
1

Algebraic Modeling Languages for Optimization
Robert Fourer
Northwestern University

 Algebraic modeling languages are sophisticated software packages that provide
a key link between an analyst’s mathematical conception of an optimization model
and the complex algorithmic routines that seek out optimal solutions. By allowing
models to be described in the high-level, symbolic way that people think of them,
while automating the translation to and from the quite different low-level forms
required by algorithms, algebraic modeling languages greatly reduce the effort and
increase the reliability of formulation and analysis. They have thus played an
essential role in the spread of optimization to all aspects to OR/MS and to many
allied disciplines.

Background and motivation
 Practical software packages for solving optimization problems emerged in the
1950s, as soon as there were computers to run them. Initially based on linear
programming, these “solvers” were soon generalized to allow for nonlinearities and
to accommodate integer variables and other discrete decisions. Despite continuing
progress in algorithms and in computing, however, by the beginning of its second
decade large-scale optimization had come to be seen as failing to live up to its
potential. The key weakness in early optimization systems was not in their
algorithms, however, but in their interaction with modelers. The human time and
cost of preparing a solver’s input and examining its output often greatly dominated
the computer costs of solving. The cause of this difficulty, and its ultimate cure, can
best be understood by considering the steps of the optimization modeling process
and their interaction with the technical requirements of large-scale optimization.

 The process of building practical optimization models involves several
interrelated steps. The first and most important is extensive communication with
the owner of a decision problem to identify the problem ingredients and to ascertain
the extent to which optimization is feasible within the managerial structure of the
client organization and the cognitive limitations of the model user. Next is the
formulation of a mathematical abstraction of the problem — a model — that offers a
sufficiently accurate characterization of the real situation in terms of reasonably
available data. Further steps build datasets, generate the corresponding
optimization problem instances, feed the problem instances to solvers, run the
solvers to produce results that are optimal or near-optimal by the model’s criteria,
and process the results into descriptions of decisions in forms that clients can
understand and analyze. These tasks are carried out repeatedly in a kind of

2

feedback loop, as further communication results in model modifications and data
refinements due to invalid assumptions, bad data, programming errors, and (most
interestingly) the identification of previously unelucidated policies, constraints and
preferences. The success of an optimization application depends critically on how
fast one can implement the central feedback loop — formulation, solution, analysis,
revision. The faster these steps, the greater the likelihood that the modeling effort
will receive sufficient attention from the client in the communication phase to
ensure that the model will eventually be adopted and supported. Thus as the
number-crunching solution phase became progressively more efficient with
advances in algorithms and computers, the steps involving human analysts became
the bottlenecks in this process.

 In fact the optimization development cycle was found to take much more analyst
time than expected. The culprit was the awkward and error-prone work of
converting an optimization problem between the modeler’s conception and the
algorithm’s representation. Indeed the natural way for a modeler to think about and
express models is in direct conflict with the input requirements of solution
algorithms. As detailed in Fourer (1983), whereas the modeler’s form is symbolic,
general, concise, and understandable to other modelers, the solver’s form is
contrary in every respect: explicit, specific, extensive, and convenient for
computation. For all but the smallest and simplest instances, the only practical way
to make the conversion from the modeler’s to the algorithm’s form is by writing a
computer program for the purpose, and it was the continued maintenance and
debugging of this program in successive cycles of the development process that
unexpectedly soaked up so much analyst time. Whether a program of this kind is
working correctly is particularly hard to confirm, as the only detailed evidence of its
performance consists of voluminous coefficient lists and other details that are
specifically intended for algorithmic efficiency rather than human comprehension.

 Optimization modeling languages were conceived as a way of alleviating this
bottleneck of conversion. They allow people to convey their formulations to
computer systems in much the same way that they would write them out or
describe them to colleagues. Computer systems that implement modeling languages
also facilitate analysis and reporting using the terminology of the model, thus
further speeding the development cycle.

