
Numerical Issues and Influences in the
Design of Algebraic Modeling Languages for Optimization

Robert Fourer
Northwestern University

David M. Gay
AMPL Optimization LLC

The idea of a modeling language is to describe mathematical problems symboli-
cally in a way that is familiar to people but that allows for processing by computer
systems. In particular the concept of an algebraic modeling language, based on
objective and constraint expressions in terms of decision variables, has proved to be
valuable for a broad range of optimization and related problems.

One modeling language can work with numerous solvers, each of which imple-
ments one or more optimization algorithms. The separation of model specification
from solver execution is thus a key tenet of modeling language design. Neverthe-
less, several issues in numerical analysis that are critical to solvers are also im-
portant in implementations of modeling languages. So-called presolve procedures,
which tighten bounds with the aim of eliminating some variables and constraints,
are numerical algorithms that require carefully chosen tolerances and can benefit
from directed roundings. Correctly rounded binary-decimal conversion is valuable
in portably conveying problem instances and in debugging. Further rounding op-
tions offer tradeoffs between accuracy, convenience, and readability in displaying
numerical results.

Modeling languages can also strongly influence the development of solvers. Most
notably, for smooth nonlinear optimization, the ability to provide numerically com-
puted, exact first and second derivatives has made modeling languages a valuable
tool in solver development. The generality of modeling languages has also encour-
aged the development of more general solvers, such as for optimization problems
with equilibrium constraints.

This paper draws from our experience in developing the AMPL modeling lan-
guage [14, 15] to provide examples in all of the above areas. An associated set of
slides [13] shows more completely the contexts from which our examples are taken.

1. Rounding and conversion

AMPL incorporates an interactive display command that is designed to produce
usefully formatted results with a minimum of effort. Since numbers are often the
results of interest, a variety of numerical issues arise.

When linear programs are solved by the simplex method, degenerate basic vari-
ables that would take values of zero in exact computation may come out instead hav-
ing slightly nonzero values, as seen in this AMPL display of a variable named Make:

ampl: display Make;

: bands coils plate :=
CLEV 1.91561e-14 1950 3.40429e-14
GARY 1125 1750 300
PITT 775 500 500

1

To suppress these distracting and meaningless entries, AMPL offers the option of
specifying that all values less than some “display epsilon” be represented as zeros:

ampl: option display_eps 1e-10;

ampl: display Make;

: bands coils plate :=
CLEV 0 1950 0
GARY 1125 1750 300
PITT 775 500 500

Since tiny magnitudes might have significance in some applications, however, the
default display epsilon is left at zero, so that the substitution of zeros never occurs
without specific instructions from the modeler.

AMPL shows by default 6 digits of precision, with trailing zeroes suppressed:

ampl: display Level;

P1a 450.7
P3 190.124
P3c 1789.33

More or fewer significant digits can be requested:

ampl: option display_precision 4;
ampl: display Level;

P1a 450.7
P3 190.1
P3c 1789

ampl: option display_precision 9;
ampl: display Level;

P1a 450.700489
P3 190.123755
P3c 1789.33403

In some cases, such as where results represent amounts of money, it makes sense to
round not to a given precision but to a given decimal place:

ampl: display Price;

AA1 16.7051
AC1 5.44585
BC1 48.909
BC2 8.90899

ampl: option display_round 2;
ampl: display Price;

AA1 16.71
AC1 5.45
BC1 48.91
BC2 8.91

These displays rely on numerical routines that provide correctly rounded conver-
sions. Correctly rounded decimal-to-binary conversions produce the binary value

2

“closest” to a given decimal number, for a given binary representation and rounding
sense (up or down). Clinger [5] showed how to compute these conversions in IEEE
double-extended arithmetic, and Gay [16] adapted them to require only double-
precision arithmetic. Correctly rounded binary-to-decimal conversions produce a
decimal representation that, among all those having a specified number of signif-
icant digits or digits after the decimal point, comes closest to the original binary
value when correctly rounded in a specified rounding sense. Methods for this pur-
pose were proposed by Steele and White [27] and implemented more efficiently by
Gay [16]. Gay’s work in both cases was motivated in part by AMPL’s need for these
conversions.

