{
"cells": [
{
"cell_type": "markdown",
"id": "667eebfe-66e2-4103-a655-e29088be77c9",
"metadata": {
"id": "667eebfe-66e2-4103-a655-e29088be77c9"
},
"source": [
"```{index} single: AMPL; kernel library\n",
"```\n",
"```{index} single: quadratic optimization\n",
"```\n",
"```{index} single: application; support vector machines\n",
"```\n",
"```{index} single: application; binary classification\n",
"```\n",
"```{index} single: application; counterfeit banknotes\n",
"```\n",
"# Support Vector Machines for Binary Classification\n",
"\n",
"Support Vector Machines (SVM) are a type of supervised machine learning model. Similar to other machine learning techniques based on regression, training an SVM classifier uses examples with known outcomes, and involves optimization some measure of performance. The resulting classifier can then be applied to classify data with unknown outcomes.\n",
"\n",
"In this notebook, we will demonstrate the process of training an SVM for binary classification using linear and quadratic programming. Our implementation will initially focus on linear support vector machines which separate the feature space by means of a hyperplane. We will explore both primal and dual formulations. Then, using kernels, the dual formulation is extended to binary classification in higher-order and nonlinear feature spaces. Several different formulations of the optimization problem are given in AMPL and applied to a banknote classification application."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "78facb14-0d9c-49c1-aec0-88d32750aac2",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "78facb14-0d9c-49c1-aec0-88d32750aac2",
"outputId": "addb73c9-1a77-44e1-8649-0c1b6e66af35"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.6/5.6 MB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hUsing default Community Edition License for Colab. Get yours at: https://ampl.com/ce\n",
"Licensed to AMPL Community Edition License for the AMPL Model Colaboratory (https://colab.ampl.com).\n"
]
}
],
"source": [
"# install AMPL and solvers\n",
"%pip install -q amplpy\n",
"\n",
"SOLVER_LO = \"cbc\"\n",
"SOLVER_NLO = \"ipopt\"\n",
"\n",
"from amplpy import AMPL, ampl_notebook\n",
"\n",
"ampl = ampl_notebook(\n",
" modules=[\"coin\"], # modules to install\n",
" license_uuid=\"default\", # license to use\n",
") # instantiate AMPL object and register magics"
]
},
{
"cell_type": "markdown",
"id": "23c4641f-fc46-418e-ae48-a72747991de7",
"metadata": {
"id": "23c4641f-fc46-418e-ae48-a72747991de7"
},
"source": [
"## Binary classification\n",
"\n",
"Binary classifiers are functions designed to answer questions such as \"does this medical test indicate disease?\", \"will this specific customer enjoy that specific movie?\", \"does this photo include a car?\", or \"is this banknote genuine or counterfeit?\" These questions are answered based on the values of \"features\" that may include physical measurements or other types of data collected from a representative data set with known outcomes.\n",
"\n",
"In this notebook we consider a binary classifier that might be installed in a vending machine to detect banknotes. The goal of the device is to accurately identify and accept genuine banknotes while rejecting counterfeit ones. The classifier's performance can be assessed using definitions in following table, where \"positive\" refers to an instance of a genuine banknote.\n",
"\n",
"| | Predicted Positive | Predicted Negative | |\n",
"| :-- | :--: | :--: | :-- |\n",
"| Actual Positive | True Positive (TP) | False Negative (FN) |\n",
"| Actual Negative | False Positive (FP) | True Negative (TN) |\n",
"\n",
"A vending machine user would be frustrated if a genuine banknote is incorrectly rejected as a false negative. **Sensitivity** is defined as the number of true positives (TP) divided by the total number of actual positives (TP + FN). A user of the vending machine would prefer high sensitivity because that means genuine banknotes are likely to be accepted.\n",
"\n",
"The vending machine owner/operator, on the other hand, wants to avoid accepting counterfeit banknotes and would therefore prefer a low number of false positives (FP). **Precision** is the number of true positives (TP) divided by the total number of predicted positives (TP + FP). The owner/operate would prefer high precision because that means almost all of the accepted notes are genuine.\n",
"\n",
"* **Sensitivity**: The number of true positives divided by the total number of actual positives. High sensitivity indicates a low false negative rate.\n",
"\n",
"* **Precision**: The number of true positives identified by the model divided by the total number of predicted positives, which includes both true and false positives. High precision indicates a low false positive rate.\n",
"\n",
"To achieve high sensitivity, a classifier can follow the \"innocent until proven guilty\" standard, rejecting banknotes only when certain they are counterfeit. To achieve high precision, a classifier can adopt the \"guilty unless proven innocent\" standard, rejecting banknotes unless absolutely certain they are genuine.\n",
"\n",
"The challenge in developing binary classifiers is to balance these conflicting objectives and to optimize performance from both perspectives at the same time."
]
},
{
"cell_type": "markdown",
"id": "800ac3a5-be34-4600-b07d-b06352bfd923",
"metadata": {
"id": "800ac3a5-be34-4600-b07d-b06352bfd923"
},
"source": [
"## The data set\n",
"\n",
"The following data set contains measurements from a collection of known genuine and known counterfeit banknote specimens. The data includes four continuous statistical measures obtained from the wavelet transform of banknote images named \"variance\", \"skewness\", \"curtosis\", and \"entropy\", and a binary variable named \"class\" which is 0 if genuine and 1 if counterfeit.\n",
"\n",
"https://archive.ics.uci.edu/ml/datasets/banknote+authentication"
]
},
{
"cell_type": "markdown",
"id": "c63ce528-f90b-4f31-8181-1d944558547e",
"metadata": {
"id": "c63ce528-f90b-4f31-8181-1d944558547e"
},
"source": [
"### Read data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e39f2162-09b2-422b-a352-1d13ec3b5add",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "e39f2162-09b2-422b-a352-1d13ec3b5add",
"outputId": "58b5a790-e9ee-4be8-a68b-5b04b34feff4"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" variance skewness curtosis entropy class\n",
"0 3.62160 8.6661 -2.8073 -0.44699 0\n",
"1 4.54590 8.1674 -2.4586 -1.46210 0\n",
"2 3.86600 -2.6383 1.9242 0.10645 0\n",
"3 3.45660 9.5228 -4.0112 -3.59440 0\n",
"4 0.32924 -4.4552 4.5718 -0.98880 0"
],
"text/html": [
"\n",
"
\n"
]
},
"metadata": {},
"execution_count": 3
}
],
"source": [
"# get a statistical description of the data set\n",
"df.describe()"
]
},
{
"cell_type": "markdown",
"id": "9e488e8c-44b9-4e4e-b1c9-ca0b01a46133",
"metadata": {
"id": "9e488e8c-44b9-4e4e-b1c9-ca0b01a46133"
},
"source": [
"### Select features and training sets\n",
"\n",
"We divide the data set into a **training set** for training the classifier, and a **testing set** for evaluating the performance of the trained classifier. In addition, we select a two dimensional subset of the features so that the results can be plotted for better exposition. Since our definition of a positive outcome corresponds to detecting a genuine banknote, the \"class\" feature is scaled to have values of 1 for genuine banknotes and -1 for counterfeit banknotes."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f75fd9e2-1c0f-44e7-9732-9fac6bc14656",
"metadata": {
"id": "f75fd9e2-1c0f-44e7-9732-9fac6bc14656"
},
"outputs": [],
"source": [
"# create training and validation test sets\n",
"df_train, df_test = train_test_split(df, test_size=0.2)\n",
"\n",
"# select training features\n",
"features = [\"variance\", \"skewness\"]\n",
"\n",
"# separate into features and outputs\n",
"X_train = df_train[features]\n",
"y_train = 1 - 2 * df_train[\"class\"]\n",
"\n",
"# separate into features and outputs\n",
"X_test = df_test[features]\n",
"y_test = 1 - 2 * df_test[\"class\"]"
]
},
{
"cell_type": "markdown",
"id": "8937474b-23b8-4c84-8732-c61c6d87bc1f",
"metadata": {
"id": "8937474b-23b8-4c84-8732-c61c6d87bc1f"
},
"source": [
"The following cell defines a function `scatter` that produces a 2D scatter plots of a labeled features. The function assigns default labels and colors, and otherwise passes along other keyword arguments."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0b7e5f48-308d-4020-bf61-6c605cf447c1",
"metadata": {
"id": "0b7e5f48-308d-4020-bf61-6c605cf447c1"
},
"outputs": [],
"source": [
"def scatter_labeled_data(X, y, labels=[\"+1\", \"-1\"], colors=[\"g\", \"r\"], **kwargs):\n",
" \"\"\"\n",
" Creates a scatter plot for labeled data with default labels and colors.\n",
"\n",
" Parameters:\n",
" X : DataFrame\n",
" Feature matrix as a DataFrame.\n",
" y : Series\n",
" Target vector as a Series.\n",
" labels : list, optional\n",
" Labels for the positive and negative classes. Default is [\"+1\", \"-1\"].\n",
" colors : list, optional\n",
" Colors for the positive and negative classes. Default is [\"g\", \"r\"].\n",
" **kwargs : dict\n",
" Additional keyword arguments for the scatter plot.\n",
"\n",
" Returns:\n",
" None\n",
" \"\"\"\n",
"\n",
" # Prepend keyword arguments for all scatter plots\n",
" kw = {\"x\": 0, \"y\": 1, \"kind\": \"scatter\", \"alpha\": 0.4}\n",
" kw.update(kwargs)\n",
"\n",
" # Ignore warnings from matplotlib scatter plot\n",
" import warnings\n",
"\n",
" with warnings.catch_warnings():\n",
" warnings.filterwarnings(\"ignore\")\n",
" kw[\"ax\"] = X[y > 0].plot(**kw, c=colors[0], label=labels[0])\n",
" X[y < 0].plot(**kw, c=colors[1], label=labels[1])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d8a9528d-0280-4454-8ae0-7aa024984cf4",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 410
},
"id": "d8a9528d-0280-4454-8ae0-7aa024984cf4",
"outputId": "918e572a-9bda-46ff-878a-58956e14ea8f"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAGJCAYAAABinBm7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwcd33n/a6uvu9jbs2l0egYnbYOS7ZljGMZW3bAxgEvBFgMyUIISeDFPstudvMEQzZhE7IEEhJnYf0EYnCydhasgHyADDiSbdm675E0Gs090z3TM31f1dX1/FF0a07NodHMSPq9Xy+wprq76jfV0u9b3+vzlTRN0xAIBAKBQCAQCAQCwZwwLPYCBAKBQCAQCAQCgeBGRjhVAoFAIBAIBAKBQHANCKdKIBAIBAKBQCAQCK4B4VQJBAKBQCAQCAQCwTUgnCqBQCAQCAQCgUAguAaEUyUQCAQCgUAgEAgE14BwqgQCgUAgEAgEAoHgGhBOlUAgEAgEAoFAIBBcA8KpEggEAoFAIBAIBIJrQDhVAsEi8OSTT9LY2Dinzz711FNIkjS/CxIIBAKBQCAQzBnhVAkEo5AkaUb/++Uvf7nYS100fvzjH3PvvfdSUVGB3W6nqamJJ554gldeeWVO5/uzP/szXnzxxfldpEAgEAhKLKRtS6VSPPXUU7M6V0dHB5/4xCdYsWIFVquVqqoq3vWud/GlL31pTmt46aWXeOqpp+b0WYFgrkiapmmLvQiBYKnw/e9/f8zP//iP/8jPfvYznn322THHH3jgASorK+d8HUVRKBQKWCyWWX82n8+Tz+exWq1zvv5c+cu//Ev+03/6T9x77708+uij2O122tra2LdvH5s2beK73/3urM/pdDr5wAc+MKfPCgQCgWB6Fsq2AQwNDVFeXs6XvvSlGTk2bW1tbNu2DZvNxic/+UkaGxvp7+/n6NGjvPzyy2QymVmv4fd+7/f427/9W8QjrmAhMS72AgSCpcRHP/rRMT8fPHiQn/3sZxOOjyeVSmG322d8HZPJNKf1ARiNRozGhf+nm8/n+ZM/+RMeeOABfvrTn054PRQKLfiaBAKBQDA9c7VtC8Ff/dVfkUgkOH78OA0NDWNeE3ZFcCMhyv8Eglny7ne/m/Xr13PkyBHe9a53Ybfb+a//9b8CsGfPHh555BFqamqwWCysWLGCP/mTP0FV1THnGN9T1dHRgSRJ/OVf/iXf/va3WbFiBRaLhW3btnHo0KExn52sp0qSJH7v936PF198kfXr12OxWFi3bt2kJXm//OUv2bp1K1arlRUrVvC//tf/mlGf1tDQELFYjLvvvnvS1ysqKsb8nM1m+dKXvkRzczMWi4W6ujq++MUvks1mx6w7mUzyve99r1R+8uSTT151HQKBQCCYfwqFAt/4xjdYt24dVquVyspKPv3pTzMyMjLmfYcPH+bBBx+krKwMm83G8uXL+eQnPwnotqy8vByAL3/5y6V9/WoZq0uXLlFbWzvBoYKJdgXg5Zdf5p577sHhcOByuXjkkUc4c+ZM6fUnn3ySv/3bvwXGlj0KBNcbkakSCOZAOBxm9+7dfOhDH+KjH/1oqVziu9/9Lk6nky984Qs4nU5+/vOf88d//MfEYjG+9rWvTXve5557jng8zqc//WkkSeIv/uIvePzxx2lvb582u3XgwAF++MMf8ru/+7u4XC7++q//mt/4jd+gq6uLQCAAwLFjx3jooYeorq7my1/+Mqqq8pWvfKVkBK9GRUUFNpuNH//4x/z+7/8+fr9/yvcWCgXe9773ceDAAT71qU/R0tLCqVOn+Ku/+isuXLhQ6qF69tln+e3f/m3uuOMOPvWpTwGwYsWKadciEAgEgvnl05/+NN/97nf5xCc+wR/8wR9w+fJlvvWtb3Hs2DHeeOMNTCYToVCI97znPZSXl/Nf/st/wev10tHRwQ9/+EMAysvLefrpp/nMZz7D+9//fh5//HEANm7cOOV1Gxoa2LdvHz//+c/5tV/7tauu8dlnn+XjH/84Dz74IH/+539OKpXi6aefZufOnRw7dozGxkY+/elP09fXN2l5o0BwXdEEAsGUfPazn9XG/zO59957NUD7+7//+wnvT6VSE459+tOf1ux2u5bJZErHPv7xj2sNDQ2lny9fvqwBWiAQ0IaHh0vH9+zZowHaj3/849KxL33pSxPWBGhms1lra2srHTtx4oQGaH/zN39TOvbe975Xs9vtWm9vb+nYxYsXNaPROOGck/HHf/zHGqA5HA5t9+7d2p/+6Z9qR44cmfC+Z599VjMYDNr+/fvHHP/7v/97DdDeeOON0jGHw6F9/OMfn/baAoFAIJgfxtu2/fv3a4D2gx/8YMz7XnnllTHHf/SjH2mAdujQoSnPPTg4qAHal770pRmt5fTp05rNZtMA7bbbbtM+97nPaS+++KKWTCbHvC8ej2ter1f7D//hP4w5PjAwoHk8njHHJ7PdAsH1RpT/CQRzwGKx8IlPfGLCcZvNVvpzPB5naGiIe+65h1QqRWtr67Tn/Xf/7t/h8/lKP99zzz0AtLe3T/vZXbt2jcnybNy4EbfbXfqsqqrs27ePxx57jJqamtL7mpub2b1797TnB72c47nnnuP222/n1Vdf5b/9t//Gli1b2Lx5M+fOnSu974UXXqClpYU1a9YwNDRU+l8xCvmLX/xiRtcTCAQCwfXnhRdewOPx8MADD4zZs7ds2YLT6Szt2V6vF4Cf/OQnKIoyL9det24dx48f56Mf/SgdHR1885vf5LHHHqOyspLvfOc7pff97Gc/IxKJ8OEPf3jMGmVZZvv27cKuCBYdUf4nEMyBZcuWYTabJxw/c+YMf/RHf8TPf/5zYrHYmNei0ei0562vrx/zc9HBGl/TPpPPFj9f/GwoFCKdTtPc3DzhfZMdm4oPf/jDfPjDHyYWi/H222/z3e9+l+eee473vve9nD59GqvVysWLFzl37tyUZYWi+VggEAiWDhcvXiQajU7awwRX9ux7772X3/iN3+DLX/4yf/VXf8W73/1uHnvsMX7zN39zTmq2RVatWsWzzz6LqqqcPXuWn/zkJ/zFX/wFn/rUp1i+fDm7du3i4sWLAFOWCLrd7jlfXyCYD4RTJRDMgdEZqSKRSIR7770Xt9vNV77yldK8jaNHj/Kf//N/plAoTHteWZYnPa7NQBb2Wj47F9xuNw888AAPPPAAJpOJ733ve7z99tvce++9FAoFNmzYwNe//vVJP1tXV3dd1iQQCASC2VMoFKioqOAHP/jBpK8XA2SSJPEv//IvHDx4kB//+Me8+uqrfPKTn+R//s//ycGDB3E6nde0DlmW2bBhAxs2bODOO+/kvvvu4wc/+AG7du0q2dBnn32WqqqqCZ9dDFVcgWA04m+gQDBP/PKXvyQcDvPDH/6Qd73rXaXjly9fXsRVXaGiogKr1UpbW9uE1yY7Nhu2bt3K9773Pfr7+wFdbOLEiRPcf//906ouCVUmgUAgWFxWrFjBvn37uPvuuycNGo5nx44d7Nixgz/90z/lueee4yMf+Qj//M//zG//9m/P256+detWgDF2BXRbtmvXrqt+VtgVwWIgeqoEgnmimCkanRnK5XL83d/93WItaQyyLLNr1y5efPFF+vr6Ssfb2tp4+eWXp/18KpXirbfemvS14udXr14NwBNPPEFvb++Yevgi6XSaZDJZ+tnhcBCJRGbzqwgEAoFgHnniiSdQVZU/+ZM/mfBaPp8v7dEjIyMTqh9uu+02gNK4jOLMxpnu6/v375+0P+ull14CrtiVBx98ELfbzZ/92Z9N+v7BwcHSnx0Ox6zWIBDMByJTJRDME3fddRc+n4+Pf/zj/MEf/AGSJPHss88uqYnuTz31FD/96U+5++67+cxnPoOqqnzrW99i/fr1HD9+/KqfTaVS3HXXXezYsYOHHnqIuro6IpEIL774Ivv37+exxx7j9ttvB+BjH/sYzz//PL/zO7/DL37xC+6++25UVaW1tZXnn3+eV199tRSF3LJlC/v27ePrX/86NTU1LF++nO3bt1/vWyEQCASCX3Hvvffy6U9/mq9+9ascP36c97znPZhMJi5evMgLL7zAN7/5TT7wgQ/wve99j7/7u7/j/e9/PytWrCAej/Od73wHt9vNww8/DOjl8WvXruX//J//w6pVq/D7/axfv57169dPeu0///M/58iRIzz++OMl6fWjR4/yj//4j/j9fj7/+c8Desn5008/zcc+9jE2b97Mhz70IcrLy+nq6mLv3r3cfffdfOtb3wJ0uwLwB3/wBzz44IPIssyHPvSh63wXBbc8i6o9KBAscaaSVF+3bt2k73/jjTe0HTt2aDabTaupqdG++MUvaq+++qoGaL/4xS9K75tKUv1rX/vahHMyTpp2Kkn1z372sxM+29DQMEGu/LXXXtNuv/12zWw2aytWrND+9//+39p//I//UbNarVPcBR1FUbTvfOc72mOPPaY1NDRoFotFs9vt2u2336597Wtf07LZ7Jj353I57c///M+1devWaRaLRfP5fNqWLVu0L3/5y1o0Gi29r7W1VXvXu95VktQV8uoCgUBwfZlKcvzb3/62tmXLFs1ms2kul0vbsGGD9sUvflHr6+vTNE3Tjh49qn34wx/W6uvrNYvFolVUVGi//uu/rh0+fHjMed58801ty5YtmtlsnlZe/Y033tA++9nPauvXr9c8Ho9mMpm0+vp67cknn9QuXbo04f2/+MUvtAcffFDzeDya1WrVVqxYoT355JNj1pDP57Xf//3f18rLyzVJkoS8umBBkDRtCYXRBQLBovDYY49x5syZkrqSQCAQCAQCgWDmiJ4qgeAWI51Oj/n54sWLvPTSS7z73e9enAUJBAKBQCAQ3OCITJVAcItRXV3Nk08+SVNTE52dnTz99NNks1mOHTvGypUrF3t5AoFAIBAIBDccQqhCILjFeOihh/inf/onBgYGsFgs3HnnnfzZn/2ZcKgEAoFAIBAI5ojIVAkEAoFAIBAIBALBNSB6qgQCgUAgEAgEAoHgGhBOlUAgEAgEAoFAIBBcA6KnahyFQoG+vj5cLheSJC32cgQCgeCWQdM04vE4NTU1GAwi5ldE2CWBQCBYPGZqm4RTNY6+vj7q6uoWexkCgUBwy9Ld3U1tbe1iL2PJIOySQCAQLD7T2SbhVI3D5XIB+o1zu92LvBqBQCC4dYjFYtTV1ZX2YYGOsEsCgUCweMzUNgmnahzF0gq32y2Ml0AgECwCosRtLMIuCQQCweIznW0SResCgUAgEAgEAoFAcA0Ip0ogEAgEAoFAIBAIrgHhVAkEAoFAIBAIBALBNSCcKoFAIBAIBAKBQCC4BoRTJRAIBAKBQCAQCATXgHCqBAKBQCAQCAQCgeAaEE6VQCAQCAQCgUAgEFwDYk6V4JYmmokSy8ZwW9x4rJ7FXo5AIBAIBBMQtkogWPoIp0pwS5LNZ9nXvo/DfYdJKkkcJgdba7ayq2kXFqNlsZcnEAgEAoGwVQLBDYQo/xPckuxr38crl15BNsjUumuRDTKvXHqFfe37FntpAoFAIBAAwlYJBDcSwqkS3HJEM1EOdB1A0iTyah5N06hwVFBhr+Bw32GimehiL1EgEAgEtzjRTJTDfYepdFRS4ajAarQKWyUQLGFE+Z/gliKbz/L86ed5sfVFsmoWCYmAPcCWqi3UemrpjffSE+u55pp1Uf8uEAgEgmshlo2RVJLUumvHHPdYPfTEeohlY8K+CARLCOFUCW4p9rXv4/+2/l/iuTh2kx2zwUwoGeLlSy/jNrtxWVx8/+T32Vm/c04166L+XSAQCARzZXRAzm1x4zA5iGVjWI3WMe9xmBy4Le5FXKlAIBiPcKoEtwzFsr+cmmOZaxmRbAQkUFSFWDZGTs2xpWYLDrODVy69AsAjqx6Z1TWK9e+Vjkpq3bXEsrE5n0sgEAgEtwZTBeQ2VW7itY7X0DQNj9VDNBMllArx0IqHRJZKIFhiiJ4qwS1DLBtjJDOCJEkscy/DIlsIJUIMp4fJqTlMBhMNnoY516yL+neBQCAQzIWpBCkAHlrxEAWtQE+sh4JW4KEVD7Gradcir1ggEIxHZKoEtwxuixuf1YeiKlweuUw6n8Zn86EUFADyhTwdkQ5q3DVzqlkX9e8CgUAgmC3jA3IAVqMVTdM4ETzB53d8np31O0WfrkCwxBFOleCWwWq0YpEt9MX6GEgOYJEtWI1WcmoOJLAWrLzV8xZmo5lqZ/Wsa9ZF/btAIBAIZstMAnJ1njrhTAkESxxR/ie4ZdjXvo9QKsS68nU4TA4KWoGRzAiapmE32nFZXKTzaQ72HORo/1G21myd0ohFM1G6o91jSvo8Vg9ba7YSTAYJJoJk8hmCiSChVOiq5xIIBALBrcvogNxorjUgN5mdEggE1w+RqRLcEhTLK2pcNawOrCatpumN9dIb6wVAQ2MgOYBBMiAhEbfG2VixccJ5svkse87v4fWO10kpKaqcVWOUAnc17SKZS3Kw5yBDqSH8Nr+ofxcIBALBlBQDcq9cemVeBCmECq1AsDgIp0pwSzC6vKJYBhhOhzFIBlRNRVEVfQiws4JGbyNDqSFeu/waT97+ZOkc2XyWP3n9T3jhzAtk1AyyJOOyuDgRPIGiKuxeuZt97fs4N3SOvJbHaDDSUt4iDJlAIBAIrkox8Ha47zA9sR4cJsecA3JChVYgWByEUyW4JRhdXqFpGgWtQK27lvaRdnL5HC6zC4fZgUW2YJSMeC1ezofP0xXtQkJCQ+Mn53/CP5/5ZzL5DD6rDw2NWC5GZjjD82efJ6fm2N+9H4/FQ8AWQCko7O/aj8PkEIZMIBAIBFNiMVp4ZNUj1yxIcTXRi8N9h9lZv1OUogsE1wnhVAluCUaXV0QyETL5DJWOSmLZGEPJIcocZVhkC/FcnEg2wtqytVwIX+Av3/xLemO9hJIheuO9DKWG8Fl9WI1WDAYDsiSTUlJcCF/gtfbXSOaTdIx0kFNzmGUzHouHgz0HhSETCAQCwbR4rJ5rshVChVYgWDyEUyW4aRk9md5j9ZTKKA50HSCTz6ChcUfNHZwIniClpEgpKUwGE+vL1xPPxumJ9WA0GBlMDaKhkcwlKWgFErkEFqMFn82HWTYTz8XJqTnaI+1k1Sw+qw+v1Usmn6Er1kU6ny41IAtJXIFAIBBcL4QKrUCweAinSnDTUWzSPdB1gJHMCD6rryQmUSyvWOFbwb+c+xd64j0kc0kGU4PIkky9t55IJsLlyGWafE2klFQpMzUQHyCdT6NqaslApfNpcvkcdWV1xLIxzEYzLosLAJNsIpFLMJQaYl/7PrqiXdM2DY93BAUCgUAgmCnzLXohEIxn9HMKiGDxaIRTJbjpePniyzxz/BmSuSSSJKFpGqcHT6OoCo+1PIbH6qHMXobJYKI/3U9WzeIwO0qCFReGL+AwOVgVWMU7ve/gtXoxySZq3DVEMhE0NHJqjnAqTIECy9zLeGzNY7zS9gqhVIh4No7NZCOtpMkVcqgFlX/r/DdW+FdM2TQs1Jrmn6XioC6VdQgEgluD+RS9EAiKjH5OiWajBBNBNDSqnFV4LB7xzIJwqgQ3GdFMlOfPPs9gcpBKRyVWo1WfF5UM8vzZ57lv+X0AnAieYFPlJvKFPJXOSnxWH/FsnFwhR0ughdODp0kr6VJ5n9VoxWa0sdy3nLSSJpKNELAHaPY385ENH+GuurvoinZhj9iJZCKMpEcwy2ZqnDUMJAZY5lp21abhpajWdKM6A0vFQV0q6xAIBLcW8yV6IRCMZvRzSjKXpG2kDQkJp9mJ3+Zf9GeWpYBwqgQ3FT2xHjojnQRsgTFlePlCns5IJz2xHgD6E/34bX4KWgG/zY/RYMRlcRHJRChzlOFP+AkmgyRyCdpH2tHQkJBo8jWxqXITm6s3c2/jvdS6a0vGakftDiLZCA2eBkyyCUVV6In3UGYvo8JZMWado5uGgSWl1nSjOwPz4aDO1qGc7P3j1xFKhnjh7Askc0meWP/E3H9BgUAgmAHXKnohEBQZrSrpMrvoi/dR5axC0zT64/2sK18nFCYRTpXgZkWaeKigFXi983W6o92cCp5CNshk8hldpc/qIZ3XM1M5Ncfa8rUoqkJruBWn2UmukMNkMBHNRnGZXXxg7QcmOEqjSy6KzsjDzQ9zKnTqqk3DS02taSlmzWZKceP3WDwYDUZ99pijYsab/Wwdyqnev61mW8kA+aw+zg2dozPSyUh6hKcjT4MEj65+9Jqc1Bs1kygQCK4f870viH1GAGNVJVNKipyaw2f2oWkakUyEdD4tFCYRTpXgJqPWXUujt5G2kTaMkrHU2zSUHsJmtHF84Dj1nnrWVazjZPAk0UyUZC5JlbMKpaBQ764nlotxT/09nBs8x4MrHsRpdqKoCm3DbVweucw7fe/wVwf/qiR+UXwwnqrkwnHBMW3T8FJRa7rRZ5wMJgc5GTxJKp+iUChgls00eBto8jUxkBiYdrOfqUNZfNB4q+ct9nftH/P+Pef30DrUynB6mBX+FZwbOseZwTO4zW78dj/98X5ebH1xzvPLbvRMokAgmH/me18IJUK8dPElzofPo2qq2GducUarSrrMLsyymXQ+jaZpmGUzNqNNKEwinCrBTYbH6uGDaz/IM8eeIZaNkcglKGiFksx5vaeeCkcFPqsuh346dJpgIkhOzVHhqGC5bzk7andQ46zh55d/znLvcnw2HyeDJ+mKdWE1WUnmkiSV5JiH7WgmWiotrHXXUuepK61puqbhpaTWtNSyZrNlf9d+Lo1cwmPx4Lf5SeaSnAieYDA5yDL3MjS0KT87E4fSarSWHlyG08OcDJ6k1l3LmsAaAAYSA7SF2zgRPIHZYKY/0U8yl8Rh1I1Rf7wfpaDQE+3huVPPsa1m24SM53TcyJlEgUBwfZivfaHonD136jnODZ3Da/XS7G/GbrKLfeYWZvxzSo2rhuPB40hIbKzcSCwbEwqTCKdKcBOye+VuTLJpjKT66sBqToZOliIoJtnExsqN1LnruBy5zJObnmSZexkW2cKhvkM8f/Z5TgVPcSF8gRW+FfREe0jlUkQzUZSCwsXwRcrsZbzR9QaRdIS9bXvpjHQC0Oht5INrP8julbuxGC1jMlijHa/R0b6lotakoZEv5AklQtR760vHl3oEKpvPsqd1D98+8m1G0iP0xHqwGq3YTXZi2Rhng2fZUbuDfzj2D1NGW0c7lGklTTqfxma0jXEoD3QdKD24+G1+8oU8HdEOvFYvGhpnBs9gN9mRJAmPxcPJ4EkMGPDavAwkBtDQqHPX4bK4ODd0jpcuvsSTtz8549/zRs8kCgSC+Wc+94V97fvYc34P/fF+ql3VGCUjF4cvYpbNVDoqxT5zCzP6OcVhdtDsa0ZDw2l2UtAKQmES4VQJbkImK8MD6Ix2Tiixy6k5qp3VtJS34LF62Hthb+mheX3Feo4Hj3O473BJSl2SJOrcdZiNZjqiHbSPtPN239skc0kCtgBI0DbSxjPHnsEkm8ZIph/oOjBlacZiqzWNLh0pCnqsCqzi9qrbSSrJJROBmqq+/19b/5U/3f+ndEQ6yBfyKAWFRDZRksqXJAmX1YVskKeMtrotbiyyhXd63yGaiZJTc3q/ncXDct9yNLQxDy5pJY3X6iWWjXEyeBIJCbNsRtM07CY7d9XfhUk2cbDnILFsDKfZSbWrmipnFUklidfi5Xz4PNFMdMb39UbPJAoEgvlnvvaFonPmtrgxySZcZpfem4pGZ6STOncd4XRY7DO3KFM9W4meuysIp0pw0zJe+Wi6Ervx0b5iieCRviNcSl/CZ/Wx3LucKmcVskEmko7QGeuk1l2rK+L8Sm3QKBlLWY3ZSqYvllrT6PXdXX83R/uPcmH4AiklxcbKjTy04iG21WyjO9q9KJvn1foFMvkMf3vob+lL9CEbZAqa3kulFBTSSppqtx5tjWZ0kZGporceqwdZkjkZPEm5vRyv1UskE6Ez2kmzvxkJacyDS/Fh43LkMvFsHFVTsRltWI1WNlZuxGa0cXf93Qynh+mKdtHgbcBr9ZJUksRzcVYGVqJqaumhZyb3dXRdu6ZppWxaLBtb0plEgUBw/Ri9L1xLX27ROauwV5R6ZlxmFzajjUgmwmByEJfFJfaZW5zxzynCmbqCcKoEtwzTldiNj/aZZBMbKjfgsrjoT/QTsOsy7QWtQDKbJJPPIEsyEtIYQ2Yz2UjkEoxkRpakZPp4JisdeVfDu2jwNJBW0nxkw0c4Hz7P04efXjRhhNFOX5mtjFAqxJ7zewAI2AJcGtGdXkVVCCaDmA1mNEkjq2bJ5XPUeGsoaIWrKhRFM1FUTWVT5SYimQiJXAK7yc6myk2omoqGNsahOdp/lEg6gkEyUCgUQIKMksFhcjCcHubc0DkqHZXcVnUbXquXcDpMJBPBLJtZV74Oj8XD5chlvn/y+zNuBPdYPWyq3MQzx54hkUvo19YKOM1Ofuv235rw+4gIokBw8zNffblF5yxXyNHobeT04GnQ0LP/qkIsF+O+5ffdFPuJ2B8F1wPhVAluGaYrsZsq2mfAQL2nnipXFalcqvRg3OhtxGgwlqTZTbIJgLSSLoljLKRk+lyNRHF9AVuA4fQwaIAEHosHpaBwoOsARwaOLJowQtHpC1gDBBNBOiId5NQcOTXHc6ee4/0t76egFTAajPr3l4uhqErp806zE4/FgyRJV1UoimVjxLIxmv3NWGQLSGAz2pAkiZ5YDxKS7tAcf4ZoOkpPvAdVU8koGZb7l5NVsvQn+4lkIkiSxL91/Bvblm3j8ZbHAdhzfg9us5tyRzk5Ncc7fe+ABg7zFWn9Gd9XCSRJ0v+r/1+J0apdKSWFLMnsqN3Bo2uuTcJdIBAsXeajL3e0c+a3+VnlX8WF8AWi2Shrytbw6OpHb/ieGaGeOnOme6a4ERzThV6jcKoEtxxTldhNFe2L5qLc13gf4UwYt89dmmUVy8VoKWvhyMARgskg+UIegKH0EBX2CnbW76Q7ps/ESuQS100y/VqNhEW2cHnkMvs795NSUqTz6dK6Kpz6jKerZdng+tZUF52+aCbKheELuC1ufGYf8Vycc0Pn2BzZjN/mJ5KJYLAacJvdRDIRClIBp8mJ1WhlKD10VYWibD7LWz1vcTJ4knwhj9fqpcHbQEtZC8Pp4bHf068it2pBxSAZUDWVZC6p/52xeEjmknrGLBcEYFvNttK1DvcdJpwOI0sybrOblf6Vs8peRjNRTgRPsH3Zdlxm15jyvyP9R8gVcuxp3cOZwTMUtAImgwmr0cobPW9wdvAsf3jPH4oHB4HgJmS++nJHO2ceq4cdtTtYHVjNwysfnrVS6VJEqKdOz3TPFDeCY7pYaxROleCm53ToNO3D7TT5m1hfsf6q750q2ndP/T3s79o/5h9o8fjPL/+c588+X1L/a/Y1856m9/CPJ/6Rt3vfJq2kUTUVr8XLB9Z+gBp3zbxKpl+Lkcjms/zdob/TZccTg3oZmtlBNp8lpaQwySYKhQL3Nt475nMeq4eOSAc/OvcjOqOd13XTclvcyJLMxfBF3FY3LrPeuyZLMl6Ll6HUELuW7+IHp39Ab6wX0AVIAFaWrWRVYNW0CkX72vexv2s/te5aOqIdpJQUx/qP0Rfvo8xexqOrHwXQHZra7RglIy+1vUQ4FWYkPUJXrAu70Y7dZMdv92M1WolmopwePD1mplnxgSeWjfG9E9/Db/dPqTQ42d+L0VlPq9GKzWQD9KzVvvZ9nAqdYjg9jNFgJJwKgwS1rlqcRicvt73M2oq1PLHuiXn7bgTwb//2b3zta1/jyJEj9Pf386Mf/YjHHnus9LqmaXzpS1/iO9/5DpFIhLvvvpunn36alStXLt6iBTct19qXu9iiSdcToZ46M6Z7ppgPx/R6Z5AWy3kWTpXgpmUwMcjnXvkcb/a8STafxWK0cFftXXzzoW9S7iyf9DNXMyhTHX+s5THuW37fGLn0z/zkM+xr36eXBEqg5BW6Y9380+l/4jfW/gYei2de5EfnaiSKG9prl19jb9teTAYTmqShqAojmREcRgfljnI2lG/gePA4oWSIes9YifWBxACJXIJ6T/113bQ8Vg+rA6t59dKr2Ew2FFUhnU+PEXtYFVhFo6exlDF0W9wEbAE+edsn+c2NvwlMnU0bfQ/XBNbgMrs40n+E/ng/XdEuttduR1EVBlODJJUkVY4qWoda6RjpYCAxQF7Lo6GRU3NEs1HMshmHycFyz3KcZif5Qn7MfSlmQC2yhUO9h4hkIiWlQa/VS6O3ccrs5WQlqoqqcKDzACeDJ/Hb/IykRyhQwG12o2kag6lBVvpXklWzHOw5yIMrHhQPDvNIMplk06ZNfPKTn+Txxx+f8Ppf/MVf8Nd//dd873vfY/ny5fy//+//y4MPPsjZs2exWq2TnFEgWHwWSzTpeiLUU6dnumeKDZUbrskxXYgM0mI6zzeUUyUigoLZ8LlXPserl17FY/VQ4aggnovz6qVX+dwrn+O5Dzx31c9erURwuuOnQ6d5s+dNTLIJDU0vwbJZiWViDKeH8dv8/P4dv196/7VEbGZrJEZvaMPpYd7pfYdgPIjBYCg5Azk1R76QJ6fm8Nq8+G1+emI9WGRLySHojnUjIZWGKcP13bTurr+bF8+/yHB6mHwhXxJ7CNgC5NQcXbEu3rfmfRglI5FsBK/Fi1JQ6Ip10RPrmTCQeap7aJJNyAYZs9FMc6AZtaCy3Luc1zpeI6fmsMgW9pzXy+uKzst4cmoOq9GKwWDAbrSXHM7R96WoNHgieIJyRzlei5dINkJnsJMVvhUAkyotTlai+k7PO5wMncRqtBKw631xkXQEJa+ApK9HURW8Vi/ZfFY8OMwzu3fvZvfu3ZO+pmka3/jGN/ijP/ojHn1Uz3b+4z/+I5WVlbz44ot86EMfWsilCgS3NPOlkngjM93zxnTPFP3x/mtyTBcig7SYzvMN5VSJiKBgphQdG4/VQ7lDz0pZTfrfgTd73uR06PS0pYBzpX24nbSSBglMBlNJwMJhchDNRjkTOgPMT8RmtkZi9IZWHF4by8Wwm+yYZbO+TrN+vmIf2NrytWyo2MC5oXOlksi7au8aM0y5yHxvWqPvkSzJJHNJymxlbKneQoECoVSILVVbODt0FrfFjdVoxW/3o6gKJ4InOBM6w0hmhGpn9ZT3drxMeUekA7/Nj6ZpaJpW2viPDRwjlAhxfOA4mXxmUofKaDDqSoAaBJNBbqu6DZvpithFUQ2yJ9ZDUkmysXIj0UxUVxo02llfvp5zQ+f4Hwf+x5SKgKNLVC8NX6I71k2FvYKB5AAdIx1omkYmnyGrZnFZXBgwkNfyJUXKW+HBYalw+fJlBgYG2LXrSkba4/Gwfft23nrrrSmdqmw2SzabLf0ci8Wu+1oFgpud+VJJvBGZ6fPGdM8U1a7qOTumC5VBWkzn+YZyqkREUDBT2ofbyeazpX+4RVxmF6FkiPbh9uvmVDX5mzDLZuLZOFbblX/QmXwGs2zGarSW5lhda8RmKiPRHevmrtq7xrx3/IaWVtJ4LB5MBhPZfBan2Uk6nyaTz4AGZtlMOB3m15b/Go+semRMhCuajXIyeHLSssD53LTGz8+ymWycGzpHOp/mtqrbSvOzzofP0x3tptZdW3rPyeBJ7EY7Td4mcoXclPd29D2MZCKklBRWo5VUPsW68nUoBYXWwVbOD58nqSTJqlkK2kSHSkJC0zSQoEABl9lFvbe+dF8ssoW3ut/i3NA5+hP9nAqeYn3Fem6rvI28lsdmtHFm8AyH+w5T56mj3lM/6d+J0SWqrUOtXB65zEh2BJ/Nx0h6BJPBhCRJ5NU8mXwGv9VPtbOaglbQlQLngRtB9WkpMDAwAEBlZeWY45WVlaXXJuOrX/0qX/7yl6/r2gSCW4Hxe9V8qCTeiMxmVubVHM96T/2cHdOFyiAtpvN8QzlVV0NEBAWjafI3YTFaiOfipQwVQDwXx2K00ORvum7XXl+xnh3LdvCTtp8Qy+hDWTP5DBk1w3Lvchq9jWho8xaxGW0kOiJ6n4+ExMnQSTqjnaVo1PgNzWaysdy3nAvDF0jn01iMllKpmMvsotJRycPND5fO77F6sBqtpWhXZ7STnngPK30r2VyzmWQuOa+b1mgn0GV2Ec/FsRvtOEwOBlODZNQMiqrwZvebdEW7ODd0Dq/FS723no5IBxoa6yrW4bV5Aaa8t9FMlNVlq0nmkhwbOEYmn0FDY7l3OdF0lH/q/if64n3Ikj5YuFAokNfyk65ZkiTsRjs2kw2fzYfZYCaYCBJKhXAYHbzU9hK17lqWe5dzIXyB48HjmGUzGyo3kFbStIXb8Fq81LnrsBqtV/074bF6qHZVE8/FMctmal219Bv7GUgMYDaYMUpG6t31lDvKcZld1LhqSlnIuX4/N4Lq083AH/7hH/KFL3yh9HMsFqOubvLyVYFgKbFUAi5X26tuViGOqZgqQ5RW0rzW/hobKjeMCY5O53jO1TFdyAzSYjnPN41TdcNGBKNRiMXA7QbPzf0PeyFZX7Geu2rv4tVLrwKUHsqjmSgPrnjwumWpivzdI39H6IUQxwaOlcQLlnuXs33ZdrbWbEVCmjRiU9AKXBy+yLnBc+yo2zGja43OXPzo3I9K4hHjZx/trN85YUO7reo2LoYv0jbShsfiocZVg9/qx2F28N7V752gFDcmc1R3N8cGjnEhrDtlGys3zuumFcvGiGajJHNJ+uJ99MR6iGQilNnLcJqdyJLMM8eeAQm2VG3BaXZyMXyRw32HUQsq72p4F2vK1pTONzoaBjCYHOTowFHODZ4rGd3bq2+n3l3PnvN7ONJ3hMHUIGkljUk2YTPaGEwNoqHpWSm0MevV0DBKRgK2AGWOMuo99Qylh7DIFhxGB2/1vEVBKxBOhWnwNrDav5pjwWOcDp2mzl1HKBkiko2wrWZbSdVv/LrHG38JCb/NXxLRqHRUYpSMJLIJnGYnH1z3QV0l8Fey6wWtcE2GS8gRz46qqioAgsEg1dXVpePBYJDbbrttys9ZLBYsFuGkCm4cFjLgMhPHbbq9qvi5oj24mR2r8QFVRVU4N3SOSyOXSiqx9y+/v/RdTacAOVeFyIXMIC2WiuVN41TNlUWLCGazsG8fHD4MySTIMqxeDQ8/DBU3/iyIpcA3H/pmSf0vlAxhMVp4cMWDfPOhb173a5c7y/npx37Kt975Fq93vo7L7GJVYFXJyGTymTEOTiqXYt/lfZwJnSGn5uiMdHL/8vv5wp1fwG2d+UNwZ7TzquIRk21oayvWsqN2B7mCLlARsAVK6xzNZNGuexruocHTQCqf4hO3f2JMtOtacVvcBBNB2kbaCNgCKAUFi9FCKBXCk/egFlSimShG2YjP5qPGXcPa8rW0DbdxfOA45fbyUj9bcf2jS/BOBk/SE+thVWAVt1fdTiqfYn/XfjxmD0i6ITIajEiShIREIpdA0zQKWmGCQyUhYZAM+Gw+7qi9gw+t+xB31d3FYGqQ1zte543uNyhoBSocFeQLec4MnmFNYA0bKzdyJnSG9kg7PquPlrIWqp3VY859tSie2+JmbflaLkcuE81EGUwNYsBAo7eRrJolr+ax2+zzYriEHPHsWb58OVVVVbz22mslJyoWi/H222/zmc98ZnEXJxDMI9cr4DLagRpdKXE1x226vWpbzTYO9R26ZTLu4zNE54bOcWbwDAYMBGwB7Eb7lKWAV9vT56IQudAZpIVWsbxpnKobLiK4bx+88goEAnq26uJFePVV+OlP4SMfgV27QEQqr4lyZznPfeC5Wc2pmi+KUbtELkGjtxGjwUhLeUtp087kMzR4Gvhl5y+JpCMcGzjGmcEzGA1GGr2NmI1mftj6QwCeuu+pGV1zJvXKk21oj6x8pOTozUUVqMJZQU+sZ976dUZTzAopqkJOzZHJZwinwgwmBhlIDqAWVJa5lhHPxrGZbNhMNlYGVtIX76M90k5GzVBhryCrZgmlQgSsAfZ378dj8ZDKp3BanPTEe/BavWyo3EBGyfBG9xusr1hPTs2hFlS6ol0kc0liuRgOowNFU9A0DbWgIksyRoORalc1ta5a/svO/8Jd9XeVjP+BrgP8W+e/IRtksvksWTWL1+pFQ6Mn1sPGyo28q+FdfHTjR6l115b67GSDPKMoXnE4ZzgdRlEVErkEiXwCVVNZ6V9ZEsiYD8Ml5IgnJ5FI0NbWVvr58uXLHD9+HL/fT319PZ///Of57//9v7Ny5cqSgFJNTc0Y5VqB4EbmegRcJst8aZpGKBWixlVzVcdtur3qpYsvcWTgyIJm3BezLHJ0hiitpLk0cgkDBgoUaPY3U++tJ5gILkhw7GaegwY3kVO1ZCKCMynni0b1DFVlJQSDcOGC/n6bDXp64Lnn9OzVE0/M7ryCSVlfsX7BnKkio6N2zf5mYtkY+7v2YzaYMckmDvYc5FToFO3D7SSVJIOpQewmO82+Zqpd1cgGGTR4vfN1uqJdV80AFTdrDW3aeuVMPsPGyo1sqNyAhDRmQ7MYLVNubsVryJK8YIo6sWyMKmcVTrOTrkiXXr6ZjqIUlNLriqqQVJIc7z/OPY33YDPZCKfCmAwmFFXhre63AGj0NvLwyodpHWrVS+R+pdJXZisjk8/QEemg2d+MSTaRVJKYDCZ6oj0MZ4bJ5rOk82k9SyUXdEVHgwm72Y4syTR4Gtheux2X2cVd9XfhsXrYe2Evr1x6BYtsKfVGRdIROqOdyJKMyWAimAjSG+/lg2s/yLqKdcDconi7mnZxqPcQR/qOYJbN+Kw+yuxluCwuNlRs4M66O+fFcAk54sk5fPgw9913X+nnYuXDxz/+cb773e/yxS9+kWQyyac+9SkikQg7d+7klVdeEYq0gpuG6xFwGZ/5CiVC/Kz9Z6wMrOS2qtuAqR23q+1VsiRzPnx+wTLu17MscjaOWtGGvNb+GuFUmIAtQLO/uVQiPx/Bsdms52acgwY3mFO1pCOCxXK+AwdgZAR8Pti5c/KMUyymO01lZdDRoTtKdrvuUPX1QToNTz+tv/ehh2D//itlgg4HbN2qnzeTEY7WEuRqUbsXzr6Aw+wgraQJp8P6EOIEDEvD2Iy69LZskAHwWr10x7rpj/dP6lQVN+u9F/bSn+in2llNhaOCvnjfhHrl+xvv50DXAQ73HSacDmM0GNlRu4NHVz86Zt3jN8RsPsue1j0c7DmIqqkMpgaJZ+Nsrt5MwB6YUmlwPF3RLvrj/VS7qmdcIui2uPFYPPhtfpq8TfTGexlODlOggFEyYjKYyKt5smqWV9tfJZqLUuWsYjg9jMFgKPWvDaWGiGajKKpCVs1S7ihH0zTMsplMPoPNZGMkPUI6n0ZRFRwmB4f6DhFOhyloBaxGK9l8ljx5EkoCt9mNxWjBZrSRyWcot5eTVbPcV3Nf6Z6PFtg4P3Qeg8FAvaeewdQg2XyWsBLGJJvGCIHA3KJ4mXwGSZJ4oOkBnBYnNqOesQsmgpwbOseDzfMz7PdWliO+Gu9+97t11ccpkCSJr3zlK3zlK19ZwFUJBAvHtQRcJrM7k9lQp8WJSTYRTodJK+lS3+lkzsDV9qrRIzhGc70y7tejLHIujlrRtmyo3AAS2I32kjotXFtwTAgYXeGGcqqWdETw5ZfhmWd0x0eSQNPg9GlQFBjv1LndunMUCkEupztgAwO6U2WxQHW17pi99BKcPQvhsJ7Vqq3Vnai9e+HQIf064x2t0Q7c6OwWCAdsgeiJ9dCf6KfJO1Zh0CJb6Ih0sKV6C/3xfvw2Py6zC0mT6E30oqERToepcFRgkk1EMpHSXIjJ+L9n/i9Pvf4UoVSIglbAIBkos5Xx2JrHKGiFMZkORVX40bkfMZweJp6Lk8lneKPrDc6GzvKFO7/A/q79EzbEe+rv4c/2/xmvXHoFm9GG1+bFZ/WhaipnB8/itXqJZCKYZNMEpcHiRhrLxPj6W1/n9c7XS+e+t+HeGfWKjTaMFoNFzy5RwKAZMMr6n02yCUPBQK6QI5gIMpwexmq0cseyOzBKRjT0OVPurJvz4fOlTFuFo4IGbwNnBs+QyCUwy2YS2QTRXJTbqm7jhTMv4La4MRqMRLNRZIOMSdJnjq2pWEMqlyKSieAyu2j2N3Nv470l52h01NZqtNLobeT04GnsRjtOi5NVgVXEc3F2r9w9QQhk9O8+U8M+/nqjzzHfDwm3qhzxDY+odBBcR+YScLnag/hkmS+b0YbL7CKRTZDOX3GqpnIGptqrttVsozPauSAZ9+vVh3otjlq9p577l9/PK5deIZgIzktwTAgYXeGGcqqWbEQwGoUXXtCdpKoqvYwvndYdpRdegPvuG2vIPB7dCdqzR3eqhof1DBXonwfwevV+q9dfh7vvviJeYbVCayscOQIPPHDF0XpF/wvMI4+MFcGIRvUSQ03Tz128tujZmneKRuJA1wFOBU9xYegC6yrWsaZsDSbZRCgVAvThujk1h8/sAyBgD+Axe0gqSQpagVg2Rk7NMZga5PE1j0+a2Ylmonz1wFfpjnfjMDmwylYyaobeRC+vtr3K3o/uLZX3DSYH+X9+9v9wcfgi8Wwcu8lOuaMcu8nOy5deJpPPkMwnx2yIey/u5bvHvssb3W8gSfp5ClqBRDaBLMnEs3Ei6QjD2WFaylqoddeSUlITNtKvv/V1ftj6Q8od5dS564hkI7PqFSsaxgNdB0jn00hI2Mw2HGYHKSVFQSogSzIGg4Et1VsYSg9xfOA40WyUnJrDKlsJ2AM0eBvw2/xsrNjIkYEjaJpGk6+JSDrCxZGL1FprMckmHlrxEFbZyt6Le5ENMgYMVDgq8Nv8ZPIZ8mqe2ypvw4CBgeQA9zXex0c2fmSMIRoftS2WV5wOnSan5nCYHTzY/OC8OSILWZZ3s9fD33SMF0SaKgAnEFwjsw24XO1BfDKlWpvJRpm9jOHMcMmOXc0ZuNpetVAZ9+tRFjkfjtp8BseEgNFYbiinasnS06OX8ZWVgculH3O5IJ/Xj/f0TIwOFudpPfccnDihO2G1tbrRi8dh3To9qphMgumKghnptJ65MpvB6dSdLKtVd5oOH9ZLDg8c0J2sykr9821telbL6QS/f6wDJpg3RhuJdRXrOBk8yTt975BTcyWj0eBtQJZkzLKZdD6Ny+winU+zMrCSlJKiO9ZNMBnEY/Hw+JrH+cKdX5j0Wod6D9EZ68RutOOy6H/nTEYTmqbRGevkwtAF7mm4h33t+/j2kW/zVvdbqJqKy+LCbDATSoaosFcgaRKvd77O/cvvH7MhHu8/zmuXX0PVVGxGvTwulothk39V8uYoR7bKeK3eUp/Q5urNpY10Q+UG+mJ9vHb5Ncod5SVFO5vJNmmv2FS12BajhV1Nu0gqSY70HaEj0kEmn8EgGcgX8rqQhSThNrspUGA4PUwmn0FNqRgkA+F8mMHUIBeHL9LgaeDfrft32M12zg2eYyAxwMrASt63+n1srtlMub0cj9VDV7SLZa5lFLQCAXsAk8GEQTJwbugcI+kR2kfa9aG6Nj/9iX4OdB0Yk52bLGpb4ahgZWAld9Xexftb3j+vRmYxyvJu1nr4m46iINLoSofi/r9zp8heCeaN2QRcZvIgPtme5rK42L1i96wEeCbbq2bqVFyruMT1CHjNh6M2uhRwtmX512M9NxPCqVosLBbdqdm2Df7lX+Cf/kk/bjDoDlVLi569cjj0EsIi6bTudLlcekasiMejO289PVdEMFwu/RxVVbrT1d+vn3u0AyaM6bww3kj4rD7MspmzobOcDp3Gb/Pz6OpHUVSF1zpew2v10hHtIJFNoBQU6t31+Ow+fuv236KlvGXaTa5Y8meUr/wTLpYAFrQCoVSIfe372HN+DyOZkdLQ15SSKoknhJIhKhwVpJTUGOnxtJLmfPg8OTWHzWhDNshISMSyMYbyQ5hlMwaD7tR4LB4GU4P0RHvoiHRQ5awikokQSoaIZqO0DbexzLUMn8VXGsI8ules0lE5bS32vvZ97O/ar0uUJwc5F9bnSlEAs8mMRbbQUt7CcHoYo8GIRbaQLWTRVA2jwUi+kCeXz3Fu6Bz/7ef/jW0127i96vYxjtRo6j313NtwLz9s/SFGg7FU5ljQCtxRcwdOi5NlrmVUOCumLHOYzGg/uvrR61ZjLsryBBMYLYg0utJBUeAHP9CDb6oqsleCeWUmAZfrrVQ7HVdzAIujKY72HeXc0Llr6hG6HgGv2TpqkzmGoUSIly6+xPnweVRNvaYeKCFgNBbhVM0HtbXQ0ADt7fq8qWL5XzgMTU3661NhscB736sLVfzyl7BsmW4Eh4dhcFB3rtrbdUeoslJ3qBRFz4qNdqqiUd04gp6dqq2FVOpKz5amQSSir6vogMViwqmaJ8YbCZNsYmPlRurcdVyOXOajGz/Kuop1ZPPZkvpfSkkxnB6m3F7Oct9ydtTuKG1q0UyU7mj3lEZjY+VG7Ca7PphWMpEr6HLjmXwGk8FEf7yf4/3H9bUYTFS5qkrDX+O5OLJBJp1P47V4MRqMKOoVx30kM8JIZgSryYrD5CCjZlALKmpBJV/IYzFaCNgC9MX7CCaC2Iw2EvkE54bOcaj3EJIkEc/FMckm0vk054fPE06HafQ2UuWsYig1hCzJOMyOaWuxxzurH7/t47zS9gqnQ6dJKAm9vC6whq01W9nfuR+loOCz+YjlYmTzWSQk0vm07myqhZKzeGzgGLFsjA+u++Ck32cxQ/h65+t0x/QSy4ebH8YgGbCb7dOWOViMFnbW76TR2whArbtWyNQKFpaiINJ4+9Pfr5eQ19RAff3E8nGBYB64WpZnJg/iV9vTrqZUOxtGO4Cje7xOBk/SE+9hpX8lm6s3T1raPlPmO+A1U0dtsp61TZWbAHj+7PO0DrXitXhZGVg55Zyq+VzPXFlMKfq5IJyq+cDj0eXPn3kGEgndkGkalJfrxydzXMbXulss0NioRw47OqC3V++FSqd1o3f6tO6gbdgAu3fr/VvBoH7uaFT/+aGHrpQQxmJ6psps1s+hafqfbbYrDpj71oogXE+mMhI5NUe1s7rkbI03FMU5TMUNI5vPsvfC3mlVdNZXrOe+xvt4ue1lItkIqqqiSXop3HLPcl6++DK98V4qHBX0J/rxWDxUO6vpT/aTUlKYZTNei5cKZwVb3FsIZ8KlptXh1DBqQcVn9WGQDCDBcGqYQqEAErjMrpKS3Uh6hJyaAwlUVFRNxWgwEkqEyKj6gON4Lk4kE+HyyGU6Ih2klBTN/mZ+cPIHdEY7WRVYNaWTMt5ZtZvtPL72ce6su5PWoVa2Vm9lKD1EMBFEkiQavY0MJgdJ59P4nX5SSopUPlU6t9lgJpaN0T7STmekk0sjl9hZv3PC/XVb3Tx131OlGWfljnIMkoEfnPoBVa6qMd/9+DKH66GENNqwAFMaGVGWJyhRFESKxfQMFei2oK1N79mtq5u8fPwmD7TdaA9pNxoz2f9m8yC+UHtaMcDnMXtIKSmcZie98V68Vi8bKzfOuUfoegS8ZuKoTRawfOb4Myh5hVxBfy4xykYuDF/ALJupcFTMuQfqelRK3KiKgsKpmi9279Z7nyaTVJ+MyWrdg0G45x49w3T2rC6ZXlam/y8Y1B22DRvg0UevOGQ9PbrhfOihK+UbW7fq59Y0PRp5/LjeU7Vxo36dogN2kxvPhWS20ZqpDMVsVHS+tftb/O7e3+Vn7T9DM2hYZAvN/mY2VmzkWOgYqXwKDQ2XxUV/op8aZw31rnqG0kM4TA7WV67n8ZbHuaf+npL6X0+sB4fZweqy1SRzSQySgZHMCJIkYZAMWA36w9np0Gnyah7QnSlJk7DIFjCBAQORbASfxYfJaMJtdtOf7GckM0JBK3Bb1W28d9V7CaVCtA614jQ7qXHVjLk3RSdlKmfVIBlo9jdT561jKD2E2WimylVFKp/Cb/NzKXKJaDaKqqkU1AJmkxm72Y6qqSSyCewmuy7QoSQnvb9FKfkDXQfoiHYQz8ZxmV1Es1FG0iPsqN1RKpkcX+Ywn0pIow1LNBtlIDGAhESlsxKPxXNDGBnBIlEUJSraAo8Hurv1ioVt2yYvH7+Jqxdu1Ie0G42Z7n/barYxmBzkfPg88Vx8UUuWR1dEGA1GcmoOu8mOWlDpjHSy0r/ymnuE5tM5nM5Rm6xnTdM0ktlkaYyI06xL1KNBR6SDOrduS+fy+10Px/FGVRQUTtV8UeyRmknz71S17poGx47pzlQud6UvCsBo1M977Bg8+ODVr1V05A4f1h2u5mb93E4nFApXHDDBvHKt0ZrZquiUO8v5+kNf549/8ccYJSPL3Mvw2Xz89NJPMWAgq2S5NHwJu8mOzWgjlArhsXjYUbuDR1Y+wsMrH6bCqV9n/Ib4i8u/4Jljz5DIJZANMiOpEST0TFCxHyuajSIhscK7goSiOyrBRBC1oFLQCpiNZn3Ok8mK1+rVy/EkiRW+FTjMDuqMdXgsHtqG21hXvm5SidyrOasBa4D9XfupdFRS7apmODXMkf4jGGUjy1zL6Ip2YZEtyAZZ/68k6/XjFgeFQgG1oOK3+ZElecz9zeazfHX/V3n50ssksgkSSgKv1Uu+kMdoMHIieAKAbcu2TXCc51sJabRhSeQStI+0o6HhNDvx2/w3hJERLCKjbUFPjx74a2nRx3aM5haoXrhRH9JuJGay/1mN1jHOrSzJrC1bO8YeLTTFiogqRxWt4VZ6Yj26DZPNmI1m4tk4Gtq89AjNZ6Z0Kkdtsp61dD6NZJAwySYkSdJbBWRTaU5jKBXCZXZd0+83X47jjawoKJyq+cbjmT7SN1Wtu8ejl/0lEnpmafR8LZtNPz4yciWaONW1JnPwitcVSk/XjWuN1sxFRcdtcdPobUQ2yFQ4KhhOD9Of6GcwNYjdZKfMXkYsFyORS2A32vn3m/49H9v4sUmN1+gNcffK3ZhkEwe6DhBMBnX1v1+tL5wOk8qloAB58qSVNBbZQk7NYTKYSrOk0vk0aSUNQJWzimg2itFg5FLkEi6Liw2VG1gVWMWhvkN0R7up99ZPmt2bzFm9p+4eToVOjdl0a9w1yAaZlJLiP9/9nzk+cJzDfYfZ176PpJLEbXaTzCdRVZVkPkmFXRcUKSpJFe/vnvN7eLntZawmK8lcsqR4aJWtuMwuWspa6In14LP5CNgCYxzn+VRCKhoWj9lDvpCnO9pNpaMSgL54H2vL194QRkawiExmC4rqsLI8sXz8JrUNN/JD2o3ETPa/A10HJji3RwaOUO4oXzTntlgRcWzgGD1xfW8Pp8Ok82kSSoKTwZNUuiqvqUdoITOlk1V42Iw2tIKGLMk0eZu4OHIRDQ21oJJTc8SyMe5rvO+6/TuYjTMZy8YYTg/jt/mnHfS81BBO1WIwWa076MbN59MdqL4+PWNVlFNPp/Usk88382jieKfrJjWYS425Rmtmo6IzeoMancnJqTl6Y72k82k8Fg8ZNUOZvQyf1YfRYOSD6z44o2jgaAexdaiVYCJIR6SDSCZCIpegoBWQjTIU0GdlGR3YzDb8Nj9KQdGdu3g/kiThtXqRkChoBXxWH36rn45IB83+ZqqcVbSUtWCSTVNm9yZzVmPZGIf7D1PuKJ9w7+O5OGX2Mj5x+yd4vOVxbq+6nX85+y8klSTRbBRFVXBZXGyp3oLNZCOYCJbubzQT5WDPQcyyWVc2TA7itDhRVIWkksRpdrK9fDtVzip+c8NvsqZszVVnVBUJJoLkVV0CfirGG53B1CAngyf1vjAlRU+shxpXDVXOKsLpMP2JfnxW3fgvZSMjWAKMtgXjs1ejy8dvUoTs88IwnQ3T0Jakc+uxemgpb+Gliy/htDipddWiaRqhZAiHycFgapAPrP3ANZUmTpUpTSpJ7qy9c157/Car8IhlYzgsDtCg2lUNErSF24hkI7SUtZTUaeeb0fM7RzIj+Ky+CX3Mo22f1WjlrZ63OBk8Sb6Qx2v10uBtoKWs5YZQFBRO1WIwWa376Ggh6M3EwaA+6wpgaEgvFZyukTgaHZuRGv+zYMkyk76s8dGuRFYvTWv2NhPJRjjcd1gfemu04rK4KGgFemO9OEx6n5SENOs1VbuqSSkpyuxlgN4zlS1kKRQKSEYJv81PJBuh3F6O2+Imq2Yxy2aWuZcRToWRDTLDmWEq7BVYjVbyhTyZfIbuWDdZNctvbvhNdtbvpCfWA+hKeZNF7sY7qzNxQD1WDx/b9DGqXdUc6DrA8YHjhFIh1patpdnfTDARHHN/u6Pd5At5nGZnqdxPKSiYZBPJdBJJklBUBb/NP8Ghmuw7dJgdHO07qg8YdtXyD8f+YUJ0cqoIZiQdoSfeg9PsJGAPEEwG6Y51E0qGSgInmqZR5arS+9kEgpkwm1L1mwQh+7wwTGfDJKQpndtLw5doHWqddF9dCDZXbdaH2OdTxHNxKhwVbKrchMfqYSg1xLqKddckNDTemZQlmfND53n60NO80fUGfpt/yszVXEoGJ6vw+K3bfguAE8ETeK1ettduZ3Vg9XUtvXz54ss8c/wZkjndfmqaxunB0yiqwu6VuyfYPk3TCKVC1Lpr6YjqwlYngyeJpCP47L7rNntxvhBO1WIxWbTwnntg9WrdyCkKPP88dHbq72tuhg9+cOpo4mRqgrKsqwlms5PPIhEO15Jjur6sYrTLYdLlyNtH2smpOVxmFztqd1DtrGZdxTqUgkJaSaMWVH2ulGSgydc0p4cHCd1x6on1kFJS5MnrqoAGPcq4KrCKodQQ6yvW88nbP8kLZ17AbrZTbi/n5Ysv6/O0DPpWU+uupW24jayaxWQwcV/jfWOEMmZaFjEbYZDRma7B5CBHB47qw3+TAxPur9viJmALMGIfoSfeow8+zowQL8RRNZWANUA0F73qxj76O3yj6w16Yj2sCqzi9qrbSeUnSvNOFsHcc34PiVyClf6V9MZ7ySgZ3BY3oUSIXCHHysBKrEYrQ+kh4tk4h/oOib4QweyYSan6TcL1ln0WXOFqNiyTz0xwbhVV4Z2ed+iN96KhEbAFFkVApNxRzsbKjSgFRRdxMJi4HLnMkb4jZNUs3z/5/UmVYmfCZJnS1qFWOqIdoKH39hrkCbbhWkoGr9aOcN/y+xZEATOaifL82ecZTA5S6ajEarSSyWcIJoM8f/Z5coVcqS+61l1LKBniZ+0/Y5V/FTtqd+jzPCMdjGRG6I338r7V71vysxeFU7VYjI4WDg7C0aNw7twVcYmtW+Eb39BnVCUSsGqVPlNkKsarCR46BCdO6Ip/d9wxdhbJrl1jHTAx/HHJMN1QwmK0a0/rHi6EL2CVrVgsFnL5HK93vE61q5p3NbyLC8MXCNgCyJJMVs0STASpclZNc/XJcVvcrC1fi9FgZDA5SEbR1YNsRhs2k41ELoHT7MRmsmGQDBhlIxUOPSvVHGjmzOAZJE0ikUuwwriC5kAzd9Xexftb3o/H6mHvhb1zaiAfb7xlSWZL1Ra21Wyb9P3FTFdzoHnKyF/x4SuYDFKLvsnHc3FSuRQN3gZWlemb/baabVPOERs9rf4bB79BS1kL9V79367T4hxT6lJc//hymEgmwpnQGd7T/B4imQgXwhdIK2kUTdFnZRntGCQDd9Tcgd/mF30hAsE0iAHZC8N086XGO7fv9LzDydBJNlVuotnfvGgCIqMdb4tsoX2knZPBk2ho3FZ5Gw6zY87rGp8pTStpOiIdmGUzdqMdr9WLzWSbUAY5H+Iqk7UjLJRMfU+sh85IJwFbAJdFF10zySbyhTztI+2lZ5ai7XOanZgkEwOJAQZTgzT7m2n2NxPJRAinw9xZd+eSV+oUTtVi4/HojcP794+VV9+7V3eMJEl3fN54Y2rHZ7yaYDqty+aWl+uvaZp+vDiLJJmceD0x/HFaijOLmvxNrK9Yf12vNdmmV4x2yZJMe6RdF06wutA0vfnUIBnoT/QjI7O+fD0dkQ4y+QwDiQEKWoGTwZP8jwP/Y9bRNo9VVwyMZCNsqtrEod5DyAbdWcupORI5vQSxwlFBwBYYYzyafc10Rjo5GTxJNq+/f2fdTu5ffv81q+UVjfe2mm2l6fBnh87SGe2cUaZrtLM62viPfvjy2Xysq1jHxsqN7Kzfidvs5lDfIZ4+/PS0kUMJCaPBOKGsYnQfBzBpOUyFXf/M8f7jJJUkzb5mcmqO8+HzADR4G9i+bDs2ky6iMdO+EDGjR3CrIgZkLyxTPbiP3l8vDV+iN97LpspNpTEVi9ljVVzbga4DnAmdwW60s65iHWvK1mCSTXNaV3HPbSlvYX/XfjRNo6AVGMmMYJAMNJQ1TCrEAJMH3Ba7/2xOTNJ1kC/kSSmpMdUzRslIOp+mK9pFVs3isXho9Dbit/kJ2AI3RJmucKoWm6nk1Vtb4cgReOCB6R2f8WqC6bQuye716lmudFoXv/B44NIlOHhwcjn3W2T442wZTAzyuVc+x5s9b5LNZ7EYLdxVexfffOiblDvLpz/BPFGMdl0IX9DFFsx65Cdf0MvxvBYvyVySzngnO5btoM5dxxvdb5QetntiPXRHuzkd0uuZH2t5bMbX3tW0i6SS5EDXAbqiXbSPtAMQsAfwWr3IkkwsF+N8+PyYSGRnpJML4Qu6MqBsIpQM8a8X/pX+RD8f2/QxVpetJpwOE7AF5qzyc6jvEEcGjlDpqCyJWMwkmne1BtqpHr5mk1WbaR/HZO+JZWP4rD4uRy7rxsTqJpaJIRtkvFYv8Wx8yvONJ5qJjil7FDN6BNeVJV5WvlBResHkjBdB0tBo9jeX5v6llTQFrbAoAjzFtTV6GxnJjNDkbcJr85Zen41dKs46PNhzEFVT9dJya4CcmiOajWIymFjmXkZLWUvpM6P38ptBXKXWXUujt5G2kTaMkhGbyUYsG6M/3k+Dt4EqZ9UY29cR7dCFsChgM9ooUOCdvneosFfwO1t/Z8n/viCcqsVnMnn1dBrCYTCb9dlS0029H68maLPpn41EwG6/MuQxGtX7rPL5iQqCt8Dwx7nyuVc+x6uXXsVj9VDhqCCei/PqpVf53Cuf47kPPLdg6yiWJ5wPn8cgGcjkM7pwQkHBa/GSyqfwWD083PwwQ6kheuO9XB65jNVopcHTgMOsP7z3xHr4wakfcN/ysfKpU2Uxis7HqeApOkY6kJCwylaMshGHyUGlo5LlvuUEbAEO9x3mM1s/A+jRvv1d+4lmo7jMLjQ0jJKRjJrh7OBZfnTuR5TZyzgVPFVS+Wn0NrKmbM2MG8ivJdN1tQbax1oem/DwNZNrAWPuYUt5Cy9ffJmMkqHCWTFpH8fWmq3sOb9Hb8S1+mgNt3IhfKE02yuSieiDl41WNlRsYCQ9wkhmhEgmQiwbm7IvZHQ9/sngyWl7uwSCa2J8X68oKxdcBY/Vw5qyNQRsAWLZGLIk631Gv+qhMRlMvNX9FhWOigUP/NS6a6l2VpMr5MYcn6ldGj3r0Gww47Q4S5mWdze8mzvr7uSt7rfY372f4fTwlD1+N7q4isfq4YNrP8gzx54hmonSEekglo2V7JlFttAX70PTNMyymbOhs7itblYFVgGQU3M4jA5cFteUZf1LDeFULTaTyaun0xCP64N/ZzL1fjI1Qa9XF7nYuFEvIQwGdXXBe+7Re7cmk3O/yYc/zoXTodO82fMmHqunJN9tNen37c2eNzkdOn3dSwFHUyxPODlwkksjlyhoBbxWb2nOxIMrHuSzd3yWaCbKob5DHOw9SJ29DqfZyUBigHA6TCKb4GDPQX5w6gf81u26GtDVmmH3nN/DyxdfJqWkGMmOYDVZkWWZMnsZVpOVGlcNGys3lsrQsmqWXU27aB1sJZ6LYzaYiWVj2E12fHYfpryJpJIkmAhyLHiMGlcN4VSYVD7F8eBxIpkIXpuXe+rvKZVBTOUYjY7mpZU06Xwam9E2bTRvugba8Q7n+GuNxmP10BHp4EfnfkRntJOkkiwNG86qWcLpMK1DrZTby9lUtWlMH0c2n9Xl2nNJzoTOMJwepqAV2Fy9mQ0VG3jl0itEMhHKHeVsX7Ydo8HIW91v0RvvLWX4puoLKdbjeyweUvkUTouTnngPXquXDZUbbswyEsHSZXxfrygrF0zD6D6m80Pn6Yh2lISVlrmXsb97Pw6zY8EDP9cqbFKcdei0OCmzlZHJZ+iN94IG54bO8WDzgzy65lGQ4GDPQQZTgxP28ptFXKU48/K7x7/LUHqIOk8da8rWUOOqIZQMUWGvoKAVuBy5TFbNsrlqMxsrN5Iv5PWBxUiE02Gyanaxf5UZIZyqxWYyhyge19X/ysrGOlVXc3zGqwk2NsKKFbr63/hZJA7HRDn37m64664F+ZVvJNqH28nms6XMRBGX2UUoGaJ9uH1BnapiecJq/2r+48/+I8cHjpPJZ7AYLTy44kG++dA3gV9JoTurMUpG0GAgMUBfog+rbMVqsqLmVN7oeoMGTwPApCVtiqqQU3M8ffhpMvkMw+lhfDYfte5aBpODpPNpArYAl0cus8K3AqWglCJo+9r3cWTgCEaDEatsJaNmSCpJzFmzPiC4UKA90l4aSpwv5Iln4hgNRrqiXSxzLeNU8BSH+w5PcPJGZ9TcFjdo8MvLvySd18tGzLK5lPWaKpp3tQbazkgnPbGeCUbrauV8A4kBErkE9Z56at21vNP7DscHjlNuLy854V2xLtaWrx1TcrevfR+vdbxGS3kLqwKrePXSqyiqnnnsT/STyWcYTA7yZvebWGQL9Z56fHYf71v9Pu6sm3q2yeismtFgpFAolIx7cUbYjVRGIljiTFXGPtuy8iVeOiiYf4ql5U8feho0sBvtNJTpc4mG08OLFviZq7DJ6FmH5fZyjAaj3o+FRjgTJpAOMJga5PzQec4NnkMtqBglIy1lLRPKsW8GcRWL0cLO+p0c6DpAo7eRWndtqcxflmQKWoFP3P4J4tk43z/5fRxmBybZhEk2TZgjeSMgnKqlwGTy6rt365mlYHBmU++nmj0ymZEafb2ODhgY0LNZJ0/q2a2ZlmzcAgawyd+ExWghnouXHo4B4rk4FqOFJn/ToqyruayZPR/ec1XxjFp3LQ3eBi6GLxLLxjAZTCDpNeuVjkqWe5dzoOsAQKmkLa2kMRqMuM1uXjj7AhpaqTRvKDVEOB3GZrRRZi/jfPg82XyWAgVSF1IE7IHSHIzDfYdp8jXRNtxGMBkszceKZCJ6pkuSCafDuCwuyh3lqAWV4cwwde46EtkEwWSQFf4VlDvKxzh5JtlUyqgVs0EHew9ybugcLpOLalc1BslA23Aby1zLphSjKDGLsV2TRQ6DiSCXI5dRVIV6T33pHkYzUQySgY5IBy3lLdR76hlKDfGLjl+w+fxmnlj3xIRywuH0MC6zC6PByNGBo5iN5pJT1BPr4VDfIXJqjt/c8JvT9kKNzqoVSysyeV21cSQ9QjqfRlGVG8pYCZYwk5Wxw8zLykXp4C2LxWjhzto7S7Oaikp4MP/9Q7MR6pmrsEksGyvNOkzn06XeZ5vRxnBsGFmSOdp3lP3dupT4Cv8KYtnYpFm5G0FcZSb3NJaNoWoqdZ66MQHJ4vcrIbGuYh0763fe8Jk54VQtBSZziKzWK0ZmNlPvx88emWwWicWiX6uxEV5/XRezqK/XrzuTko1byACur1jPXbV38eqlVwE9QxXPxYlmojy44sEFy1JNtXGtr1g/5Ro8Vg9PrH2Cvzn0NwQTQTSThqFgwGlxsrVmKxXOCs4OngX0GR0ngyfpjHSSU3MUtAI9sR7ua7yPuFWf0WQz2cipOcJpfaBvMcpkkAz6HCpNv+7oB/otVVt4o/sN8mqeZC6Jpmm4zC7MspmcmsNv82M32QHQ0OiJ9aBpGhsrN07oW3r+7PM4zc5SNuhQ7yGO9h9FkiQaPA3EsrpQhlW24ra42d+1n78++NcEbAHaRtoYTusGbUftDt7d+O4JDbRpJc1QeohmX/OEEr/id7C6bDXJXJJToVO83vE6w+nhkgS63+bHZ/WRzqeJZqOklTSSJGE1WjHJJsod5WTVLAd7DvLgigcnlBPajDbMspmsmmUoNcQK/wo8Vg+SJOGxeGj2NeO0ONlZv3PaHoPRWbUKRwUN3gbODJ4hkUtgls0ksolp520JBDNmsjJ2mHlZuSgdvKVxW9ylWU1Fhwrmr3/oWuY9zVbYZPysQzSwmWwMpYZQNIWNVRs5N3RuVn3AM13DfKq7Tneu2dzTmYo23QyZOeFULSXGO0DzNfV+dEZptLM2PKxnp2prwecDk2lmJRu3mAH85kPfLKn/hZKhCaV215O5GoPihnhX3V3k1Bx/887fkM1n8dv8rAysZE3ZGr2cz+oD4Gj/UXrjvbjNbrxWL73xXiKZCCklVXogtxltJJUksWyMglag3F6Oz+5jhXcFt1ffTiwb40TwBJtrNpc20PWV65FlmYvhi6VBxY2+RpK5JA3eBtL5NPFsHJvJpmer0nq2arwMuVk20xnp5M66O0vZoGLv1UB8gFWBVYSSIdJKGpNswmV20R3t5n++9T8xy2aWuZdhkS2klBRv9LzB2cGzPLb6MZ45/gyDqUGMBiOyJFNhr+CDaz84qVBH8TuQJZlIOoLRYOTuurtxWVy8eulVjgePI0sy+UKe7mg34XQYi2xhMDlY6vlymV3kC/mSsZIlme5od6kkotHbyIGuAygFBatsJZaNlVSoaj21M1bEGp9Va/I1EUlHuDhykVprLSbZdMMZK8ESZrIy9umqK4rMV+mg4IblevcPzce8p5kyftZhscJDURV2N+9mZ91Ozg6enVdVv2txGosUnxkssoVDfYemPdds7ulMv98bITM3HcKpWupcy9T7yTJKmqYbupoa8Pt1JcCODl3YYsOGK9ecqmRjpgbwJioNLHeW89wHnlvQOVVFZmsMptpcf2fr77CvfR/LXMtwW9xcjlwmlo3x6OpHSeaS/Lzj5zhN+gDfWCZWyiJ1xbp4ZKV+nbbhNvpifSRyCV19UM3gtXi5vfp2bCYbkiSVUvmjN9BVgVV4LB6qXdW8u+HdbFu2je+f/D4W2UI4HdbVntIj5NQcLWUtNHobJ0S0BpODwJX5Tel8mpyaI2ANMBAfYCQzQiwbw2v1EslE9P4xk5VCoaBnhMJJ6tx1NHobGUoNsffiXhK5BH6bn0gmQjwbZ5lrGR9a/yF2r9w96XcQsAaIZqKcGzrHxfBFyu3lVDgqqHZVs7Z8LYf7DrO/a38pKjeUHsJoMDKQHCCn5rCb7dS6agnYAlhkS0me/tzQObwWL82BZsrt5VQ6K8kX8rohLiigQV+8j+5oN1WuKizyzIzk6KjfQGKAlYGVvG/1+9hcs5lye/kNZ6wES5zJythnUl1xraWDgpuC65WluBaF2Lkyftah0WBkR+0OHl39KJl8Zt5V/a7FaRz/zNAb6yWWi7GlesuU55rLPZ3N93sjjz0QTtVCstCOxviMUigEP/sZrFwJt92mqwx6vZBK6Y5Vc7MujBEK6c6Wpk0853QGcHBQH2Z8E5YGXq3U7nowl41r9OZaZisjlAqx5/weHm5+mEdXP8oLZ1+gI9IB6ANkFVVhfcV6al21JHIJzg+dJ6kkcZqdWIwWOiOddEe7WRVYxWByEKfFyW1Vt5FQEhS0AgklQdtwGxsqN4wxCpNtoB9c+8FStKtYO13hqKDOXUcoFSo5ecCEiFYsF6PR21iSuC2WyiXzSQK2AMlckqSSxCSZSCkpbCYbPouPSDaCqqk4Zb2+HfRSx/5EP/su7+Oh5ocwy2YuhC/QHevmpYsv4bV6x4hiFL+DYCLI2aGzSEhYjBYyaobjweMAtJS1kMgleK39NV3C3tuA3WQnlAqRzWcZTg/T6GnEZXGxtWYrh/oO8cqlV1jpX4nT7ORi+CKH+w6zpmwNn7z9k/TH+vnh+R+SVbNUOioBGMoNEc/GOdR3aEbR1Zsh6ie4gZiqr3c6rrV0UHBTcL32q8WY93S138VitMxbVi6aidIT6+FA14E5O43jnxkO9x4mlU8xlBqixlUz6bnmck9vFXsknKqFYDF6kCbLKDmdeolfOHxlIHBDg14CODICQ0O6c3Xhgu40/cM/TFzndAbw6FHYv/+WKQ28nsx24+qKdvHa5ddwmBwEE0E6Ih3k1Bw5NccLuRd4uPlhHGYHd9XdRZm9jHg2zp7ze7i38V42Vm7k7OBZ4rk41a7qkrphMpekN96LhkYoGWJrzVZ21O7gxMAJTg+exoSJtuE2PBbPhB6dq22gRcWngz0HyRfyBGwB7mu8j20124jlYiRzSY4NHKM33ovP6uPR1Y+iqAqvdbxWMkReq5fOYCfrytZhMVn4ZccvCWfCqAW9/yuhJPQG2YKKw+xALagoBYVMPoOiKngsHvrj/XTFuvBavViNVrpj3ew5v4dkLsmddXeWvgOPxcPbvW+XJN6TuSRZQ5Y6V11JTa/MVkaNu4b7l99fEpg4MXCCi8MXiWajLPMs4/7l97OtZhtPH366ZARr3DWsLV9LR6SDnlgPx/qP6WV/qRFAn9VhNVq5o+YO/Db/rKOrN3LUT3ADMtvqimspHRTcdMz3fjXTfp7rwVS/y2yyNqN7m4AJJXr9iX5OBU+xvmI9PquvNER5Jk7jZGJJJtlEwBSgM9LJSv9KbKYrI0qK59PQ5nxPb3Z7JJyqhWCyjNEPfqAr7X3kI9fHaEyWUbLZ9NlXicQVp6qlRR8S3NsLJ07oaoMrV8LmzXoGa7xDdDUDWJyBJWrj54WZGoNi+v619tc40H2g5Dw0eBrw2XzEc3FOh06TzCXZumwrPquPEwMnuDB8gWgmSttwG1urt9I+0l6SKU8raZDgjmV3UOuuZceyHcRzcVb4VtA61EpPrIe0kmYwN4gkSawMrJzUKEy2gRbXO1pOttnXjKIqPH34aaLZKMFEkISiy60XG5d/bfmvldT/emI9NHobWeZaRiqfAmCZaxmKqiBLerNzNp8lm8+iaRoJJYFFtjCSHtEzWrIJp9lJf7yfVC5FOBXWHdB8DkVVOD90np93/BxZkumN95JSUvTF+/BZfViMFhLZBLFcjOHMMEjQHesmlovR7GvGbrqy5nUV67AYLRS0Ap/f8XnqPfV0R7snOMs2k42UkuLSyCUavY1UOCrwWD0UtAI1rho2V2/GZrKVZoEJGXTBTcVcSwcFgmlYivOeZpK1GV2WF83qYzskJCqdetVEsURvuXc5F8IXOB48jlk2s6FSb+OYiYMzlVhSgQI5NafPfTTZCKfC9MR6+P7J76NqKg6TA03TSoN7l8I9XSoIp+p6Mzpj5PPBmTP6zwMDekbnF7/QHavdu+c3azVZRslm02dfDQ/rs7Dsdn19Pp9uvE6e1IcF19frTpfRqJ9nvEM0lQFcvVo/Jmrj54WZGoPRQ149Fg+XRi6hoRHJRPT5GAUNh9lBf6IfAwb2XtjLkf4jKAUFSZIwYEApKBgNRsyymZH0CGbZzPry9dS56/QMTSbG+aHzHO47DECDp4HVZavpT/QTzUTZXLV5xg2/o8sNalw1DKWGePbUs5gMJrbXbieeiZfqu/02P8FEkLZwG4qq8FjLY+ys38lgapCjfUc5N3SOdD5NXs3r9eSuWo4NHKM/0Y9RMmI1Wcnn8wwlh/SSvXwGu8mOoirYTXa6Y93Ec3HsJjsmg4mEmuDyyGXMshmloBCMBxlMDaJqKibZhGyQcePGbrbjMDmIZCKYZX321uhsmqIqDCQGuBC+QDQbZU3ZGk4FT1HpqJzUWU4raS6EL+C1eksGzmv1ksqnGE4Pl+7dQkRXBYJJuZ7l66NLB3t69GO1tZDJ6AG7m6A3V7B4LFVVuatlbUbbyUQuQftIOxr6eIz+eH+pRG9j5cZST+/p0Gnq3HVk1eyMHJzxtqgolvRO3zs4jA4kJIKJIEcHjoIGDrNue2LZGH3xvtLg3qV0Txcb4VRdb0ZnjFpb9X6jREIvxctk4OJFeOYZvSxvPsvjpsoouVy6AydJEx2is2d18YrivKpcDgwG3fkaHLxi1K42E0vUxs8r0xmD8en77mg3rUOtqJpK61CrXrqnaTT5m0gpKd7qfYvD/YdRVAWL0YKiKigFhVAihMPs4O76uymzl2Ez2rCZbLx26TUujVxiuW85Dd4Gfn755xgkAx6LLvVtkAysL19PZ7STaCY6bYSquN6ALcBAYoDOSCdJJcnlkcu4LC62L9vOydBJMmoGq9GKoipYTVZCqRAvnH2B+5bfh8fq4UDXAfZ378dj9uC3+QmnwnREO6hwVFDhqMBhdpDJZ8iqWYYVXeWwxl2DWTYjG2Q905SNlWTWc/kcGTWDUTaiFBTCqTDxXJx0Po2mabpgBBBOhVFVlSZ/E3aTnf54P0+se4Lf3vzbeKwesvksJtnEc6ee0wUorF621mylxlUzptl3vLPcHesmmo2ytWZrKcvV6G3kePA4WSVLJBMhlo2JSKBg4Vmo8vVs9ko/bjR6ZX5iZeUVe3YT9OYKFp4brZ9ntF13mV30x/tLvbXdsW4kSSJgu1Ki11LWQk7NcSZ0hvZIO9XO6hk5OJMFbv02PxX2ClwWlz4+RZJxm92s9K+c0LNVHNwrIS35e7pQCKfqelPMGIVC0NamOyoufRgcRqOuwpdI6MZkNuVxM4kaTpZReuQR/XgmM7lDdPSoXgrodusiFkNDembr6FFdyGI0k83EErXx88p0xmB8+n5j5Ube6n6LUCqEhITJYMJr9TKSHkFC4uLQRTL5DLIkk1JSqAU9A5NRM8iKTF+8D4/Fg9lg5rX213ij5w1cZhf7O/eTUlIUtAKKqpTEKdaVr6PJ18RAYmBGJWnF9UYyES4OX8Rt1iNlkiQxnB7m7d636Yp2UdAKZKUsakHFa/Xis/pKPUcAB3sOEklH6BjR+8YkJHL5HK1DrawtX0ujrxFFVRhMDqIWVBq8DTzc/DBIvxrCmB7maP9RlLzCsDJcmlWlFBSSuSR5LY+aV0sDk1VFRS2oVLmqMEpGTAYT2XyW9RXr+djGj41pQi5Oj69x1UyYHl/shxrvLJsMJtaUraHGVVO6V2vK1hDJROiJ9TCcHsZv84tIoGDhWagRGqOvk0hAe7tuR5xOPdgnenMF18hizHuaC6PtekpJkVNzeK1eJEkinotjkAwgUSrR89v81LnrCNgCfHTjR6l118543ZMFbn9n6++wrWYbWTVLLBvjeye+h9/uH/O50YN76zx1834PblSEU3W9KToa//IvuoNSKICqgqJAdbXuvGSzei9TayusWTN/k+evpsZksUx0iFpa4KWXdCNms+klgIUCrFql90pFo9M7RqI2/rowlTEYn743Gox4bV6SShKLbKHZ18xQekifryVbUDWVbD6LJEmYZTMOswNZkknkElhlKzvr9NK6N7rfoH2kHY/Fg9viZiA5QEErYDPZMEpG0vk0ZbYyNlZuJJgIzrgkrTibqW24DbfZjcviIqfmMBvMqAU9u5bIJbCb7BgkA5qkMZgaRCkoJSnxWDbGiYET9MR78Fg8+Gw+VE0lp+aIZCJk8hnyhTyZfEaXfbd69eZdCfw23TAEpABI4LP58Ng8aGhk81liyRj5Qh6DwYAsyZiNZgqFAiaDiQIFNE2j0lVJs78ZDY1dTbvIqtkxWbrppscXnc/xzvKBrgO8cukVZEkulXp6bV7eu/q93Fl7p4gEChaehZohNfo6Lhf09+t/Bujrg7VrRW+u4LozH/Oe5oPRdt1ldmGWzWTyGQAcJgfVzmpOhE6MKdErVjGsq1g3q2tNF7gtlpwvhtDHjYhwqhaCXbt0B6itTXeeDAbdoaqu1nubhob0DNZzz+kRuauVOcwmajg6m1U3g0jC5s36OVMpXQ3QbIb162H5cr0UYyY9UXOV1RXMifHp+4JW0B0rqxen2Ulfoo9IJkK1s1rvKVIyBBNBJEnCaXaO2axtRhu/vvrXAfjGW99guXc5ZwbPcHnkcmnjjGai5At5rLKVwdQgXZGuCap/kzE68rc6sJpXL72KzaiLM0QzUVJKipSSIqyG0QpaySn02XwYJSMDiQHurL2Tcns5L7a+yMHeg+TUHCaDCYfZQb2nnnJHOZGs7lQV+8JWBVbROtSKoirYjLbSeoKJIIlsgnUV6wilQtiMNmRJ5hzn6Ih2IGsykkEip+RK2a18IU9OzZFVs3gsHuwmO6eCpzjcd3iM8Z2N2tRoZ/lqpZ4LadAFghILNUNq9HVSKd0eer16+d/IiB7gE725guvMQg4Jvhrj7Xq1q5qTwZNoaNxWeRtVzir6E/2lEr259DONz8ZNFbhdikIfSxnhVC0EFgs88YT+529/W1fbK/YeFUsCN2yAFSumd5JmEjWcaw18ebkuVKEoV7JVNpvuCM6mJ+omGvx7IzD6YbzYI7Q6sJqW8hbe7n2bMnsZEnr/U72nnksjl8ipOZS8Qk7NkS/k8Vq8rCxbiYQEgFE2UuvWp8GfGTyDSTZhNBgxSAbMRjMOk4NoNkoqn7rqZj5Z5K/Z10yzr5nWcCvJXLJUhmg1WslrecxGM4lcAgxgkAwUKGCRLbyn6T0c6jvE82ef17NJkgEJiXg2TutQKxX2Cpr9zTR6G6m0VxLJRuiIdDCYHMRoMHKo9xCbazaXZOL9Nj/bl22ndaiV9kg7mqZR761nOD1MSkmRz+fRNA3ZIJckZCudlXzytk9SZi9jf/d+Kh2VlDvKJxjfuRihG63uX3ALsFAzpEZfx+XSA3oZPdiD2azbIdGbK7iOLMaQ4Ksx2q47zU6afE1ISDjMDgySYUyJ3mxsxVyycVcL+C12qeRSQzhVC8mjj+oG4vnndSGIfF7/ecsWuPNOXaziaqUVM40azrUGfnRPlMWiC1QEgzPviVqMeVyC0sP4tpptvHTxJfoSfVwavkR3rJuB+AAmowmloFDjrGGZaxkNngb64n1YjBYMBgNltjJWB1azwr+ilEUpZlrWV67n7NBZYtkY6Xwao8HIPfX34Lf5UVSlJBM+mtGbbLGkrdJRScAWYCg1xOtdr2M0GFELKuWOcgaTg2TyGXKFHAFbgFp3LcPpYRK5BGX2MmRJpt5Tz33L7+OZY8+QU3OU2ctQCgqKemXulFpQ2b5sO3fW3cme1j0loYj7Gu8jpaS4OHyRdD7NxsqNPNz8MMcHjnNs4BiRTISCVsAg6fdibflaWodayagZ0EDVdIl6WZJ5bPVjfGDtB3j68NN4LB6MBiOaplHhqBhjfK9FbWqh5ngIYyiYloXqkx1/nepqXTBJ0/RB9bGY6M0VXFcWY0jw1ZgsyFZc57Xs2XPJxhV7hRu9jQDUumuxGq1LolRyqSGcqoXEYoHHHoP77tOdoP5++PGP9QyVyXTlfVOVOcwkanitNfBz6YkqZqbeeksM/l1EDvUd4sjAEVb7V5PIJjjcd5iRzAhWo5UGTwMBe4D2aDs+mw9ZltlStYWAPYAsyURzUTZUbCht2MVMS4W9gturbudI/xHUgsqmyk3Ue+pLWZfRDtX4CJgsyXRGO0tCFp2RzlJj7XBqmGZ/M6eCp+iN9wIgI5NVsmTyGSxGCxoaNqONMnsZj65+FIvRwkhmBJNsotJRSTAZLDlDiqYQzoTJ5rOs9OkqRaOFItJKmoA9UFIrqvfUc3bwLCeCJyh3lOOz+ohkI5wOnSZgD/CeFe/hfPg8Q+khAOxGOy3lLfzutt8llo1xMniSVD5FLp9DkiSavE2sKV8zRrBjqWadlkrfgOAGYaH6ZEdfx+mEpia9/M/h0Ht7RW+u4DqymEOCr8b4INu12JG5ZOOmshfF8SGLXSq51BBO1WJQVM2rrYU33ph5acVMoobd3ddWAz+bnqjRmanhYT2yWFuri21Ml3UTzJnJMgyjN8vi4FyvzYtskMnkMySUBIlcApPBRCwX44HlD2Az2UgqSYwGIwFrgFOhUxzu1/uDNlVu4v7G+3m7920KWoHl3uWYZBN+u5+CVpg06zI+AtYV7aJ1qJXh9LBeomB247V6UZIKoVQITdMYTg+joaEWVHLkSBfSZPIZfHYf+UKec4PnqPXUcqD7AKl8CpfZpZfUWTxEs1H985qmD/w12nir5y0uRy4Ty8ZYV7GOZdoyTgVP0RHpIKWkyOQz/Lz95zy88mFUTWVj5UaimagujmG0s8q/ioHkALdV3cb22u2MpEdA0p2qofQQWTXL0YGjdEW7SpmynJrj0vAlLg5fZGf9zil7ppYK+9r3sef8HtwWNxX2CnKFnDCGgqlZqD7Zya4DC19KLsrXbylG29ObvXdoLtm4yTJbe87vIZFLsLZ87ZIolVxKCKdqMZlLacV0UcP5qoEfL5c+GaPLDP1+vZyxo0NvMN6w4cp5RHPxvHC1DENPrIf+RD/Vzmo6Ih3YjDZMBj2jM5zRJcN7Y700+Zqo99Tz21t+m3K73gv0Vs9b7O8a2x/00/afUmGvIKNmSOfT1HpqubP2Tlb6V2KWzdS6a8dkNSaLgNW563CanJwfOk9LWQsuiz5KwGqyYpEtdEQ6wABoUKBQOldOyxHPxktS6iOZEQ71HuLt3rdZ4V2B1WhlIDlAWknjtXpL2SK31Y3f5idfyCMbZE4GT9If7yehJHBb3Pqmj8abPW8CuoFZ6V+pqwr+Sowik8/wr+f/lVAqxKrAqpIcelHhUEPj3OA5XGYXF4Yv4DQ7cVlcRDIRzg6eZfuy7UvSmBQfHLL5LM+deo7uWDegl3k2+5vx2/y3vDEUTMNMbML1uM5C2Q1Rvn5LMZk9LQYTTwRP3JQDbWebjZsqsxXJRDgTOsOmyk1j3r9YpZJLCeFULTazLa2YLmq4UDXw48sM02ndmUqldMequVk0F88zk0WM9l7cy6HeQ2TVLKeCpzgZPEkmn6HeU4/RYCSbz+Kz+mjwNBDNRllTtoYyexnl9vLSpndu8NyETfNs6Cz72vdR5ajCJJvoifbwZtebLPctp95TP6FkbLIImM1ko85dx/nw+ZLMeVpJk86nqXRUMpAYQEbGYDBgLBhRNRUNDQmJglagUCiQyqeQJZlyRznJXJKLwxe5t+FezAZ9qrxFtlDuKNeHIdoDmA1mUkqKJm8TpwdPcyp0ilWBVWiaRiwXo8nbhM/qY2/bXgbiA6VSw2ZfM9uWbSOn5mjwNhDLxggmghOilRIS4XQYk2ximXsZaSVNNp/FZrRhla2k8qkZDUFeKMY/OJwbPKerFZodGA369t8b72V7zXZ8dt8tbQwFtzgLNY9LsCSYzJ6+1vEaD614iM/v+PySK9uGa++Dna2S31SZrQp7BflCnvaRdtYa15aCj4tdKrkUEE7VYjPX0oqrRQ0XogZ+vGiGzQYNDXoJ4MiIrnAomovnjakiRueHznOk/wgPND3Auop1HOs/RigRwiAZsBqtDKeHWWZdRkErIEsyWTXL1pqtY2Yqjd8000qaC+ELxHNxGr2N+G1+Lkcu0xntJJPPcHvV7SgFZUzJ2FQRsFpPLWW2MpK5JKFkCIfJwfry9cSzcc4MnqGg6Rkqo8GIQTNQKBTQJA2jwUhGzeCQHNhMNmxGG3aTnayapUCB/37/f+fpQ0/r094tbva27aUn2kM2n0U2yDR6G2n2NdMf7yeeixNJR0DSHYgzoTOEU2HMslnvy6LA6eBpjvQf4a66u3hi7ROYZNMEkYltNdsYTOnDhFNKiuXe5WiahlJQyCgZNEl3CGfjmFxvsYjRDw4BW4D2kXZiuRiyJFPlqkJRFeK5OG/3vc0jKx+5pY2h4BZmoeZxCZYEM+ktWkoDbeezD3Y2IkqT2XVFVTgZPElaSXOw5yAXwxdpDjRT7axmODN805RKzhXhVC0V5rO0YiFq4CcrM2xp0Z2p3l4IhyEQEM3F88RUzs9QagizwYzT7KTaWY1ZNrO/cz+98V5W+FawvmI9mXyG/kQ/LWUtPLr60TGbp4ZGvpAnlAhR79VFJ0YyI4SSIVxmF16rF03TSGQT2Iw2IpkIA/EBGn2NE+qnx0fAwqkwZ4fOUu4sZyQ9gpyXaXA34Lf5yapZmrxNXI5cRkPDJJvIq3ny5DEbzBgkQylzFbAFMMkm4tk4LrOLfCGPx+Lh4ZUP88qlV7gQvlCSkpcNMj6bj/ZIOxX2Cpp8TXitXiLZSKkfazA1yHB6GKNsxGlx6oOClQyXI5dZE1jD7pW7S2pHsWwMi2zhUN8hnj78NElFdw6DySBGg5EKhx6xS6tpljmX4bf5Z+SYLIRYxPgHh754H2kljdPkJJ3Xe9esRitGychgcpA6d90tbQwFtzALNY9LcN2ZSaBqqSn9Tcd8zs+azeiOyez6Oz3vcDJ0kg0VG3BanFwMX+Rw32HWlK3hIxs+ctOUSs4V4VTdzFzPGvipygx9Pnjf+3SJeNHoO29MFjFK59PEc3FcFpfeQyWb2Fi5kWpHNQe6D9DkbcJhcZTmVj288mEqnHpUbvRDfWekk55YD6sCq7i96nbCqTBKQaHCUoEsyXREOwglQmTUTClD1eRrYpl7GU6zs2SAxkfAemI9oMHOup0Mpga5GL7IidAJsoUsH9nwEd7d8G6eev0puqPdZPIZZEnGatT7rUyyibyWx2lyUuYoI56NE8vFqHXVErAFcFvc7GraRTKX5OnDT+M0OUkpKfxWP7WuWkYyI3REOrir9i4OdB9AKSiMpEdI5BIMp4fJF/KYZTNVzipAj74Np4fpifcQTAap99SXRCb2Xtg7xqDZTXY6I530xntRVAWX1cUy5zLcVveYLODVmKmRvJZM1ugHB0VVOD90npHMCBIS+UKeaCaKalZBAq/Vy511d87q/ALBTcNCzeMSXDdmE6haqkp/k3G95mfNVERptF2/NHyJ3ngvmyo3saN2B/lCnmpXNeFUGKfZyc76nbe8gqxwqgRz52plhqKxd16ZLGKUyCZQVIWALVCqaQZd9GFH7Q4+cfsnkJAmfSAf/VB/d/3dHO0/yoXhC6SUFKsCq1gVWEU6n+bSyCWGUkNk1AxZNYtZNpPJZxhKDRFOh2nyNZUM0OgIWE+sh++f/D4Os4MKRwX13nrWlq+lO9aNyWBiZ/1OrEYrdpOd/+/Y/8fJ0Elyag6PxcOasjW8p+k9XBq5xP6u/fTH+3GZXdS6anFZXGMclzvr7uRA9wE8Fg/BRJD+hF7uZzaaqbXW8uurf513+t4hlAphNpixGW2ljJtaUFELKmajGUVVcFqc5NQcF8IXSvcNmGDQalw17F65m7ODZ6lwVGA0GPHb/CUDPh0zMZLzMQNk9IPDQGKAnrhe6hHPxZENcqlE1GAwsCawhiZf04zOKxDcdCxUL7LgujGbbM5se4sWk8XOqo22661DrWhoNHoaaR1qpSPSQU7NYZAM2E12BlODS+reLQbCqRLMnYWS2hUAk9dC727eTSgVmlRUYfxQ3iKTPdS/q+FdNHgaSCtpPrPtM2xftp2/P/L3nB86T0Er6KV4BQ2D0UBSSdIb76XCXoGENOH8HquHWDaGqqljIn42k416T/0YQ/BYy2Pct/w+emI9enmfxUWtuxaP1UM2n2XP+T0c7DlIvpAnYAtMcFzcFjcBWwDZILN12daSEEY8G8csm6l0VmKWzTR6GgnYA5gMJrqiXRztP0pGzaBqKhklQ0bNYDaYyak59l7Yy0/ln+IwOUoCH8Whh0UC9gDLfcv5+KaP47a4Z5VJmomRHD00eboHhKmyWcUHhz3n99AWbitlAHNqDqPBSCwbI5PPsKlqEx9c+8Fb3hgKbnEWah6XYN6ZSzbnWga0z8d6Z1qBsFSyah6rHvAM2AIcGzhGT7wHt8WNz+zTS+rjwxztO0qzv3lB1rNUEU6V4NpZKKndW5zJaqFHZzRmahimeqivdFbSE+shOdjHbfkAH6h5gO9kRginwsgGGYfNgUk2lcQNmn3NVDorJ42UzcYQTFWGYDFaeGLdEzy44sEpDdBkEUdFVYjlYnrE0eLBb/MzmBokX8hjMphK5YOxbIxwKozb6sYqW4lkI1TaKwnYr7z+Zs+bJHIJ/Db/pL9H0QGcDdPdGw1tRg8IMyl32dW0i/54P/s79zOcHiadT2M32bGZbEhIKAWFdWXr2L1y96x+h6m43sIbAsF1Y6ogYTFjJYKGS5a5ZHNm01s0X8yll3YpZdU8Vg8t5S28dPElnBanrnirpChoBVb6VnJu6NySUr9dDIRTJRDcYIx3QmZrGKZ6qI9EgpS9/g49z76FKZOlwWrh16skXqp3Izkl7CY7JoOJlJJCKSgUtAIW2TJppGw+DcF0td9Xizhm8hnWlq/lcuQy0UyUSCaCWTbza42/Rlesi3whT0ErYDfZ8Vl97KzfOcGRaR1qpSvaNW8Gbbp7IyHN6AFhJuUuFqP+/VhkCxajhTJ7GUbZSEpJ4TQ5cZldWE3WkrT8XFkI4Y0bmaeeeoovf/nLY46tXr2a1tbWRVqRYEqKQcJsFvbuFXOrbgCuJZuzkAPa5yo4sZhZtfFsrtpMrbuWVD5VsqfrytfR5GtiIDGw5EQ+iixUwO+mcqqE4VokxAT6RWfGhiEaxROLscPVwk9C+8c81Bf2/YyWk4MYa5ugvAJjJML6Yx10RBRObK0lmokiSzIqKh6Lh4SSYHVg9ZTXXShDcLWIo8VoYUftDiLZCA2eBsyyXuIXy8X497f9ezZUbqA/3o+mafyw9YclIY8iHquHSmclGys20hntnLffYzpHcLoHhJmWu0QzUc4NnWO5bznh/jASEiaDCVmSiWQi3FZ1G6qmXrMhnE91qpuVdevWsW/fvtLPRuNNZX5vPKazW2Ju1dLnV9+hx+1eMtmcKZd6DYITi5FVm4pyRzkbKzeiFBScZqfep2yyEUwEl5zIByx8wO+m29WF4VpA5jqBXjhhC0/xuzpwAIJB7reYKVvt5eW1OXpyPdhTCuu60tiXLUeuqtY/U2XDns+xue88PTkjqtlJUkniNDtxmp3UuGp4eOXDV64RjRIL9RCzgKtCL4tbSEMwlWM52oEpbqpFB8ZitFDvqdcdlkuTOzIei4f3t7wfYN5+j+kcwekeELqj3TPKZhXLYrbWbKU33ks0E0VT9Dlgdpsdr8V7zYbweqlT3WwYjUaqqqoWexmCmdgtMbdqaTPJd/jA7ZswNN3PO0MnJga/lsAzx3wITixkVu1qayjaJ4tswW6yE0wEl5QDO5qFDvjddB6HMFwLyGwjebN1wpbARnjT8PLL8J3vlGauGFWVLa9ZWff4+xj8wu+Q6u2gX3tDl8T/FXJWwW1xsiLjYFvcjaW2EafFSdioEDJleXT1o3pmJ5sl9+rLdOx7gcFQB0kzDLY04H/vE/zamt2TGoJoJko81IM7C+6K2uv6/c4kyjfTcsX5NhgzcQQny47NtNyl+D4NjTuW3cGJ4AlsRl0pUlEVkvkku2p2XdPvtdjqVDcKFy9epKamBqvVyp133slXv/pV6usnF5PJZrNks9nSz7FYbKGWefMzE7sl5lYtbSb5Ds0/e43dDz3EXfd//so+L1nh1TkEfq8DS0VwYj5YSuWIV2MxAn43nVM1G8MFwnjNmatF8g4cgMZGfbMbbXhm6oTNNQMmmJxoFF54AdraIJcDp1M/Holg/eG/Urf5DqL37qDP4YBIBKnMjO/yAM6+QezdQYwZha3By8QNF4i7zAw3VWO/+z42/do9+nn27aP3hWc4L4UwVZThzoH3cDtHcs+w78OmUjQomokymBzkeNfbZF/ZS/m5Thw5KK9opHHXBzE/uPu6fr/X0pu10EznCM7GCSy+L2AL0FLWQlu4jUg2Mukw6LlwMz0sXC+2b9/Od7/7XVavXk1/fz9f/vKXueeeezh9+jQul2vC+7/61a9OKGUXzAMzzUCJuVVLl2m+Q8/OnXg8dfrxvXuXTAnnUhKcuFaWUjni1ViMgN9N5VTN1nCBMF5zZrJInqLoUbzTp2FkBKqrrzhDmczMyylELfv80tOjO1Sapj8MFB8SNE2/t6+/jufBB3HsuJf03h/i6hrCO5jAEE9gSqQw2Vw4w0k8ZX7ymgNDvgrL6TD8cj/s3Enm4AHaTUkM/irsFhd5wCjJtHQkOHjhANtqtnGo7xCH+w5zMniS+gOn2X0J7LVNxL0GhiNtmF54huWyaVG/36VoKK7mCM7UCRz9Pq/Vy/ba7ROGQV/rGm+Wh4Xrxe7dV9QVN27cyPbt22loaOD555/nt37rtya8/w//8A/5whe+UPo5FotRV1e3IGu9qZlpBkrMrVq6jPsOU0qaTD6N1WHBPjB05TucxxLO+RI5WEqBu/lgKZQjXo3FCPjdVE7VbA0XCOM1ZyaL5LW2wvHj+vHly3Unq+gMbdw4M2N2rRuhKBmcHFWFfB7M5rHHjUZIpSAWY9NHv8DpdAb39/4ZJZvDmctDdQ12zJBXMWHA5AlAPAXL3fr30dhILjpC3CrhGjWAOOe04YwnUaMjvHTxJY4MHMFj8UAsyqZehW6bht2SYZlrGTGzkcvDMaoPHsA62fc7/ju9zt/xUjcURWbqBC6Es3izPSxcb7xeL6tWraKtrW3S1y0WCxaRlZ9/ZpOBEnOrlia/+g6VkWHOGcJ0/moArS+Wo9ZZQ4PdggXmpYRzvkUOlmLg7mZmMQJ+N5VTNZ7pDBcI4zVnxkfyLBY9QyVJsHbtld6cojO0YcPMjNlcN0JRMjg1tbW6kzswAPG4Xv6nKPp9crmgqgrcbiwON1t+47NkLoyQNRSwnz6Pye2FS5fAbtfvsdGo/9ds1j8PmD0+XL0acWsMi9GK2WDClUiTMGkoThvnw+epdFRiNBixJRV8qpmg10g4HabCUYHNZCNmTZCLjmAd/f2O/04tFpBl3UHMZsV3/Ctm6gReT2dRPCzMjkQiwaVLl/jYxz622Eu5tZhNBkoMt1+a/Oo77Pnnv6dTCmHylhHIGjFGo7zWEKM+fIhHAo/MSwnnXEQOZpLVulECdzcDCx3wu6mdKmG4rjOjI3nt7Xq/zsaN0NJy5T1FZ0iSZmbM5roRipLBqfF44CMfgc5O6OvTvyejUXeMamvHZv/cbqyVNVgVBVwDenZLlvVsltl8JduVy+nfR20thm3bcZ7+OReHL/z/7P15dFzndeYL/06dOjVPKACFeeAMcNRAUqJEipJFD5Jj07ItJR66O+5cry/JF3/LcXdW2t13Jel70xk63Wn3Taflvh1nVuJ4ZhJRgylrICVSIsWZBAeQxDwUUIWa51Pn+2OrUAAIkAAIUqBUz1pYIGo4561T0rvPs/ezn03absGfV6lPmuh+YBXtrVs4P34ej9WDYQjJSmrgzSoMqzq5Yh69qOPJFLE0VU3/fmd+p++8A6dPw5YtsG1b5TtehqjcLMyOf/tv/y2f+tSnaGtrY2hoiN/+7d9GVVW+8IUvvN9L+/BhoRWoynD7ZYfozm28dfo5mi4l8UUKFOwWxnZtZWJDNcGSAcEtSjgXanLwQZnV90Eb4H6nE34fKFJVCVx3GFMzeQMD8Ld/KwFK08qvmUqG5hPMFrMR9vXBK6/IcxX729lRksY+9xxcuyZEadUqeOaZua+/1yvX1mQSAlNbC4kEtLbK3+99H6+shKtbqqm/kMEUipIlyyttFor3reL/0/owvdFeYtkYAWeAFm8LI/arbL4cpBhwUbAnIB5lhRHA9uCU72mmDDSdlsdqayESke82EKh8xxXcFRgYGOALX/gCoVCI2tpadu7cyZEjR6itrX2/l/bhQ6UCddcjRpZTW5uJb9+CO2OQc9nJu+y4CpnpBgS3IOFcqMnB3T6r74NCCufCnUr4faBIVSVwvU8oZfJ27rw5GZpPMJvvRliSh73yijgOVlfLOTs6hNh9gO1vF5xNslrhM5+Bxx6TawLXuzOWsGePyO0OHZJrpyjyHZjNUFMjUsIHH4Q9e4hmorwzfgrLzu2stQ7hO3WBifgYHcEU5w8c4K/MNsx2J8FwP2veOM+/fuMC5p4waizB6sE0qbCGecs9NH38F6Z/vzNloOm0VMd8PiF26TTY7R/o77iCDw6++93vvt9LqGAmKhWouxYlA4JxUx6Tr2y2c50BwS0QaE/GoGGiQDYfxO2sxZJIk3PZGSV2ncnBLVl3L5M+8LudFC4XfKBIVSVwvc+4GRmKRm9+Qw+zb4QgBG3qxlOSh3m9QqhSKXj3XSFbW7d+IO1vbzmbdLMbiRJR7eqSv1evFknnzp0i+1OUad9BLBokmU9yz+kITUe7GFISXHXmcGDloa44E7VXePe+eh7uinPP88ewRuJk/H6c9S344wVUzY9l92fh05+Zvo6ZMlC7Xc4fiUh/l/09U4wP4HdcQQUVLAMsk5vdCq7Hgg0IFkKg34uB3mPH+HTPVULXurCZrRRqq4nZFDLtTto/90vTzrEo6+5l1Ad+Nwxwv1tkiR8oUlXB+4y5skLZLPzkJ/C970lfD8gcq6efFlna1Cn2M0mXzTb7xrNtW1keVlUlVZS+PjExGBuTY7ndspYPEG57NmnfPhkU3NQkhCoWE6JaWztr35KBgWdgjNU/ehN3UsdfjHGvphKssRHz2Fnflya+zk7r2TO0ajUYK9pRvVVYdQOsE/LfxokT8PGPTw96s8lAvV7572fLFiF3o6PLxuL4/drw75ZAU0EFdw2W0c1uBXPjthkQTOnlbVNrqIpAIhdm0Kqg26v5RDc0XQU2lt+yKOvuZdQHvpwHuN9tssQKqapg6TEzK3TgAHznO0J2PB4xO7h4UR7TNAlWL7wwO+kCkffN3HjGxsrysAsX5PFAQCoZ0Si8/bYcw+ORY3Z2wn33CTmY7w14Xx8MD8u8rRsMkL5TuK3ZpGwW/v7v4U//VL6fkREhVR0d1/ctRaNkw2O8MfI2wdeeZ88PX6Xu0jhZmwWr04TuttLUF8XX3ojdWaQhbqBGY4ALh9MLw6MQDoucL5cTG/6xseu/l5mVzxUrZE26vmwsju/khj+VQNnMtrsq0FRQwV2DZXSzW8HcuC0GBFN7ed1uzKOj+Ns6cOl5avQcrN+DI52HE6dg92OTMWvBlbMlnKG1FFjOA9zvNllihVRVcPtQqjwdOCBW3oYhN+u6Lj+9vfD660KO/uZv5Ma6ulre290N3/42+P1i0T5z47l4UcwWgkHo6ZGqlKJAKATFogwbDoelB+fSJdi/XwLk5s3TBxLPJu+IxeCP/7i8NqcTdu+Gb3zjfZWZzTubtNC5Ttks/N//t5hYhEJCdMfGoL9fvqeODvkex8akz+rYMQb6T+O9cob2ZBF7UkNVVBzJLI5EkXQ8T6baS81olvF6E8NuhRa7A/N4QVwiEwn5Hs1mIVXBIBw/LoRpKuaqfC4jWc6d2PBnI26GYRBMBWl0N9LsaSaYDPL9898nmUvyzMZnluS8FVTwoUM0KnuczSYxxWarmB4tc9zUgGAh8WJqL28qNdnHa1HsWCYmoMCcfbwLqpzNd4DxHcLNSCFAf7T/fVFiLHdZ4kxUSFUFS4+p8onhYfkdCgkJcjqlHyabFdJz/LhsLsnkZHYIkBvusTGYmBC511R4vULS1q8X4jMxIURqeFh+lwJhJCLPF4symymVkvlMzz8PR48KCUsmZV3r1sGTTwp5++M/hh/9SKpaDQ2y9u9/X879O79zJ6/kNNw0m4RVPttC5zrt2wff/W7ZNr10XTIZeOst6WFyu+W7OniQdLWXK6YY68azVI3FsSRSmHQDowhZ1YQzB46JDEaiwKlqC9auS7RmrGijvXItXS5xFEwkJNCtXy89XNHo7IFkZuVzmTSY36kNfyZxCyaC/PTqT1lTvYYNtRvoGu+iN9LLRHqCZyPPggJ71+2tVKwqqGAhyGbhxz+GN96Q+HHhArS1icqhYohz92ExMs6pvbxut8TDTEaes1jk3iUYJJNJEooO4qotk4wFVc7mO8D4DmI2Uvh4++Pk9TzfOvKt90URsZxliXOhQqoqmI6lqAJMlU+sXCmzhUIhOWapEmUySUUkGpUfRZk+l8pul+dzORgfLw8TLq3R6RQS5HBIVWtwUN7v9wuZMpuFTPX1wZo1cu6JCbmh7+kReeADD4iLXG8vvPQSvPwyfOxj8Oqr4nJXLIr9uK4L4fjRj+DLX76+onKHcFOJwaGj5eteUwNHjkhF7957Yfv22WUswaDIMEdHy/On8nn57MWiEJ9CAX7u5+DMGairI22Dqp5h/EMTWFJZ1HyenFXD0CxYcnkUHVIYpC0KulHkE91Qd+9OcDWg//RlmAijxKKY3B75/my28n93d9ENy2wbfjqfpmgUCafDS7Lhz0bcXFYXmqoRSoc4NXKKyxOX8Vg81LnqCCaDvHD5BZyac1lKIyqoYNniwAFJIlmtsieZTHDunDxXV/f+GuIso+r8XYPFyDhn9vI2NMj9i2HA5s0U3nmb+Jl3GfKZGPzPJxnrbMP/qWf4SMcTkyRjXtbdUwYYXy0OU/R6qMoYaKEILzZbWVUaYHwHMRspPNR36H2V3i1nWeJcqJCqCgTzzeqUNnfDuM4JbvL5mVrhtWulEpFIlGWApXPU18v7h4YkI1SacZVOS1BbsUKOOTp6vU17ICBzlsbH4X/+T2hsFNI0MSHnCgTkfaoqxysNr+3qkirYG2/IOgIB+RkZEUON4WGpUo2PS3B1OOR9Q0NS0fk//8879rXMxJwSg+pt8PfPCmkdHRWieemSXOtLl+Cee66f62Szwe//vhhR5HLyGYtFIZElFIvy+a9dk+/9scdwXummbjCKUiiQMSvY8mDK5kjbzSgWEy6TDVdTG9b6Wj6Rb8XWVkXeZqOr0YrHb8GlZ9BtFnKdrdQ4A5hPnxaiusgblmgmykBMDE6aPc13LHM1dcNXFXVaxUhTNQ4PHCbgDNxSRm824mY327Gb7YzER0jn03itXtxWN/FsHJ/NR5O7adlKIyqoYNmhJFM/dEh6Z61WOHtW9iOHA86fl/1x7947T2iW2jTjTpCz+br83k7cSs/S1F5el0sSw4oCY2PEr53nUo1CpLMNt67iO3aVd3Pf4cAXtAWTjOCDm/n+m3Fqzo+jjvUzYC7QvcJHV7ObwJm/Y1vjNgKuwM0PtMQokcLlIL1bcK/aMkCFVFUguFlWp7S5HzkiQSYcLvc7vTeziExGJBOh0PRqzsaNku3p6xOiUihIQDCbJUg89JA8Nzoqz4G8LhCAL31JiNaNZlZ9/vPw5ptChpJJCRglgqZp8llMJlnH5cvyOrtdyIPVKpUti0UCqNcrx0in5fNZLPL+UKgsHVy7VgKs1brwIHWLQW1OiUF/v6w7GhUSpWnymRVFyOCZM/Dww9NlLC+9JMTSbpfrlUrJ6w1DTqaq8vpCQY7f1wfBINZCAYfVTVodw5zPo6sKuqJgyekUVcg7FewrVqE1NEBPP+SvMhEfpZgJYUnnwGrBMCkEk6OgQP3Ucy4A2UKWFy6/wHNnnuPaxDVUk8oq/yqeWf8MT6x5YkFkZjEuelM3/AtjF+iL9aGZNBSTQrOnmQNXD5DKpXiq86lFb/4zM3V5PU93uJvR5CgjiRHGUmO0edvQDZ1kPsnG2o0EXIFlK42ooIJlg5ky9TNnJEasXy/P9/TIvpjNSoyajyHOUpOWm8Xl+Z7vTjgaZrPwgx+IVH54WOJ7W5skPqe6/N4JzJxzWMJMGeds12+2Xt5olMx/+UNOucIk66twW90UALOi0tmT4MilQwsmGfv7XuG7bTHcdVUUo5C2a0Rt4CNNaLyL/Zf384v3/uKSXZKFYrlI726by+NtQoVUVXCd4w2plPyemtU5dEg280hEKkUWi1R7rl0TwlHqUQqHJThNTAjZ0rRy30wsJhtWdbVkjUobn9MJv/RLYpRw7ZrczK9ePd1y/UbD+wIB+OIXpTfI4xGp4IULQi5qayUwrl0rVbFTp4RseDySfXQ45PfwsKypVLGJx6eTLl0Xm3GzWZwKS1K511+X61VfL2sskcuZmbqbBbUFBuNJiUE0ClfOyXrzeSGNLpesORaTxxRFMq+bNglZdDrlfS+8IGsxmeR1hlEmN4pSlmSOjck1LR0/k8HncJAqFMGAtMWEpQiGopDye0h7HTRUebC63TA6Ss5pY1TL4ciYsWZ1chYTismMK28ikp7At/FhbJ6qBcv/Xrj8Ar938PcYSgxhUS2YTWbeHXqXSCaCps4vc3ir7n17Vu4hmUvy7LFnMQwDh+ZgnWcdAF3jXZwLnuNi6CL31t/LfY33UeuoXVAgmpmpuzpxlZMjJ9FMGpsCm7g6cZWrkau0FlvZ3rSdjpoOwunwspVGVFDBssFUwrJihcSLkydlb9+0SWJQf7/EsKeeujEpWArSMpvB0FzVliNH5DxdXXOfb+rxSvF7MY6G84lN2ayoHv7+78v9SB4PXLlSdvldxADeRWPmnMOpn8XplGs0tf94tus3pXc3FhwgkYsy7oIqzT55uJzLjiueRI9OLIhkRDNRLoYu4rK4GMmNYqv1YtNsOPIZYtkYda46LoYuEs1EbwtxmU8ScblI72Ymkg0MFBQyhcyy7BuukKoKZOOJRkUyNzwsZMFiET2xyyUE4dgx2WB6eqSC43aX35fPi4Tsox+FVauEZJ06Jcfetk1eY7UKKVFV2WAtFtnEqqulyrRihWz2LpcQnd27p2e3bmZOMLVkH41KQPzUp2DDBtHFd3WV3ew2bpTPmkrJTzwuxMFqlb9ra+XfExNyLJsNWlpkfapaNrMYHJTPbjbLuk+cgIMH5Tw9PbKeUqYOZreGz+flehw6JOez28WYo2SaMReCQfjHf4R//mf5flRVSFAwKN9PNCrHzWZl/YODQgBbWuS4f/7nUqUKheScNptcm2JRgrbZLK8rmVdEo3IOux1yOZR0CpPFhKKZSQS8FAB7MotitTBWYyO3dQ2tfRFsa9ag916FQpqIpuMgi5oscmpTLbH2GkwOB1VeFxkTKBaD+YaPaCbKc2eeYygxhMviwmVxkS/miaQjXJu4xoGrB+aVObyRe998Go6tZis7WnZwqP8Q1fZqfDYf3eFuzo6dxWFxQB4uhi7ys56f0exuZnPd5mmkbT7Bbc/KPeT1PM+deY4jA0cwKSbqnHWsq15Hm7eNEyMnsKpWWjwthNPhZS2NqKCC24LFKAZmEpb16+Wxs2dln8xm5eexx25+zFuxYZ+LkK1bN3e15fXXZd9fter68+3ZM/14qip9w2vXLkwKtxCiuG8f/NM/STyrqZFEXTwu7rvxOPzlX0qM0/U7M/drtjmHU1sHjh6d1/dVSrqduXSIzYluoqlRYuRYUbUC1aRiSaRJaAaqt2pBJCOWjaEbOs2eZnoiPWiqhl7UKRpF0oU0zZ5mdENf8mrQQpKIy016ZzPbONR3aNmPEamQqgokEI2MiN11XZ1shJmMSPZWrpTXlDbVXK5sGmG3i0wvHpcbb5dLNusdO+T5gQF5bXU17NolG1tdnWxydrvcuJ86JUSkRFZWrxZSc/CgnG++c0Hmst8GIVbRqBCrv/kbIYSJhJhVXLwowaNYFBKSSMh5t2yR6zE+LjbsDoccd+NG2ZjPnpXPXFMjZCYelwrdmTNStaqvl3NfvSrW8NXV4iI1M6h997tSVcpk5FzRqPR1vfAC/Mt/eX3mcWxMrs2PfyzrT6XK9r8mk/ydTJYzhaoqnymfl++zRJ5Kr7fZ5PWKItcrkaCo6+geN4pZxZzNyvcE8nm9XnA6UYJBcg4zGbcNZypH3mljpLONVzfYeGG1iS3OK3zs2kV87Z20OzrIHe8ln04Sd1lxJ/MknVau5kaoipu4MhLnwtZ2+rv+gq3R+W2SA7EBrkWuYVEtuC3iGJnJZ0jkEoRSIV6+8jJb6rbwhU1fmPVYpT6sQ32HrtOM5/U8f3fm7zjUdwjd0G+6eXusHqrt1agmFYCeSA8eqwfDMEhmkxSKBVyai1Q+RV7P8+KVF8nreTRVmzNAzCRbmqqhqRoNrgbqXfUoJoWuUBed1Z1sa9rGueA5LoQu4LP52NW6a9lKIyqoYEmx2ArRbPKwzk6Jb+fOyb7d0DC/OXi3OnNoLkJW+jwzqy2j7835my2elK7DwYPl4/X1iXLD5ZK+4xJu5mg4X6IYjUrlzGSabvIBEnuSSYlt7e1CVu/U3K+Zcw5LrQPbtsGzz87r+5pMunnqyN+7meZXXufSYA/9eZ3V5gCMhejaUsumtQuT/pWqQK3eVuqd9cSyMVJGimKxSL2znlZPK3bNvuTVoIWOAFlO0ru7ZV5VhVRVIJja16Io8rtkRuF2y4aUz8uNdTotj6XT8nwmI+TJ/l5ZXNPEbe7KFZHldXTI4729cozSRnb6tNh0ZzLi0Ge3i7zMYpENbzFzQWaraGWzk/OVGBmR32vXyiZ/+XL5MxcKZQ19oSDmDm+8IaTHZhNC1dYmQ4p1XSpCTmf5WpVkgmvXlomnqkpAmc0a3moVUmm1yrUcG5N16DocPiyvSSalf6vUz/bKK1IFi8XkPaoqa83n5Til6lRjozyWTkswLWUPu7vlc6xYUbavN5kgGqWoKOhmE3mLQtQJ1kwEh/m91qxADVoiJcd3uTDpOlY9Q1gD3Wvn6kfv5x/u1TiUucTmus00eNeRt/dwdegM6RVbOLepnngsSE3WTF04S0aDqrEEKatC984HSO96ANVILXiTNAyDdCFNNp9lKDFEVs8C0Bft4/955//BqTl5euPT5f8UpmTqhhPDnBk9w8bARqpsVWiqmKSMJEboGu+i0d1Ii7dlXpt3m7eNtwbewmP1kMqnsJltxHIxUMBv82PX7EykJ3BZXVjNVr5//vs4LRJUpwaI2chWZ20nZ0bPsLJqJfFsHEVRhEga0B/rZ33tehrdjdjNdvSiTtdYF07NueAM3mL6yiqo4H3FYitEs8nDNE1u+qurxeV1viYL8+3fmQ03ImRdXUKcDh6cXm0ZHJTYM1PJYLEIeQoGhRCWnm9pkfd2d0uCsRSnS1K42QyC5kMUS5+99PltNiF7yaQkITWtLEsvKVHu5NyvuRKtpf7jm3xfM40axh6qok5RaXz7TXJDI0SqTUxsW0X7p57hIwskGVOrQGur13I1chUFhSJFVletJllIsqtt15LuwzcznthUtwkFZVJeV4oDSz5g+TasfTmZMlVIVQWyidTVyc330JAQAItFSIXTKTf6pVK6zyc39aXqR0ODbJzV1eXNGmRT9vuFUJU2zanleItFDC90XQiI3y8VEcOQzb/U27UUNttTA+/DDwuRO39ejm2xyE+pUmUYIomz2SQAPfigHKO+XoLTyIh8XptNCE0JJlPZNW8ua/hgUK5fCf39ch01Tc5ZWkvJ7fDYsfJg3LEx+XdvrxClVKpMektELJcrz+TKZoXMWSxCsJxOIYylrCFAQwN5s4mi2YQ5lyOn6IS8dnLVPiZWNJAIDzNSTHB/fxY1N051AZzxIup777V5vZgCFnqKEZ5/pJ6uhBCqHc07MKka6S3rqXvjGMFrZ7HabICNfHyMv1qv8e4qM+6ME0d1PXvuuxe/3UUA17w2yWwhy7ngObKFLNFMlFA6RCafoWgUAVBNKg7NQV+0j/96+L/yQMsDtHpb5T+FKdmuBlcDp0dPc2z4GBbVwqa6TaTzaS6FLuGyuCaH7AacgVnXNZWgRbNRErkEE+kJUvkUBgYrfSsZjA9iM9tI59NYVAt2sx0TJnoiPTzU8tB1AeJ757+Hy+KaRrZeuPwCsWyM3e27afO1cW7sHAYGmkljNDnKu0PvYrfYaXA34LF6FpzBu9W+sgoqeF9wKxWi2eRhwaAQlieekL1/vrhZ/86NXE1vRsjuu0+OMbXa8uSToogonS+fFwJWimmqKrG7qkpii90uib6jRyXmtLZOl8LNdo1utK6eHlFK9PbKcUqVsGhUSBUIqbJYJC7Z7eXEajgsfy907tetGIDMTLTO8/uaadRQtGgM776X4pZ2hgcv8qmtX+LhlVsXfTNfqvYcGThCupAmnA7jt/tp97XzYPODS14Nmst4woSJtwbeYig2xHh6fHId62vXT65jXjbxtxHLxTRjPqiQqgrKG1XJzS+dlo0vFpObdI+nXEo/ckRu6MNhkemtXSvZtGBwdtvzqZvZ1HL8tWty43/PPfLadFo24okJIXalIbGHD0vAnK35drHa+W3bhMAdPVqek1SqNJnNsq6JCfk869aJFOT4cflpbJRrdPFiWbbncMj6DUOOVar0QfnxujohM6UNPhot9zPF42UpXjotlaeSfCIWk8qYzSbXKRot9z1BuQ/KZCqbZ6xZI+coFoX0KoocZ82aSSKXLxYYqDJhDIUoagWURjvjNoPGOODzMmIrcPAeJ+fWtZB5sZ9HupLEM1nMehpHoBE0DTUQYKXPR91HdmHZ1kb2zN+xyr9qsuIz+EAnOT2HduI0luEQMSXNuU01HF0JcSXHNWOCeqyYlfI2NJ9N8sDVAxzsP8j6wHoimQjjqXHyRh6QAGFWzOT0HNlCllOjp/jtV3+bz6//PNsat3Fs6BjV9mpGEiP0RnpJF9KMJcd4rec1GlwNBFNB+qJ9+Gw+Dg8cxqJaaPO1sbJqJSOJkWnrmkrQ2n3t+O1++qJ9NLubSRaS1DpqCaaCjKfGKVJkY+1G7Jqd/lg/ADWOmmmfy6Ja6I30sqNlxzSylcln6In0EEwG6azpBKA30stoYhRFUaiyV7EhsGHRGby7RVZRQQXTcCsVIijHo9dfl/lUpTEcZ87IzfV8e35u1r9zozXc7Aa/tlYk8TOrLU5n+Xz9/eVZSps2CdmZargBkhTs7BSSNZeL7nzXNToq16u1Ve4DrlyRWJbJSDwrJf2SSVF2lHqYDxwo92v7fKIUudkYjdvhWjjP72suo4Yxcw5TaxtrboFQwdwGDLerGjSbk2zXeBcHew8STAUlLhlQ65K4ZQ6Z6Y/1k8wleWbjM0u+nltZewnLcV5VhVRVMP+gMLWUPnVOlc1W3vhutGGXXPza24VI7Nsnr3W5pEdpZEQ2bJNJfqqq5LilAHer2vlSRq+3Vx4Ph+UzmM0SDNzusoTP4RDJXDgsJGrLFiFFY2PyXKl6VLoOJcmizycBplQ96u6W3+vXl89fms31mc8IeTt2TNaazUpAKs2GMoxygCrJKnT9evtxw5Bj5/OSpfy5n5NzPPusHN/nk8DW0TF5rJ7+M5xxRFhV6yEwGGHMZ+GEP8HJR9dj3f4QL0SOknIEiGQi/MEuuFTnY/OVKCsmTGxxOLEGAvI9Pvggzj176DAy+O3+aZte0aJxemsL+monI4OXOJq4SNgqPUouw0IkE2EiPcHF0EW2NW0DZt8kp8rSgEkZQEEv4LP7KBpFhhPDKCioioqiKBSMgvwuFuiP9vPilRcZS46RzCeJZCJcDsvA3FW+VaiKymBskIN9B3FZXKgmFa/Vi8/mI1PIcG7sHJF0hDXVaybXcCM5Qk7PsaN1B11jXTjMDsKpMGur17LCt4LRxCixbIw2Xxv5Yn7a1ziWHAMg4Jgu6wm4AvjtfgZiA1hVK2ur1+K1ehmMD7K9cTs90R78dv/0/6XnmcG7m2QVFVQwDbdSIZqKq1eFmPj9suer6sJ7fubq37lZP9Z8Y+/MakvpuIcOSQ+YwyHVtY6OcmVrquFGOCxS/Pk68M21rv5++buxUSpUb70lRKmkXHE6y0ZU99wjcVNVYf9+IYg+n8TY3l4x2bidBiA3wjy+rztl1HCnqkAzP09/rJ8TwycIpULUO+tJ5VPk9Bz+op9cIceJkRNU26vpjfSCAnvX7Z1ULtxpqfhyM824ESqkqgLBfIPCXC58c5lElDBbxslqlapUba3coL/6qryu1OsTiwkp+Lu/k434yJFb086PjEgA8niEyJUG5RYKZaLidEpFZ/t2CdTV1ZK9zOfLrn5nzggpLEnvSv1o99wDP//zYjRx9apcx1RK3l8olC3KN28WCcfRo0LmSj1RxaL8lJp9dV2CE5T7p6YO5p2KUrVq0yb4hV8oV+VeeEFcFwMBCaweD5k9jzEw9Db1GcivaOXsYw8wsCbA88E3SDoMHqlRiaQNUtkI/bF+ChT44UYL/7zChjmR4lNrOvjmI9/E6q+d/J69WNnauJV9F/cRSUeoddaS03MEU0Hub72fMXMOBkaw5pMUjSJmk5kWTwuhdIhzwXOs9q+efH1pk5xNltbmbSOajVLnrGMgNsBK30oCjgDhdJicnsOsmikYBTQ0DAwJAgp4LV4uhi5OznnyWDy4rfLfWZO7CYfZQZO7CbfNjc1sYyA+QKaQwa7ZSeQSXJ64zKfXfXpyM78wfoFwOswq/6rp/3u8R2Z2NO/g46s+zlhyjOMjx+ka62IkOYJTc7J33V7yep5Xel6ZFiBiuRjtvnZyxdy0Y0YzUdbXrmdTYBNd412TDcNPr3+abY3bePbYs4vO4N1NsooKKpiGW6kQgcSjfftkX2xrk+RaaWB6yYZ8vj0/NzJKuhkWQ8hK52tvlxi5cmVZWn4jww2r9dbW9dBDUhUbGhLSZhgSe0qjO5xOIXiJhBDUrPS4snlz2WHY4ZC/dV0eW0y/2a32Y83z+1pORg1LgdK6D/Ud4lzwHJqqEXAFaHA30DMhLoR90T5URcWkmPDZfCRyCV64/MJkn+77JRW/W76LCqmqQHArQaGE2QhXSa53+PB0R6JYTDbmQEA2Y6tVnrPby7asJWnc2bNCxLZuXbx2ft8+qRo5HPJ4KgWPPCKVo8uX5Vw1NbKG6mq4917RqJeynV1dEqTCYQkMpV6pkjmE0ykVqgcegI99DP7sz8RGduVKqRplMqLXb2qSLN1rr8n12LxZ1nLqlPwuFOR4iiLXKZeTHyjL+2bCZJL3rF8P3/hG+Rrt3Xu9Hv+Tn2Rs2zpefStNu8mP4vWRd0kvXIO1g2NDxwilQhSNIoOxQdL5NGaTGavZStGjMWEz8U+Zk6xPHueZFWVJQLaQJa/nSeaSnAueA6DN18Yz65/hoZaHOB08jUNz0OZrwzAMNFUjlUuJuYKhcy1yjQZXw7RNct+Ffezv3k+zp3lSlvbWwFskc0lURSWZSzKaHGU8NS52tBTJFrIoioKCgkkx0eJuQVVUNFUjl8/R7Gnm9d7XsZvtFIoF0vk0sVyMztpOFEUhnU9zb/29+Gw+eiI9TKQnsKgWmm3NbAxs5PlLz8s1Soc4M3qGUDrEvfX3ki/msZvtxLKxSTJTykDWOmvZUCs9GiXyMpYcI1fM0TVWJklzka0S0fzk2k/OmiG8lQze3SSrqKCC67DYClHpht3rnTTfwWSSJNvrr8ueXSiI/PsLX5D9e74VnoXGzVuJvc3NQpqmxoXFGm7MZ10g0veTJ4XERaPyU3KILRTk305n2f3XbJYkZUl5YbdLfLuZRHOmvDOdlh+rVVQjS9FvfZPva6ZE72438Sl9nnZfOxOZCRpcDRwbOoZu6KgmlXxRYrjH4sFusaMoCj6bjyZ30ySROth38H2Rit8t30WFVFUwHYsJCrNhamUqFJLqTlOTyBNKhhAOh7zuV35FyNOf/ZmQi5qacrVKVWWDHh4uV22mrnW+2vmxMSFFiiLnLcnhVq+WCll9vWz21dVCwrZtK8sEDUP+bbdLACk5IpbgcpWzbsPDspbBQQk6DQ0SVKaaYJSG75YycJ/6lATBM2fkPKU+qe5uOX+pylW6HjMlgCaTnOOhh6TJuoQ5gqI3OIDD7GDIoxJwls1FGlwNdNR04LK4MJvMk+TFZ/MBkCvmqHfXk9fzvN77Og+2PDipAT/Ud4hXel6hs7aTLXVbCKaCxLKxyUzYg80P8mbfm0SzUWrsNaQLaZKFJB01HbR4W9i7bi9uq3uSdHzv3Pd49tizFIoFQqkQbb42Oms6MQyDrvEuxlJjXI1cJZQOYVWtuK1uErkEuWIOFRWb2UaLt4VmTzOqopLX85PE5fjwcYbjwxSKBSyqhY21G/Hb/eR0uTFJFVJsqtvEav9q0oW09EQZRd4ZfId3R96lzlnHav9qQskQb/a9yamRUwScAYpGEZfFxS/d+0uzVtqsqhVVUdENnayeFWe/ms5pQ4Gzheyk+99AbABVUbm//n62NYo8cjapyK1k8O4mWUUFFVyHxRKS0g17TY3ElRJpCoXk+ZI9+MGDok5QlKXr6ZkLi4m9N6vWLcRwY77rWrcOXnpJYpvTKbFOUeSaZTKSdKytld8bNkjsjcUk1pXMrEZHby7RLKlMwmH5Xnp6yknGxsbbN+NqFrzfRg1LjWZPMw2uBlSTSruvnbNjZ7Gb7YRjYfJ6nqJSxKE5SBfSbKzdSMAV4Er4CkcGjrzvUvHl/l1USFUFtwdTtdDV1UIM+vqEjJSGEaZSsgmXsoFbtkiWsFStSqeFbK1dK9Wkme55Je18qVl3roBqtcJTT0mGLZ8XAlPa3MNhCUpf+Uq5R2ymW2EkUnbby+elSlYoyHFzuemDDhsaJICkUvI5YzHR6oOcMxwWwqTr5YCiaULi8nl5vcslAaRkWV/qMcvl5NyJRPlxu70s6Rgakus5M9h4vdP63jzJJJ/NDPJKdYzxh+7D5akmmokSzoT50qYvsbN1J6dHTvPbr/82l0KX0A0dk2HCqloZT46T1/O8dOUlusPdrPavxmP10BvtZW312snN1mf3MZoYndxs967by/Gh47x45UWS2SRVjiqaXE04LU6sqpWXrrw0KScwDIOrE1cpFAsEnAEKxQLnxqT6tbZ6LfWueppcTey/vB8MMJvMuC1uXFYX40lxNmzztVFtryaei9PubSeai/KJVZ+g1lnLR1d+lNd6X6PGUUPAESCrZydJBDBJMJyak3PBc1wKXSLgCnBi+ARNniY6qjvQVA2vzYtFtZDIJfA7/KiKClM8SmYaQBwdPMqp0VN01HSwoXYD+WKeg/0HcVqcrF67Wv5TfS8bt61xG/sv7+di6CLnx8/TG+2dU2Zxqxm8u0VWUUEFc2KhhKR0w57Pi/Tv1CmJLyU5d6Eg8SgSEQn1Rz+6tD09S4nFVusWi507ReIeDkuCsjRWRNflepaMNJqa4POfLw/aXahEs0QYv/1teX1NjSQPS+qXo0eXz3dwl2FqMs1v97PWv5aL4xfRVA2L2YLD7KDaXs3KqpV01HQQTodRFZVCsXCdeqEiFZ+OCqmqYOkxUwudTgvhSKXg3Xflpt/vL0v43npLMltPPgkvvyy9T4WCZBA3bBBSlsvJRjrVYXB4WI7/F39x8yyi1yvB4MUX5TiKMn1zb229/nNMbQbOZIQkNTdLoB0bK0v1YjF5fvdu+cz79gmBGxuTz1xXJ0QuHJagc8894pgUDJbPm04L6SxlTj0e+dwmkxwnmZRroOtlQuV2lwcNW61CVAcG5jXIccWEg090v8tblsuc2pqevJHe1bqLg30HOTZ0DJfFRbFYxIQJp+YkFRqmJl1k3JxjxJyeHLTb6m3lauQqLouLRnd5uGRpsx1LjnExdBFXWue+fC19uQiaS5Op9IpKMBWk0d1Is6eZYCLIT6/+lHZfOz6bj4JRwG11Y2DQG+nFa/XitXrZ0rCFJncTJsVEVs9SNIpYzVYcZgeRdASfTQwsAo4A7b52Omo6GIoN8QeH/oCsniWn5xiOD1M0init3utIxLGhY7zZ/yYD8QHWVK9hhW8Fr/W8NukMuMa/hv5YP6urV5PJZ9jWtI0GVwOxbIxTo6e4r/G+aQYQ6XyaUEqy4CdHThJKhXBoDrxWL0cGjkzL8kUzUfZf3s9bA2/R6m2dt036YjN4d4usooIKlgxTKzzV1bI/9/ZKwquxUQhVe7vMBZw62P5OzVhaCJZCuj8fTFWfqGrZ3e/xx8vjUTo75frFYiI/DwRujfRt2wbPPSfnKt0TbN0q39ly+g5uE26nIcTUZJrX5mVHyw5+8Z5fJKfnODxwmCZ3EwGX9CsHU0F2teyia7yrIhW/CRZFqtLpNIZh4HivP6W3t5cf//jHrF+/no997GNLusAK7kLM1ELb7RKg3n1XCNNqycqTSokMLxAob5Bf+pKQEo9HiFZpvtMzzwiBmboxBwLyXGPj/LKIC93cpwardeuE/KXT0vybz0uDcLEoAebxx+Hf/3sJOgcOiJY8k5HM2vCwrK1kgjEyUiZAa9dK/9bQkJC1zk6pupX6tEr9ZoYhxzKb5bg2m1zH9nZ57cTE3N/HLA2/WkMjK0wqDakUu9d9GXegGa/Ny/OXnp+srjza/iixbIzuoXNsuTzAjlENW1ZnTElzsc3F2c3VJHIJMWBIFYhePotuX4laJZW50mZ7su9txv7xu+zsSfKJvEJUtXO6JYV/ZQs96WEa3Y2TFS6X1YWmasRyMVrcLVyeuAwGMpMpMcpgfJCn1z/N2uq1+Gw+TCYT1fbqyaG5oVSIGkcNf7DnD3BZXEykJ7gSvsL+y/vpGu/CZ/Ox2r+atdVrGYoPsTmwmac6n5oWsD659pNsqtvEtw5/i87aTlq9raTzaXw2H6lCit5ILzWOGjHGMJlxaA4aXA3YNdGgD8QGGI4PTzOASBfSDCeGSeaSmBQTTosTBYW+WB/pQppYNka2kGX/5f2cCp7inYF3sJqtWFQLVbaqOWdlLSWWu6ziZqjEpQoWhKnxoKZGCEJNjcwy9HgkCRaPS/Jq6gzGhc5YulNYKun+TMzWF/3ww3JNLl8Wdca6dRKj6uvlej32WPn63grpy2Yltm/ZIse32+Unk1me38ES4U7MDpwrmZYtZGnyNM2qXHBedS6pVPyDOHB+UaRq7969fPazn+WXf/mXiUQiPPDAA2iaxvj4OH/8x3/Mr/zKryz1Oiu4mzCb1W1Hh2iv+/vLPUOlviZdL2+QUwNdqf9oqnPRVEv3v/gLIVTzNa9Y7Obu9Yo8sbZ2ck5X3mwiv6oNtbEJ62N7xK42GhWnwuHhcu+TzSaBxmSSQcLZrKyjNIT40iV5X0uLWMyWKlqjo0LcSkN9S7LHujqR/42Py/vyeQkw4+NCsmbObIHpJLfU7PveAEbbQJxmxQO26yfIAzy9/mnGzqVouXyOfI2HIVsaW8rCk1dN+O05Xltt5rHzaVouhbBmgjSe+Ecy92zk3OYGgoUwu1p2kf2nn3D/6TEI1JGpseFOZHj4/CinLPsJb2ub5qBnN9uxm+2MJ8e5v+F+rGYrPZEeRpOjaKrGk6ufnAwsu9t286MLPwIDfDYfoVSIsdQYn177aUKpEC91v8Tp0dP0RHrI63kaPY1YVSuXw5exqBZaPC30Rntn/coVFMyqefI62DU77b52To6eJJvPkivkyOk5otkoWxu3YtfkpqtEJBvcDdMNIAxI5pMYGNg1+YyaqpHIJRhPjfPKtVd4/tLzdI134dScZAoZPFbPpOxxc93misziJqjEpQoWhJnxoEQa0mmpiMTj002TSlioZfvtwq0MxJ0PbtYX/cgjQkTTafj612UNN1rPYkjfVJlmKc7D8vkObhPu5OzAmcm0GykXlkoq/kEeOL8oUnX8+HH+23/7bwD84Ac/oK6ujhMnTvDDH/6Q3/qt36oErw875mqerakRYtHWVu5rSqfLlRmP5+bEp7Qx9/ffePBjiaTNtsHfgkNT9sFtHDq7n9Mjp0gV0qjeKjatDbBHBev+/eIS2NAg2TqHQwhSa6vIRxSFdMBP2m3GZlZx7Nghn6G3V16fz4urkt8vFalS/5WiyHNut0gHdV2Cf8lBsTTT6+mnZ/9chiHE69VX5UahWJSA5PXCihXTJsjrkTAtJj+KkSbvsuNIF3g85OVcTRXm+iac6TBJW5LxeJG1PTHUjJWHBnIM2DTyTTWgmAn87G2KwXbuf+ZLrHGtoburl0JtNQW/mHtk/BrmYoGmS8Nc29BEzFkeRtgd7mY0OcpYaozXe15nfe161teuJ5gM8sSaJ3hmQ9lx8Bs7vgHA672v0x/rx6k5+WzHZ9kQ2MCLV17Ea/GSyqewa3bGUmP48j5qHDWTUsKSpftsJGU2V7yOmg4imQgDsQGS+SSN7kZiuRjV9moyhcy0rF2rt3WaAUTRKKKZhETVOmpRFIV4Nk6umKOgF/iLk39BX6QPRVHI6llimRg21Uadu47eSC9r/GumOQtWcD0qcamCRaEUDwKB691Sn3hifoPt7yRux0BcZqkazNUX7fOJay3IcwMDEqNuR6XsVm3zr/uQS0hEbxOpXS6zA2dTLiyVVPyDPHB+UaQqlUrhfs/97OWXX+azn/0sJpOJBx98kN7e2TO/FXzIMJvUbu9eIQevvCKEYXhYHO5KsrdDh0RDnc3KRtXSMvfx5xr8GArJ+f72b4V8LLFb04HQUV5MvUtdQ920XhdzPMnHL16UgFOS6ZUcAoeGKHSso3+8m/OxONlrKSw2J/dfTFB3dRhTIinXw26XNSeTYsVecjtKpeTzPvywXCeQDf3UKblWFkvZDCMYLF+/kjnFkSPw059KQHQ4JEBaLEKuVq+WgJDN4v/ZYR77x9NYMwUsHh9jnW1E2utRU2ls1fUYJhWToqKZNMa1BG2hPNtyZkbdZsIOlY81b2dDSMWIn8X8xgia6QTJFeOMpIvEfOCYch2jVvBGzezwbuDlZBeGYTAQG+DY8DEMDFb6VqIoCkeHjtJZ08kXN33xumyYx+bhdx77HfqifQzHh2lwN+C1evnWkW9R56zDbDJTNIrUOesYS44RTAapd9VjN9uJZCKMJcdwW92zkpS5XPF8dh+fWvcpdjTvwKpaOTp0lEN9hzg/dp4qW9W0rN3UrF44HabGUUOdsw67Zp+0am90NnJu7BxqXkU1qbgtbopGkRgxeqI9eO1edEOnP9pPtpitOPLdAJW4VMEtYbaE3nwH299JLPFA3NmqBg+6O3n8nTOYZ+uL7u0VGXvJDfd2V4yWwohjKYnorRxrHkTsbpgdeCtS8eVCGm8XFkWqVq9ezU9+8hOeeuopXnrpJX79138dgGAwiOcDWo6tYIGYq+KUzUpV6rnn4MIF2ai3bRNp3be/LfK5pqbrN6qZm9HU+VORSLn/6vhxANJWlbTDhj2Vx75Ebk032gzOXznC7kwB2+rVojMv6b8LBYhGOe9IknjnbZoSWfKaCVcihzWcJ6PZcCjvWa4XCvK543EJGr//+yL1e+UVOabfLzK/XE5e09Iiw35raiTofec78P3vl6+fYQjJCoVk8/d45L3RqNwstLeXreAPHcL5s4M0eJs5Y+2hOp+i6bXj6O1+4sU025wd6LV+3hl8m1Q8SXXejFkzo+hFwhadjYHNbAlbMF+4AO73+snyeZzHTtKasXIiMk7MYsau2Unn0xiRcWoDq9l67+cxhY7yWs9rvN7zOhOZCbwZUPQYiq+KlkAbje5GdrbunFMW0OptpdUrhh/90f7JgGQYBhbVQsEQF8GeaA+RdARN1cjreWK5GI+teKw8fHcBUger2Uq2kL3x/wIzsnqHBw5zsO8gXot3cg3XItfQDZ1GZyMjyRGKFLFpNmqcNYRTYSKZCJpJQ1M1HlvxWMWR7waoxKUKlgQzKy632wRiIRWP2zAQd7aqwaFz+1k9GGfV5t3yolJf9MmTEsMjEVnznajaLYURx1IS0cUcawFEbLnODlyq/qe7gTTeChZFqn7rt36LL37xi/z6r/86jz/+ODt27AAkO3jvvfcu6QIruMsxM0CV+qIOHZJ+qJIM8PTpssvdli1y8//ii1LZKhlUTN2Mdu2S55JJmT8F0NhIwW7jap2Fi/FT5CI5HAWFNWkH7W+8hnlqwFlE6f5Gm8G4ZZyMzYzN2yhVoN5eCTzZLDmXneShV2npi2ArKsQ8dhwJHS2bg7xOoa4Js9crBCoUkgD5wx9KALNYhHj29JSdE+12kfzt2lV2D+zvn379YjGpTrW3yzFLw5XTaSFSLS1ly/eBgclAvaq6g/yIm9TpY9ivjbCpux+tpY265ARq1WraV+2l+9q7ZJK9XNwWoKY/wserWulo2ob51dfLGUuHQ84Ri1Efj7EpG+FqOEbMlsCTKbLCCNC052ks1QE+Wf1JeiO96JkUn7hYZPuwgj2bJKpFudQ+Qd/Dyrw32qkBKeAMTM7gMJvM1DnqZO5UepyOmg72rtvLrtZdkwN9Z9N230jqMPVmpMHdMKeEoZTVCzgDODXntHM93PowVyeuopk1/HY/w/Fh9KJOvpBHVVTavG18cs0nrzPTqOB6VOJSBbcNt0PatpiKx0wTqKnrW4Rxw1yJwkh1mj79LRrDQeyN78WYjg6JaQMDoqzw++9s1W6x38FSEtHFHmuBRKzN28ZbA28ti9mBS93/tFxJ41JhUaTq85//PDt37mR4eJgtW7ZMPv7444/z1FNPLdniKviAIhaTG/vWVtmQ0mkhISXddrEoG5ZhwPe+J/1Ira3TN6OjR4UsdHYKiQgGYWiI4HgPp/wqLtVLy2Aax2CQQjJBVO2iunMDfPaz0o90o0A2k3C997fHYsy5Gag+P9r2TviZuCOlGmpJDlzDeqGbLFnUaJShehdVGYWqcBJzoYhhUjGKRQrFAuaREVlPOl2u6HV3l6V96bRcqzVrpDJ16FDZkn3m9UulygODR0flelos5TlXpWOFw0KsYDJQa6rGppCJfNhKvn41WraA1nG/rOXyZTzNzdxXt4XkR3+Blofvw//mcZw/OwhDI3Jem63s6mi3g6JgbmikffMnqL9ykVx0AktTFbYHd04G42gmyuWJy+y6lOWxywWSVU7CHhVrMsuDZyc4Z7mM8SljXv9pzZTtrfCtIJKJcCl0iTZfG2ur17Kueh1PrnmSgCswze1wLm33bFKHxUgYZiNpAG/2vUn3RDd+mx/NpDGSGCFdSOM0O6mx1/D4iscrhGoeqMSlCu4qLKbiMZfsfXRU9nxjfvtkCXMlCm01dVxb5Wdr3yCo1nIc9PlkWP2OHbfPIGOpsZREdDHHmicRm0peotkoyVySrvEu6l31s479uFNY6v6n2zVwfrk4CS56TlV9fT319fUAxGIxfvazn7Fu3To6OjqWbHEVfEAxMzCk03LDbzbLzX/JaalU8dmxY/pmlE7LkOCHHy4/7vORViHT9RZ1dW1UTSSoujZK3mkjZy8SyWZwHXwNa0+PkLHZAtm2bbB/v8yY0nUhWSUXv2wWr9PJE/UGf98wNOtm4Nyxh5xq4crL36W7/xThXJSqWJyg28QKPUPKYRB1O0nZPTSMJkm6NOrHUpgnouByyzUAOV8kImQRZKbVqlVyfeJxaRL2eoXobNhQvn6KItbqb78tf4dCsv7GRiGm71XOJgco5vNiHNLcXP4+DAN6e9F8fjQAS1GqXX6/kKUvfxmam3F6vTgBnmwBi7M8y8swyq6OIOfxeuGpp7ABtlmqg7FsDCMSYeswjLlMJJxgVhQSThPpHGzqz2GKxmGe++RU2d5IcoTV/tV8at2nuK/+PmqdtdPmQc2XGM3csOcrYZhto59J0p5e/zTfOfEdeiI9RLIRHJoDi2rBZ/Xx9tDb/OYrv8mXNn3pA+GMdLtRiUsV3BVYbMVjpuzd75cZUZcvyz7+F3+xoF6hG1UNYtvXY9qwCU53Xd/LtAT9ybeM+apN5iKii+kHW8yx5knEppKXdl87frufvmjfrGM/bgdmi1W3q/9pKQfOLzcnwUWRqmeeeYZHHnmEX/u1XyOdTrN161Z6enowDIPvfve7fO5zn1vqdVbwQcJMRx+LRW7wIxHYvr1MqsbG5PdUK1WQ1yeTIgucgnS1m4TLQm0wgTucoGCT5x15g77WKmqq3FhnkjGbTc793HPwl38pBMbnEwOHRALOnhUSs307xGLcd3oICPCCp3j9ZmC28tMOjb8ORki1WrGlqnj8jQRBh0Gj2UDN5EiaYNxmx2VXKeaz6JqKSTGVZXkej3y+kh17Pi/P5fPydzIp6167Vqp1/f3ST5bPi2W91VoeHjw+LjOxamvlWtntQrqcTiFATzwBjz4qm3pnp1TwIpE5K07E49cHsNlmeQUCsv5w+HrN/SzBz2P1UK87qNItDPrsGBTI6Tl0Q0f3uGjUPSRDw0Tfm6VVwlyZqfk6FM2HGNnMtlk37G2N224oYbCq1hvKCqfiiTVPkNNz/Mk7f4LNbKNoFMkX87R52ygaRUYSI+y7uA+4+52RbicqcamCuwaLrZ5ks7LXJxIiey85xG7dCvffL3v2AnqFblY1cK79JHzkNlu3LxQLlU0uwkFwzqrHYtwI50HEbkRe5hr7sVS4ESmZGiPT+TTpQhq72X7L/U9LOXB+uTkJLopUvfHGG/yH//AfAPjxj3+MYRhEIhH+6q/+it/93d+tBK8Kbo6Z86jq6+Wm3e+XG/5SFqq9vVzBKSGXK8+umAJ7Mk94RQPJajf3/awLMFGwmxhq9RNpq8Fic89KxhgeFvLkcokdutks1ujZrBCSaFQ20EAAs2GwfaTIus98hZhNuS6rc6jvEGPmHLamRgZHeyk67FSZFEb8OmtG8qhKAYpxIhYNzebAsNoxOaokSJakf9XVsklHo/KTTArZ07Syu2B9vRAhTZPr5/dLMK6uLlvVV1XJ48WiHFfTRC7Y3g4PPCDX8Nln5fhWq7w3mZy74nSjrN7UWV4LdGny2rzcu243446f4kqnUHwuCsU8OT2HL1UkbM/xeu8/oUbfZGvjVna17uJg38GbEpabORTNR9u978I+9nfvp9nTfN2GfaObkaNDR+e90VvNVjYENrDav5oqexVdY11YzBbcFjd5PU+hWMBj8XwgnJFuJypxqYK7Boutnhw4IMZF69dLEuvllyVO+f0Sv1wu2ftfeUVMjEo9t6Vjz0KOblo1uF1DhReLxcgm5+kgOK+qx0LdCOdBxGJTDJamvfUOmDccuHqAfRf34bV6qXHUkC/mJ2PVztad4nI7eJRIJkJOz4mKwuaj3dd+y/1Ptzpwfjk6CS6KVEWjUfzvWTi/+OKLfO5zn8PhcPDJT36S3/iN31jSBVbwAcVMRx+rVSovc1mwT92MYjHYvVvIxJT5IfZwFMfDj/F89RCeYAyHYma8ykZYSbOheiX2rOl6MpZOi4zO5RIy4nYLaYnFxBzC4ZDs35SBuQwM4M0peOumW77HsjEmMhMoioLZZCZiNbjY7mbHuRhBt4XeokL7eAF3qsBQk5P4E4+xLtYEqiZ9UhcuCHkqmVP09QnRrKqSNZckkqdOyfNf/GL5+o2Pw+/+rqx1YkKOsWmTzKHq6YEvfUkIo6JIUD106PrANDoq5hcbNty84gTXB+lbcGl6dMte3nn8OMEf/Q2xzBBxu4Ivo1CVsZB+cD01DasmicnRwaOEMiHqnHXU2GsIpoKLquTcKEv7ePvjvHTlJZ499iyFYoFQKkSbr43Oms7JDftXtsrco5k3I9sat/HssWepc9bhtrhJ5VO4Le5ZN/pSED/Ud4hLoUsYGKTzaVb7V8t/noU0FtVCrbN2zplaFQgqcamCuwaLqXjMlAyGwxK3SkZG7e0iXb98WV4L8PjjsqffoI94KasGtx2LlU3OMzbNq+qxmDh3EyL2fpk3BBNBnjvzHAOxAQCcmpNV/lVU26snY5WqqJwaPUWtsxaf1UckG6F3tJdVVave9/9OlqOT4KJIVUtLC4cPH8bv9/Piiy/y3e9+F4CJiQlsU7MuFVRwM0zNgt3Ign3mZjQ1UEx5fMujuxgbPEjf5QRtb19As3jZ1LiWdUU/RMPXk7H+/nL/0vi4BJ1YTIjW+LgQFI9HBhbff/91JftYNoYnY+Adj+PNxqnX7VwyDDGfMJl5c52KXtRpvxIiYTNxZU0NQ41OMh/9CGGPmfa+KrafDQlp2rxZSMylSxI0cjkhcjU1UskCIVUDA9IsXJI7eL2yxs2b5Tglgmi3y+esrpaK01Tnw7kCU1cX/Mqv3LjilM2Kpv/IEWmOrq6+5VlgVrOVxCMPMjhyko1XJrDldHqsY7yzxkZxg5/1Zhs2s410Ps3rva/zQPMDjCZG6Yn0kNNz5PQcf3fm79jWuI2AK3Dd8eeSc8yVpY1kIvzk4k9IF9I0uZsoFAucGxOXybXVaxmIDZDVs7PejPRH+4lmoyRyCfoifZOSiVZfKy6La9pGPzWIbwxs5N3hdxlLjaGaVBrdjcRzcTbUbiCn5z4Qzki3E5W4VMFdhYVWPGZKBu328rzBdFr6ga9eLRsTDQ7C88+XTZ1uUtm51arBHcGtmk6U7jeiUYn9UwjRgqseC6ng3YSI3S7zhrlQioc/7voxbw+8jclkwqyYGTVGGYwNsr1pO36Hn4HYALqhs7luM9GMxDSH2cHmwGZ0Qyeaib6v/80sRyfBRZGqr3/963zpS1/C5XLR2trKo48+Coj8YtOmTUu5vgo+bJjNgn2uzWiWx61IRin6q9vIrdqP+8xFbFkdNNPsZEzTREbX1iZk5NVXJRil00IycjkhNEeOyL+rqsh99HF+OnqIEz1HaH7rDPceukJzuIDP5uP/qLairk7w0to4FtXCeHacH6/KY6uzsFoLoFVVs6LtHjbVbcKcGOXlFTk2BHbhPN0l/U+rVwthamiAH/xATCZKM69ACGA4LOYdUwnM1Myn1SoVttHR2TOfswSmVD5NtpjCfqUf25kzcl1nu+bZrMzPeuEFCdwulxDP0dFJ+/vMkUPi8ued4vJ3E7LVF+3jp4Nv4Ni9FffjtaTGhzkw/