Model-Based Optimization + Application Programming = Streamlined Deployment in AMPL

Robert Fourer, Filipe Brandão
{4er, fdabrandao}@ampl.com
AMPL Optimization Inc.
www.ampl.com — +1 773-336-AMPL

INFORMS Business Analytics Conference
Austin, Texas — 14-16 April 2019
Technology Tutorials Track
Examples

Model-based optimization

- Model-based vs. Method-based *approaches*
 - Example: Balanced assignment
- Declarative vs. Executable *modeling languages*
 - Example: AMPL vs. gurobipy for multicommodity flow
Examples

Model-based optimization

Application programming

> Extending a modeling language with scripting
 > Example: Tradeoffs between roll-cutting objectives
Examples

Model-based optimization

Application programming

Streamlined deployment

- Modeling language APIs
 - Example: Pattern enumeration in Python and R
- Python integration
 - Example: Python data embedded in an AMPL model
 - Example: Custom stopping criteria using Gurobi callbacks
 - Example: Executing Python inside AMPL
- AMPL in Jupyter notebooks
 - Example: Mixed AMPL and Python notebooks
- Building a decision-making tool for deployment
 - Example: QuanDec
Model-Based vs. Method-Based Approaches to Optimization

Example: Balanced Assignment
 ❖ meeting of employees from around the world

Given
 ❖ several employee categories
 (title, location, department, male/female)
 ❖ a specified number of project groups

Assign
 ❖ each employee to a project group

So that
 ❖ the groups have about the same size
 ❖ the groups are as “diverse” as possible with respect to all categories
Balanced Assignment

Method-Based Approach

Define an algorithm to build a balanced assignment

- Start with all groups empty
- Make a list of people (employees)
- For each person in the list:
 - Add to the group whose resulting “sameness” will be least

```
Initialize all groups G = { }
Repeat for each person p
    sMin = Infinity
    Repeat for each group G
        s = total "sameness" in G \cup \{p\}
        if s < sMin then
            sMin = s
            GMin = G
    Assign person p to group GMin
```
Balanced Assignment

Method-Based Approach (cont’d)

Define a computable concept of “sameness”

- Sameness of any two people:
 - Number of categories in which they are the same
- Sameness of a group:
 - Sum of the sameness of all pairs of people in the group

Refine the algorithm to get better results

- Reorder the list of people
- Locally improve the initial “greedy” solution by swapping group members
- Seek further improvement through local search metaheuristics
 - What are the neighbors of an assignment?
 - How can two assignments combine to create a better one?
Balanced Assignment

Model-Based Approach

Formulate a “minimal sameness” model

- Define decision variables for assignment of people to groups
 - $x_{ij} = 1$ if person 1 assigned to group j
 - $x_{ij} = 0$ otherwise
- Specify valid assignments through constraints on the variables
- Formulate sameness as an objective to be minimized
 - *Total sameness* = sum of the sameness of all groups

Send to an off-the-shelf solver

- Choice of excellent solvers
- Broad problem classes handled efficiently
- Special cases recognized and exploited to advantage
 - zero-one variables like x_{ij}
Balanced Assignment

Model-Based Formulation

Given

- P set of people
- C set of categories of people
- t_{ik} type of person i within category k, for all $i \in P, k \in C$

and

- G number of groups
- g_{min} lower limit on people in a group
- g_{max} upper limit on people in a group

Define

$$s_{i_1 i_2} = |\{k \in C : t_{i_1 k} = t_{i_2 k}\}|, \text{ for all } i_1 \in P, i_2 \in P$$

sameness of persons i_1 and i_2
Balanced Assignment

Model-Based Formulation (cont’d)

Determine

\[x_{ij} \in \{0,1\} = 1 \text{ if person } i \text{ is assigned to group } j \]

\[= 0 \text{ otherwise, for all } i \in P, j = 1, \ldots, G \]

To minimize

\[\sum_{i_1 \in P} \sum_{i_2 \in P} s_{i_1 i_2} \sum_{j=1}^{G} x_{i_1 j} x_{i_2 j} \]

total sameness of all pairs of people in all groups

Subject to

\[\sum_{j=1}^{G} x_{ij} = 1, \text{ for each } i \in P \]

each person must be assigned to one group

\[g^{\min} \leq \sum_{i \in P} x_{ij} \leq g^{\max}, \text{ for each } j = 1, \ldots, G \]

each group must be assigned an acceptable number of people
Balanced Assignment

Model-Based Solution

Optimize with an off-the-shelf solver

Choose among many alternatives

- Linearize and send to a mixed-integer linear solver
 * CPLEX, Gurobi, Xpress; CBC, MIPCL, SCIP
- Send quadratic formulation to a mixed-integer solver
 that automatically linearizes products involving binary variables
 * CPLEX, Gurobi, Xpress
- Send quadratic formulation to a nonlinear solver
 * Mixed-integer nonlinear: Knitro, BARON
 * Continuous nonlinear (might come out integer): MINOS, Ipopt, ...
Model-Based vs. Method-Based

Where is the work?

- Method-based: Programming an implementation of the method
- Model-based: Constructing a formulation of the model

Which should you prefer?

- For simple problems, any approach can seem pretty easy
- But real optimization problems are seldom simple . . .
Complications in Balanced Assignment

“Total Sameness” is problematical
 - Hard for client to relate to goal of diversity
 - Minimize “total variation” instead
 * Sum over all types: most minus least assigned to any group

Client has special requirements
 - No employee should be “isolated” within their group
 * No group can have exactly one woman
 * Every person must have a group-mate from the same location and of equal or adjacent rank

Room capacities are variable
 - Different groups have different size limits
 - Minimize “total deviation”
 * Sum over all types: greatest violation of target range for any group
Revise or replace the solution approach

- Total variation is less suitable to a greedy algorithm
- Total variation is harder to locally improve
- Client constraints are challenging to enforce

Update or re-implement the method

- Even small changes to the problem can necessitate major changes to the method and its implementation
Model-Based (cont’d)

Replace the objective

Formulate additional constraints

Send back to the solver
Balanced Assignment

Model-Based (cont’d)

To write new objective, add variables

\[y_{kl}^{\min} \] fewest people of category \(k \), type \(l \) in any group,
\[y_{kl}^{\max} \] most people of category \(k \), type \(l \) in any group,
for each \(k \in C, l \in T_k = \bigcup_{i \in P} \{ t_{ik} \} \)

Add defining constraints

\[y_{kl}^{\min} \leq \sum_{i \in P : t_{ik} = l} x_{ij}, \] for each \(j = 1, \ldots, G; \ k \in C, l \in T_k \)
\[y_{kl}^{\max} \geq \sum_{i \in P : t_{ik} = l} x_{ij}, \] for each \(j = 1, \ldots, G; \ k \in C, l \in T_k \)

Minimize total variation

\[\sum_{k \in C} \sum_{l \in T_k} (y_{kl}^{\max} - y_{kl}^{\min}) \]
Balanced Assignment