AMPL also incorporates a special option for conversion to a “maximum precision”
decimal representations:

ampl: option display_precision 0;
ampl: display Level;

P1a 450.70048877657206
P3 190.12375501709528
P3c 1789.334027055151

This conversion’s result is the shortest decimal representation that will yield the
original binary representation when correctly rounded back to binary. This option
has several uses: to ensure that different numbers in index sets always display
differently, to provide for equivalent text and binary forms of communications to
solvers, and to assist in diagnosing unexpected behavior of rounding operations.

Experiments reported in [16] showed that the computational times for typi-
cal correctly-rounded binary-to-decimal conversions are competitive with the times
required by the then available standard C library routines — which did not pro-
duce correctly-rounded results. Even conversion to maximum precision is not pro-
hibitively slow, requiring usually between 3 and 10 times the effort of correct binary-
to-decimal conversion to 6 places.

As an example of the diagnostic function of maximum precision, consider these
results, from a scheduling model, that show how many people are to work each of
several numbered schedules:

ampl: option display_eps .000001;

ampl: display Work;

10 28.8 73 28
18 7.6 87 14.4
24 6.8 106 23.2
30 14.4 109 14.4
35 6.8 113 14.4
66 35.6 123 35.6
71 35.6

To get implementable results, we might round each fractional number of people up
to the next highest integer. Then the total required workforce should be given by

ampl: display sum {j in SCHEDS} ceil(Work[j]);
sum{j in SCHEDS} ceil(Work[j]) = 273

3

When we compute the same total explicitly, however, it comes out with two people
fewer:

ampl: display 29+8+7+15+7+36+36+28+15+24+15+15+36;
29 + 8 + 7 + 15 + 7 + 36 + 36 + 28 + 15 + 24 + 15 + 15 + 36 = 271

The anomaly can be resolved by displaying all nonzero values at maximum precision:

ampl: option display_eps 0, display_precision 0;

ampl: display Work;

10 28.799999999999997 73 28.000000000000018
18 7.599999999999998 87 14.399999999999995
24 6.79999999999999 95 -5.876671973951407e-15
30 14.40000000000001 106 23.200000000000006
35 6.799999999999995 108 4.685288280240683e-16
55 -4.939614313857677e-15 109 14.4
66 35.6 113 14.4
71 35.599999999999994 123 35.59999999999999

We can see here that Work[73] and Work[108], which appeared to have values 28
and 0 when rounded to AMPL’s default 6 digits of precision, are in fact slightly
greater than those integer values and so are being unexpectedly rounded up.

For situations of this kind, AMPL provides a function round that rounds its first
argument to the number of places after the decimal point specified by the second
argument. Using this function in our example, the correct sum can be obtained by

ampl: display sum {j in SCHEDS} ceil(round(Work[j],6));
sum{j in SCHEDS} ceil(round(Work[j], 6)) = 271

Alternatively, the modeler may set an option solution_round to specify that all
values returned by the solver be automatically rounded to a certain number of
decimal places, when AMPL retrieves them from the solver. Setting this option to 6,
for example, would cause our original expression sum {j in SCHEDS} ceil(Work[j])
to come out to 271 as expected.

2. Presolve

A presolve phase attempts to reduce the numbers of variables and constraints
in a problem instance before sending it to a solver. The underlying motivation for
including a presolve phase in AMPL — rather than leaving this operation to each
solver — is to provide consistent handling of simple bounds, which most solvers
can treat specially to advantage. Explicit simple bounding constraints are removed
and the bounds are folded into the definitions of the variables, so that it makes no
difference whether a model declares

var Sell {PROD,1..T} >= 0;
subject to MLim {p in PROD, t in 1..T}: Sell[p,t] <= market[p,t];

or

var Sell {p in PROD, t in 1..T} >= 0, <= market[p,t];

As a result a modeler need not appreciate the importance of simple bounds to gain

4

the computational advantages of them.
AMPL also incorporates a more powerful presolve, due to Brearley, Mitra and

Williams [3], that uses known bounds together with linear constraints in order to
deduce tighter bounds. The idea is simple. If we know for example that lj ≤ xj ≤ uj

for j = 1, . . . , n, and if we have a constraint
∑n

j=1 arjxj ≤ br with ars > 0, then we
can deduce

xs ≤
1

ars

br −

∑
j∈P
j �=s

arjlj −
∑
j∈N
j �=s

arjuj

 ,

where
P ≡ {j = 1, . . . , n : arj > 0}, N ≡ {j = 1, . . . , n : arj < 0}.