 Any convenient form of representation for some class of optimization
applications can in principle give rise to a modeling language. However many
general-purpose modeling languages are based on the familiar mathematical
representation of an optimization problem as the minimization or maximization of a
function of decision variables, subject to equations and inequalities in functions of
the variables. The most popular languages are founded in particular on familiar

3

expressions — like ∑ 𝑎𝑖𝑗𝑛
𝑗=1 𝑥𝑗, �∑ (𝑔𝑟𝑠−ℎ𝑠)2𝑠∈𝑆 , or 𝐺𝑘𝑚 cos(𝛿𝑘 − 𝛿𝑚) — that use the

operators and functions of elementary algebra, though written in a form that
requires only a computer character set. Most such languages have been generalized
through the use of notations from logic, computer programming, and other
disciplines, but in recognition of their origins they are widely known as algebraic
modeling languages (Bisschop and Meeraus 1982).

 The initial popularity of algebraic modeling languages derived in part from their
users’ familiarity with mathematical optimization theory. However they quickly
became recognized as offering a valuable tradeoff between the convenience of
highly application-specific representations and the power of informal natural-
language problem descriptions. Their combination of precision and generality
enabled them to support optimization as a paradigm for modeling and decision-
making in diverse applications of operations research and throughout engineering,
science, economics, and management. At the same time their flexibility enabled
them to accommodate the unique features that distinguish individual applications in
realistic situations.

Example
 To give a further view of the issues involved in designing, selecting, and using an
algebraic modeling language, we present a modest example of a model of optimal
multiperiod transportation of a single commodity. Our presentation describes the
model first in words and mathematical formulas, and then equivalently in one of the
widely used modeling languages. We conclude by describing three major aspects of
working with the model: the specification of data, the invocation of solvers, and the
examination of results.

 Mathematical formulation. To begin describing an algebraic model for
transportation, we may say that we have a set I of cities where supply of a product
originates, and a set J of cities where demand must be met. A set of “links” 𝐿 ⊆ 𝐼 × 𝐽
specifies those origin-destination pairs (𝑖, 𝑗) for which shipments from i to j are
possible. We want to plan for the next T weekly time periods.

 The objective of this model is to decide how much to ship from each origin to
each destination in each week, so as to minimize the total cost of all shipments. Thus
we introduce decision variables 𝑥𝑖𝑗𝑡 ≥ 0 and parameters 𝑐𝑖𝑗𝑡 > 0 for each (𝑖, 𝑗) ∈ 𝐿
and t = 1, . . . , T, representing respectively the amounts to be shipped (which will be
determined by optimization) and the costs per unit of shipment (which are supplied
as data). In terms of these quantities, the objective may be written algebraically as

Minimize ∑ ∑ 𝑐𝑖𝑗𝑡𝑇
𝑡=1(𝑖,𝑗)∈𝐿 𝑥𝑖𝑗𝑡

4

The essential constraints on the decision variables are next described in terms of
parameters 𝑎𝑖𝑡 for each 𝑖 ∈ 𝐼 and t = 1, . . . , T, representing the amount that becomes
available for shipment at origin i in week t, and 𝑏𝑗𝑡 for each 𝑗 ∈ 𝐽 and t = 1, . . . , T,
representing the amount required to meet expected demands at destination j in
week t. The possibility of week-to-week fluctuations in shipping costs suggests that
not all supply should be shipped out in the week that it becomes available. Thus we
also introduce decision variables 𝑦𝑖𝑡 for each 𝑖 ∈ 𝐼 and t = 1, . . . , T, to represent the
amount of product in inventory at origin i at the end of week t. The following
algebraic constraints then serve to express the limitations on shipping out of each
origin and the requirements of meeting demand at each destination:

 ∑ 𝑥𝑖𝑗𝑡 + 𝑦𝑖𝑡 ≤ 𝑎𝑖𝑡 + 𝑦𝑖,𝑡−1𝑗∈𝐽:(𝑖,𝑗)∈𝐿 , for each 𝑖 ∈ 𝐼, t = 1, . . . , T

 ∑ 𝑥𝑖𝑗𝑡 = 𝑏𝑗𝑡𝑖∈𝐼:(𝑖,𝑗)∈𝐿 , for each 𝑗 ∈ 𝐽, t = 1, . . . , T

For the sake of this simple model we disregard the possibility of initial inventories,
thus implicitly setting to zero all terms 𝑦𝑖0 in the origin constraints for t = 1.