Model-Based (cont’d)

To express client requirement for women in a group, let

\[Q = \{ i \in P : t_{i,m/f} = \text{female} \} \]

Add constraints

\[\sum_{i \in Q} x_{ij} = 0 \quad \text{or} \quad \sum_{i \in Q} x_{ij} \geq 2, \quad \text{for each } j = 1, \ldots, G \]
Balanced Assignment

Model-Based (cont’d)

To express client requirement for women in a group, let

\[Q = \{i \in P: t_{i,m/f} = \text{female}\} \]

Define logic variables

\[z_j \in \{0,1\} = 1 \text{ if any women assigned to group } j \]
\[= 0 \text{ otherwise, for all } j = 1, \ldots, G \]

Add constraints relating logic variables to assignment variables

\[z_j = 0 \Rightarrow \sum_{i \in Q} x_{ij} = 0, \]
\[z_j = 1 \Rightarrow \sum_{i \in Q} x_{ij} \geq 2, \text{ for each } j = 1, \ldots, G \]
Balanced Assignment

Model-Based (cont’d)

To express client requirement for women in a group, let

\[Q = \{ i \in P : t_{i,m/f} = \text{female} \} \]

Define logic variables

\[z_j \in \{0,1\} = 1 \text{ if any women assigned to group } j \]
\[= 0 \text{ otherwise, for all } j = 1, \ldots, G \]

Linearize constraints relating logic variables to assignment variables

\[2z_j \leq \sum_{i \in Q} x_{i,j} \leq |Q| z_j, \text{ for each } j = 1, \ldots, G \]
Method-Based Remains Popular for . . .

Heuristic approaches

- Simple heuristics
 - Greedy algorithms, local improvement methods
- Metaheuristics
 - Evolutionary methods, simulated annealing, tabu search, GRASP, . . .

Situations hard to formulate mathematically

- Difficult combinatorial constraints
- Black-box objectives and constraints

Large-scale, intensive applications

- Routing fleets of delivery trucks
- Finding shortest routes in mapping apps

. . . and it appeals to programmers
Model-Based Has Become Common for . . .

Diverse application areas (active AMPL users)

- Energy and Utilities
 - power networks, gas pipelines, hydroelectric power, water distribution
- Industry
 - mining, steel, chemicals, oil refining, forestry and paper
 - cars & trucks, paper products, processed foods
- Transportation
 - airlines, trucking
- Services
 - supply chain, hospitals & medicine, construction management
- Communications
 - telecommunications, social media, cloud computing, distribution
- Finance
 - software tools, investment management, commodity management
- Advanced Technologies
 - artificial intelligence, distributed computing, biotechnology
Model-Based Has Become Common for . . .

Diverse application areas

Diverse fields

- Operations research & management science
- Business analytics
- Engineering & science
- Economics & finance
Model-Based Has Become Common for . . .

Diverse industries

Diverse fields

Diverse kinds of users

- Anyone who took an “optimization” class
- Anyone else with a technical background
- Newcomers to optimization

These have in common . . .

- Users inclined toward modeling; focus is
 - more on what should be solved
 - less on how it should be solved
- Good algebraic formulations for off-the-shelf solvers
Trends Favor Model-Based Optimization

Model-based approaches have spread
- Model-based metaheuristics (“Matheuristics”)
- Solvers for SAT, planning, constraint programing

Off-the-shelf optimization solvers have kept improving
- Solve the same problems faster and faster
- Handle broader problem classes
- Recognize special cases automatically

Optimization models have become easier to embed within broader methods
- Model-based evolution of solver APIs
- APIs for optimization modeling systems
Modeling Languages for Model-Based Optimization

Background
- The modeling lifecycle
- Modeling languages
- Algebraic modeling languages

Design approaches
- Matrix generators vs. modeling languages
- Declarative vs. executable modeling languages

Example: *AMPL vs. gurobipy*

Example: *Balanced Assignment in AMPL*
The Optimization Modeling Lifecycle

1. Communicate with Client
2. Build Model
3. Prepare Data
4. Generate Optimization Problem
5. Submit Problem to Solver
6. Report & Analyze Results
Managing the Modeling Lifecycle

Goals for optimization software

- Repeat the cycle quickly and reliably
- Get results before client loses interest
- Deploy for application

Complication: two forms of an optimization problem

- Modeler’s form
 - Mathematical description, easy for people to work with
- Solver’s form
 - Explicit data structure, easy for solvers to compute with

Challenge: translate between these two forms
Modeling Languages

Describe your model

- Write your symbolic model in a computer-readable modeler’s form
- Prepare data for the model
- Let computer translate to & from the solver’s form

Limited drawbacks

- Separate language to be learned
- Overhead in translation to algorithm’s form
- Confidential formulation to be protected

Great advantages

- Faster modeling cycles
- More reliable modeling
- More maintainable applications
Algebraic Modeling Languages

Designed for a model-based approach

- Define data in terms of sets & parameters
 - Analogous to database keys & records
- Define decision variables
- Minimize or maximize an algebraic function of decision variables
- Subject to algebraic equations or inequalities that constrain the values of the variables

Advantages

- Familiar
- Powerful
- Proven
Algebraic modeling language and system

- Built specially for optimization
- Designed to support many solvers

Design goals

- Powerful, general expressions
- Natural, easy-to-learn modeling principles
- Efficient processing that scales well with problem size
Executable vs. Declarative Modeling Languages for Optimization

Example: Two representative widely used systems

Executable: gurobipy
 - Python modeling interface for Gurobi solver
 - http://gurobi.com

Declarative: AMPL
 - Specialized modeling language with multi-solver support
 - http://ampl.com
Algebraic Modeling Languages

Executable

Concept
- Create an algebraic modeling language inside a general-purpose programming language
- Redefine operators like + and <= to return constraint objects rather than simple values

Advantages
- Ready integration with applications
- Good access to advanced solver features

Disadvantages
- Programming issues complicate description of the model
- Modeling and programming bugs are hard to separate
- Efficiency issues are more of a concern
Algebraic Modeling Languages

Declarative

Concept
- Design a language specifically for optimization modeling
 - Resembles mathematical notation as much as possible
- Extend to command scripts and database links
- Connect to external applications via APIs

Disadvantages
- Adds a system between application and solver
- Does not have a full object-oriented programming framework

Advantages
- Streamlines model development
- Promotes validation and maintenance of models
- Can provide APIs for many popular programming languages
Example: *Multicommodity Flow*
- ship multiple goods over a network

Given
- networks nodes and arc
- supplies or demands at the nodes
- capacities on the arcs

Determine
- how much to ship over each arc

So that
- demands are met by the supplies
- *shipping costs are minimized*
Comparison

Data

gurobipy

- Assign values to Python lists and dictionaries

```python
data commodities = ['Pencils', 'Pens']
data nodes = ['Detroit', 'Denver', 'Boston', 'New York', 'Seattle']
data arcs, capacity = multidict({
    ('Detroit', 'Boston'): 100,
    ('Detroit', 'New York'): 80,
    ('Detroit', 'Seattle'): 120,
    ('Denver', 'Boston'): 120,
    ('Denver', 'New York'): 120,
    ('Denver', 'Seattle'): 120 })
```