Other cases are handled similarly, as described in [12]. Whenever any such inferred
bound is tighter than a known bound, it replaces the known bound. Thus progres-
sively tighter bounds are sometimes achieved by iterating several times through the
nonzero coefficients aij of the relevant constraints.

This presolving procedure can reduce problem size in several ways. If the inferred
bounds ls = us, then xs can be fixed and eliminated from the problem; if ls > us

then no feasible solution is possible. If∑
j∈P

arjuj +
∑
j∈N

arjlj ≤ br,

then the rth constraint is redundant and can be dropped; if∑
j∈P

arjlj +
∑
j∈N

arjuj > br,

then no feasible solution is possible, and the same with ≥ implies that the constraint
can be “fixed” to

∑n
j=1 arjxj = br. (Again there are other cases handled similarly,

and described in [12].) These are numerical tests, so in practice they may have to
be carried out with respect to tolerances. In fact a variety of tolerance options have
proved necessary to get AMPL’s presolve to act the way modelers want and expect
in a range of circumstances.

As a simple example, consider an AMPL model that specifies the data values as

set PROD; # products

param avail >= 0; # production hours available in a week
param commit {PROD} >= 0; # lower limit on tons sold in a week
param market {PROD} <= 0; # upper limit on tons sold in a week

and for which the variables Make[p] and single constraint Time are defined as follows:

var Make {p in PROD} >= commit[p], <= market[p];

subject to Time: sum {p in PROD} (1/rate[p]) * Make[p] <= avail;

If we set hours available to 13, then AMPL’s presolve phase reports that no feasible
solution is possible:

5

ampl: let avail := 13;
ampl: solve;

presolve: constraint Time cannot hold:
body <= 13 cannot be >= 13.2589; difference = -0.258929

The reason for this infeasibility is not hard to see. If in the constraint we use the
lower bounds commit[p] as the values of the variables, we see that hours available
must be at least 13.2589 (to six digits) to allow the minimum possible production:

ampl: display sum {p in PROD} (1/rate[p]) * commit[p];
sum{p in PROD} 1/rate[p]*commit[p] = 13.2589

AMPL’s previous message that “body <= 13 cannot be >= 13.2589” is reporting
this same observation.

Here are AMPL’s responses to three more values of avail:

ampl: let avail := 13.2589;
ampl: solve;

presolve: constraint Time cannot hold:
body <= 13.2589 cannot be >= 13.2589; difference = -2.85714e-05

ampl: let avail := 13.25895;
ampl: solve;

MINOS 5.5: optimal solution found.
0 iterations, objective 61750.10714

ampl: let avail := 13.258925;
ampl: solve;

presolve: constraint Time cannot hold:
body <= 13.2589 cannot be >= 13.2589; difference = -3.57143e-06

Setting $presolve_eps >= 4.29e-06 might help.

In the first case we see that 13.2589 is not quite enough; evidently it is rounded down
when it is converted to six significant decimal digits. In the second case, a slightly
higher value, 13.25895, proves sufficient to allow a feasible solution, and hence an
optimal value can be reported. For the third case, the value has been taken between
the previous two, at 13.258925. Again presolve reports no feasible solution, but it
suggests a new tolerance setting that might make a difference.

There are actually two tolerances at work in this example. First, infeasibility is
detected in the rth constraint if (continuing our example)

br −
∑
j∈P

arjlj −
∑
j∈N

arjuj

is less than the negative of the value in the AMPL option presolve_eps. Once
infeasibility has been detected, presolve also calculates a (necessarily larger) hypo-
thetical value of presolve_eps that might lead to a determination of feasibility
instead. This value is reported if it is considered small enough to be meaningful
— specifically, if it is no larger than the value in AMPL option presolve_epsmax.
Presolve reports that this increase “might” make a difference because actions of
other presolve steps may have additional effects that cannot be quickly foreseen.