 The shipment plan is also commonly subject to certain operational
considerations. As just one example, the amount shipped over link (𝑖, 𝑗) in all weeks
may be required to sum to at least a certain amount, given by a parameter 𝑑𝑖𝑗 , if that
link is used in any period at all. A quite general way of implementing this restriction
through algebraic constraints is by defining a corresponding collection of decision
variables 𝑧𝑖𝑗 that can only take the values 0 or 1. Then we may write

 𝑑𝑖𝑗𝑧𝑖𝑗 ≤ ∑ 𝑥𝑖𝑗𝑡𝑇
𝑡=1 ≤ min�∑ 𝑎𝑖𝑡𝑇

𝑡=1 ,∑ 𝑏𝑗𝑡𝑇
𝑡=1 � 𝑧𝑖𝑗, for each (𝑖, 𝑗) ∈ 𝐿

which forces shipments to be zero when 𝑧𝑖𝑗 is zero, or to be at least 𝑑𝑖𝑗 (and at most
some implied upper bound) when 𝑧𝑖𝑗 is one.

 Modeling language formulation. The representation of this model in an
algebraic modeling language is fundamentally the same as this mathematical
formulation, with the differences deriving mainly from the need to communicate the
model unambiguously and to use a standard character set. Thus for instance in the
AMPL modeling language (Fourer, Gay and Kernighan 1990) the sets and
parameters that describe the data might be specified as follows:

set ORIG; # origins
set DEST; # destinations

set LINKS within {ORIG,DEST};

param T integer > 0;

param supply {ORIG,1..T} >= 0;
param demand {DEST,1..T} >= 0;

param cost {LINKS,1..T} > 0;
param minShip {LINKS} >= 0;

5

AMPL defines a standard indexing expression such as {ORIG,1..T} to correspond
to a statement like “for each 𝑖 ∈ 𝐼, t = 1, . . . , T” in the mathematical formulation
(though the i and t need be included only where actually used). The use of more
meaningful names like ORIG for I and supply for a, while not required, often proves
useful for keeping models understandable as they grow in complexity. Models can
also be more thoroughly documented through a variety of comments, which are
seen here for the first two sets but will be otherwise omitted in this description for
the sake of brevity.

 Decision variables are next defined in much the same way as parameters:

var Ship {LINKS,1..T} >= 0;
var Inv {ORIG,1..T} >= 0;

var Use {LINKS} integer >= 0, <= 1;

Indeed the only difference between parameters and variables is that the former are
specified as part of the data while the latter are given their values by the solver so as
to optimize the objective. Given the definitions in this example, AMPL’s statement
for the objective of the model is as follows:

minimize TotalCost:
 sum {(i,j) in LINKS, t in 1..T} cost[i,j,t] * Ship[i,j,t];

This is the same algebraic expression as in the mathematical formulation, adapted
for input to a computer system; sum {...} corresponds to the sigma expressions,
while cost[i,j,t] and Ship[i,j,t] are the AMPL representations for 𝑐𝑖𝑗𝑡 and
𝑥𝑖𝑗𝑡 . An explicit operator * is introduced to represent the multiplication that is
customarily implicit in mathematical expressions.

