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1. Introduction
The NEOS server (Czyzyk et al. 1997, 1998; Gropp and
Moré 1997) provides Internet access via http://neos.
mcs.anl.gov to over 50 solvers for a range of optimiza-
tion problem types. This paper describes the design
and creation of Kestrel, a callable interface to the
NEOS server that extends the server’s versatility by
permitting access through a broad variety of model-
ing languages and systems.
The Kestrel interface is called from a locally run-

ning environment and returns results to that envi-
ronment. Kestrel thus gives a modeling system the
same access to remote NEOS solvers as to solvers
installed locally. As a result, analysts can consider
a wider variety of solvers, problems may be solved
more effectively, and new solver technologies may be
disseminated more rapidly.
Section 2 reviews the aspects and limitations of the

NEOS server that have led to our design of Kestrel.
Section 3 then presents Kestrel from a technical point
of view. It considers the communication and interface
problems inherent in calling the NEOS server from
a program somewhere else on the Internet, together

with our solutions to those problems as embodied
in the design of the NEOS application programming
interface and the Kestrel agents for modeling systems.
The remainder of the paper illustrates how we have

designed the Kestrel interface to make it useful from
the modeler’s point of view. Section 4 shows how
Kestrel agents enable the users of two quite differ-
ent optimization modeling languages—AMPL (Fourer
et al. 1990, 2003) and GAMS (Bisschop and Meeraus
1982, Brooke et al. 1992)—to invoke NEOS solvers in
virtually the same way as locally installed solvers.
Section 5 then presents two more sophisticated exam-
ples: one that uses Kestrel/AMPL as part of a larger
iterative scheme to solve and visualize solutions to
a partial differential equation, and one that incor-
porates the Kestrel interface to make a GAMS-to-
AMPL preprocessing service available via the NEOS
server. By using a paradigm similar to that described
by Ferris and Munson (2000), an extension to the
AMPL and GAMS Kestrel agents enables subprob-
lems to be queued for execution and later retrieval
of results; §6 describes this and related features and
their applications.
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2. The NEOS Server
The NEOS server is the most ambitious realization
to date of the optimization server concept (Fourer
and Goux 2001). Operated by the Optimization Tech-
nology Center of Argonne National Laboratory and
Northwestern University, it represents a collaborative
effort involving over 40 designers, developers, and
administrators around the world. The project solic-
its solvers for all kinds of local and global optimiza-
tion and related problems, including linear, integer,
nonlinear, stochastic, and semidefinite programs, with
linear, nonlinear, complementarity, and more general
nondifferentiable constraints. Some of the solvers are
free or are available through open-source licenses;
others are proprietary to varying degrees, but their
owners have agreed to permit their use at no charge
through the server.
Since its inception in 1996, the NEOS server has

been progressively enhanced and now regularly han-
dles over 40,000 submissions per month from a vari-
ety of business, educational, and scientific endeavors
(Dolan et al. 2002a, b). Aside from the Kestrel interface
to be described, problems are sent to the server via e-
mail, Web-based forms, and the NEOS graphical user
interface (the NEOS GUI). Although the server’s loca-
tion is fixed, each of the solvers can run on any work-
station connected to the Internet. Hence, available
computing resources have been able to grow along
with the number of solvers and users (Dolan 2001).
The large number of optimization problem types

and solvers precludes standardization on any one
input format. The NEOS server instead allows opti-
mization solvers to receive whatever text or binary
input they are equipped to accept, whether explicit or
symbolic or in the form of C or Fortran routines. To
cope with this variety, the server maintains a database
that records the characteristics and needs of each
solver. A solver’s database entry includes the input
format it accepts, the remote workstations on which
it may be run, user documentation for the various
interfaces, and other information used to construct the
NEOS server’s Web-based form interface. If a solver
can be run with different input formats, it must have a
database entry for each. With over 50 distinct solvers,
the number of database entries is about 120.
Under this arrangement, each submission to the

NEOS server is a single text input file comprising one
or more parts delimited by XML tags. (See Skonnard
and Gudgin 2001 for a concise introduction to XML.)
For e-mail submissions, the user inserts tags explicitly,
while the Web interface and NEOS GUI insert appro-
priate tags automatically. Consulting the database
entry for the requested solver, the server unpacks the
input’s parts into separate files and chooses a remote
workstation on which the submission will be run. The

files are then transmitted to the workstation, and the
remote solver is initiated there.
Compressed input is automatically detected and

expanded as part of the unpacking procedure.
More complex preprocessing, such as automatic
differentiation or modeling language translation, is
performed as part of the remote solver activities after
the problem has been sent to a workstation.
During the remote solver’s execution, all text in the

standard output and error streams is passed back to
the NEOS server, and then to the user in the form
of a listing returned through the original submission
interface. Some modelers are content to look at this
listing, while others either write their own processing
programs or cut and paste from the listing to other
software. However, a listing of this sort is problem-
atical when the results are to be manipulated by a
program rather than directly by a human modeler, as
when the optimization is part of some larger compu-
tational scheme or is embedded in a broader model-
ing context, and a listing may be insufficiently secure
when the results involve proprietary information.
Effective use of an optimization modeling lan-

guage, in particular, requires that the results be
returned in a form appropriate to the associated mod-
eling environment. The human modeler can then
access and manipulate the results through the envi-
ronment’s interface, which may provide specialized
facilities for browsing data and results, for dealing
with multiple files, and for interacting with databases
and spreadsheets. These requirements have motivated
our interest in an alternative interface that enables a
local modeling environment to send an optimization
problem to the server and retrieve the results in much
the same way that the environment would interact
with a local solver.
The next section describes the technical demands,

design, and implementation of a callable interface
to NEOS, and the specifics of accessing this inter-
face from algebraic modeling systems via Kestrel. The
reader who is mainly interested in the application of
these ideas may want to skip to §§4 to 6, where we
describe several uses of Kestrel in the context of the
algebraic modeling languages AMPL and GAMS.