6

The tolerances presolve_eps and presolve_epsmax relate to determining infea-
sibility through inconsistent inferred bounds on variables or constraints. Analogous
tolerances presolve_fixeps and presolve_fixepsmax play the same roles in the
determination of whether bounds are close enough that a variable should be fixed
or an inequality constraint should be made an equality. And also the rth constraint
is dropped as redundant when

br −
∑
j∈P

arjuj −
∑
j∈N

arjlj

is at least as large as a tolerance given by constraint_drop_tol.
All three of presolve_eps, presolve_fixeps, and constraint_drop_tol are

set by default to zero, allowing in effect no tolerance for computational imprecision.
Experience suggests that, when the presolve routines can be written to use the
directed rounding — lower bounds toward −∞ and upper bounds toward +∞ —
that is available with IEEE arithmetic [24], then decisions on infeasibility, equality,
and redundancy are made correctly without any assistance from explicit tolerances
(as long as the problem involves exactly known data). The tolerance options are
retained, however, for use on platforms that do not offer directed rounding and with
problems having data of limited precision.

A final set of tolerances relate to variables that are allowed to take only integer
values. When a new lower bound is inferred for an integer variable, that bound may
be immediately rounded up to the next highest integer. Similarly, an inferred upper
bound may be immediately rounded down. In these situations the AMPL presolver
must again take care not to round up a bound that is only slightly greater than an
integer, or to round down a bound that is only slightly less than an integer. Presolve
thus only rounds a lower bound lj up or an upper bound uj down if lj − floor(lj) or
ceil(uj)−uj is greater than a given tolerance. The tolerance value is taken from the
value of the AMPL option presolve_inteps, which is set to 1e-6 by default. Mes-
sages suggesting that a slightly higher value of the tolerance might make a difference
are governed by an option presolve_intepsmax that works with presolve_inteps
in the same way that presolve_epsmax works with presolve_eps.

Presolve operations can be performed very efficiently. For a run that reported

Presolve eliminates 1769 constraints and 8747 variables.

19369 variables, all linear
3511 constraints, all linear; 150362 nonzeros
1 linear objective; 19369 nonzeros

AMPL’s processing required only about 2 seconds in total on a fast PC, of which
about 1/2 second was in presolve. For a larger run that reported

Presolve eliminates 32989 constraints and 54819 variables.

327710 variables, all linear
105024 constraints, all linear
1 linear objective; 317339 nonzeros

AMPL’s processing time was 23 seconds, of which only 4 were in presolve.

7

3. Modeling language influences on solvers

In addition to linear and mixed-integer programs, algebraic modeling languages
can express a broad variety of nonlinear programs. The expressive abilities of mod-
eling languages have in fact at times gone beyond the computational abilities of
available solvers. Extensions to solver technology have come about as a result.

We summarize here two cases in which the generality of AMPL has encouraged
new solver developments. One involves higher-order derivatives, and the other an
extension for specifying equilibrium conditions.

Second derivatives. Expressing a nonlinear program in an algebraic modeling
language involves nothing more than using the available operators to form nonlin-
ear expressions, possibly in conjunction with elementary nonlinear functions. The
following is for example a nonlinear objective function in AMPL:

minimize Energy:
sum {(j,k) in PAIRS} x[j,k] *

(c[j,k] + log (x[j,k] / sum {m in J: (m,k) in PAIRS} x[m,k]));

Nonlinear constraints are written using the same sorts of expressions along with
relational operators.

Given a nonlinear model and a data instance, AMPL generates an expression
graph for the nonlinear part of each objective and constraint. The AMPL version of
a nonlinear solver incorporates a driver that sets up a data structure to represent the
expression graphs. The solver later calls AMPL library routines that use the graph
data structures to evaluate the nonlinear functions; specifically, the solver passes
a current iterate to the AMPL routines, and gets back the values of the nonlinear
function at that iterate. A detailed explanation of this process is given by Gay
[20]. (Solvers that work directly with expression graphs can also be accommodated
by AMPL, but we are concerned here only with conventional solvers that address
nonlinearities through function evaluations.)