 Constraints are similarly converted to algebraic expressions in the modeling
language. They are somewhat more complex than the objective because they come
in indexed collections and use relational operators for equalities and inequalities:

subject to Supply {i in ORIG, t in 1..T}:
 sum {(i,j) in LINKS} Ship[i,j,t] + Inv[i,t]
 <= supply[i,t] + (if t > 1 then Inv[i,t-1] else 0);

subject to Demand {j in DEST, t in 1..T}:
 sum {(i,j) in LINKS} Ship[i,j,t] = demand[j,t];

subject to ZeroMin1 {(i,j) in LINKS}:
 minShip[i,j] * Use[i,j] <= sum {t in 1..T} Ship[i,j,t];

subject to ZeroMin2 {(i,j) in LINKS}:
 sum {t in 1..T} Ship[i,j,t] <=
 min (sum {t in 1..T} supply[i,t],
 sum {t in 1..T} demand[j,t]) * Use[i,j];

The emphasis is on keeping the original forms of the constraints as much as
possible, while letting the AMPL translator automate the work of evaluating

6

coefficient expressions, collecting terms on the left, and other regularizations that
may be required by solvers. Each modeling language does introduce some changes;
here AMPL requires the double-inequality constraint to be split in two, but
streamlines the specifications of the supply and demand constraints by interpreting
{(i,j) in LINKS} so that it specifies indexing over only whichever index has not
already been fixed. Also the assumption of zero initial inventories must be made
explicit, in this example by using an if-then-else construct to handle inventories at
the end of “week 0” specially.

 Specification of data. Each modeling language offers its own format for
associating actual data values with the sets and parameters in the symbolic model.
A small collection of data for our example could be specified by an AMPL text file
that begins as follows:

set ORIG := YYZ LAF CVG PIT CLE ;
set DEST := ABE ORF ;

set LINKS := (YYZ,ABE) (YYZ,ORF) (LAF,ABE) (CVG,ORF)
 (PIT,ABE) (PIT,ORF) (CLE,ABE) (CLE,ORF) ;

param T := 5 ;

param demand: 1 2 3 4 5 :=
 ABE 1000 1200 1900 2500 2000
 ORF 2100 3000 4900 7700 5000 ;

param supply: 1 2 3 4 5 :=
 YYZ 2100 2250 3190 3120 3500
 LAF 1400 1250 1320 1220 1100
 CVG 1650 1250 2290 2120 2300

Model and data together specify a particular instance of an optimization problem for
which a solution can be sought.

 Modeling language systems typically also offer facilities for exchange of data
with popular databases, spreadsheets, and other repositories of data for decision
support. Indeed there is a close correspondence between the way that data values
are described in algebraic models and the way they are organized in relational
databases (Fourer 1997). Close interaction with data management software is often
important to the integration of optimization into business operations.

 Invocation of solvers. Modeling language software automatically reads and
interprets a model and data, generates an instance, and conveys the instance to a
solver in the required form. In AMPL it suffices to give only a few commands for
these purposes:

7

ampl: model multiEORMS.mod;
ampl: data multiEORMS.dat;
ampl: option solver cplexamp;
ampl: solve;

73 variables:
 8 binary variables
 65 linear variables
51 constraints, all linear; 221 nonzeros
1 linear objective; 40 nonzeros.

CPLEX 12.2.0.2: optimal integer solution; objective 288503.5
65 MIP simplex iterations
2 branch-and-bound nodes

The solver software is a separate product for which there may be many alternatives.
For this model, a different mixed-integer programming solver might have been used
instead:

ampl: model multiEORMS.mod;
ampl: data multiEORMS.dat;
ampl: option solver gurobi;
ampl: solve;

Gurobi 4.0.1: optimal solution; objective 288503.5
71 simplex iterations
plus 52 simplex iterations for intbasis

Also a full variety of options, specific to each solver, are accessible as needed to set
algorithmic options and report progress of long runs.