3. Building the Kestrel Modeling
Language Agents

In the simplest terms, a callable interface to the NEOS
server requires some mechanism for making function
calls over the Internet. A local program known as an
agent can then translate a user request into a remote
function call that actually runs on the computer host-
ing the NEOS server.
In designing the callable interface to NEOS, we

sought to assure that this arrangement would be
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sufficiently flexible to handle the broad variety of
modeling environments and solvers. To that end, we
adopted the following design goals:
• Agents should be implementable on a choice of

platforms and in a choice of languages.
• Agents should be able to issue both blocking and

nonblocking calls on the NEOS server.
• Agents should be able to send both text and

binary data.
• A broad variety of applications should be imple-

mentable with reasonable effort.
• The calling mechanism should be compatible

with the rest of the NEOS server infrastructure.
• The server should be able to handle many simul-

taneous agent calls.
Fortunately, standard “middleware” is readily

available to help meet these goals. Competing tech-
nologies include Microsoft’s .NET technology (http://
www.microsoft.com/net); DCE, the Open Software
Foundation’s Distributed Computing Environment
(http://www.opengroup.org/dce); the Nexus library,
a component of the Globus Alliance (http://www.
globus.org); the Object Management Group’s CORBA
(http://www.corba.org); and UserLand Software’s
XML-RPC (http://www.xmlrpc.com).
The first implementation of Kestrel used the Nexus

library, and the second was based on CORBA. Both
versions relied on a separate “Kestrel server” running
in cooperation with the NEOS server and required a
shared disk drive for efficiency. When version 5 of the
NEOS server was implemented in 2005, however, a
callable interface through XML-RPC was made a cen-
tral component of its design, and a separate Kestrel-
only server was no longer necessary.
Thus, we begin this section with a description of the

application programming interface (the “NEOS API”)
that NEOS 5 provides to all of its users through XML-
RPC. We next introduce the concept of an agent that
calls the NEOS API. The remainder of this section
then focuses on the internal design of Kestrel agents
for optimization modeling systems. Subsequent sec-
tions argue that these agents can provide a variety of
valuable services to users of modeling systems.

3.1. Fundamentals of the NEOS API
All submissions to the NEOS server are performed by
creating an XML document file to define the input,
submitting this file to the server, and receiving a result
file from the server.
Communication with the NEOS server is accom-

plished by use of the XML-RPC (XML remote proce-
dure call) standard (Winer 2003). This standard allows
an agent process to invoke a specific member func-
tion of a remote object by creating an XML docu-
ment encapsulating the function name and arguments
and making a POST request to a knowledgeable http

server—the same kind of server that handles Web
page requests. The http server parses the XML docu-
ment, dispatches the arguments to the requested func-
tion, forms another XML document encapsulating the
results of the function, and returns the latter docu-
ment as the response to the POST request. Although
XML is designed for text, binary data can also be
transmitted via XML-RPC by encoding it as base64
text that is inserted into the XML document.
This mechanism requires a well-defined API to

define agent calls that match all of the server func-
tions. The NEOS API—described at http://neos.
mcs.anl.gov/neos/NEOS-API.html—contains over 25
calls accessible to C, C++, Java, Python, Perl, PHP,
Ruby, and any other language for which an XML-RPC
library is available.
As an example, the following Python call submits

an XML-delimited optimization request (or “job”) to
the NEOS server in the form of a character string:

�jobNumber�password�

= neos�submitJob�xmlstring�user= "�

interface="�id= 0�

If the submission fails, such as when the NEOS queue
for the requested solver is full, the returned jobNumber
is 0 and the password is an error message. Otherwise,
the jobNumber and password are used in subsequent
calls that manage the job, such as the following to
retrieve real-time output from a NEOS solver while a
job is running:

�msg�offset�

= neos�getIntermediateResults�jobNumber�

password�offset�

The base64-encoded msg contains the results of the job
from character number offset up to the last received
data. If the job is still running, then this function
hangs until the next packet of output is sent or the job
finishes. A nonblocking call is also provided and there
are analogous functions for retrieving final output. An
elementary Python script for a complete NEOS server
agent using these functions can be as simple as the
program shown in Figure 1.
API calls are also available to retrieve information

about the state of the NEOS server, to obtain the list
of solvers, and to kill a submission currently being
executed. Calls of another kind register and maintain
solvers on the server.

3.2. Agents
Although XML document creation and NEOS server
communication can be carried out explicitly by a user,
most of the time these activities are conducted by an
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#!/usr/bin/env python
import sys
import xmlrpclib

from config import variables

if len(sys.argv) < 2 or len(sys.argv) > 3:
sys.stderr.write("Usage: NeosClient <xmlfilename

| help | queue>")
sys.exit(1)

neos = xmlrpclib.ServerProxy("http://neos.mcs.anl.
gov:3332")

msg = neos.ping( )
if not msg.find("OK"):

sys.stderr.write("Could not contact NEOS server.")
sys.exit(1)

if sys.argv[1] == "help":
sys.stdout.write("Help not yet available � � �")

elif sys.argv[1] == "queue":
msg = neos.printQueue( )
sys.stdout.write(msg)

else:
xmlfile = open(sys.argv[1], "r")
xmlstring = ""
buffer = 1
while buffer:

buffer = xmlfile.read( )
xmlstring += buffer

xmlfile.close( )

(jobNumber, password) = neos.submitJob(xmlstring)
sys.stdout.write("jobNumber = %d " % jobNumber)

offset = 0
status = neos.getJobStatus(jobNumber, password)
while status == "Waiting" or status == "Running":