Many solvers require gradients as well as function values. AMPL’s evaluation
routines apply automatic differentiation [21] to compute gradient values at the same
time as function values. As described by Gay [17], AMPL employs in particular an
approach known as “backward” AD, which makes two passes through the graph for
each nonlinear expression f(x):

� a forward sweep computes f(x) and saves information on ∂o/∂ai

for each argument ai to each operation o;
� a backward sweep recursively computes ∂f/∂o for each operation

o, and hence ultimately ∇f(x).

The work of computing the gradient vector can be shown to be bounded by a small
multiple of the work of computing the function value alone, though possibly at a
large cost in additional space in the expression-graph data structure. Backward AD
is more accurate and efficient than finite differencing, and has substantially better
worst-case efficiency than straightforward symbolic differentiation.

The concepts of automatic differentiation can be applied as well to comput-
ing second-derivative information. Hessian-vector products ∇2f(x)v can be deter-
mined by applying backward AD to compute vT∇f(x), or equivalently to compute

8

∇x(df(x + τv)/dτ |τ=0). The entire Hessian can thus be determined through the
Hessian-vector products ∇2f(x)ej with the n unit vectors. Alternatively, if the
function of interest can be determined to have a group partially separable structure
[6, 22, 23],

f(x) =
q∑

i=1

θi

 ri∑

j=1

φij(Uijx)

 =

q∑
i=1

θi (Φi(x)) ,

where Uij is mij × n with mij � n, φij : �mij �→ �, and θi : � �→ �, then the
gradient and Hessian also have simplified structures,

∇f(x) =
q∑

i=1

θ′i(Φi(x))∇Φi(x),

∇2f(x) =
q∑

i=1

(
θ′i(Φi(x))∇2Φi(x) + θ′′i (Φi(x))∇Φi(x)∇Φi(x)T

)

where

∇Φi(x) =
ri∑

j=1

UT
ij∇φij(Uijx), ∇2Φi(x) =

ri∑
j=1

UT
ij ∇2φij(Uijx) Uij .

Thus the Hessian can be computed from sums of outer products involving the gen-
erally much smaller Hessians of the component functions φij .

The AMPL function-evaluation routines have been extended as described in Gay
[18, 19] to provide Hessians in dense or sparse form, as a full (symmetric) matrix
or just the lower triangle. Hessian-vector products are also available, to be used
for example in iteratively solving the linear equations that define the steps taken
by some algorithms. Given Lagrange multipliers as well as the current iterate,
the routines return the Hessian of the Lagrangian or its product with a vector.
AMPL’s library routines also perform an initial walk of the expression graphs to
detect group partially separable structure, using a hashing scheme to spot common
subexpressions; the modeler need not identify this structure.

How has this feature been critical to nonlinear solver development? Its addi-
tion to AMPL encouraged researchers’ interest in extending interior-point methods
to nonlinear optimization problems. These methods can be viewed as solving a
nonlinear problem such as

Minimize f(x)
Subject to hi(x) ≥ 0, i = 1, . . . , m

by applying a modified Newton’s method to the “centered” Karush-Kuhn-Tucker
optimality conditions,

∇f(x) = ∇h(x)T y, h(x) = w, WY e = µe,

where W = diag(w), Y = diag(y). The result is a Newton linear system of the form
 −∇2

(
f(x) − h(x)T y

)
∇h(x)T

∇h(x) WY −1

 (

∆x
∆y

)
= · · ·

9

that incorporates the Hessian of the Lagrangian in the upper left-hand block.
Given this extension to AMPL, a solver developer need only add an AMPL driver

to have full access to the necessary second-derivative information. Hundreds of
standard test problems — as well as any of the developer’s own benchmarks — are
immediately available, without any need to write and debug new code for Hessian
computations. This facility has contributed to rapid development of new interior-
point codes such as LOQO [28], KNITRO [4], and MOSEK [1]. The success of these
codes has in turn stimulated developers of other kinds of codes, such as CONOPT
[2] and PATH [9], to pursue possibilities for taking advantage of second-derivative
information.

Complementarity problems. A classical complementarity condition says that two
inequalities must hold, at least one with equality. Collections of complementarity
conditions, known as complementarity problems, arise as equilibrium conditions for
problems in economics and in engineering, and represent optimality conditions for
nonlinear programs, bi-level programs, and bi-matrix games.