- Provide data later in a separate file

AMPL

- Define symbolic model sets and parameters

```AMPL
set COMMODITIES;
set NODES;
set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

set COMMODITIES := Pencils Pens ;
set NODES := Detroit Denver Boston 'New York' Seattle ;
param: ARCS: capacity:
    Boston 'New York' Seattle :=
    Detroit  100  80  120
    Denver  120  120  120 ;
```
Comparison

Data (cont’d)

gurobipy

inflow = {
 ('Pencils', 'Detroit'): 50,
 ('Pencils', 'Denver'): 60,
 ('Pencils', 'Boston'): -50,
 ('Pencils', 'New York'): -50,
 ('Pencils', 'Seattle'): -10,
 ('Pens', 'Detroit'): 60,
 ('Pens', 'Denver'): 40,
 ('Pens', 'Boston'): -40,
 ('Pens', 'New York'): -30,
 ('Pens', 'Seattle'): -30
}

AMPL

param inflow {COMMODITIES, NODES};

param inflow (tr):
 Pencils Pens :=
 Detroit 50 60
 Denver 60 40
 Boston -50 -40
 'New York' -50 -30
 Seattle -10 -30 ;
Comparison

Data (cont’d)

gurobipy

cost = {
 ('Pencils', 'Detroit', 'Boston'): 10,
 ('Pencils', 'Detroit', 'New York'): 20,
 ('Pencils', 'Detroit', 'Seattle'): 60,
 ('Pencils', 'Denver', 'Boston'): 40,
 ('Pencils', 'Denver', 'New York'): 40,
 ('Pencils', 'Denver', 'Seattle'): 30,
 ('Pens', 'Detroit', 'Boston'): 20,
 ('Pens', 'Detroit', 'New York'): 20,
 ('Pens', 'Detroit', 'Seattle'): 80,
 ('Pens', 'Denver', 'Boston'): 60,
 ('Pens', 'Denver', 'New York'): 70,
 ('Pens', 'Denver', 'Seattle'): 30
}
Comparison

Data (cont’d)

AMPL

```AMPL
param cost {COMMODITIES,ARCS} >= 0;
```

```
; param cost
[Pencils,*,*] (tr) Detroit Denver :=
  Boston   10   40
 'New York' 20   40
  Seattle  60   30

[Pens,*,*] (tr) Detroit Denver :=
  Boston   20   60
 'New York' 20   70
  Seattle  80   30
```

```
Comparison

Model

gurobipy

```python
m = Model('netflow')
flow = m.addVars(commodities, arcs, obj=cost, name="flow")
m.addConstrs(
 (flow.sum('*',i,j) <= capacity[i,j] for i,j in arcs), "cap")
m.addConstrs(
 (flow.sum(h,'*',j) + inflow[h,j] == flow.sum(h,j,'*')
 for h in commodities for j in nodes), "node")

for i,j in arcs:
 m.addConstr(sum(flow[h,i,j] for h in commodities) <= capacity[i,j],
 "cap[%(s)s,%(s)s]" % (i,j))
m.addConstrs(
 (quicksum(flow[h,i,j] for i,j in arcs.select('*,j)) + inflow[h,j] ==
 quicksum(flow[h,j,k] for j,k in arcs.select(j,'*'))
 for h in commodities for j in nodes), "node")
```

alternatives
Comparison

(Note on Summations)

**gurobipy quicksum**

```python
m.addConstrs(
 (quicksum(flow[h,i,j] for i,j in arcs.select('*',j)) + inflow[h,j] ==
 quicksum(flow[h,j,k] for j,k in arcs.select(j,'*'))
 for h in commodities for j in nodes), "node")
```

```python
quicksum (data)
```

A version of the Python `sum` function that is much more efficient for building large Gurobi expressions (`LinExpr` or `QuadExpr` objects). The function takes a list of terms as its argument.

Note that while `quicksum` is much faster than `sum`, it isn't the fastest approach for building a large expression. Use `addTerms` or the `LinExpr()` constructor if you want the quickest possible expression construction.
Comparison

Model (cont’d)

AMPL

```AMPL
var Flow {COMMODITIES, ARCS} >= 0;

minimize TotalCost:
 sum {h in COMMODITIES, (i,j) in ARCS} cost[h,i,j] * Flow[h,i,j];

subject to Capacity {(i,j) in ARCS}:
 sum {h in COMMODITIES} Flow[h,i,j] <= capacity[i,j];

subject to Conservation {h in COMMODITIES, j in NODES}:
 sum {(i,j) in ARCS} Flow[h,i,j] + inflow[h,j] =
 sum {(j,i) in ARCS} Flow[h,j,i];
```
Solution

```python
m.optimize()

if m.status == GRB.Status.OPTIMAL:
 solution = m.getAttr('x', flow)
 for h in commodities:
 print('\nOptimal flows for %s:' % h)
 for i,j in arcs:
 if solution[h,i,j] > 0:
 print('%s -> %s: %g' % (i, j, solution[h,i,j]))
```

Solved in 0 iterations and 0.00 seconds
Optimal objective  5.500000000e+03

Optimal flows for Pencils:
Detroit -> Boston: 50
Denver -> New York: 50
Denver -> Seattle: 10

Optimal flows for Pens: ...
Comparison

Solution (cont’d)

AMPL

```
AMPL
ampl: solve;
Gurobi 8.1.0: optimal solution; objective 5500
2 simplex iterations
ampl: display Flow;
Flow [Pencils,*,*]
 : Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
 : Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
```

Comparison

Integration with Solvers

gurobipy

- Works closely with the Gurobi solver: callbacks during optimization, fast re-solves after problem changes
- Offers convenient extended expressions: min/max, and/or, if-then-else

AMPL

- Supports all popular solvers
- Extends to general nonlinear and logic expressions
  * Connects to nonlinear function libraries and user-defined functions
- Automatically computes nonlinear function derivatives
Comparison

Integration with Applications

gurobipy

- Everything can be developed in Python
  - Extensive data, visualization, deployment tools available
- Limited modeling features also in C++, C#, Java

AMPL

- Modeling language extended with loops, tests, assignments
- Application programming interfaces (APIs) for calling AMPL from C++, C#, Java, MATLAB, Python, R
  - Efficient methods for data interchange
- Add-ons for streamlined deployment
  - QuanDec by Cassotis
  - Opalytics Cloud Platform
Balanced Assignment Revisited

Given

- $P$: set of people
- $C$: set of categories of people
- $t_{ik}$: type of person $i$ within category $k$, for all $i \in P$, $k \in C$

and

- $G$: number of groups
- $g_{\text{min}}$: lower limit on people in a group
- $g_{\text{max}}$: upper limit on people in a group

Define

- $T_k = \bigcup_{i \in P} \{t_{ik}\}$, for all $k \in C$
  - set of all types of people in category $k$
Balanced Assignment Revisited in AMPL

Sets, parameters

