
U.S. & Mexico Workshop on Optimization and its

Applications

Huatulco, Mexico, 8–12 January 2018

Toward Conveniently Handling
Bi-Level Optimization Problems

David M. Gay

AMPL Optimization, Inc.

Albuquerque, New Mexico, U.S.A.

dmg@ampl.com

http://www.ampl.com

1

AMPL summary

Background: AMPL, a language for

mathematical programming, e.g.,

minimize f(x)

s.t. ℓ ≤ c(x) ≤ u,

with x ∈ R
n and c : Rn → R

m given

algebraically and some xi discrete.

2

Motivation for bilevel optimization

Sometimes a decision affects other

parties who can take recourse.

Modeling their recourse actions as

inner optimization problems may be

appropriate: the decision maker has an

outer optimization problem with inner

optimization problems as constraints.

3

Disclaimer

Economists, game theorists, and

complementarity researchers have

looked at nested problems for many

years. The present goal is to examine

such problems from an AMPL

perspective, with an eye to using

automatic differentiation to help

formulate and solve them.
4

Toy inner optimization problem (inner.x)

simple "inner" problem for toy bilevel example

param c default 0; # to be a variable in the bilevel problem

var x := 1;

var x1 := 3;

var x2 := 0;

s.t. circle: (x1 - 4)^2 + x2^2 == 1;

distance to the parabola y = x^2 + c

minimize dist: (x - x1)^2 + (x^2 + c - x2)^2;

5

Toy bilevel example (bilev.x)

bilevel variant with modified outer objective and

explicit first-order nec. cond’s for inner obj.

var c := 1;

var x := 1;

var x1 := 3;

var x2 := 0;

var dist = (x - x1)^2 + (x^2 + c - x2)^2;

s.t. circle: (x1 - 4)^2 + x2^2 == 1;

var lambda := -1.6;

minimize bilev: c^2 + dist;

s.t. nec1: x - x1 + lambda*(x1-4) == 0;

s.t. nec2: x^2 - c - x2 + lambda*x2 == 0;

6

Solving inner.x

ampl: model inner.x; solve;

MINOS 5.51: optimal solution found.

12 iterations, objective 4.584878775

Nonlin evals: obj = 32, grad = 31, constrs = 32, Jac = 31.

ampl: display _varname, _var;

: _varname _var :=

1 x 1.12817

2 x1 3.08576

3 x2 0.405184

;

7

Solving bilev.x

ampl: reset; model bilev.x; solve;

MINOS 5.51: optimal solution found.

17 iterations, objective 4.246188161

Nonlin evals: obj = 44, grad = 43, constrs = 44, Jac = 43.

ampl: display _varname, _var, dist;

: _varname _var :=

1 c -0.409548

2 x 1.24962

3 x1 3.18718

4 x2 0.582515

5 dist 4.07846

6 lambda -2.38376

;

dist = 4.07846

8

Discussion

Necessary conditions for problems with

inequality constraints involve

complementarity constraints, e.g.,

s.t. c: lambda >= 0 complements f(x) >= 0;

Manually stating necessary conditions

is error prone, so AMPL should

automatically provide these conditions.

9

AMPL’s problem facility

An AMPL problem declaration lists

variables, constraints and objectives

for a named problem. Other variables

are held fixed, and other constraints

are ignored. A named problem can

also have its own environment.

10

Named problem example (cutting stock)

param nPAT integer >= 0; # number of patterns

set PATTERNS = 1..nPAT; # set of patterns

var Cut {PATTERNS} integer >= 0;

minimize Number: sum {j in PATTERNS} Cut[j];

s.t. Fill {i in WIDTHS}: ...;

var Use {WIDTHS} integer >= 0;

minimize Reduced Cost: ...;

s.t. W Limit: ...;

problem Cutting Opt: Cut, Number, Fill;

option relax integrality 1;

problem Pattern Gen: Use, Reduced Cost, W Limit;

option relax integrality 0;
11

Named problem use example

repeat {

solve Cutting_Opt;

let {i in WIDTHS} price[i] := Fill[i].dual;

solve Pattern_Gen;

if Reduced_Cost >= -0.00001 then break;

let nPAT := nPAT + 1;

let {i in WIDTHS} nbr[i,nPAT] := Use[i];

};

See

https://ampl.com/BOOK/CHAPTERS/17-solvers.pdf

12

Extending AMPL’s problem facility

Proposal: Allow problem declarations

to list inner named problems. AMPL

would supply first-order necessary

conditions for inner problems as

constraints. Environments of inner

problems would be ignored. Variables

of inner problems would also be overall

problem variables.
13

First-order necessary conditions for an inner problem

Lagrangian for

minimize f(x) s.t. c(x) ≥ 0

is

ψ(x, λ) = f(x) + λc(x).