To support solvers designed specifically for complementarity problems, the op-
erator complements has been added to the AMPL language [10]. Thus it is possible
to state a collection of conditions such as

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements

sum {i in PROD} Price[i] * io[i,j] <= cost[j];

AMPL also provides support for “mixed” complementarity conditions, which hold
between a double inequality and an expression:

subject to Lev_Compl {j in ACT}:
level_min[j] <= Level[j] <= level_max[j] complements

cost[j] - sum {i in PROD} Price[i] * io[i,j];

This condition is satisfied if the double-inequality holds with equality at its lower
limit and the expression is ≥ 0, or if the double-inequality holds with equality at its
upper limit and the expression is ≤ 0, or otherwise if the expression = 0.

The initial motivation for complementarity conditions in AMPL was to support
codes such as PATH [7] that solve “square” systems of such conditions — where
the number of variables equals the number of complementarity conditions plus the
number of equality constraints. Once a convenient notation for complementarity
conditions was available, however, there was nothing to stop modelers from writing
non-square systems and adding objective functions. Indeed, uses for these “math-
ematical programs with equilibrium constraints” — or MPECs — are of growing
interest.

Thus the availability of complementarity conditions in AMPL encouraged de-
velopment of algorithmic approaches to solving general MPECs, especially through
the application of nonlinear optimization methods to modifications of the MPEC
conditions [8, 11, 25, 26]. The necessary modifications can be carried out by a solver
driver, so that AMPL’s convenient representation of the complementarity conditions
is maintained at the modeler’s level.

10

References

[1] E.D. Andersen and K.D. Andersen, “The MOSEK Interior Point Optimizer for Linear
Programming: An Implementation of the Homogeneous Algorithm.” In High Perfor-
mance Optimization, H.Frenk, K.Roos, T.Terlaky, and S.Zhang, eds., Kluwer Academic
Publishers (2000) pp. 197–232.

[2] ARKI Consulting & Development A/S, “The CONOPT Algorithm.” At www.conopt.
com/Algorithm.htm.

[3] A.L. Brearley, G. Mitra and H.P. Williams, “Analysis of Mathematical Programming
Problems Prior to Applying the Simplex Method.” Mathematical Programming 8
(1975) 54–83.

[4] R. Byrd, M.E. Hribar, and J. Nocedal, “An Interior Point Method for Large Scale
Nonlinear Programming.” SIAM Journal on Optimization 9 (1999) 877–900.

[5] W.D. Clinger, “How to Read Floating Point Numbers Accurately.” In Proceedings of
the ACM SIGPLAN’90 Conference on Programming Language Design and Implemen-
tation, White Plains, NY, June 20-22, 1990, pp. 92–101.

[6] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, LANCELOT, a Fortran Package for Large-
Scale Nonlinear Optimization (Release A). Springer Series in Computational Mathe-
matics 17, Springer-Verlag (1992).

[7] S.P. Dirkse and M.C. Ferris, “The PATH Solver: A Non-Monotone Stabilization Scheme
for Mixed Complementarity Problems.” Optimization Methods and Software 5 (1995)
123–156.

[8] M.C. Ferris, S.P. Dirkse and A. Meeraus, “Mathematical Programs with Equilibrium
Constraints: Automatic Reformulation and Solution via Constrained Optimization.”
Numerical Analysis Group Research Report NA-02/11, Oxford University Computing
Laboratory, Oxford University (2002), web.comlab.ox.ac.uk/oucl/publications/
natr/na-02-11.html.

[9] M.C. Ferris and K. Sinapiromsaran, “Formulating and Solving Nonlinear Programs
as Mixed Complementarity Problems.” In Optimization, V.H. Nguyen, J.J. Strodiot
and P. Tossings, eds., volume 481 of Lecture Notes in Economics and Mathematical
Systems, Springer-Verlag (2000) pp. 132–148.

[10] M.C. Ferris, R. Fourer and D.M. Gay, “Expressing Complementarity Problems in an
Algebraic Modeling Language and Communicating Them to Solvers.” SIAM Journal
on Optimization 9 (1999) 991–1009.

[11] R. Fletcher and S. Leyffer, “Numerical Experience with Solving MPECs as NLPs.”
University of Dundee Report NA/210 (August 2002). At www.mcs.anl.gov/~leyffer/
MPEC-num-2.ps.Z.