```
set PEOPLE; # individuals to be assigned
set CATEG;
param type {PEOPLE,CATEG} symbolic;
 # categories by which people are classified;
 # type of each person in each category

param numberGrps integer > 0;
param minInGrp integer > 0;
param maxInGrp integer >= minInGrp;
 # number of groups; bounds on size of groups

set TYPES {k in CATEG} = setof {i in PEOPLE} type[i,k];
 # all types found in each category
```
Balanced Assignment

Determine

\[ x_{ij} \in \{0,1\} = 1 \text{ if person } i \text{ is assigned to group } j \]
\[ = 0 \text{ otherwise, for all } i \in P, j = 1, \ldots, G \]

\[ y_{kl}^{\min} \] fewest people of category \( k \), type \( l \) in any group,
\[ y_{kl}^{\max} \] most people of category \( k \), type \( l \) in any group,

for each \( k \in C, l \in T_k \)

Where

\[ y_{kl}^{\min} \leq \sum_{i \in P : t_{ik} = l} x_{ij}, \text{ for each } j = 1, \ldots, G; \ k \in C, l \in T_k \]
\[ y_{kl}^{\max} \geq \sum_{i \in P : t_{ik} = l} x_{ij}, \text{ for each } j = 1, \ldots, G; \ k \in C, l \in T_k \]
Balanced Assignment in AMPL

Variables, defining constraints

```ampl
var Assign {i in PEOPLE, j in 1..numberGrps} binary;
 # Assign[i,j] is 1 if and only if
 # person i is assigned to group j

var MinType {k in CATEG, TYPES[k]};
var MaxType {k in CATEG, TYPES[k]};
 # fewest and most people of each type, over all groups

subj to MinTypeDefn {j in 1..numberGrps, k in CATEG, l in TYPES[k]}:
 MinType[k,l] <= sum {i in PEOPLE: type[i,k] = l} Assign[i,j];

subj to MaxTypeDefn {j in 1..numberGrps, k in CATEG, l in TYPES[k]}:
 MaxType[k,l] >= sum {i in PEOPLE: type[i,k] = l} Assign[i,j];
 # values of MinTypeDefn and MaxTypeDefn variables
 # must be consistent with values of Assign variables

y_{kl}^{max} \geq \sum_{i \in P: t_{ik} = l} x_{ij}, \text{ for each } j = 1,\ldots,G; \quad k \in C, l \in T_k
```
Balanced Assignment

Minimize

$$\sum_{k \in C} \sum_{l \in T_k} (y_{kl}^{\text{max}} - y_{kl}^{\text{min}})$$

sum of inter-group variation over all types in all categories

Subject to

$$\sum_{j=1}^{G} x_{ij} = 1, \text{ for each } i \in P$$

each person must be assigned to one group

$$g_{\text{min}} \leq \sum_{i \in P} x_{ij} \leq g_{\text{max}}, \text{ for each } j = 1, \ldots, G$$

each group must be assigned an acceptable number of people
Balanced Assignment in AMPL

Objective, assignment constraints

minimize TotalVariation:
    sum {k in CATEG, l in TYPES[k]} (MaxType[k,l] - MinType[k,l]);
    # Total variation over all types

subj to AssignAll {i in PEOPLE}:
    sum {j in 1..numberGrps} Assign[i,j] = 1;
    # Each person must be assigned to one group

subj to GroupSize {j in 1..numberGrps}:
    minInGrp <= sum {i in PEOPLE} Assign[i,j] <= maxInGrp;
    # Each group must have an acceptable size

\[ g_{\text{min}} \leq \sum_{i \in P} x_{ij} \leq g_{\text{max}}, \text{ for each } j = 1, \ldots, G \]
Balanced Assignment

Define also

\[ Q = \{ i \in P : t_{i,m/f} = \text{female} \} \]

Determine

\[ z_j \in \{0,1\} = 1 \text{ if any women assigned to group } j \]
\[ = 0 \text{ otherwise, for all } j = 1, \ldots, G \]

Subject to

\[ 2z_j \leq \sum_{i \in Q} x_{ij} \leq |Q| z_j, \text{ for each } j = 1, \ldots, G \]

Each group must have either

No women \((z_j = 0)\) or \(\geq 2\) women \((z_j = 1)\)
Balanced Assignment in AMPL

Supplemental constraints

```AMPL
set WOMEN = {i in PEOPLE: type[i,'m/f'] = 'F'};
var WomenInGroup {j in 1..numberGrps} binary;

subj to Min2WomenInGroupLO {j in 1..numberGrps}:
 2 * WomenInGroup[j] <= sum {i in WOMEN} Assign[i,j];

subj to Min2WomenInGroupUP {j in 1..numberGrps}:
 sum {i in WOMEN} Assign[i,j] <= card(WOMEN) * WomenInGroup[j];

2Z_j \leq \sum_{i\in Q} x_{ij} \leq |Q| Z_j, \text{ for each } j = 1,\ldots,G
```
Modeling Language Data

210 people

set PEOPLE :=

BIW AJH FWI IGN KWR KKI HMN SML RSR TBR
KRS CAE MPO CAR PSL BCG DJA AJT JPY HWG
TLR MRL JDS JAE TEN MKA NMA PAS DLD SCG
VAA FTR GCY OGZ SME KKA MYA API ASA JLN
JRT SJO WMS RLN WLB SGA MRE SDN HAN JSG
AMR DHY JMS AGI RHE BLE SMA BAN JAP HER
MES DHE SWS ACI RJY TWD MNA JJR MFR LHS
JAD CWU PMY CAH SJH EGR JMQ GGH MMH JWR
MJR EAZ WAD LVN DHR ABE LSR MBT AJU SAS
JRS RFS TAR DLT HJO SCR CMY GDE MSL CGS
HCN JWS RPR RCR RLS DSF MNA MSR PSY MET
DAN RVY PWS CTS KLN RDN ANV LMN FSM KWN
CWT PMO EJD AJS SBK JWB SNN PST PSZ AWN
DCN RGR CPR NHI HKA VMA DMN KRA CSN HRR
SWR LLL AVI RHA KWT MLE FJL ESO TJY WHF
TBG FEE MTH RMN WFS CEH SOL ASO MDI RGE
LVO ADS CGH RHD MBM MRH RGF PSA TTI HMG
ECA CFS MKN SBM RCG JMA EGL UJT ETN GWZ
MAI DBN HFE PSO APT JMT RJE MRZ MRK XYF
JCO PSN SCS RDL TMN CGY GMR SER RMS JEN
DWO REN DGR DET FJT RJZ MBY RSN REZ BLW ;
Balanced Assignment

Modeling Language Data

4 categories, 18 types, 12 groups, 16-19 people/group