(msg, offset) = neos.getIntermediateResults(jobNumber,
password, offset)

sys.stdout.write(msg.data)
status = neos.getJobStatus(jobNumber, password)

msg = neos.getFinalResults(jobNumber, password).data
sys.stdout.write(msg)

Figure 1 An Elementary Python Script for a Complete NEOS
Server Agent

intermediary program, called an agent, that makes the
appropriate NEOS API calls.
As an example, consider what happens when a

request is submitted to NEOS via the Web form
interface. Clicking the “Submit to NEOS” button ini-
tiates an agent (a Python CGI script) that makes a
NEOS API call to get a list of the XML tags used by
the selected solver, reads the data that the user has
entered through text boxes, check boxes, and radio
buttons of the Web form, and combines this infor-
mation to create an XML document. The agent then
makes further NEOS API calls to submit the XML
document and to check the server intermittently for
output and job status. When the job is finished, the
agent directs the user’s Web browser to the results
page. Figure 2 shows how different NEOS agents
facilitate communications between local systems and
the NEOS server.

AMPL session

AMPL Kestrel
agent

GAMS Kestrel
agent

GAMS session

E-mail client

E-mail agent Web agent

Web browser

NEOS GUI

NEOS server

XML-RPC

XML-RPC client

Solver workstation Solver workstation

Solver workstation

Figure 2 Structure of the Various NEOS Interfaces, Showing the
Connections Between the NEOS Server and Possible Agents
Using the XML-RPC API

3.3. Kestrel Agents for Modeling Systems
The mechanism for communication between a model-
ing system and NEOS is also implemented by creating
an agent. In this case, the agent is responsible for
gathering a problem instance and related information
from the modeling system, generating an XML docu-
ment from this information, submitting the XML doc-
ument to the NEOS server, getting listings and results
from the server, and converting the results to a format
that the modeling system can use.
Our implementations of such agents, initially for

the AMPL and GAMS systems, are written in the
Python programming language. Python has several
features that make it ideal for this purpose:
• It is freely available and compatible with most

computing platforms.
• It is distributed with an easy-to-use XML-RPC

library.
• Third-party tools are available for converting

Python programs to executable binaries for Microsoft
Windows.
The Python code for our Kestrel agents for

AMPL and GAMS can be downloaded from the
NEOS Web pages (http://neos.mcs.anl.gov/neos/
downloads.html), but a few key code fragments
are presented here to give an idea of the issues
involved in getting communication via Kestrel to
work. Section 4 complements this discussion by
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describing how the Kestrel agents appear from the
user’s standpoint.
Although the AMPL and GAMS agents are sep-

arate programs, their code dealing with NEOS
communications is similar. The following fragments
are taken from the AMPL agent, but their GAMS
equivalents are much the same.
The AMPL Kestrel agent is invoked when AMPL’s

solve command is given. The agent encodes informa-
tion about the problem instance, solver options, and
related environment variables into an XML text doc-
ument stored as a string in the Python variable xml.
Then, the agent creates an object self.neos that will
be used for communicating with the NEOS server,
which is listening at a specified URL.
Communication with the server can now begin.

First, the agent must check that the server is run-
ning and accepting connections by using the API’s
ping call:

self�neos�ping� �

Next, the agent uses the submitJob call to send the
XML document stored in the string variable xml to the
NEOS server:

�jobNumber� password�= self�neos�submitJob�xml�

When the server receives this call, it performs the tasks
necessary for initiating a job and returns a job number
and password if the submission is successful, or a zero
and an error message if an exception occurred.
Finally, several calls are used to wait until the

NEOS submission is finished, and to retrieve the
results:

while status == "Running" or status
== "Waiting":
status = kestrel.neos.getJobStatus
(jobNumber, password)

time.sleep(5)
results = self.neos.getFinalResults
(jobNumber, password)

if isinstance(results, xmlrpclib.Binary):
results = results.data

Because the results for a Kestrel submission are
returned as a base64-encoded string, the data data
member of the return value is used to get the binary
value represented by the string. This value is then
written to a file from which the AMPL modeling envi-
ronment extracts the solution.

4. Using the Kestrel Modeling
Language Agents

The great majority of current submissions to the
NEOS server are written in the AMPL or GAMS mod-
eling language (Figure 3). Yet as previously remarked,
some of the advantages of a modeling language are
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Figure 3 Predominance of AMPL and GAMS in Submissions to the
NEOS Server

lost when it serves merely as a NEOS input format.
The NEOS server proceeds in such a case as follows:
• The server’s input is passed to a remote work-

station that has a modeling language processor as well
as the requested solver.
• The modeling language processor interprets the

input, converts it to a format that the solver recog-
nizes, and invokes the solver.
• When the solver run is complete, the processor

retrieves results and generates result displays speci-
fied by additional modeling language commands.
For security reasons, the modeling language pro-

cessor runs in a mode that suppresses file writing and
other local features. Thus, only the solver’s output
and the processor’s result tables are returned through
the NEOS server. Any interactivity, database connec-
tivity, or other flexibility that the modeling system
can provide when locally installed is lost in the server
environment.
Thus, one of the Kestrel interface’s principal design

requirements was to permit locally running GAMS
and AMPL processes to call remote NEOS solvers in
a way that would preserve all of the familiarity and
power of the GAMS and AMPL environments. This
section first describes the use of the Kestrel/AMPL
and Kestrel/GAMS agents for such a purpose, and
then considers their advantages over other client-
server arrangements for optimization.