g45lx1TcoAV+Q7smh2LaiGZT9If6WcoOYTH6qHKUkU8F6drvIv9l/fzi/f+4uRxbybnmJmltapWXut5jT87/mdkChkm0hMANHua0UwaV8JX8Fq90zbsUlCJZWOAbPSDsUFOjpxEQQEFMOBa5Br31N8z+b6ZQbzKVoVFtfBG7xsMxgdxmB101HZQba9+3+x07yZU4lIFdxUWWvGYKRm02yVuHTsmioZYTOJZyTF2aEiUC2fOSDJxieZava+4VdOJG/Rj3ZGqxw2I2FKaN8yFqfEwnA5z4OoBIpkINc4aXBYXuWKOWDbG0aGjPLnmSXmPnmV703YMw5hMECqKsixmSt1pMjofLIpU/eqv/irbt2+nv7+fj370o5hMJgBWrlzJ7/7u7y7pAiuoAJh7M5rjca83AM/8Inx8Fh35zEBWksKVpH7JpMyBcjolQGWzYprR2wuf/jT/2Jzkn8//lI+cT7PzwGW0iRhDDhN5zUVDsMgvxcFqd/LjlVnsZjtW1UqxygFVLayoXktHjfQpeW1eBnIDhD+yA+dHPn69jfvPfiZEpRQM02kJng7H7MFjvpnPKYEpr6lcGDlH+uQ7NJ/phUSW9KmjeDbci/rML4iZxVRCtG+fECqbTdZZKMi5mpvRv/ddBvQI3c4ccZuCe9Bg5XfP0qTnsex+TF4HQua80+Vvr1x9hUP9h6i2VxP1r6atoY1C1gkUyek52cw1Ozk9h1W10h/vp8pehdviBkBVVHxWHxdDF6dlz+bbxFp6/Y+7fszLV1+mUCzQ6G5EL+p0h7sZiA3g0Byk82nyep5f2/5reG3eWUlbZ20nw/FhItkIVdYqHGYHqXyKSDbCaGJ08pwzg7imamyq20S9q55DfYdYWbUSp8WJSTG9b3a6dxMqcamCuxLzrXjMJhmsrhb5XyRSTr7V1JQHv/f2SgxpbZVEXamfeJFzrd53LEY2ORU36MfyPL7zuqpHOp+mP9qPpmpLVvW4VYOlW8HUeOjUnMSzcUyKiUQugU21oakamkkjmAzS4m2h2dM8be4jwERmglAqhMviWhbKiTtBRheCRVuqb926lc2bN3Pt2jVWrVqF2WzmkwudTF1BBbcb8yFjJdKxf7+QKodDApXfL0EoFoNEgkJLEy/4x/nT09/Hmshge3uMXDyN7veRtRgMKWn87lYaUxn+f/ktfOrRn6focWNg8Ocn/hyH2UGrTxqHtUSadLAfv/29zdo2Y51Tg0c+L2Ya3d0SPDs7hQjOrADNN/M55dhXxi8SuXicjrOj2FNZojVuwpYMTedP4P/Oe6Yepf+vo1E5byIhxHNsTOSIdjsMDhINDXJ5tYOsvxW3ZifjSNM1PIzlf/0xTX/znGROQbKrzzwDTzzBgV7Z5L1WL9WOanJ6jpOjJ4ln4zS4Gzg1egqn2YmCwmhilFguxtaGrbze9/qkkUO6kCaei7Omeg26oU+zM5+PnGNqX9MbvW+gmlSyepZsIYtDc6AqKulCGgDVpGJg0Bvp5VzwHOfGznGw7+A00vaTCz8hmArS6mmV4+hZLGYLrdZWssUsA7EBvDbvnNKFolHknvp72NuxF7fFTbOnuVKhmicqcamCDzRmS5z9wi/IvnzliuzFqZSoHiwWSQ6azdJr5fdLny0szk58PpivzfmtYKGyyalru0E/lnfnzsmqRzwbpz/Wz0BsgEQuQWdNJ4f6Dt2STfd8rb9vlwxzZjwcKg6hqRpWzTppiFQoFjAMA5/Nx46mHZOVoB91/YijA0fpjfYSTofJG3nWVa/j1Wuv8sSaJ97XUR/LrSdwUaQqlUrxta99jb/6q78C4NKlS6xcuZKvfe1rNDU18e/+3b9b0kVWUMFtRYmMVFfDm29KUHC7y1k9VQVFoV+J88LomxSKBdYoPlyJISYyEWKWNCbdgl7UGTA5aTMc2OJpOq1NEBAzi8dXPM6LV15kPDzIhtPDeM92U4hHaG3sxKvMQpCgHCSee05MLHw+maXV0HBjt6O5iGQ0Wq4WbdvGieETdP/Ti9x3JYpFN0g01JBqqsEwcowmM7jjUbRDh8oSkZJ5RyIhwdvlEsI3MUEhNEZKzUBNG26rVI9s2HCNZLCfu0S+rhWt+T1jj6tX4TvfIWnkOFbVNbnJh5Ih3ux/k3guzkB0gEZPIxgQcAUIpUOTGajNgc2MpkYZSYxQKBawqBY21G6g2l6NSTFNZs9KlaAaew3hdBi72Y5du94OtpS9s6pWbO/1boVSIS5lLqEXdSxmC7ms9G25TC6uTFzhvxz+L/z1mb8mV8ixObCZjuoONFXDZrYxmhglmUvS4G6gXpOZSQ7NQSKXIJKJlL+mWaQLoVSI4yPH8Vg8/KjrR6iKOm1YcQVzoxKXKvjAY7bEGUhFKpOR38GgxK58XoyJNmyQZNzZs9DSIsqL+VZ25ouF2pzfCma5BlErxDJBPMYNbqjn0Y+1q3UXRweP8sOuHzKaHMWpOemo6WCFb8Ut23S/39bfM5URVbYqqu3VDCWGwIBaby0Ws4VwOsza6rWs9K8kW8iS1/NcCV/h1Ogp8sU8HquHJmcT6Xya75z4DpqqLYtRH8ulJ3BRpOqb3/wmp06d4rXXXuMTn/jE5ON79uzhd37ndyrBq4K7E52dYlX77ruyAeu6BKVIBN1u4+hqO/76FfhGY8TRCdsNvEUdNZMFixWTSSUWGSFs8lFbVTUtC1gqRUd++BzVb18g6/dR37GNFdoUgjSzwmS1ymOHDklvVUtLubdKVa/XxE/NEkL53zabSPa+9z24coVMNsNb5kH+344ElxtyfKNHYW1ew+sNYCoW0cwWsuYcBUNHm5iYlIhEM1EsE2OYvW60bB7yefKqCSOXwUinmFhVhUPR0As6VddGcA+MUdU9gJpKo9eD5vHIulUVEgnyb7yOvttMVcMqABRFwVAMNFUjq2cnCdWn1nyKR9ofmZaB+tKmL7Hv4j48Fg+1zlpyeu46HXW2kOVS6BJH0kewm6UfqzRUsdQTNTV757a46RrrYjw9Tk7PEclGSOVSGBjYzXb8dj/hVJi0npZZVCYrw+lhTo6exO/ws6lOssD1LiFSXWNduDQXNs2GU3NiYLDGv2aaZn+mdGEgNgAGrPCtYCw1xuXQZV668hIvX325MgD4JqjEpQqWPZaqkjMzcbZ1q/S11tRIT3A+Xx6L8fjjMiD43DlJaDU0zK+ysxAsxub8VuH1knXOPkdw1n1yHv1YB/sOMpQYospeRa2jFptmI11IE81GCTgDi7bpXmrr7znnaN0AM5URhmFQNIqEUiGKRpFEPoHP5qOjpoNn1j+D1+bl+UvPs797P0WK+O1+FEVBURTcNjceq4dYNsahvkOVUR9TsChS9ZOf/IR/+Id/4MEHH0RRlMnHN2zYwJUrV5ZscRVUcEfh9YosLRKRwBSPS8+Q00n8Ux/jxHaNBleA9mw7J0dPcrCpSFOPGX8sT4oMXpsHX1In5M3g2H4vzilBz2q28sm6nWRSh8hsbMTS0IJDe48gFQ2pRh06JERuapZvYECMIFasKBOqdFocnsLhcoAoZQmjUQmuhiGzrLxe+ffhw1JlMgzGJ/pYk83yb0YU/t8HVCy6Tu1EFjV6GUdVgKjHimIzY7aqUFVF1mHlwKXnuXTyFR4nhKeYwW21oaYm0FNxyOvEa90c3lLFltFxanrHcY2EUQwD9AK6ZsaaSMLwMNmGOgpmsBg6tniKqlwVsWwMwzDoj/WzsmoluUKOvJ5nz8o95It5uie6+bl1Pzena9/UKtaelXsmZRZ/d+bvODN6hqyepd5VT62jlneG3iHgCPDLW3950qmvlL2zmW2YFBODsUEcmgO35iaTz6AbOrWOWlSTislkwooVwzCodlQTSodI59N0h7tp8jQB8O7wu5gUE1bVOmmRHklHaPI08fT6p+fU0Q/EBvjb03+L0+JkNDHKpfAlPDYPds1eGQA8D1TiUgXLFre7klMiSIcOiVTcZBJCtWWLVK1aWkSJ8eUvT+tpXRIs1uZ8CbCg6s9N+rGiVoknXqsXu9mOz+ZDUzXi2Tg9kR5aPC2Mp8cXZc6wVCYY85UQzoaZyog3+9+kL9aHQ3NMys+TuSR+m58n1jwxSQS9Vi8KCpqq4bK4yOt5QukQfrsfk2JiIjPxvhtWLCcsilSNjY0RCFwvRUkmk9OCWQUV3DbMJ+O3mKzgE09IEDp0SHTpDgfs3o3y8UexnXiWWDZGR00H8WycN9YOQsHJk6dSrE9acGZVoi01vL2jBefD9+GceexYDFtWx9bcCtqUTNnwsMj7GhuloTgWK1vhZrPi3nTpkgx7hDLR0jQhSxaLzPKqq5PHz58XHb3LJev/538WS12TibjTwqgljxOFpoTCLx0rYsmDMwvmoo45H6ImZELxVaFt8sLOnRwIySDbVpeX9JoVGAMjjI6PYLXouL1+8l4PwSYvr2+2EO4a5+cPTlAsKqRtKrkqO37dgqKaiY700KeMYcpksWcKFNUAa9r38FLoCJFMhFg2hqqo5I08W+q24Hf4yRQyswadG+mon7/0PPsu7mM4Psya6jWMpcYYTYyS1/NU26txW91sa9wGSPZOVVT6on3UOGooGkWaPc1MpCfQ0XFoDgwMcnoOo2igF3UURcFqtqKpGgFngGuRa3SHu4llYgwmBhmJj6CZNBwWByaTCb/VT4OrgQZ3A22+tlltaL02L7FsDN3QsZgs9ER68Fg9lQHAC0AlLlVwR7GQ+HK7KzlTJXHr1smcwZaW6+cMbthw6+eaiVu1OV8kFlX9uUE/ViwTFLm4owaLaiFTyKCpGnbNzkR6gmAqiNviXpQ5w9Q40+Jpwf5eQnWh1t+3KiEsJSMPXD3AueA5XJqLNl8b1Y7qyarVcGKY0eQoCsrk9bCb7WBAvpjHolpI5VPEc3GKRpEqW9WyMKxYLlgUqdq6dSvPP/88X/va1wAmA9af/dmfsWPHjqVbXQUfTswMVlP/nlqVKWX8OjvhvvtktlJpttVis4JzmD14gQfdnRw6t59kdROdtZ1cjVzlne1xbB/dQlZtBwN6nHnSTgseT+31x55NflAaPuzzSRC02eTnwgWRIX70o5JxPHlS3AA1TTKO+Tw0NcnnTCZhzRoZFvzWW1LFMpngxAlYuVIqVxMT4HZTIENRKZK2mbEXiqwdMxj2KPRUQ23CwF8oYssrmNFIfu7T9Le7OXPsH2j1VeGtayW8OUJDPMUla4S82cQG7yqc6TzJ+zawuqOaQdMpBvsVkm4bRY+bjoiG43QPmdAIWT2L065gyxvEPVZ+1pihwe3kcffjPHfmOa5OXEVRFOpd9ei6Tl7P3zTozNRRlwKtx+rBZDKRyqfI63nMqplYNsbGwEbqXHWTRhSH+g7RG+3lwvgFbGbbZC+Upmq0eFoIpUKE02HGU+MU9AJFo4jD7MBr9aKZtMlgOZYcYzg+TEbPUDSK6IaOrWjDarZSMArYzDaG4kP8ydt/gs/m48HmB9nbsXdadrEkzwimguT0HFWWKvlPZJYBwMCyaMpdTqjEpQruCBYaX+5kJcfrhS98oTxnsLtbEmy7di2t3G8qbtXmfJFYVPXnBmZOHkP233wxT5uvjXNj5zCQRFpOF6vxx9ofW/B+OzPOeK1e1lavpd5VTzgTnrf191JICEvJSKvZys96fka7t32yBxpAcSj0x/oZjg/TUdMxeT1WV69mMDFILBNDM2kYGITTYRpcDZUk3wwsilT93u/9Hk888QTnz5+nUCjw3//7f+f8+fO89dZbvP7660u9xgo+LAgGxYHv4kXJsFmt0n+j6xLInM6yVWxjo8jbjh+X9zQ3y/DbrVuFcJQqN4vNCk7VrL+3rse7zrM6FKdPf4trq/y0r25gwurFV9fGiMP/3nyEEJ9ofG+TnGoMUZJczJQflIYPb9s2Xd4XCpXnQDU0yOtfflnIUSYjwSCRKDsDWixy3YpFMdnI5eDaNVmD2SyPF4s4UjoeQyGrFVEw0HSIOc30egz6/EV21dyPI68RjY5y6OSP4adBWkLDuP0NKFu3MXz/OuK5OPqRQRwZnZypSHjHBgYf6KTapGPUtbG2tQarYUJrXYnD7ibrOE7slX/GHldw5CHWHKBnz/1MbAkQHD1FZ20nVfYqtjVuYyQ5gt1s59z4OeK5OFWOqlmDzlya8lKgDTgCxLNxgqmgzLKyVhHLxSYH+Hqsnsms39rqtbgsLi6MXyCYCgKwq20XnTWdXBi/wDtD79DibSHgDHBq5BTxXByzyUwwGSScDhPPxsnrefJGHgwwIVbesVwMi9lCPBfn3Ng5qh3V9MX6uBy+zJsDb3J+7Dzf3PXNSWJVkmfsu7iPnJ4jnotjFA0i2QgbazdO2skf7j9M13jXguUfH3RU4lIFdwQLrTrd6UqO1SoEKpmU+Yq6LkPdnc7bYxxxqzbni8SNBr/6syreYAyIznsUy1R5XLW9mjX+NXSHuolkI3TWdLJ33d5F2XTPjDPd4W6ODh2ls6aTL2764ryPuZRztNZWr8Vv85PIJ6aRqkgmglNz0uBuuO56bG/cztHBo4ylx/BYPDR7mnl6/dOVUR8zsChStXPnTk6ePMkf/MEfsGnTJl5++WXuu+8+Dh8+XBmyWMHCUcr8TXW5W7NGSMOZM0KWNm+WAPTmm1KZuuceOH1aep9cLrGRzedljlIiIYYTpaygYQhxmepkNxdKVbHS4N/jx+EnP4ELFzD7fKxas4bG+jVs7Rvlsx17eHOzb9p8hJ8L7OLRYrt8luefFzcmgPZ2ePpp+MhH5O/35AcZRUdf1Yqptgo7CKEaHpb1+nxCtDRNKk4ul1yrlhYJ6KXXhsNCqHw++ey6Xv6JxcRswzAgkcBqtRIwVJKZAoYCWVUhadIpFg3czhoCjasZ6b+IEQ6y+piJ8KoGrtXEiCdG6Hz1TcwmlUuP3McB1zUc6QKPbtmDWuUHIBEOsq5rDO9oHuulK+DrhtWrSfvd9HbUk9ywltDWDSTrqsi77LgKGa6Er3Bk4Ait3la21G3hwvgFeiI9TGQmGIwP8ul1n562ad9MUz410BoYMnzXgJyRQ1VUzCYzBgbR7PSsX6O7kQ21G3jt2mv0xfrwWX3oho7f7ifgCOC2uql31aOgcGH8AuOpcYLJIIZhkNWzaGYNdCgoBYrF4mS1KpwOUzSKqCZ1cm3V9mrGU+O80P0C6wPreWbDM5Ofr/RZ/+b033B06CjFYhG31c2l0CWGk8NsCWzhYP/B981BajmjEpcquO1YTNXp/ajkHDggQ+7r6uT4t9s4YrE257eA2dxTE7EQNW8d5/GQB88bf7Xg3rWpvbo+m48Hmh+4JffVmdWlUpwpzb7a2bpz3smwG5HIhUgIAVq9rexu282PLvwIDPDZfEQyEcZSY3y247O0emX0y9TrUe2o5uOrP04ym6RIEavZSne4mwNXD9y2pN5sydPFmHTcSSx6TtWqVav43//7fy/lWir4sOLAASFDIyNSlTGbpS8olxOp2+XLMD4uxGlsTEjCunVCWDweIR4TE0I6MhlxOdqyRUhWV5e8LpWS59atE3nEzA22ROyOHJFzh8Ny/nRazCoaG+U9ly5ht2yElpVwrptPfvTr0tcTG8P62kEsLx1BOf83cOGSHHflSpHidXfDd74zOfcp++A2Dh/5AeeC5/BYi6w78woNp9+mMWdBjbxX4bLb5VqUkEzKY7W18rjbLSSq5NBXchy8fFnWncvJe2w2ed97w4O9ioJNhYwKWZNBa7iI3eHjnoYHyIXGUbuvYkvlIZrDfi1E3mvlHU+e7nSctacvkl3jhSovKR+Ma3m8hQzRTJSat47zUDdYO+4Hr1/WcewY5lUtnHlgBQPbVtEUaJz8ONFMFFVRpV/I6qFQLNDkaaLJ00S2kCWUDrGjZce0zfpmmvJSoP3B+R9gNpmpd9UTSoVIF9LUO+u5p+EeXBYXw/Hh67J+ds3OrvZdvNn3JqlCapIo//LWX2Zb4zayepbD/Yc5cO0ANrMNVVF5o/cNotkouqFjNpnRdR0FBQMDAL2ogwIUwak5J7OCtc5asnqWIwNH+Piqj08Gh5I8I5KOMJ4UF0JN1TAMg7wuph0bAxuXxEHqg4hKXKrgtmIxVac7Xcm508YRpUTkzp0yB2t4WOJ4a+vSnWMOzHRP3XJsgIe6oXn1GqjyL5hMLvXMo9mqS3bNTquvdcHVpdlIpKhjgvOWEE7FN3Z8A4DXe1+nP9aPU3Py2Y7PTj4O11+PwwOHOdh3kEZn46T73+1I6s2WPN1StwWAU6OnlrVKY9Gkqlgs0t3dTTAYpFgsTnvukUceueWF3Qr+9E//lD/6oz9iZGSELVu28Cd/8ids3779fV1TBXOgFAC8XiEcLpf8TqdlWGzJItZqldfYbPL36dNCGpxOIUCqKsShFETGx0Vad+qUPK6qcoy33hJSMnOD3bdPZITpdJm4lTJuiYScu6ZGXtvTI//u6YFjx7Dds4mLP/5bjJdeIG4z0T4wSn0qhUO1YcpkpPfJbJYN/tAh2LaNUz/+nyQPvsC9ugXV7sARSUH/VaKeWvwNK+Rzjo3BG29I1W1wUCR8Doe4EprNQvbyeSFuFsvkkGJAXpfLyb91XdbrdEIwiMkwsPtqyDfUYJ0I0ZYusNZoZnykn+jIIFo6Sc7pIl3lQlEUVg1l0IsOTnlSpCJBtGSaX7rnlwDZ4AZiA/izKo+HPBLMGhqhsZH8ujV0n36dwcwQB5qq6Rl4lbXpQe6tv5dkPkkwFWRXyy7OBM9wdPAokUyEnJ7Dolrw2Xy0+9ons2/RTJSB2ACH+g7dVFO+Z+UekvkkPZEeCsUCK6tWEnAG2Fy3mVQ+RdEo0uBumDXrl8wl2Vy3ma/c+xUUlOsyZF3jXbR6Wwk4A4TTYbw2L26rm0gmgk21oaCgGzoAZpMZq2rFbDJP2sSncilQIFPI4La4KRQL1wXWaCZK90Q3j654FLfFTbqQxm620x/r53D/Ye6tv3faf7qLkX98ULGc4xJUYtNdj8VWne5UJScaFbVHOAyrVk1/bqnlhlN7y6JRSYoqipC5EpG8HXLDKZh60x8PDlDzxt9iW+eclUxGt24iZlOmzTGcizQt1cyjpawuwfUkcqrr7YLXZvPwO4/9Dn3RPobjwzS4GyYrVDNRuhZdY11LZgt/I8xMngaTQf7HO/8Ds2pmZ+vOZa3SWBSpOnLkCF/84hfp7e3FMIxpzymKgq7rS7K4xeAf/uEf+MY3vsG3v/1tHnjgAb71rW/x8Y9/nIsXL87qDFXB+4xS5q+mRohBJlMmV7ouczVKfVSRiGzaJpOYMuRyspkXCpIZ6+6WqfHt7bLBnz4tFSrDEPKxZo1Uc6Zm64JB+MEP4O//Xo4TCslr6utlHYYhQWFsTM5hsYgTX3e3EJiuLsZ9KkoqSGplMzanG3NhmLiRpWCx4QuFZIO32yerSsmf/ADjpRdwO21oTif+K8PUdQ2SspoJqzmcDXVYN2wS176335b1lghUMimmFaoKNhu5pgZS61ag3b8N54HX5Ppt2SLk8PRpuYY2mwTAQkE+kypW6Z5VHRCLkRno40T8MheMDBvjYJjBlc7hvga5umrydivNE3nwNrBx9b08uPvreOtk831sxWNyMx+M4Xnjr0i5HcTTYcyKmdcHX+di5jQNUR0t7sDhc3Bh/AKpfIrNdZvZ1bqL++rv4/jwcU6NnqLWWYvP6iOSjdA72suqqlXYzDaev/Q8x4aOMZwY5szoGTYENlBlq0JTZTjzTFJhNVtFUmfA/u79NLmbqHPVTcvqtXpb58z67WrZRTwbB5gW9GZmHe1mO07NSZO7ScgaRUwmE0VdbuZVRaXB1UC7r52u8S7GUmPki3mRBhZ12n3teK3e6wLr1PPYzLZJp6iAQ/av8dQ4VfaqydcvNkB/0LCc4xJUYtMHAgutOk01WZrDIGFJMJXghEIimw+FYMeO8hD7pZYbTu0tSyTKsdrlkjh8owrRUs3reg9emxevEoOsDrXTP1/e5aTv3Jv84+vfot8LI4kRFBTqXHV4rd7bWu1Y6urSUlfSQKSAc5GpqVjKnq4bYapksspWRdd4F1fCV7gYuojZZKbV08qW+i0EnIFlqdJYFKn65V/+5UmnpYaGhmVlV/vHf/zHfPWrX+UrX/kKAN/+9rd5/vnn+fM///NZhz9ms1my2ezk37FY7I6ttQLKmb98HtraRLpnGOWeoHhcNuiSfC2RkE08FhPCpOtCdvx+eOcdITC/9Evw+usS6Oz28rEuXpRAU10tBCsSgVdfFYlg6TzZrFS5LJYyGamqEknDxIT8DAwIMWltJVvlRek+xcpkjuGaeqLVNhSnE/NEgnQ+hUu1Yc7n5fzFItjtFM6cxhxNUDOWxDN2FdtEAiVXwGS3kFPBuHwJxkJCgqxW+QxWqxhPRCKgqhQddlJGjtzFcd5tyvN2wM/Prati0wUddXRUro3FUr5GhYJcb02T46VSktE0DMbGexjzFujxwYYxhT6PgStr0B4P4xsyiFY5UCmwJtNM3e4noa68AZcyetlCkEuZQfrPHiPi0RhPjTMQG6A950Rzu9E9TlDSrKxaSZ2rjjZfG11jXRzqO8SpkVP47X5sqo1ELoHFZGF11WqS+ST7Lu7jYJ/0EK30reTS+CVOj57GolrYXLcZmJtU7O3Yi9PinDOrNzPrZ1WteC1efnThR/z3t/87AG2+Np5Z/wxPrHniuqyjXbPT5mtjNDlKi7uFZD5JKB3CrJixmW3cU3cPn1z3SdwWN8PHhrkWuYZVteKyunBanIynxlEV9bpgMFd2M6tnafe1E81GGU2M3nKA/qBhOcclWHhsqmCZYj5Vpxs5BN4O44aShN7jEWnixISoNAC2b196ueFUiaHbLfGxrk6eGxoSdcVscsPbOa9rjirild4TXMkMUHB1ksgFuTpxFQMDl8WF3+6/7dWOpawulbBUlbSFYKmrbnNhKnnrGu/i3Ng5NJNY2xeKBc6OncVilvi/HFUaiyJVly9f5gc/+AGrV69e6vXcEnK5HO+++y7f/OY3Jx8zmUzs2bOHw4cPz/qe3//93+c//sf/eKeWWMFMTM38lchOd7eQH5dLyIvZLGTKYhEpncUiG/BHPlJ2vytJAd1umcXx9ttyrHhc3muzSSC4dElIxttvy7EtFiFlhYKQFsMou+VVVcnGb7EIWUsmRVKoaUIAV66kkE2QtppxRdJUdw8SXdFArKUWR3ACWyRG0eSQ80ejcowtW7B//x8IDEXIuuwoeZ2CVcOWyWFJpKDVj8liFXJZWyvrSiQkUEUisnZNI582SNtNKJqZlrEcJwsGz61J8utVGo3ZXJk0dnXJMVwu+Rylyp6ug89HLJ8gVyxQm4KNITMRJ5g0hWFbAUMxWJPL4RnLo7e24Hn6K3PKVQ6EjtJXHeP+wRQW1UtvIowrksKbV7n2YCuqz48nGyeWjZEqpAilQjS6G3FqTopGcTJzqBd1RhOjRHNR3uh9g8vhy9xTd8+k3GBDYAPvDL3D+eB5Wjwt5PTcnKTiZlm92fTif3PqbwimgtQ4asCAqxNX+c7J76CpGp9c+8nrso7V9mrqXHXEtTjmtJmAK4Bm0kgX0uSMHNcmrlHrqMVmtnFvw70yENgwcGhiy64b+nVzq+bKbvbH+nm0/VG8Vi9d411LFqA/KFiucQkWHpsqyb5ljBvYck/ids+lKiEalQrRX/6lxExNk32+pUVGcQwOwpUrkjBcSrnh1N6yVErir88nSpKJCUmAziY3vJ3XZWYV0WIhMzxI4sp5Yg93YvHXMnz1FHVOIX9D8SHW166/7dWO21Fdej+w1FW3uTA5WiQZpDfSi8fiwWa20UuvtAZYffRGelnjX0MsG1t2Ko1FkaoHHniA7u7uZRe8xsfH0XWdulLG5D3U1dVx4cKFWd/zzW9+k298o9yYF4vFaGlpua3rrGAGpmb+fD544AGRA166JCYT58+L5K9EdsJhITXr1glZSqflR1EksITDQhpWroTXXpPXJBLyXElemM/LsbJZ+bfJJO8Hee/YmPy7uVkCRnu7SAKtViEl9fUwNIStt4e6iTBaNo8llaW+qovRzauhzU99NotJs0rwWb0aPvMZiESwnOvCn8sTS6QwZ4tk/R6UdAYtlaVhPIsl3y9ZxZK5RonoAZhMFIs6SqaAyeXBZFKpvTJM+wQYvlrG81FqLTY0s1nMNUIhCayFAoVALUYmhZpIYvL6QFHQYzESFujzq9SlDLqrTbRFDIpWE6MunSZrDfUZG+Z//f+FL3xp1q+vVK63PHw/Ie84rtMXaIzqBE0WXl6tkNxQg4I06A4nhollYwScAcZT45gUE9lCFqfVydnRs1g1K36bH7WoklbSXJu4Rp2zjkaPGFx01HSQ03OcDZ7lWuQaDa6Gm5KKm2X1Ss+dGD5BMpek3lWP2yKGEqpJJZFNcKjvEDtbd86adfwXm/8FRwePyn8unmbMJjOnRk5xduwsJ0dPsrVhK63eVh5ufRhVUSd7pBRFmTPLNvU8PZEeRhOjGBh0jXfhtXrprO3kvvr7qHXWzjuYLXfXpFvFco1LsPDYVEn23QWYxZYbuDNGEVMrPkeOiCS8uVniVC4nybS1ayWOfvGL0NGxtBWyqVUht7ss3Qf5t91+vdzwTlyXPXsknn/ve3LvUMhicqZwKTYGUnFyeg6fzYeiKEykJ0gX0nes2vF+VJeWGrej6jYTJfL2/fPfZyI9QZ2rjkwhMynPVBSFVCFFf7SfbDG77FQaiyJVX/va1/g3/+bfMDIywqZNm9BKmt33sHnz5iVZ3J2A1WrFehsbKSuYB2bL/AH8yq9I1qu2VipO2az8bm8Xl6FgUCowdrtk4kZHZRNvaJDfVVWySZeIVi4nG3ixWJbElfqtnE45RiwmjxcKUukJBOD+++Ff/kshKc8+K1Wuvj4YHETNZFDNFnLFIiYFqq4MkzV0rrW6yX3qq9Tu/nkJMs3NYlLx/PPgcGBXTRT1DKZMBGM8QsGiYbWreON5UN6T/blc8vlLEsBE4r31GygYFG0WlEIRWyxJ3ekrxB/uYMJrJd6wAtt4GC2VRFu9Gr25idhwH33VRWwmB3X9GcxKAUcqiRIIcNgaYdBj8MluhahD4YLVREM4R3VOodrtwbxuA3z+88DsN+alcn2Vp5n+XY3oG5t5pwuuFkNcK4bo0GNU6SrjqXHGk+MYGLgtblwWF5lChkwhQywXI5VLsdovN8SpQoqNgY10h7u5HLrM+tr12DU7mqrR7GnGb/fz5c1fptnTvCQbaiwbYyIzgaIoMj3+PdjNdpL5JBOZicmgOzPrGMvGODZ0jGZPM6qicmH8AsOJYTSTRi6XY6VvJX67n1Q+RcAZmOyRGk2Mzpllm5rd/HHXj3kr9xYBZwC9qBNKhzhw9QBOzcnq6psTiJvZ0H9Q8EGKS5Vk312MOzGXqlTx8XolftntIlt3uUTNAZKUfPDBpSdUcH1VqKFBengNQ8adxGISn3ftkn/DnbkuVmu5J3vHDopVbiauvE7dO2cpmk280WAhUxDyZ1Et2M32Sk/qAnCnqm57Vu4hmUvybORZgskgPpuPnS07Aega75p0xX1sxWPLTqWxKFL1uc99DoB//a//9eRjiqJgGMb72hBcU1ODqqqMjo5Oe3x0dJT6+vr3ZU0VLABTM3/RqJCfkjkFyG+bTTZwkwl++tPyY3V1spHu2lXe8PftK5Mos1lIlaKU+5s0bXIoLpmMPG+xiCywpUVeB5IJjEYl4/fAA3DihPQjZbNgNmMtGBgOJ+PVNvKqibjfie2rv8LGh78ApZvWUpauuRnGxjCNj+NOp9GzRWypFMWaWrT8exWwYrFsoqGqQvBKUqD3GvANBYqZDFpRIeu24x0IMpGqY8yc46h5hEy7GYduoqG2CTUSJZXto+h1gtdLVIeoXcF2/3bWrtvB0JE/QBkZ4ZpHwZFR6PUYdLcYrCv6+eiqB2DvXrJ+LwfeM4yYeWM+U2utVvlxreokNXgEX96HYRgMxgZJ62ka3Y2YTWbMqjjiaapGq7eVKxNX0A0d3dApGkU21m6ko6YDFMmK9cf6afW2TpMbbAhsWLL/9DxWD1W2KgzDIF1IT1aq0oU0RtGgylY1LejOzDqWPv9oYpSzY2fxWD24LC5Uk8rF8EUaXY2MJkcXJZu4MnGFeDbOyeGThNKhaefb1rjtpvNTbmZD/0HBco1LsPDYVEn23cW43XOpplZ8zGaJEU1NQkyGhiSZWCjI69atu23Dd6cpTFwuUYYoinzG0jiUM2fkeadT5ktarbd3Xlfp2rS2QiCAA6gtbqD38jt4z3azsqmVtxMXMDC4p+4eYtlYpSd1EbjdVTer2cozG58BBV64/AJN7iYCrgDRTJSCUeCh5od4qvOpZfmdLYpUXbt2banXsSSwWCzcf//9vPLKK3zmM58BxGL3lVde4dd+7dfe38VVsDDEYkJ0TCbZoEu9VZpW7muy20XalkrJ5t3YKJt7b6844O3eDYcPl0kUCCkxjOlErfR4NCob+4oV8vrxcfm3okjf1r598OST8LnPiU49mQRFweR242hro67aTzEUpKlmLbaVj5cJVenzlLJ0K1bImqurURsaoLcXVVWhaMj5V60SueDJk9LnVZIAOp0U43GKikFRASUZRy+aSFlcVB87j80yytl6M3t64tgDtaTsGt09x2m5MIzL6iLhryZnNpNLZAhcGWTk0jmOe+1sN7cxlJ3gexuyFEw624ZNrDOq2bv1S/DIx2DPnpvemM/UWvvtfuqd9bitbmodtaiKymr/aronuknmklwKXyJfyGNWzZM26vc03ENnTSctnpbJao7f5qfV24pu6Le1h8hr87KzdSdng2cZSYxQsIuxRygdotZZe0O9fUmusO/iPi6HLuOwODAMg1QhxYbaDdQ568jpOXa17qJrbGG9ULFsjPNj57k4flHIrMUJBkRzUY4OHmX/5f384r2/OOf7Zw6fhA/ubKvlGpegEps+VLjdc6mmxpL3eofQNIlTg4MSt8xmqVA9+eTSfKbZMJfCJBaTuFsaPlxbK48dPChEa3T09s3rmqUa1lnTgSmbI9p9luqCxsqqlSgoOC3Sz1vpSV2+2LtuL05tutnU3nV7l7XKYlGkqq2tbanXsWT4xje+wb/6V/+KrVu3sn37dr71rW+RTCYnHZcquEuQzQpxyWYlaChKeU5Uf79UqxRFDBnGxyWYlIbg1tbCK6+IbO+RR8T04cyZcrUHZFMvFOQYJZJlMknGzOWSc9fViSSwJAf0eMRR6StfkT6vt96SeVCBAGga1lgMVCvU1l+fdZuavezslMd6e+XvhgaR1128KK8rDU186CFZR1eXEC2Xi+yJYyjJJHm7BZNqIqEVMdIpHKksj7+a4O1Nfn660sfagR4COHGqKiFTFpujlurLA6g5Hd2skPW5sPQNMW4cwlffgP65f0l1S5rz8SvY6h/jX2/+5ckG7PncmM+mtZ46NLdU5fnWkW/hMDsYig9xMXSRnC6ztNq97Tzd8TTvjr5LLBtDL+qcGDnBpdAlsRZXbbc02X4+2LNyD3k9z/fPf5+eSA8AK6tW8sz6Z24adPes3MNYcoxzwXOYCiYcZgcbajfQWdM5SQh3NO/g46s+viDZhIFBMBkkVUjhsXkmXZcKRoFsIcup4KnrjC6m4k7Z4C4HLOe4BJXY9KHC7ZxLNTWWBAJl11xNk4Td+vWSiNu7t9y7dDsxW29ZV9fsvVO5nKhJurpuz7yuWaqEmqqx0dpMZo2ftke+jDsge+H73V/6Qe9xXQrcjSYfiyJVra2tPProo+zevZtHH32UVTOHzL2P+Pmf/3nGxsb4rd/6LUZGRrjnnnt48cUXr2sQrmCZ49Chsh14qTdicLA8Z2liQjZyq1U2Z79fzCr6+0XTbRhCUiwWIUubNwshSibLQ3FLVSuzuUzcxsbk9X6/SABBjltyABwfl9ft2SMuhcFgeeBuKCSEbraG25nZy7Vr5bHBQckmPvOM9Fu9+KJk8kpZvPXrZR3Dw+SjE0R8Vgy/DcXqwFQo4I2nKJBn2GsmQY4HzkcJrW7kn59sQo9OsNoc4KPd17COjGFU15Dx2NHSOazhKEYmhVtpAIuDuGrhwZYttOXWkjaKRGuv75m62Y35fDa/rY1b+fa732YsNcYK3wryxTyxbAy31Y3P7uMTqz7BsaFjvNn/JgPxAdZUr+G+hvtI5VO8O/Iutc7a2yZZs5qtfKbzMzy24jEGYgMA8+7ZspqtPNX5FBdDFykUCzR7mierbeFEeFKzv1DZhIKCy+Iip+fQdZ2iqSj/NnQ8Vg/pfPqGxOhO2eAuByznuASV2PShwnwcAheLmbFk5UqRyV++LBWa6uqyTXkJSzwX6oa4We/Ujh3w8Y8v2XqmkZMbVAltn/gEza1lyfj7dXP+YelxXUrcTSYfiyJVv/d7v8cbb7zBH/7hH/LVr36VpqYmdu/ePRnM1qxZs9TrXBB+7dd+rSKpuJsRjQohamkpO/uVyJXZLG5D2axkonI5qSKZTPJ3sVi2c43HZWN/9VXZwEuVKpNJXqco8mO3y2M1NfJ4LidZtnRamoBjMbGnzWbL2u+Sy9D3vw89PXLclSuFHM2VdZste/n00+XHZ3v+05+Wx0dHCV06yV8O/CObLkW55ydHsMVTFDWNRLWPIS2CqWjDEyvS0R2hp6MeXbeRGe4hkFLIWg10K2iqgjkRxxJNYjIZjDbWo9istBw+B0Bqx9rrKhgLuTG/2ea3rXEbf3fm70hmk4D0Bm2o3YDf7ufU6Cm+/uDX2VS3iT889Ic0uZtY5V+FXbPjsrhmlazdjmzfYjfwkoTwxSsvEsvGUBTlli1nPVYPGwMbGYoPkSlkMPIGqkml2l6NTbVd1+s125ruhA3ucsByj0tQiU0fOszlEHirmBorRkZEsfHpT8N990li71bmQt0qAZtPT9kSXJfZyMmD7k4eXbUB6+2sht0iPiw9rh9WLIpUffnLX+bLX/4yAMPDw7z++uv88z//M7/6q79KsVh83yfXV3CXIxYTErV2rWTfqquFTGWzUknatg2OH5eqkddbJlJ1dbKBTrVz/cQn4DvfkYpQiUSV7NNLRM3plM2/ZHgxNFQeaOj1yjr8/uu135/5DDz2mGzcIATuRoHiZtnLGz3f2orJb+PMS9/lrZZR/o9G6MjoJBt86FYNI2UioFvJkSDQO86X/uwdXNEURjZLa8aK4TYzFE+RV5JUDYxjL0BONVFz/hqpVS2kvU5qu3o5s8aL03k9UVqqG/OsnqXJ08SWui0UKU4+bsLEeHqcsdQYh3oPcXLkJDbNxrXINdp8bXTWdE6rjNnMtmWZ7Vtqy1mvzcuj7Y9yIXSBkfgILosLTdWIZqO4re559UTdCRvc5YBKXKrgQ4P5VsIWMhdqqQbz3s6esimE78DooUly0marx//mcQpn9zNga2ZVy2aR2c8kme8zPkw9rh9WLIpUAaRSKQ4dOsRrr73Gq6++yokTJ9i4cSOPPvroEi6vgg8lSpkuh0Nkd7295XlSHR3w7/+9EKUXXihXj0ouf42NZTvXT3xCtOal2VR2u5CpWEyIVaEg56itlfOkUnIcvx9+8zdlqOLFi0K+TKbZs12Lybjd7D1zPH906CjxbJygluVcZw3rrsXJh8fIuh2sCelUx2MUdR1TNkncqTEYsGO3e7AHFcxpHXveg5FMYM4qmNw+sg4zaaWA61IvRnsDCauJeGiQB9c8fcO5SbdyY16qeqXyKULpED2RHnJ6jpyeo9HdyNv9b/PWwFtYVSs2sw2TYuLcmFTR6px1k5Wx5Zrtux0a8FKv1/fOf4/eSC85PcfqqtU8vf7peV3/u1GXvlhU4lIFHyrcKJYsdC7UUg7mXeqeshmEL2NViTh6ady2lmpngJaDp2k5MUjQ5eKiPUWjkcd+8KCcdxnNrfsw9bh+WLEoUvXQQw9x4sQJOjs7efTRR/l3/+7f8cgjj1BVVbXU66vgw4ipma66OpEBjo3JJr93r/z9zW9Kv9GRI7LhTkyU7VyLRdnAt22DP/gDIU26Lq8zjLKToMlUdgYskbbxcbGh3bJFTC6WUot+C8cqZbjub7ifUDrEUe0KzQNRtp0cozoYw5s1yJoMrLqBoajYFRUvVtzt6zDb0zAwgGZSweeHlLgqOpvb8HkV4uND2K8OENnYxs4NT/LoLDfqS3VjXqp6ffvYtwmmgtQ4ajCbzESzUULpEPu799NZ24lVtYo1ucWDw+zgfPA8ueoce9ftBVj22b6l1IDfSq/X7VrTckQlLlVQwRQsZC7UUg/mXeqeshmELxPso+3tC7gsLsJbq6jt6iXl92D47KTTE6SrXNhV69INFV4ifJh6XD+sWBSpunDhAk6nk46ODjo6Oujs7KwErgqWFlMzXaGQyPEee6z8uNUq/UtTG15h+gbe3y/VKL9fnguFytPeQ6Fyf1YiIT+qKgRLVcUoY9s2IVsLDQjR6HRJoM12y7KKUoarxl6DTbPR5Gli9GsPEf/2CzT+9CQmjxfFqlKYmMCUz2MyFBrzVpyWamhRRB6ZyZRdFPN5VJeLZruLnFvDSAzR9OgXcNz/zA3XsRQ35tsat/Gc9TmS+SQFvYBFtbC1cStmxczRoaNsqdsiM6qAnkgPmUKGrJ7loeaH2LNyD8Fk8EOZ7fugk6JbRSUuVVDBFNyst8kwJEZ6PLdvMO9S9JTNQvgsDS3khrx4z3aTbWnEnM6RqPORzqexqBZsZjt4HUs3VHiJ8GHqcf2wYlGkKhQKcebMGV577TVeeukl/sN/+A9YLBZ2797NY489xle/+tWlXmcFHzbMN9M1c9Oe+m+PR/qxJiYm50KRTEp1ymKRilQgIH1bhiEVsPXr5bFvfxv+8i/lPVVVso6bkaBsViSJU80r2tpEkhgMilX6ImUVVtXKYGyQY4PH0FQNi2qhQ2sgb+hEG6qwrdiE22KjcPECjIxiNVTMWEEvyuf1+0VjrihCJJNJWePEBJZcHjZugb2fn9dabhVZPUuzp5ktdVswMLCb7dg1OxPpCQCCqSBr7WvZVLeJ1f7V9Mf60UwaT3U+hdVsrWT7KpgVlbhUwYcC81U8zNXbNDwsMe4v/qKc5JvvYN476SJYwiyEz6HZCTSuZeTCUUKpEBmriVx4nLizyIbajTg0O4RHl26o8BLiw9Lj+mHFokiVoihs3ryZzZs387WvfY13332X//E//gfPPfccwp3/3gAAfJBJREFU//AP/1AJXhUsHW4l01UKKqOjQmhKduhmM3zpS/CNb4is8M/+TB5rbpYq1okTcOmSuAC2tMhzZ8+KPPC9wZ2z4sABIWOjoyI5NJng6FEIh6G+XshdW5sEsAXKKo4OHSWWi5EqpKjWqilS5MK1dxiPRVlTU4/VbCFrs2BUV6GGw5gSCQoOB+ZEQgJhIFAmcC++KH+3tAjZK8kq78RME8oSiHwxPynfA8jpOdp8bcSyMUYTo3htXmLZGFk9y2Ptj01m8SrZvgpmQyUuVfCBxmKMJGbrbQoEZN9vbCwn+W42mNdmk5Eft2pisRjMUXFbp9VjaezkWI2L820ONhwPc697LatcK+RzLOVQ4SXEh6nH9cOIRZGq48