```plaintext
set CATEG := dept loc 'm/f' title ;

param type:

 dept loc 'm/f' title :=
 BIW NNE Peoria M Assistant
 KRS WSW Springfield F Assistant
 TLR NNW Peoria F Adjunct
 VAA NNW Peoria M Deputy
 JRT NNE Springfield M Deputy
 AMR SSE Peoria M Deputy
 MES NNE Peoria M Consultant
 JAD NNE Peoria M Adjunct
 MJR NNE Springfield M Assistant
 JRS NNE Springfield M Assistant
 HCN SSE Peoria M Deputy
 DAN NNE Springfield M Adjunct

param numberGrps := 12 ;
param minInGrp := 16 ;
param maxInGrp := 19 ;
```
Balanced Assignment

Modeling Language Solution

Model + data = problem instance to be solved (CPLEX)

ampl: model BalAssign.mod;
ampl: data BalAssign.dat;
ampl: option solver cplex;
ampl: option show_stats 1;
ampl: solve;

2568 variables:
  2532 binary variables
  36 linear variables
678 constraints, all linear; 26328 nonzeros
  210 equality constraints
  456 inequality constraints
  12 range constraints
1 linear objective; 36 nonzeros.

CPLEX 12.9.0.0: optimal integer solution; objective 16
23690 MIP simplex iterations
159 branch-and-bound nodes

7.4 sec
Balanced Assignment

Modeling Language Solution

Model + data = problem instance to be solved (Gurobi)

```ampl
ampl: model BalAssign.mod;
ampl: data BalAssign.dat;
ampl: option solver gurobi;
ampl: option show_stats 1;
ampl: solve;
```

2568 variables:
   2532 binary variables
   36 linear variables
678 constraints, all linear; 26328 nonzeros
   210 equality constraints
   456 inequality constraints
   12 range constraints
1 linear objective; 36 nonzeros.

Gurobi 8.1.0: optimal solution; objective 16
521639 simplex iterations
804 branch-and-cut nodes

109.1 sec
Extending a Modeling Language with Scripting

Example: Roll Cutting
  - fill orders for rolls of various widths

Given
  - raw rolls of a large (fixed) width
  - demands for various (smaller) ordered widths
  - a selection of cutting patterns that may be used

Determine
  - the number of times to cut each pattern

So that
  - demands are met (or slightly exceeded)
  - *raw rolls cut* and *wasted material* are minimized
**AMPL Model**

**Mathematical Formulation**

**Given**

- $w$ width of “raw” rolls
- $W$ set of (smaller) ordered widths
- $n$ number of cutting patterns considered

**and**

- $a_{ij}$ occurrences of width $i$ in pattern $j$, for each $i \in W$ and $j = 1, \ldots, n$
- $b_i$ orders for width $i$, for each $i \in W$
- $o$ limit on overruns
**Mathematical Formulation (cont’d)**

Determine

\[ X_j \] number of rolls to cut using pattern \( j \),
for each \( j = 1, \ldots, n \)

**to minimize**

\[ \sum_{j=1}^{n} X_j \]

total number of rolls cut

**subject to**

\[ b_i \leq \sum_{j=1}^{n} a_{ij} X_j \leq b_i + o, \text{ for all } i \in W \]

number of rolls of width \( i \) cut
must be at least the number ordered,
and must be within the overrun limit
**AMPL Model**

**AMPL Formulation**

**Symbolic model**

```AMPL
param rawWidth;
set WIDTHS;

param nPatterns integer > 0;
set PATTERNS = 1..nPatterns;

param rolls {WIDTHS,PATTERNS} >= 0, default 0;
param order {WIDTHS} >= 0;
param overrun;

var Cut {PATTERNS} integer >= 0;

minimize TotalCut: sum {p in PATTERNS} Cut[p];

subject to OrderLimits {w in WIDTHS}:
 order[w] <= sum {p in PATTERNS} rolls[w,p] * Cut[p] <= order[w] + overrun;
```

\[ b_i \leq \sum_{j=1}^{n} a_{ij}X_j \leq b_i + o \]
AMPL Model

AMPL Formulation (cont’d)

Explicit data (independent of model)

```
param rawWidth := 64.5 ;
param: WIDTHS: order :=
 6.77 10
 7.56 40
 17.46 33
 18.76 10 ;
param nPatterns := 9 ;
param rolls: 1 2 3 4 5 6 7 8 9 :=
 6.77 0 1 1 0 3 2 0 1 4
 7.56 1 0 2 1 1 4 6 5 2
 17.46 0 1 0 2 1 0 1 1 1
 18.76 3 2 2 1 1 1 0 0 0 ;
param overrun := 6 ;
```
AMPL Command Language

Model + data = problem instance to be solved

```ampl
ampl: model cut.mod;
ampl: data cut.dat;
ampl: option solver cplex;
ampl: solve;

CPLEX 12.9.0.0: optimal integer solution; objective 20
3 MIP simplex iterations
0 branch-and-bound nodes

ampl: option omit_zero_rows 1;
ampl: option display_1col 0;
ampl: display Cut;
4 13 7 4 9 3
```
AMPL Model

Command Language (cont’d)

Solver choice independent of model and data

```
ampl: model cut.mod;
ampl: data cut.dat;
ampl: option solver gurobi;
ampl: solve;
Gurobi 8.1.0: optimal solution; objective 20
3 simplex iterations
1 branch-and-cut nodes
ampl: option omit_zero_rows 1;
ampl: option display_1col 0;
ampl: display Cut;
4 13 7 4 9 3
```
AMPL Model

Command Language (cont’d)

Results available for browsing

```ampl
ampl: display \{p in PATTERNS\} sum \{w in WIDTHS\} w * rolls[w,p];
 1 63.84 3 59.41 5 64.09 7 62.82 9 59.66 # material used
 2 61.75 4 61.24 6 62.54 8 62.0 # in each pattern

ampl: display sum \{p in PATTERNS\}
ampl? Cut[p] * (rawWidth - sum \{w in WIDTHS\} w * rolls[w,p]);
 62.32 # total waste
 # in solution

ampl: display OrderLimits.lslack;
 6.77 0 # overruns
 7.56 0 # of each pattern
 17.46 0
 18.76 5
```
AMPL Script

**Trade off two objectives**

- Minimize rolls cut
  - Fewer overruns, possibly more waste
- Minimize waste
  - Less waste, possibly more overruns

```AMPL
minimize TotalCut:
 sum {p in PATTERNS} Cut[p];
minimize TotalWaste:
 sum {p in PATTERNS}
 Cut[p] * (rawWidth - sum {w in WIDTHS} w * rolls[w,p]);
```
**AMPL Script**

**Parametric Analysis of Tradeoff**

*Minimize rolls cut*

- Set large overrun limit in data

*Minimize waste*

- Reduce overrun limit 1 roll at a time
- If there is a change in number of rolls cut
  - record total waste (increasing)
  - record total rolls cut (decreasing)
- Stop when no further progress possible
  - problem becomes infeasible *or*
  - total rolls cut falls to the minimum
- Report table of results
Parametric Analysis (cont’d)

Script (setup and initial solve)