First-order necessary conditions:

∇xψ(x, λ) = 0 with c(x) ≥ 0 ⊥ λ ≥ 0.

14

Implied constraints for an inner problem

Plan: augment constraints a solver

sees with first-order necessary

conditions for inner problems. These

conditions just involve partial

derivatives with respect to the inner

problem’s variables. Such gradients are

readily computed by reverse AD

(Automatic Differentiation).
15

Chain rule: basis for automatic differentiation (AD)

Suppose for scalar x that

φ(x) = f(y1(x), y2(x), ..., yk(x)).

The chain rule gives

∂φ

∂x
=

k∑

i=1

∂f

∂yi

∂yi

∂x
=

k∑

i=1

∂φ

∂yi

∂yi

∂x
.

In general, once we know the adjoint ∂φ
∂y

of an

intermediate variable y, we can add its contribution
∂φ
∂y

∂y
∂x

to the adjoint ∂φ
∂x

of each variable x on which y

directly depends.

16

AD in the AMPL/solver interface library

Paper available from

http://ampl.com: Revisiting

Expression Representations for

Nonlinear AMPL Models is about AD

in the AMPL/solver interface library

(ASL). DMG talk at the 2016 U.S. and

Mexico Workshop in Merida was a

preliminary version of this paper.
17

Jacobians for inner problems

Some nonlinear solvers (e.g., minos

and snopt) only want to be given

function and gradient values. For such

solvers, gradients of implied

constraints (i.e., Jacobian rows)

amount to Hessians and are readily

supplied by existing ASL facilities.

18

Computing Hessians

Other solvers (e.g., conopt, ipopt,

knitro, loqo) want explicit Hessians or

Hessian-vector products as well as

function and gradient values. The ASL

approach: compute vT∇2f(x) by

considering φ(τ) = f(x+ τv); compute

φ′(τ) by forward AD and apply reverse

AD to φ′(τ), giving (∇2f(x))v.
19

More on computing Hessians

Equivalent way to regard (∇2f(x))v:

apply reverse AD to vT∇f(x), giving

its gradient.

When explicit ∇2f(x) is needed, ASL

computes it one row at a time via

Hessian-vector products.

20

Hessians for inner problems

Plan for inner-problem Hessians:

consider

φ(x, τ, σ) = f(x+ τv + σw);

compute ∇2f
∇τ∇σ

= wT∇2f(x)v by

forward AD and apply reverse AD to

obtain a row of the desired Hessian.

21

Hessians = challenge for inner problems

Current ASL Hessian-vector and full

Hessian computations are tuned to

outer problems. Generalizing to inner

problems requires extensions to the

“.nl” format and some ASL routines

and an option to allow or exclude inner

problems that determine some of the

same variables.
22

Multi-level problems

When an inner problem itself is a

bilevel problem, we have a tri-level

problem. In general, we could have

several levels, with the necessary

conditions for an inner problem

appearing as complementarity

constraints to the containing problem.

23

Solving

Bi- and multi-level problems in general

can be nonconvex, possibly difficult

global optimization problems.

24

Some current solvers

Some current solvers...

Solver complem. optim. global

baron No Yes Yes

knitro Yes Yes No

path Yes No No

We need solvers with three Yes’s.

25

Partially separable structure

Some functions are partially separable:

f(x) =

q∑

i=1

θi(fiUix))

where θi is unary. An expression-graph

walk finds this structure or more

detailed “group partial separability”,

and using it can save time.
26

More on AMPL and AD therewith

The AMPL web site

http://ampl.com

has more on AMPL, including pointers to papers on

AD with AMPL and on the AMPL/solver interface

library (ASL).

For more on AD in general, see

http://www.autodiff.org

27