4.1. Using the Kestrel/AMPL Agent
AMPL specifies the solver name and options through
a mechanism modeled on Unix and Windows envi-
ronment variables and uses temporary files for the
exchange of all other information with a solver. Thus,
from the AMPL modeling system’s standpoint, the
invocation of a solver proceeds in three main steps:
• Write a representation of the current problem

instance to a file, and set appropriate environment
variables.
• Locate a specified local solver, invoke it as an

independent program with appropriate arguments,
and wait for it to write a solution file.
• Read the solution file and resume processing.
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The Kestrel interface for AMPL substitutes the
Kestrel/AMPL agent program for the local solver in
the second step. The agent obtains a solution to the
problem instance via the NEOS server, rather than
from some locally installed solver. But to the AMPL
system, the agent is just another program that accepts
problem instances and returns solutions. Thus, no
special modification of AMPL is necessary to make it
compatible with the Kestrel/AMPL agent.
As an example, the AMPL commands for solv-

ing the steel.mod sample problem (http://www.
ampl.com/BOOK/EXAMPLES2/steel.mod) by using
a locally installed copy of the LOQO solver (Vander-
bei and Shanno 1999) are as follows:

ampl: model steel.mod;
ampl: data steel.dat;
ampl: option solver loqo;
ampl: option loqo_options ’mindeg sigfig=8

outlev=1’;
ampl: solve;

The corresponding commands to solve the same prob-
lem by using Kestrel/AMPL to run LOQO through
the NEOS server are much the same:

ampl: model steel.mod;
ampl: data steel.dat;
ampl: option solver kestrel;
ampl: option kestrel_options ’solver=loqo’;
ampl: option loqo_options ’mindeg sigfig=8

outlev=1’;
ampl: solve;

The solver option is changed from loqo to kestrel,
so that the AMPL solve command now invokes the
local Kestrel agent program. Also, a command setting
kestrel_options is added, to tell the Kestrel interface
which remote NEOS solver is being requested. In all
other respects, the AMPL session to this point is the
same as before.
Once the problem instance has been successfully

conveyed to the NEOS server, the Kestrel agent dis-
plays the assigned job number and password:

Job 831764 sent to newton.mcs.anl.gov
password: ZQPNBVCc

Then, it starts to echo any text that the solver sub-
sequently writes to the standard output and error
streams:

- - - - - - - - - - Begin Solver Output - - - - - - - - - - -
Executing /home/neosotc/neos-5-solvers/
kestrel-ampl/kestrelSolver.py

kestrel_options:solver=loqo

loqo_options:mindeg sigfig=8 outlev=1

LOQO 6.06: mindeg
sigfig=8

outlev=1
· · ·
LOQO 6.06: optimal solution
(11 QP iterations, 11 evaluations)

primal objective 191999.9989204328
dual objective 191999.996903256

ampl:

When AMPL is being used interactively, text contin-
ues to appear a few lines at a time as the solver
runs, with the frequency depending on how the solver
manages its buffers. After the solver run is completed,
all solution values are returned to the AMPL system
and can be accessed through subsequent commands.
The display command can be used to browse the
solution, for example:

ampl: display Make;
Make [∗] :=
bands 6000
coils 1400
;

The state of the AMPL system is in fact exactly the
same at this point (except for the setting of the solver
option) as it would be if the solver had been run
locally.
Echoing the algorithm progress log interactively, as

the solver generates it, is a substantial enhancement
made possible by the decision to use XML-RPC as the
communication protocol for NEOS 5. Earlier versions
could only return the solver’s output all at once, after
the solver run was complete. To view current output,
the job number and password could be entered into
a Web form (Figure 4) so that the results could be
viewed through a browser, although they could still
not be returned to the local AMPL environment. This
facility remains available in NEOS 5 but is mainly of
value for submissions through noninteractive inter-
faces such as e-mail.
This enhancement extends to situations in which

the local Kestrel or AMPL process is terminated and
then restarted while the solver continues to run. Our
design of Kestrel/AMPL for this situation is discussed
in §6 in the context of the Kestrel modeling language
agents’ submission and retrieval features.

4.2. Using the Kestrel/GAMS Agent
The GAMS modeling system communicates with
solvers entirely via temporary files, so its commu-
nication with the Kestrel interface is also file based.
Prior to sending the GAMS problem file to the NEOS
server, the Kestrel/GAMS agent removes all refer-
ences to the license and other system components, so
that proper licenses and information for the remote
solver can be inserted later. This practice helps pre-
serve the integrity of the client’s system by not
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Figure 4 The NEOS Server’s Web Form for Requesting Results from a Solver, In Response to Which the Server Generates a Page Containing the
Current Output or Final Job Results, as Appropriate

sending license information over the Internet unnec-
essarily. The Kestrel/GAMS agent preprocessing also
converts all absolute path names to relative ones.
To run the GAMSLIB trnsportmodel (http://www.

gams.com/modlib/libhtml/trnsport.htm), as an ex-
ample, the command gams trnsport is issued. The
GAMS system then looks for additional commands
within the file trnsport.gms. To solve the problem by
using a local copy of the MINOS solver, the relevant
commands are as follows:

model transport /all/;
option lp = minos;
solve transport using lp minimizing z;

To solve the same problem using MINOS remotely
through the NEOS server, we simply change the linear
programming solver to kestrel:

model transport /all/;
transport.optfile = 1;

option lp = kestrel;
solve transport using lp minimizing z;

The added statement transport.optfile = 1 speci-
fies that an options file, named kestrel.opt, is pro-
vided. This options file conveys the remote solver
name as well as any algorithmic directives for
the remote solver. Thus, for our MINOS example,
kestrel.opt includes the line

kestrel_solver minos

and optionally any MINOS directives on additional
lines.
After the problem instance has been submitted, the

Kestrel/GAMS agent displays a confirmation with a
job number and password, and the URL of a page
where current or final results can be viewed. After
the remote solver finishes its work, the solution is
returned to GAMS, which may further process and
report it just as if the problem had been solved locally.
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4.3. Advantages of the Kestrel Modeling
Language Agents