```AMPL
model cutTradeoff.mod;
data cutTradeoff.dat;

set OVER default {} ordered by reversed Integers;

param minCut;
param minCutWaste;
param minWaste {OVER};
param minWasteCut {OVER};

param prev_cut default Infinity;

option solver gurobi;
option solver_msg 0;

objective TotalCut;
solve >Nul;

let minCut := TotalCut;
let minCutWaste := TotalWaste;

objective TotalWaste;
```
Parametric Analysis (cont’d)

Script (looping and reporting)

```AMPL
for {k in overrun .. 0 by -1} {
 let overrun := k;
 solve >Nul;
 if solve_result = 'infeasible' then break;
 if TotalCut < prev_cut then {
 let OVER := OVER union {k};
 let minWaste[k] := TotalWaste;
 let minWasteCut[k] := TotalCut;
 let prev_cut := TotalCut;
 }
 if TotalCut = minCut then break;
}
printf 'Min%3d rolls with waste%6.2f\n\n', minCut, minCutWaste;
printf ' Over Waste Cut\n';
printf {k in OVER}: '%4d%8.2f%5d\n', k, minWaste[k], minWasteCut[k];
```
### AMPL Script

#### Parametric Analysis (cont’d)

##### Script run

```ampl
ampl: include cutWASTE.run

Min 20 rolls with waste 62.04

<table>
<thead>
<tr>
<th>Over</th>
<th>Waste</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>40.57</td>
<td>24</td>
</tr>
<tr>
<td>19</td>
<td>43.01</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>45.45</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>47.89</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>54.76</td>
<td>20</td>
</tr>
</tbody>
</table>
```

ampl:
Modeling Language APIs (Application Programming Interfaces)

Example: Roll Cutting by Pattern Enumeration
- fill orders for rolls of various widths

Given
- Demands, raw width, orders, overrun limit at before
- pattern generation software
- result reporting software

Build optimization into an integrated application
- use AMPL for model-based optimization
- use a general-purpose programming language for overall control, pattern generation, and reporting
AMPL API

AMPL APIs

Principles

- APIs for “all” popular languages
  - C++, C#, Java, MATLAB, Python, R
- Common overall design
- Common implementation core in C++
- Customizations for each language and its data structures

Key to examples: Python and R

- AMPL entities
- AMPL API Python/R objects
- AMPL API Python/R methods
- Python/R functions etc.
**AMPL API**

**AMPL Model File**

**Same pattern-cutting model**

```AMPL
param nPatterns integer > 0;
set PATTERNS = 1..nPatterns; # patterns
set WIDTHS; # finished widths
param order {WIDTHS} >= 0; # rolls of width j ordered
param overrun; # permitted overrun on any width
param rawWidth; # width of raw rolls to be cut
param rolls {WIDTHS,PATTERNS} >= 0, default 0;
 # rolls of width i in pattern j

var Cut {PATTERNS} integer >= 0; # raw rolls to cut in each pattern

minimize TotalRawRolls: sum {p in PATTERNS} Cut[p];

subject to FinishedRollLimits {w in WIDTHS}:
 order[w] <= sum {p in PATTERNS} rolls[w,p] * Cut[p] <= order[w] + overrun;
```
Some Python Data

A float, an integer, and a dictionary

```python
roll_width = 64.5
overrun = 6
Orders = {
 6.77: 10,
 7.56: 40,
 17.46: 33,
 18.76: 10
}
```

... can also work with lists and Pandas dataframes
Some R Data

A float, an integer, and a dataframe

```r
roll_width <- 64.5
overrun <- 6
orders <- data.frame(
 width = c(6.77, 7.56, 17.46, 18.76),
 demand = c(10, 40, 33, 10)
)
```
**AMPL API**

**Pattern Enumeration in Python**

*Load & generate data, set up AMPL model*

```python
def cuttingEnum(dataset):
 from amplpy import AMPL

 # Read orders, roll_width, overrun
 exec(open(dataset+'.py').read(), globals())

 # Enumerate patterns
 widths = list(sorted(orders.keys(), reverse=True))
 patmat = patternEnum(roll_width, widths)

 # Set up model
 ampl = AMPL()
 ampl.option['ampl_include'] = 'models'
 ampl.read('cut.mod')
```
Pattern Enumeration in R

Load & generate data, set up AMPL model

cuttingEnum <- function(dataset) {
  library(rAMPL)

  # Read orders, roll_width, overrun
  source(paste(dataset, ".R", sep=""))

  # Enumerate patterns
  patmat <- patternEnum(roll_width, orders$width)
  cat(sprintf("%d patterns enumerated\n\n", ncol(patmat)))

  # Set up model
  ampl <- new(AMPL)
  ampl$setOption("amplInclude", "models")
  ampl$read("cut.mod")}
**AMPL API**

**Pattern Enumeration in Python**

**Send data to AMPL**

```python
Send scalar values
ampl.param['nPatterns'] = len(patmat)
ampl.param['overrun'] = overrun
ampl.param['rawWidth'] = roll_width

Send order vector
ampl.set['WIDTHS'] = widths
ampl.param['order'] = orders

Send pattern matrix
ampl.param['rolls'] = {
 (widths[i], 1+p): patmat[p][i]
 for i in range(len(widths))
 for p in range(len(patmat))
}
```
**AMPL API**

**Pattern Enumeration in R**

**Send data to AMPL**

```r
Send scalar values
ampl$getParameter("nPatterns")$set(ncol(patmat))
ampl$getParameter("overrun")$set(overrun)
ampl$getParameter("rawWidth")$set(roll_width)

Send order vector
ampl$getSet("WIDTHS")$setValues(orders$width)
ampl$getParameter("order")$setValues(orders$demand)

Send pattern matrix
df <- as.data.frame(as.table(patmat))
df[,1] <- orders$width[df[,1]]
df[,2] <- as.numeric(df[,2])
ampl$getParameter("rolls")$setValues(df)
```
**AMPL API**

**Pattern Enumeration in Python**

**Solve and get results**

```python
Solve
ampl.option['solver'] = 'gurobi'
ampl.solve()

Retrieve solution
CuttingPlan = ampl.var['Cut'].getValues()
cutvec = list(CuttingPlan.getColumn('Cut.val'))
```
AMPL API

Pattern Enumeration in R

Solve and get results

```r
Solve
ampl$setOption("solver", "gurobi")
ampl$solve()

Retrieve solution
CuttingPlan <- ampl$getVariable("Cut")$getValues()
solution <- CuttingPlan[CuttingPlan[,-1] != 0,]
```
Pattern Enumeration in Python

Display solution

```python
Prepare solution data
summary = {
 'Data': dataset,
 'Obj': int(ampl.obj['TotalRawRolls'].value()),
 'Waste': ampl.getValue(
 'sum {p in PATTERNS} Cut[p] * \n (rawWidth - sum {w in WIDTHS} w*rolls[w,p])'
)
}

solution = [
 (patmat[p], cutvec[p])
 for p in range(len(patmat))
 if cutvec[p] > 0
]