 Examination of results. Once the solver has returned a solution, the same
expression forms that are so convenient in describing the model to the computer
system can also be used to describe the results to be viewed. For example to show
for each link the ratio of total shipments to minimum shipment over all periods, one
can simply ask AMPL to “display” the appropriate sum, adapting the same
summation syntax that was used in the model:

ampl: display {(i,j) in LINKS}
ampl? sum {t in 1..T} Ship[i,j,t] / minShip[i,j];

: ABE ORF :=
CLE 0 1.69032
CVG . 1.48992
LAF 1.38636 .
PIT 0 0
YYZ 1 2.99143

Simple displays of this kind do much to support the cycle of development, by
speeding the modeler’s aggregation, transformation, and analysis of solutions. For
later deployment of the model, facilities are also available for writing more precisely
formatted text and for sending results off to other software for analysis.

8

Advantages
 The fundamental concept of algebraic modeling languages — that the entire
optimization modeling cycle is best carried out at the level of the model formulation
— makes possible the creation of modeling systems that have a number of desirable
characteristics. This article has already described how such systems promote
optimization modeling by making the entire process more efficient and reliable.
The modeling language concept has proven to have other benefits as well.
Principally these relate to independent treatment of distinct aspects of optimization,
and to extensions well beyond linear optimization.

 Independence. In contrast to the highly integrated design common of software
for mathematical and statistical modeling and for simulation, modeling language
systems for optimization have promoted an independence of model, data, and
solvers. This property has proved to be of benefit of users in several ways.

 Because the sets and parameters of a model are described symbolically along
with the variables, objectives, and constraints, the same model readily describes any
number of problem instances of different sizes and purposes. This model-data
independence allows prototypes to be scaled up quickly to larger and more realistic
scenarios through changes to the data files alone. Equally it provides flexibility to
experiment with different formulations on the same data, as is often essential for
finding tractable approaches to difficult mixed-integer modeling applications.
Following the initial development stages, model-data independence is also
beneficial, allowing the model to be frozen while deployment focuses on periodically
generating data for new runs. The full symbolic model description remains
accessible, however, whenever modifications are necessary to accommodate new
circumstances or analyses.

 Because modeling languages are designed to describe models and their data in
an abstract way, they are not tied to particular software for optimization or even to
particular methods. This model-solver independence allows instances to be
benchmarked over a range of solvers. The choice of a solver for deployment can
then be based on a tradeoff between price and performance, and can be revisited as
optimization technology evolves. The very substantial changes in linear
optimization packages that have occurred over recent decades have thus not
required corresponding changes in modeling language design.

 Another virtue of model-solver independence is to relieve the analyst of much
tedious work of converting between the modeler’s form and the various algorithms’
forms. Originally this work consisted mainly of generating coefficient lists and
bound vectors. But as languages have become more sophisticated it has come to
include conversions to linear representations from other forms that may be closer

9

to the original model conception, such as piecewise-linear formulations and
network node-arc descriptions.

 Extensions. Algebraic languages can express nonlinear optimization problems
as easily as linear ones, simply by permitting expressions that are nonlinear in the
variables. Thus for instance in our transportation example if it is desired to
encourage shipments of moderate size, neither too small nor too large, the objective
could be changed to

Minimize ∑ ∑ 𝑐𝑖𝑗𝑡
𝑥𝑖𝑗𝑡
𝛼

1−𝑥𝑖𝑗𝑡 ℓ𝑖𝑗⁄
𝑇
𝑡=1(𝑖,𝑗)∈𝐿

where 0 < 𝛼 < 1 and ℓ𝑖𝑗 is some positive link capacity. To specify this in a
modeling language it suffices to write the corresponding nonlinear expression:

minimize TotalCost:
 sum {(i,j) in LINKS, t in 1..T}
 cost[i,j,t] * Ship[i,j,t]̂ alpha / (1 - Ship[i,j,t]/lim[i,j]);

After the model and data have been processed, a representation of each nonlinear
objective and constraint expression is included as part of the instance
representation passed to the solver interface. Then the interface uses this
representation to compute function values at successive points generated by the
solver as it iterates toward the optimum; the interface also provides analytical (not
approximate) first and second derivatives automatically by methods that avoid the
overhead of symbolically differentiating each nonlinear expression (Rall and Corliss
1996; Griewank and Walther 2008). This approach is considerably more efficient
and less error-prone than working directly with the nonlinear solver, which would
require writing, debugging, and maintaining a program for each nonlinear
expression and its derivatives.