Some work and possibly expense is involved in
preparing to use the Kestrel interface. The prospec-
tive user who does not already have local access to
AMPL or GAMS must acquire and install a copy—
no special version is needed—either through purchase
or by downloading a freely available version limited
to 300 variables and constraints (and for GAMS also
2,000 nonzeros, 1,000 nonlinear nonzeros, and 50 inte-
ger variables).
Also Python, available without charge for all pop-

ular platforms, must be installed (see http://www.
python.org/download), and a Python script imple-
menting the AMPL or GAMS Kestrel agent must
be downloaded (from http://neos.mcs.anl.gov/neos/
kestrel.html). The Python scripts are only about 300–
350 lines. We also offer the option of compiled Win-
dows versions of the Python scripts, in the form of
application and auxiliary files occupying four to five
megabytes in total.
Once this initial investment is made, the local user

gains access to all the NEOS solvers that have model-
ing language interfaces—18 at current writing—while
retaining the benefits of the local features of the
AMPL or GAMS modeling system. The interactive
commands of AMPL remain available, for example,
to permit browsing through the solution and experi-
mentation with changes to the model or data. Multi-
ple files can also be read or written, optionally with
connections to databases, spreadsheets, or the user’s
own programs.
In the early stages of developing an application,

the Kestrel agents also offer the advantage of allow-
ing syntax and logic errors in the model and data
to be caught locally. Certain infeasibilities can also
be detected by AMPL’s local presolve phase. Only
valid problem instances reach the NEOS server via the
Kestrel agent, whereas other NEOS interfaces receive
numerous AMPL and GAMS submissions that result
in nothing more than syntax error reports.
Finally, the Kestrel interface can offer a considerable

degree of security because it sends NEOS only prob-
lem instances in low-level (usually binary) formats,
and receives results only in similar formats. The other
NEOS modes require models and data to be sent in
text forms that people can read—indeed, these forms
have been designed to promote readability—and are
limited to producing results in readable listings (as
discussed in §2).

5. Representative Further Uses
Optimization applications often take input from
numerous sources and require specific solver out-
put for further postprocessing. Such requirements

make it difficult, if not impossible, to use the classic
NEOS submission mechanisms, but the Kestrel inter-
face works well in these cases. As an example, this
section describes an integration of Kestrel and other
software to compute a so-called mountain pass solu-
tion to a semilinear partial differential equation.
The availability of the Kestrel interface also opens

up possibilities for NEOS services that involve more
than one resource. In particular, an optimization prob-
lem may be preprocessed in some manner prior to
submitting it to the final solver for solution. The lat-
ter part of this chapter presents an example in which
Kestrel preprocessing is used by a “GAMS/AMPL
solver” on the NEOS server.

5.1. Integrating with Other Software
Many applications need to interact with third-party
software to generate problem data and to validate and
visualize results obtained from an optimization prob-
lem. This software cannot be provided to the NEOS
server and is awkward to integrate with the inputs
and outputs of the classical NEOS interfaces. Kestrel
can provide an ideal mechanism for such applications.
As an example, we consider a case where Kestrel

could serve to integrate NEOS with MATLAB for
finding nontrivial solutions to a semilinear partial dif-
ferential equation. We consider specifically the Lane-
Emden-Fowler equation

−�u= up

with the Dirichlet boundary conditions u�x� = 0 for
all x ∈ 	
, where u is the function that we are trying
to find, 
 is the domain, 	
 is the boundary of the
domain, and p > 0 is a constant exponent. Instead of
solving this problem directly, we construct the varia-
tional function

F �u�=
∫



(
�
u�x��2− u�x�p+1

p+ 1
)
dx

with the Dirichlet boundary conditions. All of this
function’s nontrivial critical points (where u∗ 	= 0) cor-
respond to solutions to the original partial differential
equation.
Subject to reasonable assumptions, the Mountain

Pass Theorem (Moré and Munson 2004) states that
between any two local minimizers of some function
f � �n → �, there exists a continuous path connect-
ing these minimizers whose maximum value is min-
imal over all such paths. The critical point where the
maximum value is achieved along this optimal path
is termed the mountain pass. A mountain pass is not
a locally optimal point of f but is rather a saddle
point that gives the minimal change in function value
needed to make a transition from one minimizer to
another. In our example, each mountain pass of F is a
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critical point of F , so that solving the original partial
differential equations corresponds to finding moun-
tain passes of F .
We compute mountain passes by use of the elas-

tic string algorithm (Moré and Munson 2004). First,
we approximate the variational function F by dis-
cretizing the domain 
 into a finite number of trian-
gular elements and applying the trapezoidal rule to
approximate the integral on each of these elements.
The approximate variational function, f �u�, is then
the summation over all triangular elements of the
approximate integral over the elements. Using f �u�,
the elastic string algorithm solves the following non-
linear optimization problem to find an approximation
to a mountain pass:

Minimize
u1�����uK�w

w

subject to w≥ f �uk�� k= 1� � � � �K�
�uk −uk+1�2 ≤ h2k� k= 0� � � � �K�
u0 = ua�

uK+1 = ub�

Here, K is the number of breakpoints in the piecewise-
linear discretization of the path, uk is a finite-dimen-
sional approximation to u, � ·� is the Euclidean norm,
hk is a given parameter constraining the distance
between successive points, and ua and ub are two min-
imizers of F separated by a mountain range.
For this particular application, we fix the number

of breakpoints to a relatively small number and solve
the optimization problem to obtain an approximate
mountain pass. Then, we use an efficient Newton
method to compute an accurate mountain pass. The
key steps are as follows:
(1) Construct the finite-dimensional approximation

to the variational problem by decomposing the given
domain into elements, using a meshing package such
as TRIANGLE (Shewchuk 1996).
(2) Calculate the starting and ending points ua

and ub.
(3) Choose parameters K and h for the elastic string

algorithm.
(4) Solve the nonlinear optimization problem.
(5) Compute an accurate solution in MATLAB