Create plot of solution
cuttingPlot(roll_width, widths, summary, solution)
```
**AMPL API**

**Pattern Enumeration in R**

**Display solution**

```r
Prepare solution data
data <- dataset
obj <- ampl$getObjective("TotalRawRolls")$value()
waste <- ampl$getValue(
 "sum {p in PATTERNS} Cut[p] * (rawWidth - sum {w in WIDTHS} w*rolls[w,p])"
)
summary <- list(data=dataset, obj=obj, waste=waste)

Create plot of solution
切割Plot(roll_width, orders$width, patmat, summary, solution)
}
Enumeration routine

```python
def patternEnum(roll_width, widths, prefix=[]):
    from math import floor
    max_rep = int(floor(roll_width/widths[0]))
    if len(widths) == 1:
        patmat = [prefix+[max_rep]]
    else:
        patmat = []
        for n in reversed(range(max_rep+1)):
            patmat += patternEnum(roll_width-n*widths[0], widths[1:], prefix+[n])
    return patmat
```
Pattern Enumeration in R

Enumeration routine

```r
patternEnum <- function(roll_width, widths, prefix=c()) {
  cur_width <- widths[length(prefix)+1]
  max_rep <- floor(roll_width/cur_width)
  if (length(prefix)+1 == length(widths)) {
    return (c(prefix, max_rep))
  } else {
    patterns <- matrix(nrow=length(widths), ncol=0)
    for (n in 0:max_rep) {
      patterns <- cbind(patterns,
          cbind(patterns,
                  patternEnum(roll_width-n*cur_width, widths, c(prefix, n))
          )
      )
    }
    return (patterns)
  }
}
```
AMPL API

Pattern Enumeration in Python

Plotting routine

```python
def cuttingPlot(roll_width, widths, summ, solution):
    import numpy as np
    import matplotlib.pyplot as plt
    ind = np.arange(len(solution))
    acc = [0]*len(solution)
    colorlist = ['red', 'lightblue', 'orange', 'lightgreen',
                 'brown', 'fuchsia', 'silver', 'goldenrod']
```
Pattern Enumeration in R

Plotting routine

```r
cuttingPlot <- function(roll_width, widths, patmat, summary, solution) {
  pal <- rainbow(length(widths))
  par(mar=c(1,1,1,1))
  par(mfrow=c(1,nrow(solution)))
  for(i in 1:nrow(solution)) {
    pattern <- patmat[, solution[i, 1]]
    data <- c()
    color <- c()}
}
**AMPL API**

**Pattern Enumeration in Python**

*Plotting routine (cont’d)*

```python
for p, (patt, rep) in enumerate(solution):
 for i in range(len(widths)):
 for j in range(patt[i]):
 vec = [0]*len(solution)
 vec[p] = widths[i]
 plt.barh(ind, vec, 0.6, acc,
 color=colorlist[i%len(colorlist)], edgecolor='black')
 acc[p] += widths[i]
plt.title(summ['Data'] + "": " +
 str(summ['Obj']) + " rolls" + ", " +
 str(round(100*summ['Waste']/(roll_width*summ['Obj']),2)) + "% waste"
)
plt.xlim(0, roll_width)
plt.xticks(np.arange(0, roll_width, 10))
plt.yticks(ind, tuple("x {:}".format(rep) for patt, rep in solution))
plt.show()
```
**AMPL API**

**Pattern Enumeration in R**

*Plotting routine (cont’d)*

```r
for(j in 1:length(pattern)) {
 if(pattern[j] >= 1) {
 for(k in 1:pattern[j]) {
 data <- rbind(data, widths[j])
 color <- c(color, pal[j])
 }
 }
 label <- sprintf("x %d", solution[i, -1])
 barplot(data, main=label, col=color,
 border="white", space=0.04, axes=FALSE, ylim=c(0, roll_width))
}
print(summary)
}````
Pattern Enumeration in Python

In [1]: from patternEnumeration import *
In [2]: cuttingEnum('Sorrentino')

43 patterns enumerated

Gurobi 8.1.0: optimal solution; objective 18
7 simplex iterations
1 branch-and-cut nodes

Sorrentino: 18 rolls, 2.34% waste
AMPL API

Pattern Enumeration in R

```r
> source("PatternEnumeration.R")
> cuttingEnum("Sorrentino")

95 patterns enumerated

$data
[1] "Sorrentino"

$obj
[1] 18

$waste
[1] 27.12
```

![Graph showing pattern enumeration results](image)
Modeling Language Integration with Python and Jupyter Notebooks

Example: Roll Cutting by Pattern Generation

- Sending Python data to an AMPL model
 * via AMPL API for Python
 * via Python references in the AMPL model
- Programming a custom stopping criterion in Python
 * via callbacks from the Gurobi solver
- Maintaining a view of the integrated application
 * via Jupyter notebooks

Example: Lot Sizing using Advanced Formulations

- Generating specialized constraints
 * via Python embedded in AMPL scripts
Sending Python Data to an AMPL model

Imported and generated data in Python

```python
roll_width = 64.5
overrun = 6
orders = {
    6.77: 10,
    7.56: 40,
    17.46: 33,
    18.76: 10
}
patmat = patternEnum(roll_width, list(sorted(orders.keys(), reverse=True)))
```
Python Integration

Sending Data using the Python API

Symbolic sets and parameters in AMPL

```
param nPatterns integer > 0;
set PATTERNS = 1..nPatterns;
set WIDTHS;

param order {WIDTHS} >= 0;
param overrun;

param rawWidth;
param rolls {WIDTHS,PATTERNS} >= 0, default 0;
```
Sending Data using the Python API (cont’d)

Call `ampl` methods to read model, send data

```python
ampl = AMPL()

....... ampl.param['nPatterns'] = len(patmat)
ampl.param['overrun'] = overrun
ampl.param['rawWidth'] = roll_width

ampl.set['WIDTHS'] = widths
ampl.param['order'] = orders

ampl.param['rolls'] = {
    (widths[i], 1+p): patmat[p][i]
    for i in range(len(widths))
    for p in range(len(patmat))
}
```
Python Integration

Sending Data using PyMPL

Specify Python data correspondences in the model

```python
ampl = AMPL(langext=PyMPL())

.......$PARAM[nPatterns]{ len(patmat) };
set PATTERNS = 1..nPatterns;
$SET[WIDTHS]{ widths };
$PARAM[order{^WIDTHS}]{ orders };
$PARAM[overrun]{ overrun };
$PARAM[rawWidth]{ roll_width };
$PARAM[rolls {^WIDTHS,^PATTERNS}]{
    
    (widths[i], 1+p): patmat[p][i]
    for i in range(len(widths))
    for p in range(len(patmat))
}
};
```
Callbacks

Example: User-specified stopping rule

Data

- Times $t_1 < t_2 < t_3$ etc.
- Optimality gap tolerances $g_1 < g_2 < g_3$ etc.