 The technology for recognizing and processing conventional nonlinear
expressions extends moreover to virtually any kind of expression that can be
written in terms of functions and operators. Thus it is possible to substantially
extend the range of models that can be expressed naturally through algebraic
modeling languages. Current implementations allow for example the specification
of complementarity conditions, and the description of logical restrictions using
operators like “or” and “not” rather than through the introduction of zero-one
variables. Also special cases like quadratic objectives and constraints can be
detected and transformed automatically.

 The algebraic expressions that are useful in describing individual objectives and
constraints are also useful in describing manipulations of models and
transformations of data. Thus almost as soon as modeling languages became
available, users started finding ways to adapt model notations to implement
sophisticated solution strategies and iterative schemes. These efforts stimulated the

10

evolution within algebraic modeling languages of scripting features, which include
statements for looping, testing, and assignment. Thus for instance to test the
sensitivity of our multiperiod transportation model to the minimal-shipment
thresholds, the modeler could write a simple loop:

for {k in 1..10} {
 let {(i,j) in LINKS} minShip[i,j] := minShip[i,j] + 250;
 solve;
 if solve_result = "infeasible" then break;
}

Industrial and research applications now commonly employ scripts involving many
hundreds of lines. The efficiency and convenience of algebraic modeling is thus
extended to situations much more complex than the solving of individual
optimization problems.

Alternatives
 The ideas and benefits of algebraic modeling languages are available to various
extents in several kinds of software.

 General-purpose algebraic modeling languages embody model-data-solver
independence to the greatest degree, supporting links to numerous independently-
developed solvers and data-management systems. The most widely used
commercial systems in this category are AIMMS (Paragon Decision Technology
2011), AMPL (AMPL Optimization 2011), GAMS (GAMS Development 2011), and
MPL (Maximal Software 2011); for noncommercial uses, GNU MathProg (Free
Software Foundation 2011) and Zimpl (Zuse Institute 2011) are open-source
alternatives licensed under the GNU GPL. All base their language designs on the
same fundamental ideas, though with varying specifics in some key respects. They
differ more substantially in aspects of their user, solver, and data management
interfaces.

 Solver-specific algebraic modeling languages offer similar designs but have been
implemented to be used mainly or exclusively with one solver developer’s products.
By forgoing solver independence, they can offer more complete and integrated
support for one suite of solvers, often including ones that go beyond the traditional
algorithmic approaches for linear and smooth nonlinear problems. Among the best-
known are LINGO (LINDO Systems 2011a), Mosel (Fair Isaac 2011), and OPL (IBM
Corporation 2011b).

 An algebraic modeling framework for optimization can also be implemented
within a general object-oriented modeling language. Specialized object types are
defined to represent common model entities such as parameters, variables, and
constraints; then all of the standard operators and functions are overloaded to act

11

specially when applied to these types. Thus for example using the CPLEX
Optimization Studio’s Concert C++ library (IBM Corporation 2011a) one can make
definitions such as

IloEnv env;
IloNumArray supply(env);
IloNumVarArray Use (env, nOrig, 0, 1, ILOINT);
IloExpr totalShipFrom(env);

and then express, for example, some supply-limit constraints by writing

for (i = 0; i < nOrig; i++) {
 for (j = 0; j < nDest; j++) {
 totalShipFrom += Ship[i][j];
 }
 mod.add(totalShipFrom <= supply[i] * Use[i]);
}

What appear to be arithmetic and comparison operations are in fact interpreted as
instructions to build up a constraint data structure for an affiliated solver. A similar
Concert interface is available for Java and .NET, and the same idea with more
general-purpose solver support has been carried through by, among others,
FLOPC++ (COIN-OR 2011), OptimJ (Ateji 2011) for Java, and Pyomo (Sandia 2011)
for Python. Compared to languages specially designed for algebraic modeling, these
object-oriented tools have less natural representations — particularly in the use of
indexing sets — and require more user involvement in the lower-level aspects of
programming. However they can offer the advantages of a much richer
programming environment than is afforded by the scripting facilities of specialized
modeling languages; also they hold out the possibility of simplifying the integration
of optimization models into broader applications.