(Chapman 2005, Palm 2001) and analyze and visual-
ize the results.
Only Steps (2)–(4) could be carried out remotely by

the standard NEOS scheme of submitting modeling
language declarations and commands. The decompo-
sition in Step (1) requires specialized local software
and Step (5) requires the execution of modeling lan-
guage commands to produce a local file of descrip-
tions that a MATLAB session can use to perform
function, gradient, and Hessian evaluations.
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Figure 5 Nontrivial Solution to the Lane-Emden-Fowler Equation
with p= 3

Kestrel thus provides the interface of choice for
this situation. Only Step (4) is performed remotely
on the NEOS server by use of the Kestrel/AMPL
agent as previously described. The rest of the arrange-
ment uses MATLAB and other locally executing pro-
grams. At the beginning of Step (5), a final AMPL
command writes a local file in AMPL’s standard
format for representation of nonlinear optimization
problem instances, which is read by means of a
MATLAB mex file as described by Gay (1997).
A complete AMPL model containing several sample

domains, and the MATLAB scripts for the analysis, are
available from http://www.mcs.anl.gov/∼tmunson/
models/mountain.zip. A nontrivial solution to the
Lane-Emden-Fowler equation with p= 3 on an annu-
lus domain generated by this code is depicted in
Figure 5.

5.2. Preprocessor Services on the NEOS Server
Preprocessing techniques are applied to an optimiza-
tion problem instance to make it more amenable
to solution, such as by reducing the number of
variables and constraints (Andersen and Andersen
1995, Brearley et al. 1975, Ferris and Munson 2001,
Savelsbergh 1994) or translating it to a different form.
Thus, rather than submit a problem directly to a solver,
a user may wish to submit it to some kind of pre-
processor that is available through the NEOS server.
After simplifying or converting the problem in some
way, the preprocessor can then use a Kestrel agent to
submit the modified problem to a NEOS solver, with-
out further intervention by the user. Results from the
solver are returned via the Kestrel agent to the pre-
processor, which can optionally undo some effects of
the preprocessing before returning results to the user.
The preprocessor and the solver need not reside on the
same machine or have anything else in common other
than their availability through the NEOS server.
This arrangement is currently used to provide a

way of submitting GAMS models to Kestrel-enabled
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solvers requiring AMPL input. The preprocessor is
the GAMS/CONVERT tool (Bussieck et al. 2003),
which takes as input a GAMS problem instance, and
produces as output a scalar model—having no index
sets—in any of several languages and formats.
Using the GAMS/CONVERT tool, the NEOS server

can offer a “GAMS/AMPL solver” to which the user
submits a GAMS model and an AMPL solver choice.
The server routes this submission to a workstation
where GAMS and AMPL are installed along with the
GAMS/CONVERT tool and the Kestrel agent. The fol-
lowing steps are performed on that workstation:
(1) The GAMS software package converts the

GAMS model and data to a GAMS problem instance.
(2) The GAMS/CONVERT tool converts the GAMS

problem instance to an equivalent problem instance
in scalar AMPL model format.
(3) The AMPL software package converts the scalar

AMPL model to an AMPL problem instance.
(4) The Kestrel agent submits the AMPL problem

instance to the NEOS server, along with the AMPL
solver choice.
At this point, the NEOS server is in a familiar state,

essentially the same as when a modeler has made a
Kestrel submission from a locally running AMPL or
GAMS session as described in §4. Thus, the server
proceeds to send the AMPL problem instance to the
specified AMPL solver, on a (usually different) work-
station that is set up to run that solver.
Once the specified solver finishes its work, all

steps are reversed. The second workstation returns an
AMPL solution file to the NEOS server, which returns
it to the first workstation, where GAMS/CONVERT
translates it to the form GAMS expects. GAMS then
completes its work by sending the requested output
back to the user via the NEOS server.
The initial submission may be made through any

of the NEOS interfaces. In particular, when the initial
submission is itself made through the Kestrel/GAMS
interface, then the single line like

kestrel_solver minos

in the GAMS kestrel.opt file described in §4 need
only be replaced by the corresponding two lines

kestrel_solver gams_ampl
option solver loqo;

where LOQO is an example of a solver that sup-
ports AMPL but not GAMS input. Subsequent lines
may contain other AMPL option statements. When
the submission to the GAMS/AMPL solver is made in
this way, the problem instance passes twice through
the NEOS server, once each in GAMS and AMPL
form. Step (1) above can be skipped, however, be-
cause translation of the GAMS model and data to a
problem instance has already been done locally on the
GAMS user’s computer.

6. Submission and Retrieval Features
of the Kestrel Modeling
Language Agents

We have assumed in previous examples that the local
processes—AMPL or GAMS, and the corresponding
Kestrel agent—remain active until results from the
remote solver have been returned. This arrangement
works well for a user whose number of submissions
and solution time per submission are moderate. In
other circumstances, however, the Kestrel facilities can
be made considerably more useful and fault toler-
ant by allowing job submission and retrieval to be
requested separately. Should a failure occur on the
local machine or in the NEOS server while a problem
is being solved on a remote workstation, the user can
request results again at a later time after the failure
has been corrected. The user may also deliberately ter-
minate the Kestrel agent and perform other modeling
tasks before requesting the results of a solve that is
expected to take a long time. The user’s interim tasks
may even include the submission of other problems
through the Kestrel interface; by automating this pos-
sibility, we have been able to go beyond our original
design goals by providing a rudimentary form of par-
allel processing.
In this section, we first describe two simple Kestrel

extensions: one for retrieving results from submis-
sions that have become disconnected, and the other
for requesting cancellation of a submission. We then
discuss the enhanced utilities for managing multiple
submissions through Kestrel.

