at the model again . . .

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Example 3
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Case 2 (cont’d)

Quadratically constrained reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Example 3
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Case 2 (cont’d)

Rejected by CPLEX as nonconvex

ampl: model trafficQUAD.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.6.0.0: 
QP Hessian is not positive semi-definite.

Example 3

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX

 CPLEX solver . . .
 applies numerical test for elliptic quadratic constraints
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Case 2 (cont’d)

Quadratically constrained re-reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
Slack[i,j] = 1 - Flow[i,j]/cap[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Example 3
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Case 2 (cont’d)

Solved (globally) by CPLEX

ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.6.0.0: primal optimal; objective 61.04693968
15 barrier iterations

Example 3

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX

 CPLEX solver . . .
 applies symbolic test for conic quadratic constraints
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Case 2 (cont’d)

Same with integer-valued variables

ampl: solve;

CPLEX 12.6.0.0: optimal integer solution within mipgap or absmipgap; 
objective 76.26375017

19 MIP simplex iterations
0 branch-and-bound nodes

ampl: display Flow;

Flow :=
a b    9
a c   11
b d   11
c b    2
c d    9
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Example 3
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Case 3

Works just as well with Gurobi

ampl: solve;

Gurobi 5.6.0: optimal solution; objective 76.26374998
32 simplex iterations

ampl: display Flow;

Flow :=
a b    9
a c   11
b d   11
c b    2
c d    9
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Example 3
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Quadratic
 Constraints (already seen)

 Objectives

SOC-representable
 Quadratic-linear ratios

 Generalized geometric means

 Generalized p-norms

Other objective functions
 Generalized product-of-powers

 Logarithmic Chebychev

64
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Example 3
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Standard cone constraints
 ∑ ܽ௜ሺ܎௜ܠ ൅ ݃௜ሻଶ௡

௜ୀଵ ൑ ܽ௡ାଵሺ܎௡ାଵܠ ൅ ݃௡ାଵሻଶ,
ܽଵ, . . . , ܽ௡ାଵ ൒ 0, ܠ௡ାଵ܎ ൅ ݃௡ାଵ ൒ 0

Rotated cone constraints
 ∑ ܽ௜ ܠ௜܎ ൅ ݃௜ ଶ௡

௜ୀଵ ൑ ܽ௡ାଵ ܠ௡ାଵ܎ ൅ ݃௡ାଵ ܠ௡ାଶ܎ ൅ ݃௡ାଶ ,
ܽଵ, . . . , ܽ௡ାଵ ൒ 0, ܠ௡ାଵ܎		 ൅ ݃௡ାଵ ൒ ܠ௡ାଶ܎	 ,0 ൅ ݃௡ାଶ ൒ 0

Sum-of-squares objectives
 Minimize  ∑ ܽ௜ ܠ௜܎ ൅ ݃௜ ଶ௡

௜ୀଵ

 Minimize ݒ
Subject to ∑ ܽ௜ ܠ௜܎ ൅ ݃௜ ଶ௡

௜ୀଵ ൑ ݒ  ,ଶݒ ൒ 0

Quadratic
SOCP-solvable
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Definition
 Function ݏ ݔ is SOC-representable iff . . .

 ݏ ݔ ൑ ܽ௡ሺ܎௡ାଵܠ ൅ ݃௡ାଵሻ	is equivalent to some 
combination of linear and quadratic cone constraints

Minimization property
 Minimize ݏ ݔ is SOC-solvable

 Minimize ௡ାଵݒ
Subject to ሻݔሺݏ ൑ ௡ାଵݒ

Combination properties
 ܽ ∙ ݏ ݔ is SOC-representable for any ܽ ൒ 0
 ∑ ௜ݏ ௡ݔ

௜ୀଵ is SOC-representable

 ௜ୀଵ௡ݔܽ݉ ௜ݏ	 ݔ is SOC-representable
. . . requires a recursive detection algorithm!
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SOC-Representable (1)
Vector norm

 ܉ ∙ ܠ۴ ൅ ܏ ൌ ∑ ܽ௜ଶ ܠ௜܎ ൅ ݃௜ ଶ௡
௜ୀଵ ൑ ܽ௡ାଵ ܠ௡ାଵ܎ ൅ ݃௡ାଵ

 square both sides to get standard SOC
∑ ܽ௜ଶ ܠ௜܎ ൅ ݃௜ ଶ௡
௜ୀଵ ൑ ܽ௡ାଵଶ ܠ௡ାଵ܎ ൅ ݃௡ାଵ ଶ

Quadratic-linear ratio


∑ ௔೔ ௚೔	ା	ܠ೔܎ మ
೙
೔సభ
௚೙శమ	ା	ܠ೙శమ܎

൑ ܽ௡ାଵ ܠ௡ାଵ܎ ൅ ݃௡ାଵ

 where ܎௡ାଶܠ ൅ ݃௡ାଶ ൒ 0

 multiply by denominator to get rotated SOC
∑ ܽ௜	 ܠ௜܎ ൅ ݃௜ ଶ௡
௜ୀଵ ൑ ܽ௡ାଵ	 ܠ௡ାଵ܎ ൅ ݃௡ାଵ ܠ௡ାଶ܎ ൅ ݃௡ାଶ
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SOC-Representable (2)
Negative geometric mean

 െ∏ ܠ௜܎ ൅ ݃௜ ଵ ௣⁄௣
௜ୀଵ ൑ ܠ௡ାଵ܎ ൅ ݃௡ାଵ,  ݌ ∈ Ժା

 െݔଵ
ଵ/ସݔଶ

ଵ/ସݔଷ
ଵ/ସݔସ

ଵ/ସ ൑ െݔହ becomes rotated SOCs:

ହଶݔ ൑ ଵଶݒ ,ଶݒଵݒ ൑ ଶଶݒ ,ଶݔଵݔ ൑ ସݔଷݔ
 apply recursively logଶ ݌ times

Generalizations
 െ∏ ܠ௜܎ ൅ ݃௜ ఈ೔௡

௜ୀଵ ൑ ܽ௡ାଵ ܠ௡ାଵ܎ ൅ ݃௡ାଵ :		∑ ௜ߙ ൑ 1௡
௜ୀଵ ௜ߙ , ∈ ℚା

 ∏ ܠ௜܎ ൅ ݃௜ ିఈ೔௡
௜ୀଵ ൑ ܽ௡ାଵ ܠ௡ାଵ܎ ൅ ݃௡ାଵ ௜ߙ	 , ∈ ℚା

 all require ܎௜ܠ ൅ ݃௜	to	have	proper	sign
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SOC-Representable (3)
p-norm

 ∑ ܠ௜܎ ൅ ݃௜ ௣௡
௜ୀଵ

ଵ ௣⁄ ൑ ܠ௡ାଵ܎ ൅ ݃௡ାଵ,  ݌ ∈ ℚା,  ݌ ൒ 1

 ଵݔ ହ ൅ ଶݔ ହ ଵ ହ⁄ ൑ ଷݔ can be written

ଵݔ ହ ⁄ଷସݔ ൅ ଶݔ ହ ⁄ଷସݔ 	൑ ଷݔ which becomes

ଵݒ ൅ ଶݒ ൑ ଷݔ with  െݒଵ
ଵ ହ⁄ ଷݔ

ସ ହ⁄ ൑ േݔଵ, െݒଵ
ଵ ହ⁄ ଷݔ

ସ ହ⁄ ൑ േݔଶ
 reduces to product of powers

Generalizations
 ∑ ܠ௜܎ ൅ ݃௜ ఈ೔௡

௜ୀଵ
ଵ ఈబ⁄ ൑ ܠ௡ାଵ܎ ൅ ݃௡ାଵ,  α௜ ∈ ℚା,  ߙ௜ ൒ ଴ߙ	 ൒ 1

 ∑ ܠ௜܎ ൅ ݃௜ ఈ೔௡
௜ୀଵ ൑ ܠ௡ାଵ܎ ൅ ݃௡ାଵ ఈబ

 Minimize  ∑ ܠ௜܎ ൅ ݃௜ ఈ೔௡
௜ୀଵ

. . . standard SOCP has ࢏ࢻ ≡ ૛
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Other Objective Functions
Unrestricted product of powers

 Minimize  െ∏ ܠ௜܎ ൅ ݃௜ ఈ೔௡
௜ୀଵ for any ߙ௜ ∈ ℚା

Logarithmic Chebychev approximation
 Minimize  max௜ୀଵ௡ log ܠ௜܎ െ log	ሺ݃௜ሻ 	

Why no constraint versions?
 Not SOC-representable

 Transformation changes objective value (but not solution)
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Challenges
Applying “linear” solvers to these forms

 Recursive detection tree-walk

 Recursive transformation tree-walk

 Heuristic nonnegativity check for linear expressions

Assessing usefulness . . .
 Results from Jared Erickson’s dissertation:

JaredErickson2012@u.northwestern.edu
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Survey of Test Problems (1)
12% of 1238 nonlinear problems were SOC-solvable!

 not counting QPs with sum-of-squares objectives

 from Vanderbei’s CUTE & non-CUTE, and netlib/ampl

A variety of forms detected
 hs064 has 4 ⁄ଵݔ ൅ 32 ⁄ଶݔ ൅ 120 ⁄ଷݔ ൑ 	1
 hs036 minimizes െݔଵݔଶݔଷ

 hs073 has 1.645	 ଵଶݔ0.28 ൅ ଶଶݔ0.19	 ൅ ଷଶݔ20.5	 ൅ ସଶݔ0.62	 ൑	. . .

 polak4 is a max of sums of squares

 hs049 minimizes	 ଵݔ െ ଶݔ ଶ ൅	 ଷݔ െ 1 ଶ ൅	 ସݔ െ 1 ସ ൅	 ହݔ െ 1 ଺

 emfl_nonconvex has ∑ ௝௞ݔ െ ܽ௜௞
ଶଶ

௞ୀଵ ൑ 	 ௜௝ଶݏ
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Survey of Test Problems (2)
Counted number of test problems . . .

 Solvable already by a “linear” solver

 Detected as SOCP-equivalent by our routines

73

66 8021“Linear” SOCP-equiv

SOCP-solvable



Robert Fourer, Strategies for “Not Linear” Optimization
INFORMS Opt Soc Conf — Houston 6-8 March 2014

The AMPL user

The AMPL processor

The AMPL-solver interface

The solver
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Advantages
 Can exploit special knowledge of the problem

 Doesn’t have to be programmed

Disadvantages
 May not know the best way to linearize

 May have better ways to use the time

 Can make mistakes
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The AMPL User
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Advantages
 Makes the same linearization available to all solvers

 Has a high-level view of the problem

Disadvantages
 Is a very complicated program

 Can’t take advantage of special solver features
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The AMPL Processor
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Advantages
 Works on simplified problem instances

 Can use same ideas for many solvers, but also

 Can tailor linearization to solver features

Disadvantages
 Creates an extra layer of complication
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The AMPL-Solver Interface
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Advantages
 Ought to know what’s best for it

 Can integrate linearization with other activities

Disadvantages
 May not incorporate best practices

 Is complicated enough already
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The Solver