[12] R. Fourer and D.M. Gay, “Experience with a Primal Presolve Algorithm.” InLarge
Scale Optimization: State of the Art, W.W. Hager, D.W. Hearn and P.M. Pardalos,
eds., Kluwer Academic Publishers, Dordrecht, 1994, pp. 135–154.

[13] R. Fourer and D.M. Gay, “Numerical Issues and Influences in the Design of Algebraic
Modeling Languages for Optimization.” Slides for presentation at the 20th Biennial
Conference on Numerical Analysis, University of Dundee, Scotland, 24-27 June 2003.
At www.ampl.com/REFS.

[14] R. Fourer, D.M. Gay and B.W. Kernighan, “A Modeling Language for Mathematical
Programming.” Management Science 36 (1990) 519–554.

11

[15] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathe-
matical Programming, 2nd edition. Duxbury Press, Belmont, CA (2003).

[16] D.M. Gay, “Correctly Rounded Binary-Decimal and Decimal-Binary Conversions.” Nu-
merical Analysis Manuscript 90-10, AT&T Bell Laboratories, Murray Hill, NJ (1990).
At www.ampl.com/REFS/rounding.pdf.

[17] D.M. Gay, “Automatic Differentiation of Nonlinear AMPL Models.” In Automatic
Differentiation of Algorithms: Theory, Implementation, and Application, A. Griewank
and G. Corliss, eds., SIAM, Philadelphia, PA (1991) pp. 61–73.

[18] D.M. Gay, “More AD of Nonlinear AMPL Models: Computing Hessian Information
and Exploiting Partial Separability.” In Computational Differentiation: Techniques,
Applications, and Tools, M. Berz, C. Bischof, G. Corliss and A. Griewank, eds., SIAM,
Philadelphia, PA (1996) pp. 173–184.

[19] D.M. Gay, “Automatically Finding and Exploiting Partially Separable Structure in
Nonlinear Programming Problems.” Technical report, Bell Laboratories, Murray Hill,
NJ (1996). At www.ampl.com/REFS/psstruc.pdf.

[20] D.M. Gay, “Hooking Your Solver to AMPL.” Technical report, Bell Laboratories,
Murray Hill, NJ (1993; revised 1994, 1997). At www.ampl.com/REFS/hooking2.pdf
or www.ampl.com/REFS/HOOKING.

[21] A. Griewank, “On Automatic Differentiation.” In Mathematical Programming: Recent
Developments and Applications, M. Iri and K. Tanabe, eds., Kluwer Academic Pub-
lishers, Dordrecht (1989) pp. 83–107.

[22] A. Griewank and Ph.L. Toint, “On the Unconstrained Optimization of Partially Sepa-
rable Functions.” In Nonlinear Optimization 1981, M.J.D. Powell, ed., Academic Press
(1982) pp. 301–312

[23] A. Griewank and Ph.L. Toint, “Partitioned Variable Metric Updates for Large Struc-
tured Optimization Problems.” Numerische Mathematik 39 (1982) 119–137.

[24] IEEE Standard for Binary Floating-Point Arithmetic, Institute of Electrical and Elec-
tronics Engineers, New York, NY (1985). ANSI/IEEE Standard 754-1985.

[25] S. Leyffer, “Mathematical Programs with Complementarity Constraints.” Argonne
National Laboratory Preprint ANL/MCS-P1026-0203 (February 2003). At www.mcs.
anl.gov/~leyffer/mpec-survey.ps.gz.

[26] S. Leyffer, “Complementarity Constraints as Nonlinear Equations: Theory and Nu-
merical Experiences.” Argonne National Laboratory Preprint ANL/MCS-P1054-0603
(June 2003). At www.mcs.anl.gov/~leyffer/MPEC-NCP-02.ps.gz.

[27] G.L. Steele and J.L. White, “How to Print Floating-Point Numbers Accurately.” In
Proceedings of the ACM SIGPLAN’90 Conference on Programming Language Design
and Implementation, White Plains, NY, June 20-22, 1990, pp. 112–126.

[28] R.J. Vanderbei, “LOQO: an Interior Point Code for Quadratic Programming.” Opti-
mization Methods and Software 11-12 (1999) 451–484.

12