6.1. Retrieving Disconnected Submissions
Inevitably, some Kestrel agent processes terminate
prematurely. If the termination of a Kestrel agent
occurs after the problem-submission call has com-
pleted, however, then further operations on the NEOS
server side are not affected. In particular, the NEOS
server still queues the problem and solves it on a
remote workstation.
Because the Web pages of intermediate results

are generated by the NEOS server independently of
how the submission was made, termination of the
Kestrel agent does not prevent such results from being
viewed through a Web interface like the one shown in
Figure 4. Following completion of the remote solver’s
run, the complete result listing can be viewed through
the same Web interface for as long as the NEOS server
keeps it on file—currently a few days.
Termination of Kestrel/AMPL or Kestrel/GAMS

also has no effect on the processes that eventually
return the results from the NEOS server. Thus, the
local modeling system that requested the results can
still obtain them, provided that it can restart the
Kestrel agent and can instruct it to retrieve a previous
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submission rather than begin a new one. The submis-
sion of interest can be identified by its job number
and password, such as 831764 and ZQPNBVCc from the
example in §4. This option proved easy to build into
our modeling language agents.
With AMPL, the only change is to set kestrel_

options to provide the job number and password
rather than the solver name:

ampl: model steel.mod;
ampl: data steel.dat;
ampl: option solver kestrel;
ampl: option kestrel_options ’job=831764

password=ZQPNBVCc’;
ampl: solve;

Kestrel then echoes all of the solver text from the
beginning up to the current point for the requested
job. If the solver has already finished, then all of its
output is echoed at once. Either way, the solver’s
results are returned to the AMPL environment for
viewing and processing using the usual AMPL com-
mands. The ability to restart output from a solver that
is still running is another enhancement made possible
by the use of XML-RPC.
The corresponding extension for GAMS is equally

straightforward. The file kestrel.opt is extended to
give the job number and password,

kestrel_job 574537
kestrel_password TWHPGjdL

The command gams trnsport is then issued as before.

6.2. Terminating Submissions
Occasionally, a user wants to abandon a long-running
submission because intermediate output shows little
progress being made or because an error in the model
or data has come to light. Merely terminating the cur-
rent Kestrel agent process does not have this effect, as
the preceding remarks have made clear.
Instead, the Kestrel agent must be provided with a

separate “kill” mode that makes a termination request
rather than a result-retrieval request along with the
job number and password. The request is communi-
cated to the NEOS server, which attempts to pass it to
the workstation running the solver. (Certain combina-
tions of workstation and solver are not configured to
recognize termination requests.)
The mechanisms of the modeling languages are

readily adapted to invoke the kill mode. For GAMS,
we change the designation of the solver from kestrel
to kestrelkil (with one final l due to a GAMS limita-
tion of 10-characters per solver name). The job num-
ber and password are placed into the kestrel.opt
file as before. Because the kestrelkil “solver” is
invoked by a GAMS solve command, a model must
be declared before this facility can be used in GAMS.

In the case of AMPL, kestrel_options is set as
above, and a command script kestrelkill is invoked:

ampl: option kestrel_options ’job=831764
password=ZQPNBVCc’;

ampl: commands kestrelkill;

The script resides in a file named kestrelkill in the
current ampl_include directory (which defaults to the
current working directory). It has just one line,

shell ’kestrel kill’;

that runs the quoted Kestrel agent command. We
might have preferred to pass all of the information to
the agent through kestrel_options, by recognizing a
setting of, say, ’kill job=674537 password=TWHPGjdL’
followed by a solve command to invoke the Kestrel
“solver” as before. AMPL’s solve is not convenient
for this purpose, however, because it refuses to invoke
a solver until a model and data have been translated
into a current problem instance. The kestrelkill
script can be run even when no model and data have
been read in the current session.

6.3. Managing Submissions and Retrievals
Most optimization modeling systems provide a way
of defining iterative schemes that solve one or more
models repeatedly. Common examples include sen-
sitivity analysis, cross-validation, decomposition, and
row or column generation.
For these purposes, the modeling language is ex-

tended to provide typical programming statements—
such as assignments, tests, and loops—that use the
same indexing and expressions as the language’s
model declarations. Programs, or scripts, using the
new statements also have access to any of the com-
mands already available for solving and manipulating
problem instances. In particular, all of the commands
we have shown for use of the Kestrel interface can
be used within a script, allowing scripts to do some
processing on the local computer while sending opti-
mization runs to NEOS solvers.
Many iterative schemes involve, in whole or part,

the solution of successive collections of similar but
independent subproblems. Because the NEOS server
typically has multiple workstations available to run
the required solver, we might prefer to send batches
of subproblems to the NEOS server, rather than sub-
mitting each subproblem and waiting for its solution
before submitting the next. The effect is an elemen-
tary form of parallel processing that uses the NEOS
server’s scheduler to manage the parallelism.
Because the Kestrel agent’s problem-submission

calls are separate from its result-retrieval calls, we can
adapt the approach that Ferris and Munson (2000)
used in their scheme for using modeling-language
scripts to control Condor workstation pools (Litzkow
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et al. 1988). Basically, a “solve” command can be
replaced by separate “submit” and “retrieve” scripts
or commands. Any number of submission requests
are permitted, with retrievals taking place in the same
order.
As an example, a conventional AMPL script for