Execution

- When elapsed time reaches t_i . . .
- Increase the gap tolerance to g_i
Python Integration

Callbacks

Stopping rule data in Python dictionary

```python
stopdict = { 'time' : ( 15, 30, 60 ),
            'gaptol' : ( .0002, .002, .02 )
}
```

Main routine for cutting by pattern generation

```python
def cuttingGen(cutdata, stopdata = ""): # begin pattern generation phase
    from amplpy import AMPL
    ........
    # finish when continuous relaxation of cutting problem has been solved
```
Python Integration

Callbacks

Set up callback and solve final integer program

```python
# Instead of Master.solve(), export to a gurobipy object
grb_model = Master.exportGurobiModel()

# Assign AMPL stopping data to gurobipy objects
if len(stopdata) == 0:
grb_model._stoprule = {'time': (1e+10,), 'gaptol': (1,)}
else:
    exec(open(stopdata+'.py').read(), globals())
    stopdict['time'] += (1e+10,)
    stopdict['gaptol'] += (1,)
grb_model._stoprule = stopdict

grb_model._current = 0

# Solve and import results
grb_model.optimize(callback)
Master.importGurobiSolution(grb_model)
```
Callbacks

Callback function

```python
def callback(m, where):
    """Gurobi callback function."""
    if where == gpy.GRB.Callback.MIP:
        runtime = m.cbGet(gpy.GRB.Callback.RUNTIME)
        if runtime >= m._stoprule['time'][m._current]:
            print("Reducing gap tolerance to %f at %d seconds" % \
                  (m._stoprule['gaptol'][m._current], m._stoprule['time'][m._current]))
            m.Params.MIPGap = m._stoprule['gaptol'][m._current]
        m._current += 1
```
Embedded Python

Executing Python inside AMPL

Fix AMPL variables according to Python variable

```
$PARAM[NT]{8};
var x {1..NT}, >= 0;   # production lot size
var y {1..NT}, binary; # production set-up
var s {0..NT}, >= 0;   # inventory level
var r {1..NT}, ${">= 0" if BACKLOG else ">= 0, <= 0"} $;

# use these variables iff BACKLOG > 0
```

`lotsize.mod`

Executing Python inside AMPL

Invoke Python generators for special lot-sizing constraints

```python
$EXEC{

def mrange(a, b):
    return range(a, b+1)

s = ['s[{}]'.format(t) for t in mrange(0, NT)]
y = ['y[{}]'.format(t) for t in mrange(1, NT)]
d = [demand[t] for t in mrange(1, NT)]

if BACKLOG is False:
    WW_U_AMPL(s, y, d, NT, prefix='w')
else:
    r = ['r[{}]'.format(t) for t in mrange(1, NT)]
    WW_U_B_AMPL(s, r, y, d, NT, prefix='w')
};
```

```python
ampl = AMPL(langext=PyMPL())
ampl.read('lotsize.mod')
ampl.solve()
```
Embedded Python

Executing Python inside AMPL

Optional listing of generated constraints

```plaintext
var ws {wi in 0..8} = s[wi];
var wr {wi in 1..8} = r[wi];
var wy {wi in 1..8} = y[wi];

param wD {1..8, 1..8};
data;
param wD :=
;
model;
```
Optional listing of generated constraints (cont’d)

```python
var wa {1..8};
var wb {1..8};

subject to wXY {wt in 1..8}: wa[wt] + wb[wt] + wy[wt] >= 1;

subject to wXA {wk in 1..8, wt in wk..min(8, wk+8-1): wD[wt,wt]>0}:
    ws[wk-1] >=
    sum {wi in wk..wt} wD[wi,wi] * wa[wi]
    - sum {wi in wk..wt-1} wD[wi+1,wt] * wy[wi];

subject to wXB {wk in 1..8, wt in max(1, wk-8+1)..wk: wD[wt,wt]>0}:
    wr[wk] >=
    sum {wi in wt..wk} wD[wi,wi] * wb[wi]
    - sum {wi in wt+1..wk} wD[wt,wi-1] * wy[wi];
```
AMPL in Jupyter Notebooks

Mix AMPL and Python cells

AMPLPY: Pattern Generation

Documentation: http://amplpy.readthedocs.io
GitHub Repository: https://github.com/ampl/amplpy
PyPI Repository: https://pypi.python.org/pypi/amplpy

Imports

```
In [1]: from __future__ import print_function
from amplpy import AMPL
import os, sys
from math import floor, ceil
```
Building a Decision-Making Tool for Deployment

QuanDec

- Implemented in the Java API for AMPL
- Developed and supported by Cassotis Consulting
QuanDec

Architecture

Server side

- AMPL model and data
- Standard AMPL-solver installations

Client side

- Interactive tool for collaboration & decision-making
- Runs on any recent web browser
- Java-based implementation
 - AMPL API for Java
 - Eclipse Remote Application Platform
QuanDec

Getting Started

step 1: install QuanDec on a server

step 2: copy & paste your model files (.mod and .dat) into QuanDec’s workspace

step 3: create AMPL tables and link them to QuanDec explorer
QuanDec

Workbench
QuanDec

Scenarios

- Scenario comparison
- All variables can be compared
- Display of relative difference
- Custom reports

Workspace	*Admin*
New Report	Show/Hide differences

Comparator

- Executive summaries
- Costs and Revenues
- Profit and Sales
- Production costs
 - Absolute costs
 - Detailed costs
- Internat price of intermedi US$/t
- Net production level
- Production cost of product
 - PLT 'CO'
 - PLT 'SO'
 - PLT 'BO'
 - PLT 'ST'
- Production level
- Production level of product
- Report Structure

Economics and Production

<table>
<thead>
<tr>
<th>Variable</th>
<th>Index</th>
<th>Unit</th>
<th>BUDGET 2016</th>
<th>My Scenario</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT 'CO'</td>
<td>kt</td>
<td>1763.98</td>
<td>1764.25</td>
<td>0.02%</td>
<td></td>
</tr>
<tr>
<td>PLT 'SO'</td>
<td>kt</td>
<td>4085.77</td>
<td>4084.46</td>
<td>-0.03%</td>
<td></td>
</tr>
<tr>
<td>PLT 'BO'</td>
<td>kt</td>
<td>5062.62</td>
<td>5060.91</td>
<td>-0.03%</td>
<td></td>
</tr>
<tr>
<td>PLT 'ST'</td>
<td>kt</td>
<td>2528.29</td>
<td>2526.91</td>
<td>-0.03%</td>
<td></td>
</tr>
<tr>
<td>PLT 'electricity'</td>
<td>US$/MWh</td>
<td>125.75</td>
<td>125.75</td>
<td>0.00%</td>
<td></td>
</tr>
</tbody>
</table>

Reports

- Sulfur cycle
- Metalic blend at CV
- Raw material use at Reduction

Economics and Production

- Name: Mary Torres
- Date: September 13, 2016 4:53 PM