 Several kinds of modeling language integration with general-purpose analytical
tools have also proved popular. Some general-purpose modeling languages have
connections to solvers running under MATLAB (Mathworks 2011), and there is a
MATLAB-based connection from AMPL to many independent solvers through the
TOMLAB environment (Tomlab Optimization 2011). The AMPL-like OPTMODEL
language (SAS Institute 2011) supports SAS/OR solvers as an integrated part of the
SAS business analytics system. By far the most popular are modeling languages
implemented as Microsoft Excel add-ins, notably the Frontline Premium Solver
(Frontline Systems 2011) and What’sBest (LINDO Systems 2011b), with a variety of
solver options. Because these languages are closely tied to Excel spreadsheet data
forms, they are very limited in power and expressiveness. However they offer the
very substantial benefit of being able to integrate optimization into the most widely
used environment for all kinds of business analyses.

12

Extensions
 Enhancements to algebraic modeling languages are basically of two kinds:
extensions to the languages themselves, and improvements to the ways in which the
languages interact with other systems.

 Modeling language extensions tend to be driven by solver developments.
Whenever algorithms are developed to effectively solve new forms of optimization
problems, modeling language developers are challenged to provide more
convenient support. Operators and syntaxes may be added to let modelers describe
new forms in the most natural ways, as happened for example with the advent of
more effective solution strategies to handle complementarity conditions (Ferris,
Fourer and Gay 1999). Alternatively, additional logic may be introduced to detect
special cases that are significant to new algorithms, as occurred with the discovery
of efficient methods for second-order cone problems that were equivalent to several
common kinds of nonlinear constraints (Lobo et al. 1998); here the recognition
technology is still in the process of being developed. Ferris et al. (2009) survey a
variety of such problems including also bi-level and generalized nonlinear
optimization. Constraint programming solvers have motivated a variety of extended
forms for logical and discrete optimization (Lustig and Puget 2001) which have also
proved to be valuable for describing discrete optimization more naturally to other
kinds of solvers.

 Enhancements to the interfaces and interoperability of modeling language
systems tend to be driven by more general developments in computing. This has
been seen in the creation of more sophisticated user interfaces for model building,
more powerful object-oriented programming interfaces for embedding models
within larger applications, and closer links to data management systems. Recent
popularity of Python-based optimization modeling tools is an example of such a
trend. Another is the growing attractiveness of optimization “software as a service”
— as pioneered by the NEOS Server (Czyzyk, Mesnier, and Moré 1998; Dolan et al.
2002) — which seems likely to motivate widespread access to algebraic modeling
languages “in the cloud” in ways that will foster even more efficient and convenient
development cycles for optimization.

References

AMPL Optimization LLC (2011). AMPL modeling language, www.ampl.com.

Ateji SAS (2011). OptimJ modeling language, www.ateji.com/optimj.

Bisschop, Johannes and Meeraus, Alexander (1982). “On the Development of a
General Algebraic Modeling System in a Strategic Planning Environment.”
Mathematical Programming Study 20, 1-29.

13

COIN-OR Foundation (2011). FLOPC++ modeling language, projects.coin-
or.org/FlopC++.

Czyzyk, Joseph, Mesnier, Michael P., and Moré, Jorge J. (1998). “The NEOS Server.”
IEEE Computational Science and Engineering 5, 68-75.

Dolan, Elizabeth D., Fourer, Robert, Moré, Jorge J., and Munson, Todd S. (2002).
“Optimization on the NEOS Server.” SIAM News 35:6, 4, 8-9.