Benders decomposition of a two-stage stochastic
location-transportation problem would contain an
inner loop that solves one subproblem per pass:

for {s in SCEN} {
let S := s;
solve;
let Exp_Ship_Cost := Exp_Ship_Cost + prob[S]
∗ Scen_Ship_Cost;

let {i in WHSE}
supply_price[i,s,nCUT] := prob[S]
∗ Supply[i].dual;

let {j in STOR}
demand_price[j,s,nCUT] := prob[S]
∗ Demand[j].dual;

}

Because the subproblems are all independent linear
programs, the subproblem processing may instead be
broken into two loops, one that submits all the sub-
problems,

for {s in SCEN} {
let S := s;
commands kestrelsub;

}

followed by one that retrieves all the corresponding
results:

for {s in SCEN} {
let S := s;
commands kestrelret;
let Exp_Ship_Cost := Exp_Ship_Cost + prob[S]
∗ Scen_Ship_Cost;

let {i in ORIG}
supply_price[i,s,nCUT] := prob[S]
∗ Supply[i].dual;

let {j in DEST}
demand_price[j,s,nCUT] := prob[S]
∗ Demand[j].dual;

}

By indexing over the same set in both loops, we
ensure that retrieval of problem results occurs in the
same order as problem submission.
The AMPL Kestrel agent implements this behavior

by use of a single temporary job file. The kestrelsub
script is just three lines:

option ampl_id (_pid);
write bkestproblem;
shell ’kestrel submit kestproblem’;

The first line serves only to insure that all invoca-
tions of the agent refer to the same temporary file,
whose name is constructed from the parameter _pid
that AMPL predefines to equal the process ID of the
current AMPL session. The write command generates
a binary problem instance in a file kestproblem.nl—
just as a solve command would do, but without
automatically invoking any solver. Instead, the shell
command invokes a Kestrel agent process with the
argument submit and the problem file name. In this
mode Kestrel/AMPL reads the file, submits it to the
server, appends the resulting job number and pass-
word to the job file, and then terminates without wait-
ing for a result.
The complementary kestrelret script performs

analogous actions in reverse order. It too is just three
lines:

option ampl_id (_pid);
shell ’kestrel retrieve kestresult’;
solution kestresult.sol;

The first line again serves to insure that all invocations
of the agent refer to the same temporary file. Then,
shell invokes a Kestrel agent process but passes it the
argument retrieve and a result file name kestresult.
The agent process asks the NEOS server for results
from the first job listed in the job file, then waits.
As soon as a response is received, the agent saves
the results file as kestresult.sol, removes the first
entry from the job file, and terminates. The final
statement of the script runs the AMPL command
solution to read the contents of the results file back
into the AMPL system. (One kestproblem.nl and one
kestresult.sol file remain in the current working
directory at the end of the AMPL session and must
be deleted by additional shell commands at the end
of the iterative scheme.)
The same effects are achieved in the GAMS envi-

ronment by the creation of two new “solvers”—
kestrelsub and kestrelret—that implement the
submission and retrieval parts of the Kestrel agent.
For example, the following commands implement a
sensitivity analysis scheme for the trnsport example:

SET iter /1 ∗ 5/;
PARAMETER optval(iter);
PARAMETER avail(iter);
avail(iter) = a(’seattle’) + 10 ∗ ord(iter);
LOOP (iter,
a(’seattle’) = avail(iter);
option lp = kestrelsub;
solve transport using lp minimizing z;

);
LOOP (iter,
a(’seattle’) = avail(iter);
option lp = kestrelret;
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solve transport using lp minimizing z;
optval(iter) = z.l;

);

Again, kestrelsub and kestrelret write job informa-
tion to a temporary job file, in this case stored in the
GAMS scratch directory and removed once process-
ing completes. We break with GAMS convention by
also using kestrel.opt as the options file for both
rather than looking for separate files kestrelsub.opt
and kestrelret.opt.
The usefulness of this facility depends on the rel-

ative processing costs of the NEOS server and of
the solver. The communication and scheduling costs
would likely dominate the solution time for the
Benders and trnsport examples if the linear pro-
grams generated were easily solved. More complex
applications can be identified, however, in which it is
advantageous to exploit this kind of parallelism. The
10-fold cross-validation scheme described by Ferris
and Munson (2000) is one example because it requires
solutions to many independent integer programming
problems whose cost per solve has been observed
to greatly exceed total costs for communication and
scheduling.
The ability to use this facility to solve optimiza-

tion subproblems in parallel is also necessarily lim-
ited by the resources available to the NEOS server.
When the number of jobs submitted for a solver
exceeds the number that available workstations can
handle, the server queues additional jobs and starts
them as soon as workstations become free. However,
the server imposes an upper bound on the number of
submissions that may be queued for any one solver.
Submissions to a solver that already has a full sub-
mission queue are then rejected. Schemes such as
Benders decomposition might require subproblems to
be aggregated so that they do not overwhelm the
server’s queues.

7. Further Directions
Despite its overall complexity, the NEOS server can
provide an API that is both straightforward for pro-
grammers and powerful enough to support the varied
needs of modelers. Building on the version 5 API, the
Kestrel interface makes NEOS solvers available to dis-
parate modeling languages and systems through only
minor changes to their procedures for local solvers.
The Kestrel interface has also proved to have

related uses that we did not anticipate. The GAMS/
AMPL conversion tool described in §5 became pos-
sible only upon the realization that the NEOS server
could invoke itself via a “solver” that acted as a pre-
processor. The kind of parallelism described in §6
takes advantage of features originally conceived to

provide fault tolerance in the event of a broken
connection.
Although we have concentrated on general-

purpose environments based on modeling languages,
the same approach can also be used to make NEOS
solvers available to systems or front-ends that are spe-
cialized for particular applications. We expect this to
open up further unanticipated uses for the NEOS API
and Kestrel interface.
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