Fair Isaac Corporation (2011). Xpress-Mosel modeling language, www.fico.com/
en/Products/DMTools/xpress-overview/Pages/Xpress-Mosel.aspx.

Ferris, Michael C., Dirkse, Steven P., Jagla, Jan-H., and Meeraus, Alexander (2009).
“An Extended Mathematical Programming Framework.” Computers and Chemical
Engineering 33, 1973-1982.

Ferris, Michael C., Fourer, Robert, and Gay, David M. (1999). “Expressing
Complementarity Problems in an Algebraic Modeling Language and Communicating
Them to Solvers.” SIAM Journal on Optimization 9, 991-1009.

Fourer, Robert (1983). “Modeling Languages versus Matrix Generators for Linear
Programming.” ACM Transactions on Mathematical Software 9, 143-183.

Fourer, Robert (1997). “Database Structures for Mathematical Programming
Models.” Decision Support Systems 20, 317-344.

Fourer, Robert, Gay, David M., and Kernighan, Brian W. (1990). “A Modeling
Language for Mathematical Programming.” Management Science 36, 519-554.

Fourer, Robert, Gay, David M., and Kernighan, Brian W. (2003). AMPL: A Modeling
Language for Mathematical Programming, 2nd edition. Cengage Learning, Belmont,
California.

Free Software Foundation (2011). GNU MathProg modeling language,
www.gnu.org/software/glpk.

Frontline Systems, Inc. (2011). Premium Solver for Excel, www.solver.com/
xlspremsolv.htm.

GAMS Development Corporation (2011). GAMS modeling language,
www.gams.com.

Griewank, Andreas, and Walther, Andrea (2008). Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation, 2nd edition. SIAM, Philadelphia,
Pennsylvania.

IBM Corporation (2011a). Concert Technology, www.ibm.com/software/
integration/optimization/cplex-optimization-studio/modeling/
#technology.

IBM Corporation (2011b). OPL modeling language, www.ibm.com/software/
integration/optimization/cplex-optimization-studio/modeling/
#language.

14

Josef Kallrath, ed. (2004). Modeling Languages in Mathematical Optimization.
Kluwer Academic Publishers, Dordrecht, The Netherlands.

Kuip, C.A.C. (1993). “Algebraic Languages for Mathematical Programming.”
European Journal of Operational Research 67, 25-51.

LINDO Systems (2011a). LINGO modeling language, www.lindo.com.

LINDO Systems (2011b). What’sBest Excel add-in, www.lindo.com.

Lobo, Miguel Soma, Vandenberghe, Lieven, Boyd, Stephen, and Lebret, Hervé (1998).
“Applications of Second-Order cone Programming.” Linear Algebra and its
Applications 284, 193-228.

Lustig, Irvin J. and Puget, Jean-François (2001). “Program Does Not Equal Program:
Constraint Programming and Its Relationship to Mathematical Programming.”
Interfaces 31:6, 29-53.

Maximal Software Inc. (2011). MPL modeling language,
www.maximalsoftware.com.

Paragon Decision Technology (2011). AIMMS modeling language, www.aimms.com.

Rall, Louis B. and Corliss, George F. (1996). “An Introduction to Automatic
Differentiation.” Martin Berz et al., editors, Computational Differentiation:
Techniques, Applications, and Tools. SIAM, Philadelphia, Pennsylvania, pp. 1-17.

Sandia National Laboratories (2011). Pyomo modeling language,
software.sandia.gov/trac/coopr/wiki/Pyomo.

SAS Institute Inc. (2011). SAS/OR PROC OPTMODEL modeling language,
www.sas.com/technologies/analytics/optimization/or.

The Mathworks, Inc. (2011). MATLAB technical computing environment,
www.mathworks.com.

Tomlab Optimization (2011). TOMLAB optimization environment,
www.tomopt.com/tomlab.

Zuse Institute Berlin (2011). Zimpl modeling language, zimpl.zib.de.

	Background and motivation
	Example
	Advantages
	Alternatives
	Extensions
	References