eP89prr/Haa69x6NAh4vE4mzZt4mtf+xq7d+9e6jVWUMHiMTWoOBwSRB5+GL7wBQkG2ayYWJRkeuk0vPuuSOUsFtmQTSaxrf3+90WCONsmHQxKZeviRSFhui7BqWTLnkzKLJFIRF6/du28pQlT+6nGU+OTZgUWl4ecT8fhbWW8r5sxU4ZwMUlASxBQcmT1OOp4P951WzD//C9MbxI+dkxI5kxZ5R3AjUjRM+ufQVO1m2bxKtm+CmaiEpcq+MBgtorQYowkZio+DEMqVI2NCxvMu5QmFgvFHBU3bTzM2k98kV95fCex7WP43zyO83QXDI8sOxv12VCRc38wsShStX37du699152797NV7/6VR555BEZulZBBcsNVqtsrMmkBKpCQdwEDxyQx2dmwSYmpN/KapW/HQ4hXYWCyOUGBmYnQfv3SzAymYSo5HIiswAhbsPDMjfLbhfC5nTeWJowJajGKDsGNbobWeNfQ7qQRkEhHn6HwWNB0qYEpkQKZzpFXlP5p131nP/IRhyuKrZt+wwfv/8z5WPfrqGUC8CNSJHVbL1pFq+S7atgJipxqYK7HnNVo7ZtuzUjiZLio79/4YN5l9rEYjG4gZug12qVvf+p1fCR90GeWEEFU7AoUhUOh/EsM51qBRXMiQMHRN5QV1duyp2aZZuaBSu5ABYK0NQkhOpmKA0r9vtFdlCyYM9mhUCBHEdVpbfryhXZ8H/916/f+GcJqv7NnXic1skeIrsmPUjj4UHMukEqFqYqmieTyRCucvDmzpW8cl8VebOJzXUrOBLv4sFMdDrpuF1DKeeJm5Gi+WbxKtm+CkqoxKUK7nrMVREaG1saI4nFDOa9XSYWN8B1Q90X22NdQQV3GIsiVR6Ph0gkwg9+8AOuXLnCb/zGb+D3+zl+/Dh1dXU0NTUt9TorqGBxmE+WbWoWLJWSTTmXkyCTz4uELxSClSuvDyxQHlbc0SGVrpEROU5p7pWqSsXLbBayViyCyyXZx9IaS4Hi0KHrgqrzZwf52MZq/qZ1dJpcruat42ztStPX6mdsdQORgW6qcioppwXN7iKZiWBRLSTzyWXriFchRRUsFSpxqYK7GjeKVRcvShy5mZHEzTCfwbwzpYfzIWIzP8ciq0XZQvbGQ90rpKmCZY5FkarTp0/z+OOP4/P56Onp4atf/Sp+v58f/ehH9PX18dd//ddLvc4KKlgc5ptlm5oF274dvvtdeV86LcGntlYs3Gdu6KUAoqqiU29pEYlFLifvAzHHKBSESFmtEojq6+V9R4+Wq1KqKtLEtWuvC6r3DeWY2LqLI/EuBmID+LMqj4c8NKzZwJXUOfSiTrDRQy6WY+WVMO+utGOxW8jpubvWEe+6bGUFFdwAlbhUwV2NG8WqeFycad99d24yNF/MJaXbtWtuM4qbETFYnJHGDCzXoe4VVDBfLIpUfeMb3+ArX/kK//k//2fcbvfk408++SRf/OIXl2xxFVRwy1holg3gox8Fn0+qRhMT0y3VS5gZQK5dkyCTyYgMMBaTn2JRSFUmI5Wr1lYhV1VVcPx4WZbY3Ax9fXDhgjzf2Fg+l9eLeWCAjwd28OCGj0vVKRjD88ZfQW0jbdEk58bO4jA7GDMnaYikKUTseH1riOVid50j3k2zlcsUFRL4/qISlyq4q3GzWPXkk5Lcm6WvaEGYS0r3/PNzm1HcoKdpErdoZlEyZFrOQ90rqOBmWBSpOnr0KP/rf/2v6x5vampiZGTklhdVQQVLhvnIHebKsP36r889/LcUQKqrxdFvbEyMLKLRcnVrqgsgCMHSdTnevfeKscVUqUdLi5ynuxs2bBBTC5hGAMtyuehkAO50tqFF41zVh7AXYqQtOnZ/He1VK3iw+cG7zhHvbstW3q0k8IOGSlyq4K7GzWJVaSzGUpkMTZXS9fXBK6/I33PJ5G907mhUkpA2mxg12WwLNrMoDbj/sA11vxtQSRjOH4siVVarlVgsdt3jly5dora29pYXVUEFS4qbZdkWmmGbqn0fGZHhwS6XBI2REZH+leZhaZr0ZRWL8ru9HX7xF2HjRjnGVKmH3S7Sv6NHRULY2jq3xMPrhS1b4DvfQUsk6DSZWK3nydsaSfyLZ9jzc0/clRvg3ZitvNtI4AcVlbhUwV2P+VSElrKvqJRQfOUVIUXV1RJzOjokds2Uyc927mwWfvxjeOMNIVIXLpTnMS7AzKIy1H35oZIwXDgWRao+/elP83/9X/8X3/ve9wAZutjX18dv/uZv8rnPfW5JF1hBBbeMGzkHLcYutqR9r66WHiiPp0x+dL38ukJByJWqCmHatAn+03+SKlQ0OrvUo75egpGmzV/ioSgAaCYzmmbH4QyAt2UJLtydx92WrZxJAtP5NGaTGY/Fc1MSWMn+LS0qcamCux7zdblbKpQSil6vxLNcTgbdg8Sr+RhhHDgAb71VHkNiMsG5c/JcXd28jTQqQ92XH2YmDIPJIN8//32SuSTPbHzmpu//MMa4RZGq//pf/yuf//znCQQCpNNpdu/ezcjICDt27OA//af/tNRrrKCCpcFsWbbF2MWWtO/j4xKEHI7yvy0WeU3JqKJYlL8VRR47dw5Wr55b6hEOwxe/ePOgGo3CqVPwwAMit0inhbjFYvL4XEOKlylKm6+BcduzlUu50ZdIYL2rntOjpycHM5tMJulxS45dd45K9u/2oBKXKvjA4E643M1MKEYiEp9MJpGgl2LSjYwwSsdobRVSdfasxCyHA86fl5i3d++8P0tlqPvywdSEYZWtiq7xLnojvUykJ3g28iwosHfd3smYNTWu2sy2D22MWxSp8nq9/PSnP+XNN9/k1KlTJBIJ7rvvPvbs2YNR6h+poIK7AYsxsigRon37RNIXjUIiIQTKbi+bU6iqBBWzWY7V3i7GFE6nZCNvJPWwWm8ciKaSQZut3H+lKLdtdsjtwGwEwzAMhuJDs2YrAfqj/YsiRNlCln0X93Fk4AiFYoFqe/Utb/Qlycrx4eMMxgfxWDz4bD7GU+OEU2GOjxyn1lk7jcRdl/1LBPnB+R+QzCd5ZsPNs38VzI5KXKqgggVgZkKxs1N+X7kiI0RSqZurJKYeo6pKHuvpEWOmbBYeemhBRhqVoe7LB1NVI13jXZwbO4fH4qHOVUcwGeSFyy/g1JzsWbln1hgeTAVpdDd+6CTxiyJVf/RHf8Rv/MZv8PDDD/Pwww9PPq7rOl/+8pf5+7//+yVbYAUV3FbMx8hiNpQCxXPPSXbPMCQ7pyhls4tkUl6jqtJD9cgjUomaKitcrNRjMWRwGWK2fqSh+BABR4CiUZzMVj7e/jh5Pc+3jnxrUZmvbCHL7x/8fV7ofgGLasFlcTHhmGA0OQosfqP32rx01nTyjxf/EbPJjE21kS/mKVJkVdUq9l3Yx4nhE+iGjlNz0lnTyZngmcns34XxC/REepjITNBztAcM2Nux9wOfzbsdqMSlCipYAGbGEE2DzZslBqXT8PWvSwVqvscIBEQyuHq19ARrGjz11Lzt1KeiMr/w/UcpYRhMBukOdaMpGlazlWwhi8/mo8ndNEmkDvYdnJYk/OnVn7Kmeg331N8DLP++6KWEaTFv+qM/+iO+853vTHtM13V+4Rd+gZMnTy7Fuiqo4M5hzx4hUMWiVHmKxZtn6Era9299S1wCt28vV4tqaoRggfx+8EH41KfKjb/JpAShErzesvPfVESjEpyi0evPXyKDo6Pyk8nI72BQHr8LqlQz+5FsZhsBZ4AGVwOKovCVe7/C17Z/ja8/+HU0VeOVnldQTSrNnmZUk8qLV17kwNUD8zrXvgv7eOHKC7isLpo8TVjMFgbiA8SzcY4NHSOameUazwPZQpZQKkQwGeTi+EUODxzm1Mgp7GY7JkycGj1FMpecXPP+7v2cHzuPx+rhwvgFzo6dxWQyUeeso1AssL97/7w/UwXTUYlLFVSwAMwVQ2IxePzxmxOquY4Ri0mVah6OfxUsX3htXrbUbeHwwGHOj52nJ9rD6ZHTXI1cpcXTQsAVIJwOc2TgyLQY7rK60FSNUDpEOp+edrxkPkkse72Z0AcJi6pUPf/883zsYx/D6/Xy+c9/nkKhwDPPPMOFCxd49dVXl3qNFVRwe3ErzcGBgLj5PfmkyAFffhmGhiSo2GxiSvGRjwihgvlVkuY7RHE+TlHLGDczpVBQaPG23LIjYDQT5cjAESwmCzX2GswmM1bViqZoDMeHqbJXLdgAo6QfPzxwmB90/YBCsYDf7kc1qSTzSU6PnCZfzGM1W7kcvkyRIp01nTS5m3gr8hZ90T56Ij14rB7cFjexbGxa9u+Dns27HajEpQoqWCCWIobc5XGoghtDM2moJhW9qKOYFBRDwTAMopkohWKBeC5OvbN+8vV2sx23xU0imyBdSGPXJNn8YXFxXBSp2rZtGz/84Q/5zGc+8/9v78zjo6yv/f+ZfV+yTUhIQghhCbIYBAGFosIVkFrcW8Xdaqu2StV71XuvS9ur1P6qtdpeqy0Fe0uvrXXrLQoFikgQhLAvYQsJSUjIZJuZTGafeX5/nM5kMpkkM8kkk0nOu695kXnmmef5zsR+Tz7fc76fA7lcjrVr1+Ls2bPYvn07srOzEz1GhhkaBrI52GQCHnwQuO02CiwAlQXu3Eklf7GWFQKxW7wPtVNUgonVQnegjoA2tw1+wQ+tQosOTwfsXjtana3w+D1weB3QKrRQSGIrUQnfA2buMGPbuW1odjZDBBGaHE2QiCXwBXzw+DwQiUSYYZoBuUSO403khjUpYxLSVek4bz2PNlcbsjXZaHW0wuK2YFrWNGRrs4ely2EqwHGJYeIkETEkxeMQEx2ry4rDjYexoGABCgwFOGY+BqPSCBFEqGipQJWlClqFFg3tDahuq8YlpkswJXMKVDIVMtWZaHW1ot3dDrVMPapcHPslqgDgmmuuwe9//3vcfPPNKCkpwY4dO5CZmZnIsTFM6hEuzIqLadUunhW8/li8D4VT1CAQq4XuQPuX6BV6pKvSkaHKwOHGw7C77VDJVHD73fAFfHD5XNhXv6/HfVXhrkZlNWXYVLkJGpkG5fXlqLHWwCf4IBPJ4Bf8cPlcECBAEASIIEKzsxnFGcUQIOBk80nYPXbk6nIxK2cW1h9aj5PNJ+ENeKGRaVBnq4PT50ShsXDEr+YNFhyXGKYfJCKGpGgcYqITvpg5M3smFBIFqi3VcHgdaLQ3Yqx+LKaZpiFdlY4jjUewt34vPH4P8vR50Cl0WD5hOUQi0ahzcYxZVN10001Rj2dlZcFoNOKhhx4KHfvwww8HPjKGSXX6s4LXH4v3FCYWC92B9i8Jvr/GWgMIgNvvhsVlQQABZGuyka5Mx566Pd1K7iKdCSUiCaosVRBBhF0tu3C29SwCCAAC4BE8EIvEEIvECAgBKCQKiCViNDubcbL5JFx+Fy7YLuBQwyHk6HKQocrArDGz8FnlZ8jR5SBTlQmL24LDjYcxIW3CiF/NSxQclxiGYRJP+GKmSWPC9OzpKE4vxtnWs/D4PZiXNw+5ulxkqbMgl8hxwnwCx8zHkK5Kx4qJK7CkaAlcPteoc3GMWVQZevhDbunSpQkbDMOMSOJZwUuSq98x8zGcaz2HovQiTDNNG5R7RCNWC92B9i9ZUrQETR1NKKspg9fvhVauRY4uB9mabNS218Ltd3cruYt0Jqyx1mDfhX2QiCRw+92QiqQQJALsfjsAQCSIIIIIIpEIYrEYY9RjYPfZUW2phsvvglKiRFF6EbQyLd4/8T4y1GTpbnVZYffYoZaqMcM0A37BD6vLOmqC0EDguMQwwxirlUsCU5Roi5k2tw12jx0mjSm0v1kmkWFG9gzk6/NRZanCnTPuxCWmSwBQfB9tcSxmUbVu3brQz06nE4FAABqNBgBQXV2Njz/+GCUlJRzMGGYghPfAslioBNDtjm0vVm/0ENya7E14fNPj+LLuS7h9biikClyRdwV+sewXyNJmJeYzxUBfFrqJ6F/iDXjR5myDy08leuYOM2RiGQJCAOYOMwR09jKKZo5hVBph99jh8rkgFonh8rng9XshgohK/v75P5lIBq1cC7FYDI1MA7vbDp1ch8kZkzHOOA4A4A64UdVWhcXjF0MhUaDR3giFTIF0ZTqanc0hh6TRtsoXLxyXGGYYEqvZ0iBRY61BQ3sDcnQ5KDDE4GLIRCXaYubyictxtPFol3J8p9eJpo4mpCnTuu19Hm30a0/VypUrcdNNN+G73/0uLBYL5s2bB5lMhubmZrz22mt4+OGHEz1OhhkduN3UUNhuJ6MLgJoG33pr/9yU+ghuj296HJsrN8OgNKBInAFYbPjS+hkeB/DHW/6YyE+WEPrbv2Trua3407E/wRvwQiqWQiwSo8XRgmZHMxQSBUwaE/5x7h+4ffrtUEgVUc0xzrScgT/gRwABSESS0M8iiCCBBIF//k8r02KMdgyaHc0Qi8WACCg0FHa5VqYqE1VtVdhVswtWtxXNjmYAgFqmxpSMKfji/Bc423p21HWjHwgclxhmmBCr2VKCsblseG33a9hxfkdo7lw0bhGemP8E9ErepxovPS1mamQabKrcBK/fiwZ7A862nIXFbUFJZgnKaspGdazqV5+qAwcOYOHChQCAv/zlL8jOzsb58+fx+9//Hm+88UZCB8gwo4qtW4Ft24CpU4FvfIM60ms0ZMnenxW+YHCTSCi4SST0fOtWHDMfw5d1XyJLqsfKShnu2WHBd3d78fgeQLF5K47XHkj850sCVpcVZTVl8AQ8yFJnwagwwi/4qUmvEIBMLEOGKgNf1n0Z6hEVXk8O0EqcucMMrUILg8IAhViBAAIQg/ZRScQSSMVSyMVyOHwOtDhboJapoZKokKZIg1KqhMvngsfvAQDYPfaQK+B563lIxVJIxBI0OZpwuPEw3jv2Xr97co1WOC4xzDAg0mxJqaR/TSY6Hq3vYoJ4bfdr+PDkhxCLxcjX50MsFuPDkx/itd2vDdo9RwMGpQH5hvzQguaSoiVYNmEZzrSeQXl9OQBgTu4cTEyfOOpjVb8yVQ6HAzqdDgDw97//HTfddBPEYjHmzZuH8+fPJ3SADDNqiOb8l5ZGTRV7cv6L93phToI1JhvcPje+fk6JeSctaNPL0Jguh6JDwIKKdrRv/Aj47qzEf84hxua2oc3VBplYhjG6MWiwN0ACCfRyPXyCDyKxCMXpxcjX53fpERVeTx4QAmh3t0Mj0wAi6sVh89ogBAQEEIBKqoJWroXVZYXT54REJEGhsRAZ6gzsrduLI+YjMCgMUMvUkElkcPvcUElVcHqdobJEtVyNHG0O2lxtsLqt0Ml1UEqVo6ob/UDguMQww4AkmS3VWGuw4/wOZGmykKPNAQDqkSQAO87vQI21hksBE4RCqsCCggUoqylDri4X+fr8UD8qiVgyqmNVvzJVxcXF+Pjjj1FbW4vNmzfj2muvBQCYzWboB2kjPcOMeILBKPL/QwYDHbfF2Ym8j+tNkGYh0yvDhCoSVG16GbwyMRpUPrTpZCiqaKASxD5WFq0uK2qttbC6Bm8FciDoFXqkKdNos63CgCxVFgSQGBKJRMjV5mKaaVq3ju/B1TiH14EzrWfg8rmQpkyDSqpCi6MltJdKKVFCLVeT459IDKPKiCxNFgoMBUhXpcOoMsKoNEIqlsLmtqHV2Qqj0ggA0Mg1yNPnIVOTCZlYBplYBgEC/AE/nL7R141+IHBcYphhQLjZUjiDbLbU0N6ADm8HjApjl+NGpREd3g40tDcMyn1TgcGI0cH+jya1CU6fE04vxavRHqv6lal6/vnncccdd+AHP/gBFi9ejPnz5wOg1cHS0tKEDpBhRg2Jdv7r43qTi+ZgUVopJI7NuKgSQ+wHlai5HJjpy4WpvAJwvwnk5ETdZBxpOT5c9/4YlAYsKFiAY+ZjMDvMMCgM0Cv0cHgdSFelY37+fOiVejTaG0N9r6wuK5o6mmBxWXC29Syq2qpQ316PDm8HcrQ5GG8cD7FIjAvtF+D0OSFAgEPkgAABE9MnIlOdiVprLUQiEbI12chQZaB0TClEIhHaPe04fPEw0lRpaHW0QiQSQafQweVzodXZCgi02qeSqkKfYbR0ox8IHJcYZhgQNFvatImqIuJpfD8AcnQ50Mg0sLgtoawJAFhcFmhkGuTocrq9J1mut0PFYMZohUSBC7YLKL9QDplEBrlEjkJjIdJV6aM6VvVLVN1yyy1YsGABGhoaMHPmzNDxxYsX48Ybb0zY4BhmVBEtGJnNwIULwPLl8Zf+2WxASQmwc2ePwe3F61/D9n/cAI+9Fo3idkjFUixx52GRRQfoFEBREeDxRN1kHGk5bnPbsKmSzuupkW6yWFK0BF6/F++feB/VlmrIJXJIxVLMMM1AUVoRGu2NMDvMWFy4GGU1ZSivL8eRxiM4Zj4GABirH4taWy3cPnLtq2uvg0wsg0REBhUGpQEysQx2jz1khtHoaoRULIVRaYRcIkeOLgcqmQoN7Q1w+92YmD4Rdo8dNrcNgUAAfsEPh8+BLHUWDAqyrxWJRKOqG/1A4LjEMMOEoKlSPI3vB0iBoQCLxi3Chyc/BATKUFlcFjQ5mnDTlJu6lP4NF9fbwWYwY/S++n2weWxw+BzIkGUggAD21u+FSW3Cd2d/d9TGKpEgCELfp40ebDYbDAYDrFYrl4wwQ0/QrW/PHuDECaC1FUhPJ+OKefP6tqSNdPtTKMicwu+n16JZ227ciJaPNsCsEcGoNyFn12F67+WXA9On0zmNjUAgAKxeDRio+e7re16HRCwJWY4DQKO9EQEhgNXzVg+bSdXqsoaciwCgzlYHj9+DMy1nUNFc0WUFz+K0YEvVFujkOhy6eCiUbfL6vWh2NkMQqDRPJpVBLpJDJVehw9OBfEM+ppmmobqtGuet56GUKak8UBCglCqxePxiXJpzKQCgxlKDXbW7MHfsXNjcNnx14Ss0O5sRCARgVBrx5LwnYVQZcbjx8LDOAA4GPP9Gh78XJiUZ4j5Vsbr/3fGXO0Kutzq5Du2edlhdViydsHRYut72h4HE6PCYGe2c4LUFCGh2NOO85Tw8fg+8fi/G6Mbg9aWvw6Q1Rbly6hLrHNyvTBXDMIOEQkHZoI4OoLaWMk0mU+yWtNGsbBsbgYULgfnzowe3JUuQASCjvBxoaCDxdemlwJQpnedEbDKOZjkOUKldna2uWyPdgdLXJB/tXIVEgX31+3osfSjNKe1y7ufnP8c7B95Bs6MZTp8TVpcVAYEs0x0+ByQiCXyCD2KxmMwrRAEEhAC0Ci06PB2wu+2QiCTUu0okokAmAO2edlhcFrh8LlhdVlg9Viwatwhmhxntnnakq9IREALwBXxYMXEFbp9Btu5Xj7+a+1QxDJO6xNP4PgHolXq8ePWLvfapCrreGpQGZGkoK6WUUXn8l3Vf4pj52IgoBexPjI61XDD82rm6XExMnwinzwkRRGhxtsDtdw/JZxyOsKhimOGG1QpUVADFxVFd+3p0AezN7a+iAli6NPr7gkJuwQISTn/4Q6eNe/i1w/Z1hVuOBxsAAonf+xNPTXjkuRdsF2Dz2HBZzmU9lj4E+15tPL0Rn535LCSoXD4XHB4HfAEfBJEACIBKoYLH7wlZqPsFP1xeFyZmTERACMDhc+BC+wUYlAZ8bdzXMDFjIlRSFQ42HMSF9gs423oWGaoMLJuwDAsLFuK13a9hf8N+yMVyjNGNQYYqAzaPDVvPbcWKSSv63ZOLYRhmNFNgKOjR6e9c6zm4fe4u2RsA0Ml1MHeYca713IgQVXqFHhKRBLXWWuTp80L7zHqL0bGWC0bGf5VMBZVM1WVf8miFRRXDDDd6sqSVy4GqKhI+0cTRQK1sg6uKCxb0uck40nLcoDQMyt6feGrCw8/NVGWi/EI5HD4Hmh3NyNXl9mhNHuxjJZfIQyUMfsEPpUwJh9cBb8ALAQK8AS818xUAmUgGP/yQSWRQy9TQKrTI1+Wj0d6I6abpmJUzKxTELs+7HJWtlbhj+h2Ykjkl9F2JRCL8S9G/QCvXQiXtDEqj2Y6WYRhmMClKL4JCqkC7pz2UoQKookAhVaAovSiJo0sMbp8bZTVlqLHWoKK5AkaFEcUZxcjR5qDV1Ro1RltdVpTXlyNbkx0SnD3FzKGK/6lIvyzVGSalsFqplG4Qmw4mlEhLWq8XOHIE2LwZOHqUMkkbN1KZXm/vCxLFPXB37W6sPbAWu2t3d7//kiUkoAIBEmOBQNRNxkHL8YAQQJ2tDgEhgGUTlmFJUd+bkWOxeA2f5HVyHRxeB3RyHUxqE8rry7u8t8Zag21V22CQG2DSmBBAADIJNfU9bznfxe611dmKk80nYXVZ4fa5seHIBmw5twWHLh6CzW2DxWUBBLI7l0vkkIgkEEMMr98LjUwDo9IInUIHg8KAqVlTKXslkBNg0BFw67mtONJ4BF6/F1aXFemq9JCgAjrLJ3RyXZfPPNrtaBmGYQaTaaZpuCLvipDDq8vrQlNHE6wuK67Iu2JEZKmCC4wT0ydiTu4cAEB5fTnOtJ7BwoKFmJwxuVvsDcakyCxTTzFpIPF/JMOZKmbkEmnaEDRpmDOHXhuizbNxE+kCWFtLokoQaK+TRhN9f1UMVrZ1ljqs+mgVDjcehtfvhUwiw8zsmdhw4wbkGf+Z4QovB+xlk7FCqsCKSSuwoGBBzHt/4inns7ltsLqtsHvsaGhvgMfvCbnoycQynGw+ifHG8dhXvw/bzm1DWW0ZMlQZsLqtGGccB7lEjgAC8Pg9cPqckIql2Fu3FxfaL0AA9ayqbK1ERXMFWp2tkIglAAC/4KeyPwhQy9TIUmfB4XNAKVVirG4s2lxtsLltKDAWYEHBAgiCgOPNx3Hech5SsRQWlwVyiRxHGo/A4rQgTZ3WbfVOIVGgzlaH8vpyyMRkRzvOOA4ZqoxRXz7BMMwIIBaTigQYWcSz3zbIL5b9IuT+Z+4wQyFVYOmEpfjFsl8k9D7JIDLjlKvPxdSsqai2VKPOVoeDDQdRXl8OjUyDkswSzMqdhSx1Vtwl/f2J/6MBFlXMyCXStKG1Ffj1r4ENG+h5NCe84cKSJejwdMD7xQ5ojh6GTK0BLrmEzCNksp73V/VhZbvqo1X46sJXUElVMCgNcHqd+OrCV1j10SrsuG9H1zHEuMk4nr0/8ZTz6RV6XLRfxLm2c8jWZFMTR08HdlTvCFmiNzma0O5uxyVZlyBDnQGP34NjTWSDXmgsxN76vdBINRBBhN21u3HEfAQzs2eiOL0Yu2p24fPqzzFGNwYFhgLU2Grg8/sAAP6AH1q5FlnqLGgUGogEEUQiESZnToZapsZ003QsLFiIAxcPYOu5reQAqM+HWCTGeet5dHg7IJfIcaH9Ar4x+RvdVu/21e9Du7sdHd4OZKoyERACKK8vR5YmC9+9bPTa0TIMk4KEiyOlMvpiZnic7WnBM45Y7G4xo+zYp9jXfgqtCn9cLqlZ2iz88ZY/xtSnKlX6MQaJZlChkqng8DpQ2VaJQmMhcnQ5ONBwAJ+e/RR5ujzMyJ6B2bmzMTN7JrZVb4urpI/3/naFRRUzMolm2tDSQlmbjg5g5kwqqwtmfPrIygwlbp8bW89vRXlaBTSXOLGo0g/t5HEoLpoCmeSf5hE97ZPqJcu0u3Y3DjcehkqqglFlpNOlCsAJHG48jN21uzE/f/6gfa7IEj2ga8329OzpEEHUZcVLBBEEUNcHkUiEZmczrG4rTBoT0lXpOGo+ig5vBwq9hZiQNgHHm45DDDHOtp7FjOwZMKlN0Cl0qG+vx4X2C5iZPRPz8ubBF/ChxdkCpVQJn98XcvkLIAB/wA+X4EKmJBMZ6gxaxVPqcdW4q6hR8D/HZ3VZUdFUAYOCelRp5VrIJDKMF42Hx+9BaU4p7B475ufP7xJ8gyuJl+VchhZnC6ot1fD4PVBJVdDL9aFyDYZhmGFNNHEkCBRnc3M7HWgjKyuiudTG4m4bds/zm/8Iob4C83RGWKcV48RMddw9mKaZpvVZ7pcq/RiDmTQBQreMk9PrxOmW0zAqjcjT5+FM6xlcaL8ArUxL+4b9Xmyq3ITFhYuxbMIylNeXo85WB41MwyV9ccKiihmZRJo2OJ1AdTWQmQn4fDTxm0wkrP74R6CsjHo5DYPsVfgkrh0/GR0Z1bjYeAJevRYzsv/ZNyrKPqkuRMkynWg6Aa/f221VSSVTweqy4kTTiUERVcGVvk/PfIqy2jKY1CaYHWYU6AugU+igkWmwq3YXXt/9OqQSaWglcHLGZGRrs6GVa1HfXg9zhxltzjbk6fNgVBrh9DkhE8uQqcpEtaUac/Pmot3djvr2erQ4W+ANePHd2d/FnNw5qLJUQYCA4vRiyCQytHvaIQgC1HI1Wl2tcPqcMCgM0Mv1aHI0QSaWYXLmZBSnFSNdld6rrWymOhNyiRwunwsyiQwSsQQOlwPt7nZkqjO7lU10saPV56I4vRhtrjZ4/B7YPfZRbUfLMEwKESmOzGZgyxZg4kQqVQe6O9cCPbvU9uZuG3ZP998+Qa27Ab7cHOi9UmTuPQO5RA5faXZCjX7iMW9IFtEyaYIgoL69PpRxqrXVwuq2YnbubADAect56OV6qGQqtDnboFVooZAqcLjxMFbPW80lfQOARRUzMgk3bVAqSVR5PIBUSi56KnJmw8WLZDeemwvk58e3YtYb/awVjzaJO2dORfYX5WiuOgaHJh/qDnc3N75YmJo1FTKJDE6vs4s4cHqdkElkmJo1NfbPFwefnfkMaw+tpR5NLisa7Y040ngEOdoc5BvyYffYYffYUZJVApPGFFoJ7PB2wKAwIF2VjqlZU3HRfhF7sRdKqRJikRhGhRFyiRxOnxMX7RfJvUmigMvnQq42F4/MfgTFGcUAKCOXocrotICVqqCWqSGBBC6vCzq5DnKJHO1ucoCaO3YuitKKcOeMO5Gnz4saWII16N6AF+OM43DUfBQN9gZYXBY4vU7YPXZcP+l6KKVKWF1W1NnqACAkJG1uGyQiCc62nkW1pRptrjbIxDLsrt0Nk8bULbvFQY5hmISQiKa80apBtFoqT29poZgbjLPhlRVA/11q/3lPZ4YeFrsMRpUOLrEUgICsivPImp6Pc4GWhPVJDF8Ac3qdcPqcodL5wejH2B+iZdLq2+thUptCJhIysQxTMqcgV5cLp88Jj99DC5NeJ+QSeSgeBj9TviE/qjsgx6C+GVGiqrCwEOfPn+9ybM2aNXjmmWeSNKIUZog7oSecSNMGhYJEldVKx1UqmvRPnwaMRprglcr4VsyiMcBa8Wj10BfmllB52OHj8FWfAzJyorrx9cX8/PmYmT0TX134CnBShioYKOaOnTsoWSqry4o/n/gzmjqakK3JRoujBa3OVkAAWlwt0Cg0ONt6FlMzp4b6igRXAiuaKlCSWYKdtTshCALSlGkICAG0OFswO3c2dAodBAg4ePEgPD4PnF4n0lRpEAQBCqkCBy4eCImqaBawBoUB3oAXOrkOErEEba42+AN+TDdNx9yxc3Gx42KvAST8mhmqDKikKlS2VsIv+DFWOxYlWSVosDfgxzt+jCpLFaot1QCAccZxKDIWobGjEaeaT6HaWg25RA6xSIyx+rHYWbsTGrkGKyatSLl6foZhhoD+xucE7GUKEa2Fh0oF6HSA3d5VVEVWVoQveIZ/pt6qL8LuKR9jgtwph8vrhEyhg0ergrbRAndrEzRZuoQZ/egVeigkCuy9sBdWlxUevwciiKCSqlCcUZx0Q6HeMmkBIYD7Su8LldSX1ZRhU+Um6OV6iMViNDuaEUAA07Km9dpjimNQfIwoUQUAP/rRj/Dggw+Gnut0ul7OHoX0NRknctJNNuGmDc3NlI2y2YCMDMDl6rRZD4qsILH2dYrEagU++gj48kugoCD2WvGw30mkA4/M7oTc7sSpKVkITP4a5k2+EzDl9VvobrhxQ8j9z+qyQiaRYe7Yudhw44Z+Xa8v6mx1OG85jwxVBpRSJUQiETJUGejwdqDd3Y5AIIAMZQZlnLzOUG+n4ErgrNxZ0Mg1KKspw4X2C8hUZ8LldyFDlYHDjYfR0N4ACJT9AYBaay0MCgMUUgXe2vcWIAArp6yEQqoI1YUH68XHp41Hnj4Pu+t2w+P3QCPXoMhYhJljZqLV2RqTC1/wmmU1ZWh3t6MorQhFxiJMy54GvUKPL6q/wOfVn0On0CFbmw0IwLm2c7C4LJhhmoGKpgpAANRSNcZljkNJZglana2h0pJgIBzu9fxM7/CCH5MQBhqfB7KXKZLIahCA4mhmJplCtbcDanXUPod9udT2dU+1w4NxxkIcbzoGAUB6uw8WiRd1Ihuuyr06YZkUg9IAiUiCI41HkKHKgNvvxsV2qopoc7ehrKYsqeIi2iJscNx1tjqIIEK+IR8AusQ/tVSNVkcrJmVMwnjjeDTaG3s0pEiVPWXDhREnqnQ6HcaMGZPsYQw/epuMXa5OoVVWlrhJN9lEmjYoFMC+fZ3OeDIZuemlp1MQUKnoEcuKWTjB77asDPjiC7qPQgGkpVFZRE+Zryi/E8Ps2bh83Ez8/dzfUbTrJIrOtSDQ3o7MgBPZpV+D/vKsAWUO84x52HHfDuyu3Y0TTScwNWvqoJpThBCBmugKAjLVmVC6lXD4HJg3dh5Otp6E3W2n0orIru/yrr+DQmMhNDINOrwdOG4+DoVUgXHGcSjQF8DcYYZP8EEsFiNTlYk2Vxs+PftpKOvTkwXsn4/9GZ+e/RRjdWOhV+hR1VYFm8eGlZNX9hmcg9csNBaizdWGImNRyATE6XWisaMRTq8T44zjkKZMAwBIxBLY3Xa0e9oxOWMycnQ5MCqN3QRl0HJ9ONfzM7HDC37MgBmIKIpWrjeQyoyeWnjodMDy5YBIFNWBFkCfLrWx3LMkMx1i/SSY608j0GrFhblTcNWMlQk1VbC6rPALfszMnolTzadwseMiVFIVCo2FgAB8cuoTAMkTF/HYoIfHv6aOJhy4eAAVTRW42HGxR0OKVNhTNtwYcaLqJz/5CX784x+joKAAd9xxB37wgx9AKu35Y7rdbrjDmqjaIhunjhSiTcYbN5LIEInoj3qJBKipoU2miZh0hwvhpg2RIuu//xv47DMSWDodZbH0ejov1s8a/G6D5YNKJXCMbL0xfXrPma8eAuTif1mMjAYThH37YdFIkN7hxmVNPqSf2Q4cbQRWrRpw5nB+/vwhEVN5+jwUGgtxtu0sMlQZEIlEaPe0wx1wI1ubjcK0QjQ5mtDqaIXdbYdapu5i47qvfl9olSxHlwOb24bGjkaUZJag3dOOHG0OyuvL4Ql4YPfaoZPrEBACcPqcMCqNGKsbG7UbfHggWDllJeQSOf584s84b6FsQqGxEF6/F26fO6ZVyDx9HnK0OfAEPKFjTp8TFpcFErEECokCDq8DMrEMKqkKHd4OOLwOpCnTIBFLQoIK6AyIAHpdhRwO9fxM7PCCHzMgBiqKopXrAf2vzACii6MVK7ov1kZeN8ZeiL3dU1ZejmkeA1xj56F92WRMX3odDAZTfOPvA5vbBrffjWmmaWh2NMOoMiJNmQaRSIQ2Zxv0Cn1M4mKw9iNFK2sPj58AVW+E3zcY/4ozivscV1+ZMI5B3RlRouqxxx7DrFmzkJ6eji+//BLPPvssGhoa8Nprr/X4njVr1uCHP/zhEI4yCfQ0GZ88CezfD/zLv9BEW1tLpg1aLZXKBRnIpDscCYqsjRup5GDSJCoPtNspY7V8eez7lcK/W52OvlOxmIJEdTVQXEzfW2Tmq5cAKd/9FS4H4JzxL/DV10FZUwlZdjq5Fl68CHxCq2OpkDk0KA24deqtWHtwLeweOyQiCSweCzQyDWaYZtCErtRjefFyiESiLjauc3Ln4K3yt6KuktVaa0OCpNBYiP0N++HwOiCXyMkS3e/C5ExyD+xr8ldIFZBJyBJ9fv58mNQmeAIebKveBplE1m0VMlogihbc2t3t8At+CBBwpvUMJCIJCSipCiqZCmO0Y1A6pjS0ZywyIObp8+JqxsgMb+JZ8Bs1i31M7AxUFEUr1wPir8wIpzdxpFD0/fdCjL0Qe7unUq+HcpD+LglmgpodzQgIAaQp08g91t0OuUQOk9qEZmdzj/FlKPYjRZa1a2QaLC5cDK/fi9f3vN7rffvqMRVvQ2AmBUTVM888g1deeaXXcyoqKjBlyhQ88cQToWMzZsyAXC7Hd77zHaxZswaKHlb1n3322S7vs9lsyM/PT8zghwvRJmOnkxx65HISUUolvW40AmfOAFOn9rzJNJJUNLUIiprcXBJDbW103OejzJ3LFVsmKPy7VSqBceOA48epljy4b8vt7l4r3luAvHABAKAqKgIaWgBjOo3R66Xx6fWDnjlM5Mra8onLIZPIUFZThmZHMywuC2QSGfRKPQJCACsmrsCSoiVw+Vxd7llrre1xlazd046pmVOx/+J+pKvSMTljMhraG2DxWJCnz8PM7Jmh/Ul9Tf7BEocCQ0FIvAHoVuLQV4CMFtymZEzBrtpdsHvs0Cv0cHldMHeYUWAowIKCBVhStAQauSZqXxCFVNHrKiSvEKYO8S74jYrFvlhIxdgyWAxUFPVUrtcPJ9mo1x7q388Q3DO4WPbJqU/g9Xth99ghFUth89gwLWsa3H53r/FlKPYjRStrT9Re3L4yYRyDujPsRdWTTz6Je++9t9dzioqKoh6fO3cufD4fqqurMXny5KjnKBSKHgXXiCHaZOx00kZSna5TPKlUlFkpLycxUFDQ+6SbyqYWNht9NrsdaGggZ0C5HMjJIZEZa1Yu8rstKaHjJ07Q9yOTAVdf3T3z1VuATKO9NzCbaVzB504njTErC6ivp6zYlCkJDSyDsbLm8rkwI3tGl+a+ALqJNoVU0WWS7muV7LqJ1yFLk4Xy+nJkabIwO3c2Wl2tmJ0zG2P1Y9HqbI1p8o+1xKGvABkZ3AQI+M3+3wAAKtsq0exoBgBkqbNQZCzCnNw5Pe7zChJNqHEzxuHBYC74jYrFvt5I5dgyWCRCFPV3L9MoJjjXbji6ASebT8KgMGBSxiSkq9J7jS9DvR8pmHVK9H05BsXHsBdVWVlZyMrK6td7Dx06BLFYDJMpsXW2KUe0ybi9nTIfmZldne9ycugPdZms66Q7Zw4JrfAVw0Q6CSWamhoSSzk5JA6Brqueej2V0p07R+M3GimzdOQIUFQUeylEtO82O5vE0BVXADfeGD3Y9RUgOzqAjz8mISWV0n639nb63Rw9StksQaA9YAn8YyORK2t9CbS+Jva+VslMWlMXQaKQKLCvfl/ck38sJQ7xBKpgcKu11sLtd2Ne/jzMzZuLNmcbICKnv2Znc5cmvz2VYfQlupjkMZgLfqNisa83hnNsSSYDFUUD2csULyMkyxicg+fkzsGnZz7FqZZT8At+iEXiXuNLsvYjJfq+HIPiY9iLqljZvXs3vvrqK1x99dXQ6XTYvXs3fvCDH+DOO+9EWnClfzQTbTJevpz+iG9spMnWbKZJcNWq7o55b73VdcVw0iRg2zaaLIeTqYXNBrz2GrBjR+d4r7wSmDmTskfBYyUlQCBA4wWo5A+g58GfYyXad7tyZd9CJ/J9EgkwYwZgsVAWyu2mny9coMbEkybR8+PH6fME92sl6I+NRK9wJUKgxbJKFi5I+jP5x1Li0FspYk+BKlysmTSmkBlFT/1A+hojB7LhBS/4DRKJdqkbSSRKFA1m6dwIzTKatCbcW3pvzKXxydqPNFj35RgUGyNGVCkUCrz33nt48cUX4Xa7MX78ePzgBz/oUkIxqok2GSuV5Hz3/vtkqgDQniCvlyZGAPj8c2Dnzs4Vw9ZW4Ne/JgFQX0+ZEqu1M7uVbFOL114DPvyQSuTy80mE/OEPwJYtwPXXd656fvYZZaYuvZQ+R1sbldZdemlnWV6s44830IWv4K1YQVnATz8FTp0igVRXRwLqyivJibG8nDJpKhXtd5s5E5g3j77vBP6xkcgVrkQJNIVUgQUFC8jCFuSyF0uGK97Jvy/x1p9AxfXoDMALfnEzGC51I41k7GGKlRGeZYw1viRr/ue4k1xGjKiaNWsW9uzZk+xhDH8iJ2OZjETEFVdQKaDTCaxdS0IrI4NKzcaO7RRNLS2U0VIoSBR4PF3twwfiJDRQamooQ5WVRWV/AIm/qioas1TaaXnucpGQnDaNTDmC3d9tNspg9Wf8fQW6nlbwvF5yYTQYAIeD9nTV1ZGQmj6dznM4gMWLSUAVF9PvIvy+CfhjI5ErXIkQaEPZyb2vEof+BiquR2d4wS9OBsOlLpVJdBndYJblcZaxC8ma/znuJI8RI6qYfhCcAAsKOifA2lqgqYn+6B83jtzmamroD/yJE0mIZGbS8TFj6DWxGDh7tnNfUE+bZge7xrqhgcYdvqHb6yUx5XLR/dPT6bjJRD/X1XVav8az6bc/nyXaCt4nn5BZxtSpNM5AgL7foOgrLu7cA5eTQ0J3kP7YSOQKVyIEWjI6ufe2CtmfQMX16Awv+MXJYLrUpRKJLqMbirI8zjJ2IVnzP8ed5MGiajQTOQE6ncD58/SHu89H5XBGI5138iRlUDwe+uNfLqcsik4HVFZSBsvhiL5pdqhqrHNy6NoWS6f5hkxGn0Ui6TqZW60kZKZPp95cfW36DYqo4B6zeD9LTyt44XuklEr6Xl0uGn9bG/1OvF66T17eoP+xkagVroEKtOHYyX0ggYrr0RkmDoa7S91QmDAkuoxuKMryOMsYlWTN/xx3hh4WVaOZyAnQ6ewqmnQ6Oq+6GvD7O40TVCrg8svp/TNmUFBxOoHVqzud9sKJdTIfaKAqKAAWLaI9VQAJQouFsj/Z2SROghmroBBZsaL3+0YKwqoq2lc2Z073z9LbnqqeVvCCAqu5mTKBwT5Xdjv9Duz2rtm/Qf5jI5ErXAMRaMO5kzsHKoYZZIbSpS4ehmqBMNFldENVlsdZRmaUw6JqNBM5AcrlJDwsFhJNVVUU0NLSKID4fCS6VCrKZgUFis1GE2Y0QRXLZK5UJi5QBfcp7NhBpYwaDXDnnZ3uf9GESG97oYKCMCODyiLLyymwtrVRlmv6dGr0+5vf0LnBPWqR4w8XsILQuYfL7QYKC+l7amwkO3eLhQwp8vLoeuFjHaI/NhIhHAYi0GK1OefSBoYZwQw3Q4ahMmFIdBndUJblDfcs4zCB49fIhEXVaCd8AmxpoX1S7e0kFI4coaxVWhqJrKIiEhN1dSSuYpkwY5nMy8oSF6j0euDFF/vuU9VTAAk/J/i9ZGeT4Dl1isoIJRLK3tXX09hFInpPQwPtgcrP7z5+g4GE3dq19H2IRJ1C9hvfoH1UFRXUO2viRDo2axaZbvTU5yrs+HCeoHsSaFaXFXW2OgDdXf16Kx9cXLgYZTVlQ2JgwTAMA2BoTRgSXUY3lGV5kQt/wTYlLldKW6oniqE0YGKGHhZVo53ICTC4Z2jbNhJZGRkkFILuf2o1TZJ33tnZRLe3QNLXZB4MSNnZJODq66lsz2QaWKAqKOieOett1TNaWce4cTTOMWNIRGm1ndk7QSBh2dZGAUOppBK+hgY6f/JkYM+ezvFbrZTp8nrpfn5/556pv/8dKC2l3lm9Calow07BCdrtc+OzM5/h/RPvo9pSDQAYZxyH26behuUTl4fG3VP5oNfvHXIDC4ZhRjlDme1JdBld8HqffEKVEFlZFL8GUpbX1yKlUkmLjiOsX9VASYYBEzN0sKhiiHDBsWIFlbUBJKLCxUlQDOXlxTYR9xUcRCISb6dPA+fO0UQvl1NWbNKk3gNVcFIProQFJ/dEOfN9+SUJH5uNRJXFQsLI7yfHQ5mM9mv5/SSWZDIKFq2tZN7hcND5ZWX0+OILer24mFbt3G4SanY7vX/nTvpui4tjGzNSc4Leem4r1h5cC7PDjEx1JiAA59rOYe2htZBJZKFxRysfBIDX97w+rAwsGIYZBQy1CUMiy+jcbooxHR20ZxegRcPbbov/erHuKxvh/ar6w3A0YGISC4sqJjoFBdQXadMmKn0byEpZb8HB5aIyw4oKKjNMTycxcvAgvRYtUAUn9T17aJ9Uayu9b9IkmtSDphoDceaTSMjx8MQJer2lhcQbQAIuEKB7iMX0EAQad0dHp9GHTEZiav/+zv5YSiUFtaYmep/fT0LSZOps9LtgAd2nD2GYihO01WVFWU0ZOjwdGKMdA4VEAa/fizRlGjrcHSirKes27vDywVpr7bA1sGAYZgQz1CYMidw/u3UrVZ+UlFAZutlM15TJKM6azbFfPxaxxP2qojKcDZiYxMCiiumZRK2U9RYcGhtJsMjldJ5YTP/K5XTcau0++W7dSmUMzc30fqWSgkJrK71n5kxy5wv2gWpqAm68sedJPFpZx7FjJOwsFgo6Xi8JIIBEVXBPVJBgtkwkonObmykLdeQIBRadjkSaWEzi6+JFKnN0Oum6u3bR+CdNAj76iKzt+yiZSMUJ2ua2oc3VBgEC2pxtsLgs8AV8EIvEEIvEuNB+ASebTyJHlwMRRN32iCWyQTHDMExcJMOEYaBmHdEEjtEIXLgA/PGPtPDn98e2CBmrWOJ+VVHh+DXyYVHF9EyineaiBYeGBrpPfj6VwTmdlCXKz6cMTkND1/JDs5kCQW0tBQWpFMjNpTLFqioyprBY6L2NjeSid/w4mUyUlkbfsxRZ1tHa2ln6p1SS62EwqwR0FVOBAP0rlZKg8vtp9S8jg553dJC7n1JJ5RaHD9N9AgEap1xO50okJOTa20nEFRT0WTKRihO0XqFHmjINLY4WtHvboVfooZapYXPb0OJogdfvxUuul9Dubke6Kh1Ts6ZiXt680B6xRDYoZhiGiYvhavXeGz0JnIsXqUIkN5fibSzlebGKJe5XFRWOXyMfFlVM3wymrW1ODmVxxGKa2IN7k5qbKYDl5HQ9/9NPKRAYjXReuLmFx0PiyuMhgXL+PD0HKEv0j39QMJgxo+uKXLCs48MPqVSvoYEEmlhM13e7SVj1hEhE4kilojEplTSerKyugaWkhERTVRW9Tyymz67Xd9a8t7TQCmAMJROpOEEblAaUjinFBxUfwOv3IhAIwB1ww+qyIiAE4PK50ORoglqmRpOjCVWWKljcFgCde8QS1aCYYRimXwyF1bvVSkIFiH0PczSiCZzWVuDQoc4FwGBpel/lebGKJe5X1SPBOFVWU4YL7ReQpkwLxa/h7OLLxAaLKia5RGvY29xMJXs33dTdJOPUKTpHqSQhIxJRlqelhQKEw0FCqrGRJnhB6OyxpdXS615v1xW5oKCprKTrA5RxUigoW+X1ds1OhZf+iUR0v9xcOuZ2U5AqKKASiRkzSKgFA0teHu0dU6lIdNntlJny+eh8iYQ+Rzi9lEykosCYlTsLU7Omos5ahzZXGwJCAFKxFDnaHNg8NujkOpg0JtjcNlhdVowzjOuyRyyRDYoZhmGGFW438NlnwPvvk0GS30+OsrfeCtxyS/zOeeECx+ulCo9du6jtiFZLsfeyy4Bp0/ouz4tHLKVYv6pkChqv34vPznyGw42HU8bFl4kOiyom+URr2HvTTZ3Hg25+NhuJojFj6DylstPS3OWiTFdbG4kaq5UyQTYbXSM9nYRMWxsFEoWic0Vu82bg44+pJO+SSzo38VqtnU5/kXuoxGL6NxCgQNXYSNmlyy7r7GPl81GQycjo2tdryRLKmslk5PQXLHvMzaV7B23Xg/RSMpGKAiNLnYXSMaWYljUNUokUVpcVhxsPQxAEtHvaoZVrAQAqqQoWlwVyiRwd3o5ue8QS0aCYYRhmWLF1K/UzNJsp/litJIAqKqic/dln4xdWQSGzYQPw1VcUbwwGiitBh1qJhBb2+irPi1UspUip5FC3JQl37M3R5cDmtmHtwbWACJg7dm7KuPgy0WFRxSSfnhr2ut3Axo00eVutJKROniRR5PeToFGracLW6YD58+laDgetxAkCWbPX15MAczopuwXQe81mCjLvv0/CprWVzvN66TrNzZ37pMKNKMKRSKhxb0cHXe+rr2hMl19OK3oOBwmuhQtpP9eBA8DRo/QZKispoOXn034rvZ5KBFta4nZcTCWBEV62aFKbkKPNwaGLh2D32JGhyoBfoL1rTp8TcokcHr9n2O4RYxiG6ZNY23xYrSRwOjroeXs7xROFgmLJ//0fMHUqWaHHg0JB4mbrVhJOQZOk+np6ze0mU6UpU4CVK3sfY7xiaShKJQfAULYliebYKwgC7B47RCIRdHIdlFLlsHfxZXqGRRUzfIhs2Btu3drRQaLL46GJfMwYCgr5+TRhX3VVp8Of1UoOel9+SSV2ZjMJJLebRNPWrXSOw0F7r3w+yhJZLJ37szIySGgBlAUTBNpfJQidmSSJhAJesAzRbu80oWhvp+Cj1dJ7KiroPTt30ue5+WYSYKdO0XkTJ5IIW7iQzkmRkon+El622OxsRq4ul0r/ZDrUttfC7rbDG/CiQF8Am8c2bPeIMQzD9EisPZ2C2GxUTeH30/nBvU5+f6dh0p49wNKl8QsVm41ipkrVVQiZzXTc4QCuuCL2WDPMxVIsDHVbkmiOvU6fE2KRGBDRzyqZCsDwdvFleoZFFTM8Cbdu1elI7IwZQyKpqYlK59xuEkK3306ra8EgZTDQsawsuoZCQY2F3W4SO4EAiaCgCUVaGr0vKMAcjk5bd5WKMmdWKwU1j6fzvWo1vQ7Q8aCxhVpNYi0nhwKowUBZqT17ulrRLl5MYsrhAO67r1NQpkDJxECJLFtUSBTYV78Pe+r2wO13o9XZiix1FsanjQ+5/zEMw6QU8TbA1espHnm9FJuCc39wIc9goDjUH0vy4LUFgUSUTgeMHUsxzGIB5s6lhcl4SwtTmKFuSxLNsVclVSEgBCCCCCqpKnTucHbxZXqGRRUzPAm3bnU4SLQEA4LXC8ybR+KmpYXK/iIDQXiJwp//TFmko0cpIMlknU17fT4STEplpxOfzUbiKzOTrpORQePQaGivVEcHrRymp9PPdnunoBIEClJuNwm5Sy6h60kkdK/IWnWTiTJSkWWFI2AVMBbCyxbDRZYAIWqfKoZhmJSgPw1wDQY6fvAgVWaIRBSD7HaqesjJoXjUH0vy4LWPHSM79aCjbWsrLSguWZKYmBNrqeMwYKjbkkRz7LW5bbSPWEQiTyQSDXsXX6ZnWFQxA2cwJtFw61adjrJGTicFJLmcBJbN1jXA9DSO+nqqQ6+spPdptVTS19TUKXby80lI6fX0fNYsyjKdPQucPt1pxX7XXXSPv/yFSgq9XhqXWEwBM1g2KJHQa7W1JLAWLqQSQO7b0SuptDeMYRimR/rbAHfJEoodr79O5eEuF4meyZMpFgarH/pD8NpBZ0GA9h3fdtvAS8zjLXUcBiSjLUk0x94HSh8AABxuPJwyLr5MdFhUMf2nP5NorAIs0ro1N5f6aohEJG5stk4DB6Wy09AichzBwKbVkvCRyUjwBC3Z3W46XlhI105Lo3upVPS+4mLg+uu7Ng12uymL9f77wL59JMLUamD8ePpcwcxTMCt29dU0Fo2G+3YwDMOMBoILg2YzxR+Vih59LaQpFMANN9D+pr/8hZrXSyS0YBeMa/0leO2rr05MD6xw4i11HCYMdVuS3hx7rx5/dcq4+DLRYVHF9J/ISdRspiDQ0dHdnag/AizculWjIYEjCBSgAoFOA4feJvMFC+i9Xi8JIbOZRFQgQAEu6CBot1PQ+uY36ZouV8/iLzwwnTsHvPMOsHcvvSYIwMyZnW5LQfOMyM8TbkIxZw5ltHoSmilUTsEwDMOgs9RvyxZaXNPpOisrVqzoey43mYBHHhmc+T/R5eX9KXUcJiSrLUm0qgyu1Eh9WFQx/SN8Ek1LI6vz6mpyLgqWFYSbR/RnFSuadSvQNcDEMpkHM14TJnQ69Hm9NO7CQuBb3wK+9rWuQUuh6DsIGAxAaSmVaXzyCRlR+HxdVxTDBWPk51EoKNP11lvRhWYKllMwDMMwoLnbbAYmTaJS8WDbjuXL48s2pcL+2v6WOg4jWNAwiYBFFdM/wifRkydp86teT+LGbAY+/ZREwIoV0YWPIJDjUFlZ36tYkUEl/OdYJvNgANuzh4RKsBxj2jSyYo9XpESuHCoUlJlbujS+vh0bN/YuNFO0nIJhGGZUE4x5ubkU85xOetjtnc3qR9LCWPgeaN4zzIxiWFQx/SO8Xry6mp7rdDSpGo1k1RrMFIULH6+3M6vlcFBwmTyZLNAViu6Cpa/Sh1gm88gMUbCRb7zlFH1ljuJZUewrwzZ9esqWUzAMw4xqIhf7gvup1OqUydzEReQeaN4zzIxSWFQx/SM4if7lL1Tyl53daUV+ySX0PBg8woVPY2NnVksioQn4889JiMlknYJFoaDX/X4SMz2VvgXH8cknlPnKyiL79WiT+UDLKBKZOeorw9bQkPLlFAzDMKOS0Zi56WnP8AhrXM8wvcGiiuk/S5bQH/7V1SRijEYSVCUlVDseHjzGjSPxdP48iaKGBnpPWhr14/j5z8mIIieH3nfiBFmQz5gBXH55zwLG7absV0cHuSQF75UIi9hwEr0Rt6+gG/weRlNQZhiGGUoGywRoNGZuou2BHomfk2F6gUUV03+Ce4kA2kM1diyJjtZWCh6LF9OeqfJyCigWCzUdlEhIBGVnU38om41EVDDD5HCQG55SSdcSBBIy0QTM1q3Atm0k5GbOpPfbbJT1SmTNek+ZJbkcqKqilbngmGIJ1H0F3YKC0ReUGYZhhoKhMAEarZmbVDDWYJhBgkUVM3BWrqSAERk8vN7OcrnCQqonr66mgFZSAqSn0/ttNirzq6ujzJVGQ0Kio4MyWk4n1aNHlr5Fyx4ZjVRimOh9R5GZJa+XMmknTtDn+cMfgLlz6dzDh2ML1H0F3dEalBmGYQaTnkq5OzqA+fMTk2XhzA3DjDpYVDEDpyfr89df7yp4Cgqoe/vu3WQ97vN1OiLJZNQ/SqGg7I9KRcc7OjrvE176ZrWS4UVLC5UNhjMY+44iM0u1tcCRI/TzpZfSuNaupXPnzo1tz1VfQZeDMsMwTGKJthgnkQCnTlF7i127aMEvUZkrztwwzKiBRRWTOMKDR21t9HK5yy6jDE/QWlYupz4ebW1U9ud2UxBTq6m3h9FIxxobu5cUtrYCR4/Se+fNI2EGDN6+o2CGqKyM9m+p1bSHbMoUEohBAajTUTYr1j1XfQVdDsoMwzCJIVopd9CRFiBBJZFEXxDjRuwMw/QCiypmcOjJiCEQAGbNIgGUmUkrhTYbiZQxYyiYtbVRA12Vis5vbaVAF1lSOGECZaoOH6Zrz5kzuPuOFAoSRwoF7Q0rLKSfgxk3kYjOC5YrAuzWxzAMM5yIjE1OJwkquZwWyoxGmr/DF8SUytRvxM6CkGEGHRZVzODQmxHDrbd22qc3N3c2CTabSTzJZCSerFZg4cLOGnege0nh/Pn0b3A/VkbG4Ow7Ct/YbDYD+/fTIzubAm5ODu0LE4s7BRXAbn0MwzDDicjYFAjQQp5YTM6x0RbEyspSsxG71Qo0NQEHDlCFSKoKQoZJEVhUMYNHb0YLwaxPcOUs2kpg+LlA9JJCmYws1ysrgTvuoFI8gIRPIlfkghubDQZyMXQ4qIRRLqdAe/gwBehgvy6RiN36GIZhhiPhsamlheLI2LFkoBQkuCAWzFilUiP28EXAI0co/k6aBJSWUuxKBUHIMCkIiypm8OjLaCFyr1Bfpgw9lRSazVQ2mJ7eud+qrxW5aKUQPZVHWK3Anj20mllRAZw5A0ilnQIrOK6sLOAb3wDOnmW3PoZhmOFKZGzavRvYuZNKzSPbV4hEqdeIPXwR0OEAtFoaq9EITJ8+vAUhw6QwLKqYwSceo4Xezo0s29BogIMHgdOnKeC98ALQ3k5mGD2VaARX8MrKSCSlpfVthW6zkSHG2bOdboUSCQmr9HTKlKWl0Yrn174GfP3rXLvOMAwz3AnGG5MpeluQJUsAl2t4NGKPdU9UuLuhVErljZmZ9Dmqq8ktdzgLQoZJYVhUMalFeNnGrl0UGCZOpLKNbdtIFLW0ALm50Us0PvuMrM87OmgFUhCAv/+dguOll1IJSNAMAyAxJghUXmix0Eqf09np9hcI0DGPpzPAslsfwzBM6tBbVYVCkdxG7PE2Kg53NxQEKlF3uWivWFsbxS+vl/f6MswgwKKKSS2CwW/6dDKtKCmh/letrZ2OgsHVuMiGwQDw/vsUDMeMoWBTWUklfSIR7dnKyqJMl8lEQWz6dCr383goOxV0+LPbyZjC5yNxl59P42IxxTAMk5r0tCCWzEbsPTUqBqLviQovkzeZyHzj+PHOPcB2O4lC3uvLMAmHRRWTmohEVNoQ3DisUpF7k9NJz4O25uElGnV1JLgyM6mX1IULQEMDZZskEno0NZFIuvxyWtV75RU6Zrd3Biqnk8RdIECP6moSYrx3imEYZuSRrEbs0RoV92WSEVkmX1REVRZnzpAok8l4ry/DDBIsqpjUJHw1TiKh/U4tLSScFArg1KnODFZwRa6urvP9Xi9lrPx+EmcA9SgRiahU4ssvqexi7Fg65vPR+SoVBTeZjPZvpaVRcAq+jy1qGYZhRiZDXdpdV0cLf0VF3cfR256o8MzaxYtUIv+Nb1CPyKwszlAxzCDBoopJTcJX406domyRRkPGEWIxmU54PGSzHgwweXlUCnHuHIkqt7szSxXsVyKX0/FgA+K0NBJSDgfdx2Yj8RUcwxVXkHiLDHDcaJFhGIbpD+GGSkePkhnTJZdQyxCZrG+TjGRl1hhmlMOiikldliyhDblvvUXPtVoKPIWFtDonk1FQCWaPDAbgttvIqMJqJWHl91M5hclEYsxmo+NSKa0O6nT03uJiylZVVpLIys+nY1OmUDYsGODi3VTMMAzDMOGE76O65BLqNbV3Ly0U5uXFbpIRS2aNFwAZJmGwqGJSF4UCmD+f9kClp5MLn0pFr8nl0csjli8nsVVWRoLnzBnKVOXlUaaqqYlMLFpauoogiYQcBR0OElPTppEQa22lALdwId1r82bqdxLrpmKGYRiGCRK5jyotjeLZiRPAsWMU6+LdExVNOPECIMMknJQRVS+99BI2btyIQ4cOQS6Xw2KxdDunpqYGDz/8MLZv3w6tVot77rkHa9asgVSaMh+TiRe9noKMRNIpqICeyyPCyyKamoDt24G//Y0yW1IpMHUqcN11wF//Cpw/33ldp5OE1qWXAjffTI6Bwf1bGRlUohEs1Rg7trNMo69NxQzDMAwTJNwSHaA4MmMGVUdUVQF33knZq1joTTjF6yrIMEyfpIza8Hg8uPXWWzF//nysXbu22+t+vx8rVqzAmDFj8OWXX6KhoQF33303ZDIZXn755SSMmBkSwvdWOZ20oufxUIDorTxCqaQ9UvX1tM8qL48C1S23dDaCXLuWXP86OkgYZWUBt98O3HBD58rf7t2dmamMDCoRrKmhrNmMGZ1j5EaLDMMwTF+EmzCFNxv2eICcnE6xFQs9CaeODloYjMdVkGGYPkkZUfXDH/4QALB+/fqor//973/HiRMnsHXrVmRnZ+PSSy/Fj3/8Yzz99NN48cUXIZfLh3C0zJCycCGwbx+wY0fnatyiRXS8J8KDTXExBZuKCrrOihVdywTb2qgEY8GCzpKLYMAJBiadjs7Tain4nT9PjkuRtu4MwzAM0xORluj9bTbcmx37nj20n3jChO735gVAhuk34mQPIFHs3r0b06dPR3Z2dujY0qVLYbPZcPz48R7f53a7YbPZujyYFGPnTirNu/JKEkRXXknPd+6Mfn5ksAkaVQQb/lqtnWWCzzwD/Md/0L8rVnStNbfZ6NzaWhJpu3fTHquLF+n+FgvQ2EjBcPZsDlIMMwJ56aWXcMUVV0CtVsNoNEY9p6amBitWrIBarYbJZMK//uu/wufzDe1AmdRhyRISUIEAiZxAIP59VMEywsjFPIOBKiokEjonHF4AZJgBkTKZqr64ePFiF0EFIPT84sWLPb5vzZo1oSwYk4JEW40DSMz0VMYQWbMeJNoqXW/uSXo93efsWTK3CG4otlioh1Vra/82FY8yAoEAPB5PsofBDAEymQwSiSTZw0goXJrOJJxEWKL3VEZotVKpekkJLTwOJBs2wvH7/fB6vckeBjMEJCo2JVVUPfPMM3jllVd6PaeiogJTpkwZtDE8++yzeOKJJ0LPbTYb8vPzB+1+TAKxWoGTJ0m89FbGAHQNTL0Fm3hX6QSBGv8KQufPaWm0qfihh0i4cYDqEY/Hg6qqKgQCgWQPhRkijEYjxowZA5FIlOyhJAQuTWcGjYE0G+6rjHDJEop35eUUKzUaXgD8J4Ig4OLFi1EN0ZiRSyJiU1JF1ZNPPol7772313OKIjuJ98CYMWOwd+/eLscaGxtDr/WEQqGAgu1DU4twR6OWFnLca2khe3WZjM5pbARcLmDbNtrfFOl8lIiadZuNMlRaLXW9t1io11VREQkr7vvRK4IgoKGhARKJBPn5+RCLR0w1MhMFQRDgcDhgNpsBADk5OUke0dDQU2n6ww8/jOPHj6O0tLTbe9xuN9xud+g5l6WPMIaqN1RQIEUTTtwguEeCgspkMkGtVo+YBSAmOomMTUkVVVlZWcjKykrItebPn4+XXnoJZrMZpn+WgW3ZsgV6vR5Tp05NyD2YYUKkyURbG3D4ML02axZw4AD1n5JKga++IsOIWbOox1TQMra3YBMrwSCUng5MmkTirrGR3P8aGmiPlcnEPT96wOfzweFwIDc3F2q1OtnDYYYA1T/bHgTn6ZFWChiN/pSmc1n6CGWoe0PFIpwGkg0bgfj9/pCgysjISPZwmCEiUbEpZfZU1dTUoLW1FTU1NfD7/Th06BAAoLi4GFqtFtdeey2mTp2Ku+66Cz/96U9x8eJF/Od//iceffRRzkSNJKLtoZo3j/4Nlvs1NgKFhZQ58vmACxc6Lc7DLWP7u0oXvsoYzHi1tZGYksmoBDAvj+rVNRru+dEDfr8fALj8aZQRFNBer3fYiqpkl6ZzWfoIJVm9oVg4xUxwDxUv9I0+EhGbUkZUPf/883j33XdDz4MlE9u3b8dVV10FiUSCv/3tb3j44Ycxf/58aDQa3HPPPfjRj36UrCEzg0E0kwmZDJgzB1CrySVpxgwqydu+nXpLORydFueRZhS9BZvIEo1oq4wzZ5Ko++1vSbCp1dRAeMoU2uvFPT/6hEsrRhep8PtOdmk6l6WPQHqzOOc4MexIhXmKSSyJ+J2njKhav359jxuBg4wbNw6ffvrp0AyISQ59mUz4fBSwBIGc+JxO6hVlsdDPXm/fZhQ9lWh4vbRHK3yVcds24LLLgOnTyVHJaKT7Adzzg2FSFC5NZxJOPK6zDMOkJLwznEktgo5GjY2dZhTBXlDz5pGwsdlI2BQW0s/NzWQg0d4eW8+oYImGREIBUCIBPvkEeP/96L2tTp0i4SWRdAoqgHt+MINOYWEhXn/99WQPY1RTU1ODQ4cOdSlNP3ToEOx2OwB0KU0/fPgwNm/ezKXpo5HwBcFwOE4wI5DRGptSJlPFMCF6M5nQaDpd/caPpwzV6dMkjuTyvs0oeirRsFiA48ep3C8cg4HE2tSpwP793PODGVL27dsHjUaT7GGMarg0nYmJvizOOU4wI4jRGptYVDGpR2+ORuGC6+JFcge8/npy/8vK6jtw9VSiESwFMpupxC9IcJXxuuvoHO75wQwhiSpRY/oPl6YzMZMI11mGSQFGa2zi8j8mdTEYqMluuFAKCq7Vq4Hvf5/+ve02ElexrAT2VKLh8QDjxnW6C4aXHc6eTVmtyPuuWMF26kOE1WVFrbUWVpd1SO7X3t6OVatWQaPRICcnBz//+c9x1VVXYfXq1QCoz9BTTz2FsWPHQqPRYO7cufj8889D71+/fj2MRiM2b96MkpISaLVaLFu2DA0NDaFzwq8X5IYbbuhioBBZYiESifDb3/4WN954I9RqNSZOnIi//vWvXa5x7NgxLF++HFqtFtnZ2bjrrrvQ3NycqK+GYZieiBafOE6MaDg2EaMlNrGoYkYm0QRXrO/rac/WbbcBK1eSw2BdHf0bucrY3/sy/cLtc2Pj6Y14fc/reHPvm3h9z+vYeHoj3D53328eAE888QR27dqFv/71r9iyZQt27tyJAwcOhF7/3ve+h927d+O9997DkSNHcOutt2LZsmU4c+ZM6ByHw4Gf/exn+J//+R988cUXqKmpwVNPPTXgsf3whz/EbbfdhiNHjuC6667DqlWr0NraCgCwWCy45pprUFpaivLycmzatAmNjY247bbbBnxfhmFihOPEiIdjU3dGQ2zi8j+GiaSvLvTcgX7YsPXcVmyq3IRsTTby9HmwuW3YVEl9X1ZMGpy+L+3t7Xj33Xfxxz/+EYsXLwYArFu3Drm5uQDIuGDdunWoqakJHXvqqaewadMmrFu3Di+//DIA6oXx61//GhMmTABAwS4R+2zuvfde3H777QCAl19+GW+88Qb27t2LZcuW4Ze//CVKS0tDYwCA3/3ud8jPz8fp06cxadKkAd+fYRhmtMOxqTujITaxqGKYSPrqQs+NFIcFVpcV5fXlyNZkw6QhUxGlVAlBEFBeX44FBQtgUCb+93Tu3Dl4vV5cfvnloWMGgwGTJ08GABw9ehR+v79bEHC73cjIyAg9V6vVoaAFADk5OTCbzQMe34wZM0I/azQa6PX60HUPHz6M7du3Q6vVdntfZWVlygQuhmGY4QrHpuiMhtjEoopheoLF07DG5rahw9uBPH1XUxGD0oA6Wx1sbtugBK6+sNvtkEgk2L9/f7eu7OEBQyaTdXlNJBJBEITQc7FY3OU5QCuIfRHtuoFAIDS266+/Hq+88kq39+Xk5PR5bYZhGKZ3ODZFZzTEJhZVDMOkJHqFHhqZBja3DUppZyNoq8sKjUwDvWJw+r4UFRVBJpNh3759KCgooHtarTh9+jS+9rWvobS0FH6/H2azGQsXLuz3fbKysrpsDvb7/Th27Biuvvrqfl9z1qxZ+OCDD1BYWAiplKd/hmGYRMOxKX5GSmxiowqGYVISg9KA2bmz0djRiEZ7I1w+FxrtjTA7zJidO3vQVgJ1Oh3uuece/Ou//iu2b9+O48eP44EHHoBYLIZIJMKkSZOwatUq3H333fjwww9RVVWFvXv3Ys2aNdi4cWPM97nmmmuwceNGbNy4ESdPnsTDDz8Mi8UyoLE/+uijaG1txe233459+/ahsrISmzdvxn333Qe/3z+gazMMwzAcm/rDSIlNLKqYkYPVCtTW0r/MqGBJ0RIsm7AMASGAOlsdAkIAyyYsw5Kiwe378tprr2H+/Pn4+te/jiVLluDKK69ESUkJlEpalVy3bh3uvvtuPPnkk5g8eTJuuOGGLquHsXD//ffjnnvuwd13341FixahqKhoQCuBAJCbm4tdu3bB7/fj2muvxfTp07F69WoYjUaIxRwOGIZhEgHHpvgYKbFJJEQWRo5ybDYbDAYDrFYr9PrBSdEyCcbtBrZuJbe+jg5y65s9u9OtjxmWuFwuVFVVYfz48aEJv79YXVbY3DboFfqk1Kp3dHRg7NixePXVV/HAAw8M+f1Tid5+7zz/Roe/F4YZGhIZlwCOTalEImJT6hYuMiMbqzV22/KtW4FNm4DsbCAvj963iaxLsWJwrEuZ4YVBaRjSgHXw4EGcPHkSl19+OaxWa8huduXKlUM2BoZhGGZ4w7FpdMGiihlexJt1slrp3OxswETWpVAqAUGg4wsWsIMfMyj87Gc/w6lTpyCXy3HZZZdh586dyMzMTPawGIZhmFEMx6bkwaKKGV7Em3Wy2Uh85XW1LoXBQI17bTYWVUzCKS0txf79+5M9DIZhGIYJwbEpuaTO7i8mdeivYYTVCpSVUUZKp6OMk8lEj/Ly6NfT6ymbZbN1v5ZGQ68zDMMwDMMwzCDCmSomfnra7zQQwwi3G/joI+CLLwCpFDh0CCgqAmbO7D3rZDDQPTZtopI/g4HGZzYDy5ZxlophGIYZPsSzX5hhmJSCRRUTO32JpoEYRmzdCuzcCbS3A04nHausBBoagFmzes86LfmnRWl5OYkvjYYE1ZLBtS5lGIZhmJhgl1qGGfGwqGJipzfRtGBB/IYRwRW74DluN/3s81HAEYmAgwcBrxf4/vfpPbW13Vf4FAoSbQsW8AogwzAMM/xgl1qGGfGwqGJioy+XvcLCng0jzp4FTp4EcnJIKLndtHfq1CnA7ycRdfYsHR83DrDbgdZWQCymh0wGWCzA66/3vsJnMEQXU1xuwTAMwyQLdqllmFEBiyomNnpz2ausBC5eBCQSOi/YNM3rBfbtA2pqgOpqCiw+H/3rdAL5+cD48YBKBVRV0fmTJnUGHosFCARIiG3ZAhQXx7fCx+UWDMMwTLJhl1qGGRWw+x8TG9Fc9mw2YPt24MAB4JNPgPPnKQNVUUGCaM8e4PBhEkUWC4mpykqguRnweEhs/eMfwJdf0ms1NXSt48fpZ4+HXACbmoDMTBJaQUdAvR7Yto3O64lguYVEQsFMIqHnW7cO9rfFMCnHxx9/jOLiYkgkEqxevTqm9xQWFuL1118f1HExTFz01312MGGXWobpN6kUmzhTxcRGuMue10sGEnv20L+5uYDDQaV8VVUkrvR6ykZNnkwrdAAJK7UaaGmh8z0eeu50UomfWEzHgxkvgwFoa6PXjx8HXC7KVp09S+KspYWuu3hx9+wTl1swI5jq6mqMHz8eBw8exKWXXpqQa37nO9/Bfffdh8ceeww6nS6m9+zbtw8ajSb0XCQS4aOPPsINN9yQkDExTMwkujIhkWXj7FLLjBJGe2xiUcXETtBNb8MGEjnt7bSXKjsb2LuXgkVeHmWm8vMp6ySXU2BSKEh0BQIU/MRisk6XSuk6BgOJM7UaMBpJrLW1AXPmdAqw48epjLCjg96fkUHnRysF5HILhokJr9cLt9sNs9mMpUuXIjc3N+b3ZmVlDeLIGCYOEmUEMVhl4+xSyzBxkYqxicv/mNhRKCjDM24cMH8+7YeaMIGCg9tNGSy9njJN48aR6KmtJQHk89E17HYSWsG9UoJAx91uOj87G5g3jwRWfj4wdy7tswoE6HHqVOfPxcVAQQFlosrKSHQFSz643GJ0McQlP4FAAD/96U9RXFwMhUKBgoICvPTSSwCAo0eP4pprroFKpUJGRgYeeugh2O320HuvuuqqbiUMN9xwA+69997Q88LCQrz88su4//77odPpUFBQgHfeeSf0+vjx4wEApaWlEIlEuOqqq0Kv/fa3v0VJSQmUSiWmTJmC//7v/w69Vl1dDZFIhD/96U9YtGgRlEolNmzYEFr9u+aaayASifD5558DAMrKyrBw4UKoVCrk5+fjscceQ0cw84yuJRaFhYUAgBtvvBEikSj0nGEGncjKhFgax/fEYJWNB11qV68mN9vVq+k57+8d2XBsCr02GmITiyomPmw2yjgVFZE4cTpJTIn/+Z9SUDSlpZHosdvJiMJuJwHlclF2SSaj830+CipKJR2Xy+lnr5cyVioVMGUKMG0aiTC7nf6dNo2Oe700YX3xBfDmm+QQuHEjXWP2bKCxkR4uF/1rNtNxzlKNDNxu+n2//nrX37/bPai3ffbZZ/GTn/wEzz33HE6cOIE//vGPyM7ORkdHB5YuXYq0tDTs27cP77//PrZu3Yrvfe97cd/j1VdfxezZs3Hw4EE88sgjePjhh3Hq1CkAwN69ewEAW7duRUNDAz788EMAwIYNG/D888/jpZdeQkVFBV5++WU899xzePfdd7tc+5lnnsHjjz+OiooKXH311aHrfvDBB2hoaMAVV1yByspKLFu2DDfffDOOHDmCP/3pTygrK+vxs+zbtw8AsG7dOjQ0NISeM8ygE6xMiFwsMxjoeOTiWk8kUpz1hMFAC4Ycg0Y2HJtGZWzi8j8mPoIZII+HSv+OHSPh4/OR2HK5aB+VSkUW6lOmAGPH0usOBwklqZSu4fVSdgogMwqrlTJfXi89MjPpOgAwfTqJL7ebRNGkSXT8yBF6qNUk9DyezpIPLrcY+SSh90t7ezt+8Ytf4Je//CXuueceAMCECROwYMEC/OY3v4HL5cLvf//7UD33L3/5S1x//fV45ZVXkJ2dHfN9rrvuOjzyyCMAgKeffho///nPsX37dkyePDlU2pCRkYExY8aE3vPCCy/g1VdfxU033QSAVg1PnDiBt99+OzRWAFi9enXoHACwWCwAgPT09ND11qxZg1WrVoVWLidOnIg33ngDixYtwltvvQVl0OXznwTHZDQau4yJYQad8MqE8P8u461M4LJxJlFwbBqVsYlFFRMf4Rtu09NJ3Jw+TeV4MhmV/RUVUVaotRW47TYSOn4/iayLFynbNHUq/VtdTXunioup5E+rpWzV8uWUVWps7NzU63YDS5eSQUVjI5134gRlwC65hAQb0NWMgpsCj1ySZEZSUVEBt9uNxYsXR31t5syZXTbIXnnllQgEAjh16lRcgWvGjBmhn0UiEcaMGQOz2dzj+R0dHaisrMQDDzyABx98MHTc5/PBEPE9zJ49u8/7Hz58GEeOHMGGDRtCxwRBQCAQQFVVFUpKSmL+LAwzqPRkBFFbC1xxRezXSZQ4Y0Y3HJu6MJpiE4sqJn7CM0AGA+2BuuMOyhadPUvCKZgV8nqBnTtpciksJGG1fz8JrrFjgTFjqBRi/nwSZR0ddE52dudm4fAs08KFdL3ycnIadLuBSy+ljFiQyFXFnpoCM6lNklaVVcHsaT8Ri8UQgnsJ/4nX6+12nixYIvtPRCIRAoFAj9cN1sb/5je/wdy5c7u8JpFIujwPD6y9Xe873/kOHnvssW6vFRQU9Pl+hhlSwuNSdTUtvAkCVTKcPx+b2QS79DGJgGNTF0ZTbGJRxcRPcMNttAxQuA0tQHXE4as1ubm08dfhoCzWmTPA0aPAf/0XCa30dMpizZtHAXD6dHICzMkhUwqg8951dcAf/kCCK/z/5LyqODpI0qryxIkToVKpsG3bNnz729/u8lpJSQnWr1+Pjo6OUHDYtWsXxGIxJk+eDIBKERoaGkLv8fv9OHbsGK6++uqYxyCXy0PvDZKdnY3c3FycO3cOq1at6vfnCzJr1iycOHECxcXFMb9HJpN1GRPDDBnhcemjj6j/YUEBzQPxlF71VDY+Zw5lvrjigekLjk2jNjaxqGL6T7QMUPix2tqeV2va26kx8P79VP7X1ETCyGzu7GW1bx+ZUkSztQ3eZ8ECXlUcrSRpVVmpVOLpp5/Gv/3bv0Eul+PKK69EU1MTjh8/jlWrVuGFF17APffcgxdffBFNTU34/ve/j7vuuitUXnHNNdfgiSeewMaNGzFhwgS89tprobrxWDGZTFCpVNi0aRPy8vKgVCphMBjwwx/+EI899hgMBgOWLVsGt9uN8vJytLW14YknnojrHk8//TTmzZuH733ve/j2t78NjUaDEydOYMuWLfjlL38Z9T2FhYXYtm0brrzySigUCqSlpcV1T4ZJCOfPdzrDAvGVXkUuGioUFIveeiuxFuvMyIVj06iNTez+xwwevdmaSyRkjx6cbNLSKBuVnk5NgltagM8+o/LB3mxtlyyhSSoQoFXFQIDNKEYTSfr9P/fcc3jyySfx/PPPo6SkBN/85jdhNpuhVquxefNmtLa2Ys6cObjllluwePHiLhP9/fffj3vuuQd33303Fi1ahKKiorhWAgFAKpXijTfewNtvv43c3FysXLkSAPDtb38bv/3tb7Fu3TpMnz4dixYtwvr160M2t/EwY8YM7NixA6dPn8bChQtRWlqK559/vtdeIa+++iq2bNmC/Px8lJaWxn1PhhkwiXICDLr07ds3OBbrzMiGY9OojE0iIbKAcpRjs9lgMBhgtVqh5/KxgbNxIwUgk6nras1ll5HJhEZDZRpGI2WqfD56XRDo5xUrSGgBVCMfCFB/j8iVnvCyQ85QpQQulwtVVVUYP358N7eeuOHff8rQ2++d59/o8PcSB1YrlZ1LJJ2ZKqD3+DEU12JSgoTGJYBjUwqRiNjEmSpmcOlptea66zpt1eVysmIHqO+VWEzPtdpOS3Wg95VG7v0xuuHfP8MwQGfpVSJ6FCYq68WMXjg2jSp4TxUzuPRmahGsOTYYgJoaslj3eMjMor29a58qgA0oGIZhmL5JVI9CtlhnGCYOWFQxQ0M0U4tggNuzhzJUra1UYjFpElBS0r1PFRtQMAzDMH3R22JePLDFOsMwccCiikkekYFPEMjtT6+nVcFofarYgIJhGIaJhUT0KExU1othmBEPiyom+fQU+BKx0sgMe9grZ3TBv28mpUhU1otJKXieGn0k4nfOoooZ3iRipZEZlgQ7qXs8ngF3gmdSB4fDAYCaMTJMysCxaFQQnJccDgfHpVFGImITiyqGYZKCVCqFWq1GU1MTZDIZxGI2Ix3JCIIAh8MBs9kMo9EYEtUMwzDDBYlEAqPRCLPZDABQq9UQiURJHhUzmCQyNrGoYhgmKYhEIuTk5KCqqgrnz59P9nCYIcJoNGLMmDHJHgbDMExUgvNTUFgxo4NExCYWVQzDJA25XI6JEyfC4/EkeyjMECCTyThDxTDMsCa44GcymeD1epM9HGYISFRsShlR9dJLL2Hjxo04dOgQ5HI5LBZLt3OipWj/93//F9/61reGYIQMw/QHsVicmM71DMMwDJMgJBIJLwIxcZEyosrj8eDWW2/F/PnzsXbt2h7PW7duHZYtWxZ6bjQah2B0DMMwDMMwDMOMVlJGVP3whz8EAKxfv77X87hen2EYhmEYhmGYoWTE2W09+uijyMzMxOWXX47f/e53ffrOu91u2Gy2Lg+GYRiGYRiGYZhYSZlMVSz86Ec/wjXXXAO1Wo2///3veOSRR2C32/HYY4/1+J41a9aEsmDhsLhiGIYZWoLzLjfe7Erw++C4xDAMM/TEHJuEJPL0008LAHp9VFRUdHnPunXrBIPBENP1n3vuOSEvL6/Xc1wul2C1WkOPEydO9DkmfvCDH/zgx+A9amtr+xtWRiS1tbVJ/53wgx/84Mdof/QVm0SCkLwlwaamJrS0tPR6TlFREeRyeej5+vXrsXr16qjuf5Fs3LgRX//61+FyuaBQKGIaUyAQQH19PXQ63bBs+Gaz2ZCfn4/a2lro9fpkDydmeNxDC4976EnVsQ+ncQuCgPb2duTm5nIz6DA4Lg0dI+Wz8OcYXvDnGF7E+zlijU1JLf/LyspCVlbWoF3/0KFDSEtLi1lQAWTvnJeXN2hjShR6vT4l/4PmcQ8tPO6hJ1XHPlzGbTAYkj2EYQfHpaFnpHwW/hzDC/4cw4t4PkcssSll9lTV1NSgtbUVNTU18Pv9OHToEACguLgYWq0W//d//4fGxkbMmzcPSqUSW7Zswcsvv4ynnnoquQNnGIZhGIZhGGZEkzKi6vnnn8e7774bel5aWgoA2L59O6666irIZDL86le/wg9+8AMIgoDi4mK89tprePDBB5M1ZIZhGIZhGIZhRgEpI6rWr1/fa4+qZcuWdWn6O1JRKBR44YUX4ippHA7wuIcWHvfQk6pjT9VxM8OHkfTf0Ej5LPw5hhf8OYYXg/U5kmpUwTAMwzAMwzAMk+qwvRLDMAzDMAzDMMwAYFHFMAzDMAzDMAwzAFhUMQzDMAzDMAzDDAAWVQzDMAzDMAzDMAOARVWKs3HjRsydOxcqlQppaWm44YYbkj2kmHG73bj00kshEolCfceGK9XV1XjggQcwfvx4qFQqTJgwAS+88AI8Hk+yhxaVX/3qVygsLIRSqcTcuXOxd+/eZA+pV9asWYM5c+ZAp9PBZDLhhhtuwKlTp5I9rLj5yU9+ApFIhNWrVyd7KH1y4cIF3HnnncjIyIBKpcL06dNRXl6e7GExI4RUjk2RpFKsiiTVYlc4qRbHojFSYlskqRTrIhnM2MeiKoX54IMPcNddd+G+++7D4cOHsWvXLtxxxx3JHlbM/Nu//Rtyc3OTPYyYOHnyJAKBAN5++20cP34cP//5z/HrX/8a//7v/57soXXjT3/6E5544gm88MILOHDgAGbOnImlS5fCbDYne2g9smPHDjz66KPYs2cPtmzZAq/Xi2uvvRYdHR3JHlrM7Nu3D2+//TZmzJiR7KH0SVtbG6688krIZDJ89tlnOHHiBF599VWkpaUle2jMCCDVY1MkqRSrIkml2BVOKsaxaIyE2BZJKsW6SAY99glMSuL1eoWxY8cKv/3tb5M9lH7x6aefClOmTBGOHz8uABAOHjyY7CHFzU9/+lNh/PjxyR5GNy6//HLh0UcfDT33+/1Cbm6usGbNmiSOKj7MZrMAQNixY0eyhxIT7e3twsSJE4UtW7YIixYtEh5//PFkD6lXnn76aWHBggXJHgYzAkn12BTJSIhVkQzX2BXOSIhj0Ui12BZJqsW6SAY79nGmKkU5cOAALly4ALFYjNLSUuTk5GD58uU4duxYsofWJ42NjXjwwQfxP//zP1Cr1ckeTr+xWq1IT09P9jC64PF4sH//fixZsiR0TCwWY8mSJdi9e3cSRxYfVqsVAIbd99sTjz76KFasWNHlex/O/PWvf8Xs2bNx6623wmQyobS0FL/5zW+SPSxmBJDKsSmSkRKrIhmOsSuckRLHopFqsS2SVIt1kQx27GNRlaKcO3cOAPDiiy/iP//zP/G3v/0NaWlpuOqqq9Da2prk0fWMIAi499578d3vfhezZ89O9nD6zdmzZ/Hmm2/iO9/5TrKH0oXm5mb4/X5kZ2d3OZ6dnY2LFy8maVTxEQgEsHr1alx55ZWYNm1asofTJ++99x4OHDiANWvWJHsoMXPu3Dm89dZbmDhxIjZv3oyHH34Yjz32GN59991kD41JcVI1NkUyUmJVJMM1doUzEuJYNFIttkWSirEuksGOfSyqhhnPPPMMRCJRr49gjTQA/Md//AduvvlmXHbZZVi3bh1EIhHef//9YTvuN998E+3t7Xj22WeHfIzRiHXc4Vy4cAHLli3DrbfeigcffDBJIx+5PProozh27Bjee++9ZA+lT2pra/H4449jw4YNUCqVyR5OzAQCAcyaNQsvv/wySktL8dBDD+HBBx/Er3/962QPjRmmpGpsiiRVY1UkHLtSj1SKbZGkaqyLZLBjnzQhV2ESxpNPPol7772313OKiorQ0NAAAJg6dWrouEKhQFFREWpqagZziFGJddz/+Mc/sHv3bigUii6vzZ49G6tWrRrylfJYxx2kvr4eV199Na644gq88847gzy6+MnMzIREIkFjY2OX442NjRgzZkySRhU73/ve9/C3v/0NX3zxBfLy8pI9nD7Zv38/zGYzZs2aFTrm9/vxxRdf4Je//CXcbjckEkkSRxidnJycLnMHAJSUlOCDDz5I0oiY4U6qxqZIUjVWRTLSYlc4qR7HopFqsS2SVI11kQx27GNRNczIyspCVlZWn+dddtllUCgUOHXqFBYsWAAA8Hq9qK6uxrhx4wZ7mN2IddxvvPEG/uu//iv0vL6+HkuXLsWf/vQnzJ07dzCHGJVYxw3QKt/VV18dWnkVi4dfolcul+Oyyy7Dtm3bQhbGgUAA27Ztw/e+973kDq4XBEHA97//fXz00Uf4/PPPMX78+GQPKSYWL16Mo0ePdjl23333YcqUKXj66aeHbZC58soru9n6nj59OilzB5MapGpsiiRVY1UkIy12hZOqcSwaqRrbIknVWBfJoMe+QbPAYAadxx9/XBg7dqywefNm4eTJk8IDDzwgmEwmobW1NdlDi5mqqqqUcFSqq6sTiouLhcWLFwt1dXVCQ0ND6DHceO+99wSFQiGsX79eOHHihPDQQw8JRqNRuHjxYrKH1iMPP/ywYDAYhM8//7zLd+twOJI9tLhJBUekvXv3ClKpVHjppZeEM2fOCBs2bBDUarXwhz/8IdlDY0YAIyE2RZIqsSqSVIpd4aRiHIvGSIptkaRCrItksGMfi6oUxuPxCE8++aRgMpkEnU4nLFmyRDh27FiyhxUXqRKo1q1bJwCI+hiOvPnmm0JBQYEgl8uFyy+/XNizZ0+yh9QrPX2369atS/bQ4iZVAs3//d//CdOmTRMUCoUwZcoU4Z133kn2kJgRwkiITZGkSqyKJNViVzipFseiMZJiWySpEusiGczYJxIEQUhMzothGIZhGIZhGGb0MbwLaxmGYRiGYRiGYYY5LKoYhmEYhmEYhmEGAIsqhmEYhmEYhmGYAcCiimEYhmEYhmEYZgCwqGIYhmEYhmEYhhkALKoYhmEYhmEYhmEGAIsqhmEYhmEYhmGYAcCiimEYhmEYhmEYZgCwqGKYFKO6uhoikQiHDh1K9lAYhmEYBgDHJoYRCYIgJHsQDMPEjt/vR1NTEzIzMyGVSpM9HIZhGIbh2MSMelhUMUwK4fF4IJfLkz0MhmEYhgnBsYlhuPyPYQaNd955B7m5uQgEAl2Or1y5Evfffz8qKyuxcuVKZGdnQ6vVYs6cOdi6dWuXcwsLC/HjH/8Yd999N/R6PR566KFuJRZ+vx8PPPAAxo8fD5VKhcmTJ+MXv/hFl+vce++9uOGGG/Czn/0MOTk5yMjIwKOPPgqv1xs6x+124+mnn0Z+fj4UCgWKi4uxdu3a0OvHjh3D8uXLodVqkZ2djbvuugvNzc0J/tYYhmGYwYRjE8MMDiyqGGaQuPXWW9HS0oLt27eHjrW2tmLTpk1YtWoV7HY7rrvuOmzbtg0HDx7EsmXLcP3116OmpqbLdX72s59h5syZOHjwIJ577rlu9wkEAsjLy8P777+PEydO4Pnnn8e///u/489//nOX87Zv347Kykps374d7777LtavX4/169eHXr/77rvxv//7v3jjjTdQUVGBt99+G1qtFgBgsVhwzTXXoLS0FOXl5di0aRMaGxtx2223JfAbYxiGYQYbjk0MM0gIDMMMGitXrhTuv//+0PO3335byM3NFfx+f9TzL7nkEuHNN98MPR83bpxwww03dDmnqqpKACAcPHiwx/s++uijws033xx6fs899wjjxo0TfD5f6Nitt94qfPOb3xQEQRBOnTolABC2bNkS9Xo//vGPhWuvvbbLsdraWgGAcOrUqR7HwTAMwww/ODYxTOLhTBXDDCKrVq3CBx98ALfbDQDYsGEDvvWtb0EsFsNut+Opp55CSUkJjEYjtFotKioquq0Gzp49u8/7/OpXv8Jll12GrKwsaLVavPPOO92uc8kll0AikYSe5+TkwGw2AwAOHToEiUSCRYsWRb3+4cOHsX37dmi12tBjypQpAIDKysrYvxCGYRgm6XBsYpjEw/YsDDOIXH/99RAEARs3bsScOXOwc+dO/PznPwcAPPXUU9iyZQt+9rOfobi4GCqVCrfccgs8Hk+Xa2g0ml7v8d577+Gpp57Cq6++ivnz50On0+H//b//h6+++qrLeTKZrMtzkUgUqqlXqVS93sNut+P666/HK6+80u21nJycXt/LMAzDDC84NjFM4mFRxTCDiFKpxE033YQNGzbg7NmzmDx5MmbNmgUA2LVrF+69917ceOONACg4VFdXx32PXbt24YorrsAjjzwSOhbvCt306dMRCASwY8cOLFmypNvrs2bNwgcffIDCwkK2ymUYhklxODYxTOLh8j+GGWRWrVqFjRs34ne/+x1WrVoVOj5x4kR8+OGHOHToEA4fPow77rijmxtTLEycOBHl5eXYvHkzTp8+jeeeew779u2L6xqFhYW45557cP/99+Pjjz9GVVUVPv/889CG4kcffRStra24/fbbsW/fPlRWVmLz5s2477774Pf74x4zwzAMk1w4NjFMYmFRxTCDzDXXXIP09HScOnUKd9xxR+j4a6+9hrS0NFxxxRW4/vrrsXTp0tBKYTx85zvfwU033YRvfvObmDt3LlpaWrqsDMbKW2+9hVtuuQWPPPIIpkyZggcffBAdHR0AgNzcXOzatQt+vx/XXnstpk+fjtWrV8NoNEIs5mmEYRgm1eDYxDCJhZv/MgzDMAzDMAzDDACW8QzDMAzDMAzDMAOARRXDMAzDMAzDMMwAYFHFMAzDMAzDMAwzAFhUMQzDMAzDMAzDDAAWVQzDMAzDMAzDMAOARRXDMAzDMAzDMMwAYFHFMAzDMAzDMAwzAFhUMQzDMAzDMAzDDAAWVQzDMAzDMAzDMAOARRXDMAzDMAzDMMwAYFHFMAzDMAzDMAwzAP4/GOssN5Xj+EAAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
],
"source": [
"# plot training and test sets in two axes\n",
"fig, ax = plt.subplots(1, 2, figsize=(10, 4))\n",
"scatter_labeled_data(\n",
" X_train,\n",
" y_train,\n",
" labels=[\"genuine\", \"counterfeit\"],\n",
" ax=ax[0],\n",
" title=\"Training Set\",\n",
")\n",
"scatter_labeled_data(\n",
" X_test,\n",
" y_test,\n",
" labels=[\"genuine\", \"counterfeit\"],\n",
" ax=ax[1],\n",
" title=\"Test Set\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "242e1ea6-98fe-4414-ae2a-456ad1278252",
"metadata": {
"id": "242e1ea6-98fe-4414-ae2a-456ad1278252"
},
"source": [
"## Support vector machines (SVM)"
]
},
{
"cell_type": "markdown",
"id": "ff57181e-b224-4a40-8e04-26dd003b6c3a",
"metadata": {
"id": "ff57181e-b224-4a40-8e04-26dd003b6c3a"
},
"source": [
"### Linear SVM classifier\n",
"\n",
"A linear support vector machine (SVM) is a binary classification method that employs a linear equation to determine class assignment. The basic formula is expressed as:\n",
"\n",
"$$y^{pred} = \\text{sgn}\\ ( w^\\top x + b)$$\n",
"\n",
"where $x$ is a point $x\\in\\mathbb{R}^p$ in \"feature\" space. Here $w\\in \\mathbb{R}^p$ represents a set of coefficients, $w^\\top x$ is the dot product, and $b$ is a scalar coefficient. The hyperplane defined by $w$ and $b$ separates the feature space into two classes. Points on one side of the hyperplane are have a positive outcome (+1); while points on the other side have a negative outcome (-1).\n",
"\n",
"The following cell presents a simple Python implementation of a linear SVM. An instance of `LinearSVM` is defined with a coefficient vector $w$ and a scalar $b$. In this implementation, all data and parameters are provided as Pandas Series or DataFrame objects, and the Pandas `.dot()` function is used to compute the dot product."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "5620cb4c-7b31-47e7-b877-473e05a2a14c",
"metadata": {
"id": "5620cb4c-7b31-47e7-b877-473e05a2a14c"
},
"outputs": [],
"source": [
"# import required libraries\n",
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"\n",
"# Linear Support Vector Machine (SVM) class\n",
"class LinearSVM:\n",
" # Initialize the Linear SVM with weights and bias\n",
" def __init__(self, w, b):\n",
" \"\"\"\n",
" Args:\n",
" w (Pandas Series or dictionary): Weights of the SVM\n",
" b (float): Bias of the SVM\n",
" \"\"\"\n",
" self.w = pd.Series(w)\n",
" self.b = float(b)\n",
"\n",
" # Call method to compute the decision function\n",
" def __call__(self, X):\n",
" \"\"\"\n",
" Args:\n",
" X (pandas.DataFrame): Input data\n",
"\n",
" Returns:\n",
" numpy.array: Array of decision function values\n",
" \"\"\"\n",
" return np.sign(X.dot(self.w) + self.b)\n",
"\n",
" # Representation method for the Linear SVM class\n",
" def __repr__(self):\n",
" \"\"\"\n",
" Returns:\n",
" str: String representation of the Linear SVM\n",
" \"\"\"\n",
" return f\"LinearSvm(w = {self.w.to_dict()}, b = {self.b})\""
]
},
{
"cell_type": "markdown",
"id": "ceb989c9-4473-4164-b1d2-a3de56e148b9",
"metadata": {
"id": "ceb989c9-4473-4164-b1d2-a3de56e148b9"
},
"source": [
"A visual inspection of the banknote training set shows the two dimensional feature set can be approximately split along a vertical axis where \"variance\" is zero. Most of the positive outcomes are on the right of the axis, most of the negative outcomes on the left. Since $w$ is a vector normal to this surface, we choose\n",
"\n",
"$$\n",
"\\begin{align}\n",
" w & = \\begin{bmatrix} w_{variance} \\\\ w_{skewness} \\end{bmatrix} = \\begin{bmatrix} 1 \\\\ 0 \\end{bmatrix},\n",
" \\qquad b = 0\n",
"\\end{align}\n",
"$$\n",
"\n",
"The code cell below evaluates the accuracy of the linear SVM by calculating the **accuracy score**, which is the fraction of samples that were predicted accurately."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f515e9c0-4556-4cfd-8509-ae645dcedb61",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "f515e9c0-4556-4cfd-8509-ae645dcedb61",
"outputId": "d6c40b22-7c97-41f4-b90d-4680dc3fa5d2"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"LinearSvm(w = {'variance': 1, 'skewness': 0}, b = 0.0)\n",
"Accuracy = 86.9%\n"
]
}
],
"source": [
"# Visual estimaate of w and b for a linear classifier\n",
"w = pd.Series({\"variance\": 1, \"skewness\": 0})\n",
"b = 0\n",
"\n",
"# create an instance of LinearSVM\n",
"svm = LinearSVM(w, b)\n",
"print(svm)\n",
"\n",
"# predictions for the training set\n",
"y_pred = svm(X_test)\n",
"\n",
"# fraction of correct predictions\n",
"accuracy = sum(y_pred == y_test) / len(y_test)\n",
"print(f\"Accuracy = {100 * accuracy: 0.1f}%\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "308d9f7b-5d0e-48b5-8d6e-570463f2b440",
"metadata": {
"id": "308d9f7b-5d0e-48b5-8d6e-570463f2b440"
},
"outputs": [],
"source": [
"def scatter_comparison(X, y, y_pred):\n",
" \"\"\"\n",
" Creates scatter plots comparing actual and predicted outcomes for both training and test sets.\n",
"\n",
" Parameters:\n",
" X : DataFrame\n",
" Feature matrix as a DataFrame.\n",
" y : Series\n",
" Actual target vector as a Series.\n",
" y_pred : Series\n",
" Predicted target vector as a Series.\n",
"\n",
" Returns:\n",
" None\n",
" \"\"\"\n",
"\n",
" xmin, ymin = X.min()\n",
" xmax, ymax = X.max()\n",
" xlim = [xmin - 0.05 * (xmax - xmin), xmax + 0.05 * (xmax - xmin)]\n",
" ylim = [ymin - 0.05 * (ymax - ymin), ymax + 0.05 * (ymax - ymin)]\n",
"\n",
" # Plot training and test sets\n",
" labels = [\"genuine\", \"counterfeit\"]\n",
" fig, ax = plt.subplots(1, 2, figsize=(10, 4))\n",
" scatter_labeled_data(\n",
" X, y, labels, [\"g\", \"r\"], ax=ax[0], xlim=xlim, ylim=ylim, title=\"Actual\"\n",
" )\n",
" scatter_labeled_data(\n",
" X,\n",
" y_pred,\n",
" labels,\n",
" [\"c\", \"m\"],\n",
" ax=ax[1],\n",
" xlim=xlim,\n",
" ylim=ylim,\n",
" title=\"Prediction\",\n",
" )\n",
"\n",
" # Plot actual positives and actual negatives\n",
" fig, ax = plt.subplots(1, 2, figsize=(10, 4))\n",
" scatter_labeled_data(\n",
" X[y > 0],\n",
" y_pred[y > 0],\n",
" [\"true positive\", \"false negative\"],\n",
" [\"c\", \"m\"],\n",
" xlim=xlim,\n",
" ylim=ylim,\n",
" ax=ax[0],\n",
" title=\"Actual Positives\",\n",
" )\n",
" scatter_labeled_data(\n",
" X[y < 0],\n",
" y_pred[y < 0],\n",
" [\"false positive\", \"true negative\"],\n",
" [\"c\", \"m\"],\n",
" xlim=xlim,\n",
" ylim=ylim,\n",
" ax=ax[1],\n",
" title=\"Actual Negatives\",\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "5e138c04-fdfb-427a-b1f4-f65a930010f8",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 803
},
"id": "5e138c04-fdfb-427a-b1f4-f65a930010f8",
"outputId": "a58a2001-3cd9-436f-aa0a-328e4a61e1a2"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAGJCAYAAABinBm7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACx1klEQVR4nOzdeXib5ZXw/++zaLMsS96TYCchCyQQthC2EtakJTRlgNBStinQedu37ZQO0GXamSlL2l8pL1MaCjPQoS2UNjPAUJbSgAsBAoRCS8rSAgGSkMWGxI5jWZK1P8vvD1uqd8uybMvy+VwXV2tZep5bsqJb57nPfY5i27aNEEIIIYQQQoi8qJM9ACGEEEIIIYSYyiSoEkIIIYQQQogxkKBKCCGEEEIIIcZAgiohhBBCCCGEGAMJqoQQQgghhBBiDCSoEkIIIYQQQogxkKBKCCGEEEIIIcZAgiohhBBCCCGEGAMJqoQQQgghhBBiDCSoEqLIKIrCDTfcMNnDGOD000/n9NNPz+m+V1xxBXPnzh3X8QghhCi8Yp2DxsOmTZtQFIVNmzZN9lBECZCgSpS0//zP/0RRFE444YS8j/HRRx9xww038MYbbxRuYGO0a9cuFEXJ/qdpGrNnz+b888+fsHEW4+sihBDFZDrMQb/5zW8G/P6GG25AURTa29snYXQD/ed//if33nvvZA9DlDgJqkRJW79+PXPnzuVPf/oT27dvz+sYH330ETfeeGNRTWgZF198Mb/61a/4xS9+wSWXXMKzzz7LiSeeOC5jfeqpp3jqqaeyPw/3utx999289957BR+DEEJMJaU+BwGsXbsW27YnexjDGiqoOvXUU4nH45x66qkTPyhRciSoEiVr586d/OEPf+DWW2+ltraW9evXT/aQCm7p0qVcdtllXH755fzwhz/k17/+NclkkjvvvLPg53I6nTidzpzu63A4cLlcBR+DEEJMFdNhDjr66KP5y1/+wiOPPDLZQ8mLqqq43W5UVb4Oi7GTd5EoWevXr6eyspLVq1fz6U9/esgJrbOzk2uuuYa5c+ficrloaGjgc5/7HO3t7WzatInjjjsOgCuvvDKb7pC54jV37lyuuOKKAcfsv/8olUpx3XXXceyxx+L3+/F6vZxyyik899xzBX3OZ555JtA9mWf87//+L8ceeywej4eamhouu+wyPvzwwz6P27dvH1deeSUNDQ24XC5mzpzJueeey65duwZ9TiO9Lr33VKXTaaqqqrjyyisHjDccDuN2u/nGN76RvS2ZTHL99dezYMECXC4XjY2NfOtb3yKZTPZ57NNPP83y5csJBAKUl5dz6KGH8i//8i95vW5CCFFo02EOuuiiizjkkENyXq364x//yKpVq/D7/ZSVlXHaaafx0ksvDbjfpk2bWLZsGW63m/nz5/PTn/40m1LY2z333MOZZ55JXV0dLpeLww47bMBFxblz5/L222/z/PPPZ1+/3nNZ7z1VX/3qVykvLycWiw0Y08UXX8yMGTMwTTN725NPPskpp5yC1+vF5/OxevVq3n777T6Py2V+FaVBn+wBCDFe1q9fz5o1a3A6nVx88cXceeedvPrqq9kJCqCrq4tTTjmFrVu38vnPf56lS5fS3t7Ob3/7W1paWli8eDFr167luuuu44tf/CKnnHIKAB/72MdGNZZwOMzPfvYzLr74Yr7whS8QiUT4+c9/zllnncWf/vQnjj766II85x07dgBQXV0NwL333suVV17Jcccdx0033URrayu33XYbL730Eq+//jqBQACACy64gLfffpurrrqKuXPn0tbWxtNPP82ePXsGLTgxmtfF4XBw/vnn8/DDD/PTn/60z2rXo48+SjKZ5KKLLgLAsiz+7u/+js2bN/PFL36RxYsX89e//pUf//jHvP/++zz66KMAvP3223zqU5/iyCOPZO3atbhcLrZv3z7o5CyEEJNhOsxBmqbxb//2b3zuc5/jkUceYc2aNUPe99lnn+Xss8/m2GOP5frrr0dV1WxQ9OKLL3L88ccD8Prrr7Nq1SpmzpzJjTfeiGmarF27ltra2gHHvPPOOzn88MP5u7/7O3Rd5/HHH+crX/kKlmXxj//4jwCsW7eOq666ivLycv71X/8VgPr6+kHH+NnPfpb/+I//YMOGDXzmM5/J3h6LxXj88ce54oor0DQNgF/96ldcfvnlnHXWWdx8883EYjHuvPNOli9fzuuvv56dO0c7v4opzBaiBG3ZssUG7Kefftq2bdu2LMtuaGiw/+mf/qnP/a677jobsB9++OEBx7Asy7Zt23711VdtwL7nnnsG3GfOnDn25ZdfPuD20047zT7ttNOyPxuGYSeTyT73CQaDdn19vf35z3++z+2Aff311w/7/Hbu3GkD9o033mjv37/f3rdvn71p0yb7mGOOsQH7N7/5jZ1Kpey6ujp7yZIldjwezz72d7/7nQ3Y1113XXYcgH3LLbcMe87+z2m41+Xyyy+358yZk/3597//vQ3Yjz/+eJ/7ffKTn7TnzZuX/flXv/qVraqq/eKLL/a531133WUD9ksvvWTbtm3/+Mc/tgF7//79w45ZCCEmw3SZg2655RbbMAx74cKF9lFHHZUd8/XXX9/nM9qyLHvhwoX2WWedlb2Pbdt2LBazDz74YPvjH/949rZzzjnHLisrsz/88MPsbdu2bbN1Xbf7f22NxWIDxnbWWWf1mVds27YPP/zwPq9HxnPPPWcD9nPPPZcd50EHHWRfcMEFfe734IMP2oD9wgsv2LZt25FIxA4EAvYXvvCFPvfbt2+f7ff7s7fnOr+K0iDpf6IkrV+/nvr6es444wygu0TsZz/7We6///4+S/e/+c1vOOqoozj//PMHHKN/msFYaJqWXaGxLIuOjg4Mw2DZsmW89tpreR/3+uuvp7a2lhkzZnD66aezY8cObr75ZtasWcOWLVtoa2vjK1/5Cm63O/uY1atXs2jRIjZs2ACAx+PB6XSyadMmgsHg2J7oEM4880xqamp44IEHsrcFg0GefvppPvvZz2Zv+9///V8WL17MokWLaG9vz/6XSWvMpKpkVtgee+wxLMsalzELIUS+pssclDn2v/3bv/Hmm29mswn6e+ONN9i2bRuXXHIJBw4cyH62R6NRVqxYwQsvvIBlWZimycaNGznvvPOYNWtW9vELFizg7LPPHnBcj8eT/f+hUIj29nZOO+00PvjgA0Kh0Kifi6IofOYzn+GJJ56gq6sre/sDDzzAQQcdxPLly4Hu9PPOzk4uvvjiPnOVpmmccMIJ2blqIuZXUTwkqBIlxzRN7r//fs444wx27tzJ9u3b2b59OyeccAKtra0888wz2fvu2LGDJUuWTMi4fvnLX3LkkUfidruprq6mtraWDRs25PXBn/HFL36Rp59+mmeeeYY///nPtLW18a1vfQuA3bt3A3DooYcOeNyiRYuyv3e5XNx88808+eST1NfXc+qpp/L//t//Y9++fXmPqz9d17ngggt47LHHsnujHn74YdLpdJ+gatu2bbz99tvU1tb2+e+QQw4BoK2tDehO0Tj55JP5P//n/1BfX89FF13Egw8+KAGWEGLSTac5KOPSSy9lwYIFQ+6t2rZtGwCXX375gM/3n/3sZySTSUKhEG1tbcTjcRYsWDDgGIPd9tJLL7Fy5Uq8Xi+BQIDa2trs3tp8n9dnP/tZ4vE4v/3tb4HuFM0nnniCz3zmM9lAN/N8zjzzzAHP56mnnsrOVRMxv4riIXuqRMl59tln2bt3L/fffz/333//gN+vX7+eT3ziEwU511BXEk3TzOZdA/z617/miiuu4LzzzuOb3/wmdXV1aJrGTTfdlN0HlY+FCxeycuXKvB+fcfXVV3POOefw6KOP8vvf/57vfve73HTTTTz77LMcc8wxYz4+dG9o/ulPf8qTTz7Jeeedx4MPPsiiRYs46qijsvexLIsjjjiCW2+9ddBjNDY2At1X/1544QWee+45NmzYQFNTEw888ABnnnkmTz31VJ/XXgghJtJ0moMyMqtVV1xxBY899tiA32cueN1yyy1D7t8qLy8nkUjkfM4dO3awYsUKFi1axK233kpjYyNOp5MnnniCH//4x3lfZDvxxBOZO3cuDz74IJdccgmPP/448Xi8zwXAzLF/9atfMWPGjAHH0PW/fb2eiPlVFAcJqkTJWb9+PXV1dfzHf/zHgN89/PDDPPLII9x11114PB7mz5/PW2+9NezxhkvBqKyspLOzc8Dtu3fvZt68edmfH3roIebNm8fDDz/c53jXX399Ds8oP3PmzAHgvffey6bPZbz33nvZ32fMnz+fr3/963z9619n27ZtHH300fzoRz/i17/+9aDHH21qyqmnnsrMmTN54IEHWL58Oc8++2x203DvMbz55pusWLFixOOrqsqKFStYsWIFt956Kz/4wQ/413/9V5577rmCBJpCCJGP6ToHXXbZZXz/+9/nxhtv5O/+7u/6/G7+/PkAVFRUDPv5XFdXh9vtHrSnV//bHn/8cZLJJL/97W+ZPXt29vbBKhqOdr668MILue222wiHwzzwwAPMnTuXE088ccDzqaury2m+Ge38KqYmSf8TJSUej/Pwww/zqU99ik9/+tMD/vvqV79KJBLJLutfcMEFvPnmm4P22MikMHi9XoBBJ6758+fzyiuvkEqlsrf97ne/o7m5uc/9MlcMe6dF/PGPf+Tll18e2xMexrJly6irq+Ouu+7qU478ySefZOvWraxevRrormrU/+rg/Pnz8fl8A8qY9zbc6zIYVVX59Kc/zeOPP86vfvUrDMPoc+UPuieyDz/8kLvvvnvA4+PxONFoFICOjo4Bv89c/RxuzEIIMZ6m8xyUWa164403ss8v49hjj2X+/Pn8+7//e5+9Shn79+/PHmPlypU8+uijfPTRR9nfb9++nSeffHLE5xQKhbjnnnsGHN/r9eY8V0F3CmAymeSXv/wlTU1NXHjhhX1+f9ZZZ1FRUcEPfvAD0un0kM8n3/lVTE2yUiVKym9/+1sikciAq2QZJ554YrYJ42c/+1m++c1v8tBDD/GZz3yGz3/+8xx77LF0dHTw29/+lrvuuoujjjqK+fPnEwgEuOuuu/D5fHi9Xk444QQOPvhg/s//+T889NBDrFq1igsvvJAdO3bw61//OnsVK+NTn/oUDz/8MOeffz6rV69m586d3HXXXRx22GGDTjCF4HA4uPnmm7nyyis57bTTuPjii7Ml1efOncs111wDwPvvv8+KFSu48MILOeyww9B1nUceeYTW1tZsqfPBDPe6DOWzn/0st99+O9dffz1HHHEEixcv7vP7v//7v+fBBx/kS1/6Es899xwnn3wypmny7rvv8uCDD/L73/+eZcuWsXbtWl544QVWr17NnDlzaGtr4z//8z9paGjIbiQWQoiJNt3noEsvvZTvfe97vPHGG31uV1WVn/3sZ5x99tkcfvjhXHnllRx00EF8+OGHPPfcc1RUVPD4448DcMMNN/DUU09x8skn8+UvfxnTNLnjjjtYsmRJn+N+4hOfwOl0cs455/B//+//pauri7vvvpu6ujr27t3b5/zHHnssd955J9///vdZsGABdXV1AzI4elu6dCkLFizgX//1X0kmkwMuAFZUVHDnnXfy93//9yxdupSLLrqI2tpa9uzZw4YNGzj55JO544478p5fxRQ1maUHhSi0c845x3a73XY0Gh3yPldccYXtcDjs9vZ227Zt+8CBA/ZXv/pV+6CDDrKdTqfd0NBgX3755dnf27ZtP/bYY/Zhhx2WLenau7Ttj370I/uggw6yXS6XffLJJ9tbtmwZUM7Wsiz7Bz/4gT1nzhzb5XLZxxxzjP273/1uQOlx2x59OduRPPDAA/Yxxxxju1wuu6qqyr700kvtlpaW7O/b29vtf/zHf7QXLVpke71e2+/32yeccIL94IMP9jlO/+c03Osy2PPKvA6NjY02YH//+98fdLypVMq++eab7cMPP9x2uVx2ZWWlfeyxx9o33nijHQqFbNu27WeeecY+99xz7VmzZtlOp9OeNWuWffHFF9vvv//+iK+HEEKMF5mDbPuee+6xgUHbXrz++uv2mjVr7Orqatvlctlz5syxL7zwQvuZZ57pc79nnnnGPuaYY2yn02nPnz/f/tnPfmZ//etft91ud5/7/fa3v7WPPPJI2+1223PnzrVvvvlm+xe/+IUN2Dt37szeb9++ffbq1attn89nA9nXpn9J9d7+9V//1QbsBQsWDPk6PPfcc/ZZZ51l+/1+2+122/Pnz7evuOIKe8uWLbZt5z6/itKg2HYOLbCFEEIIIYSYJOeddx5vv/12tvKeEMVG9lQJIYQQQoiiEY/H+/y8bds2nnjiCU4//fTJGZAQOZCVKiGEEEIIUTRmzpzJFVdcwbx589i9ezd33nknyWSS119/nYULF0728IQYlBSqEEIIIYQQRWPVqlX8z//8D/v27cPlcnHSSSfxgx/8QAIqUdRkpUoIIYQQQgghxkD2VAkhhBBCCCHEGEhQJYQQQgghhBBjIHuq+rEsi48++gifz4eiKJM9HCGEmDZs2yYSiTBr1ixUVa75Zci8JIQQkyfXuUmCqn4++ugjGhsbJ3sYQggxbTU3N9PQ0DDZwygaMi8JIcTkG2lukqCqH5/PB3S/cBUVFZM8GiGEmD7C4TCNjY3Zz2HRTeYlIYSYPLnOTRJU9ZNJraioqJDJSwghJoGkuPUl85IQQky+keYmSVoXQgghhBBCiDGQoEoIIYQQQgghxkCCKiGEEEIIIYQYA9lTJYQQQgghSoJt2xiGgWmakz0UMUVomoau62PezytBlRBCCCGEmPJSqRR79+4lFotN9lDEFFNWVsbMmTNxOp15H0OCKiGEEEIIMaVZlsXOnTvRNI1Zs2bhdDqlkqgYkW3bpFIp9u/fz86dO1m4cGHezeclqBJCCCGEEFNaKpXCsiwaGxspKyub7OGIKcTj8eBwONi9ezepVAq3253XcSSoEqIXI2RghA30Ch3dL/88hBBCiKkk31UGMb0V4n0j3xqFAKykRcfGDiJbIphRE82r4Vvmo2plFapLPqCFEEIIIcTQ5NuiEEDHxg6CTUEUTcHd4EbRFIJNQTo2dkz20IQQQgghRJGToEpMe0bIILIlgqPegbPOiepWcdY5cdQ5iGyJYISMyR6iEEIIIUqQbdt88YtfpKqqCkVReOONN0Z8zK5du3K+b7E6/fTTufrqq4e9z7333ksgEJiQ8RSCBFVi2jPCBmbURK/omw2r+3XMqIkRlqBKCCGEEIXX1NTEvffey+9+9zv27t3LkiVLJntIE+Lhhx/me9/7XvbnuXPnsm7duj73+exnP8v7778/wSPLn+ypEtNSn4IUFTqaV8MIGzjdzj730bzagGBLCCGEEKIQduzYwcyZM/nYxz422UOZUFVVVSPex+Px4PF4JmA0hSErVWJasZIW7RvaaV7XTMvtLTSva6Zzcyfeo7ykW9OkWlNYCYtUa4p0WxrfMp9UARRCCCGmkZBh0JxIEDLGN1Pliiuu4KqrrmLPnj0oisLcuXOB7tWr5cuXEwgEqK6u5lOf+hQ7duwY8jjBYJBLL72U2tpaPB4PCxcu5J577sn+vrm5mQsvvJBAIEBVVRXnnnsuu3btGvJ4mzZtQlEUNmzYwJFHHonb7ebEE0/krbfe6nO/3/zmNxx++OG4XC7mzp3Lj370oz6//8///E8WLlyI2+2mvr6eT3/609nf9U7/O/3009m9ezfXXHMNiqJk+4v1Tv97//33URSFd999t885fvzjHzN//vzsz2+99RZnn3025eXl1NfX8/d///e0t7cP+VwLSYIqMa0MVZBCQaFyVSW2ZZNoSWBbNpWrKqlaOfKVFCGEEEJMfUnLYkN7O+uam7m9pYV1zc1saG8naVnjcr7bbruNtWvX0tDQwN69e3n11VcBiEajXHvttWzZsoVnnnkGVVU5//zzsYYYx3e/+13eeecdnnzySbZu3cqdd95JTU0NAOl0mrPOOgufz8eLL77ISy+9RHl5OatWrSKVSg07vm9+85v86Ec/4tVXX6W2tpZzzjmHdDoNwJ///GcuvPBCLrroIv76179yww038N3vfpd7770XgC1btvC1r32NtWvX8t5779HU1MSpp5466HkefvhhGhoaWLt2LXv37mXv3r0D7nPIIYewbNky1q9f3+f29evXc8kllwDQ2dnJmWeeyTHHHMOWLVtoamqitbWVCy+8cNjnWShyCV5MG/0LUgDd6X42dL3ZRePVjQSWB6RPlRBCCDENbezooCkYpN7hoMHtJmwYNAWDAKzuCVIKye/34/P50DSNGTNmZG+/4IIL+tzvF7/4BbW1tbzzzjuD7rnas2cPxxxzDMuWLQPIrngBPPDAA1iWxc9+9rPsCtA999xDIBBg06ZNfOITnxhyfNdffz0f//jHAfjlL39JQ0MDjzzyCBdeeCG33norK1as4Lvf/S7QHfS888473HLLLVxxxRXs2bMHr9fLpz71KXw+H3PmzOGYY44Z9DxVVVVomobP5+vzOvR36aWXcscdd2T3Yr3//vv8+c9/5te//jUAd9xxB8cccww/+MEP+rx2jY2NvP/++xxyyCFDHrsQZKVKTBu5FKTQ/TruRrcEVEIIIcQ0EjIMtkQi1Dsc1DmduFWVOqeTOoeDLZHIuKcC9rZt2zYuvvhi5s2bR0VFRTZI2rNnz6D3//KXv8z999/P0Ucfzbe+9S3+8Ic/ZH/35ptvsn37dnw+H+Xl5ZSXl1NVVUUikRg2pRDgpJNOyv7/qqoqDj30ULZu3QrA1q1bOfnkk/vc/+STT2bbtm2YpsnHP/5x5syZw7x58/j7v/971q9fTywWy+flyLrooovYtWsXr7zyCtC9SrV06VIWLVqUfa7PPfdc9nmWl5dnfzfScy0E+eYopo3xKkjRp+iFBGNCCCHElBM2DKKmSYPb3ed2v67TkkgQNgz8+sTM8eeccw5z5szh7rvvZtasWViWxZIlS4ZM1zv77LPZvXs3TzzxBE8//TQrVqzgH//xH/n3f/93urq6OPbYYwekzQHU1taO23Pw+Xy89tprbNq0iaeeeorrrruOG264gVdffTXvMukzZszgzDPP5L//+7858cQT+e///m++/OUvZ3/f1dXFOeecw8033zzgsTNnzsz3qeRMvgGKaUP36/iW+Qg2BcHu/tkIGaTb0lSuqhx1QGQlLTo2dhDZEsGMmmheDd8yH1Urq1BdsggshBBCTBUVuo5X0wgbBm7n3y68hgwDr6ZRMUEB1YEDB3jvvfe4++67OeWUUwDYvHnziI+rra3l8ssv5/LLL+eUU07hm9/8Jv/+7//O0qVLeeCBB6irq6OiomJUY3nllVeYPXs20F0M4/3332fx4sUALF68mJdeeqnP/V966SUOOeQQNE0DQNd1Vq5cycqVK7n++usJBAI8++yzrFmzZsC5nE4npmmOOKZLL72Ub33rW1x88cV88MEHXHTRRdnfLV26lN/85jfMnTsXfYL+Xr3JNz8xrVStrCpYQYqhil50bOwYh5ELIYQQYrz4dZ1lPh+t6TStqRQJy6I1laItnWaZzzdhq1SVlZVUV1fzX//1X2zfvp1nn32Wa6+9dtjHXHfddTz22GNs376dt99+m9/97nfZ4OfSSy+lpqaGc889lxdffJGdO3eyadMmvva1r9HS0jLscdeuXcszzzzDW2+9xRVXXEFNTQ3nnXceAF//+td55pln+N73vsf777/PL3/5S+644w6+8Y1vAPC73/2On/zkJ7zxxhvs3r2b++67D8uyOPTQQwc919y5c3nhhRf48MMPh63Wt2bNGiKRCF/+8pc544wzmDVrVvZ3//iP/0hHRwcXX3wxr776Kjt27OD3v/89V155ZU4B21hJUCWmFdWlUrO6hsarG2m4qoHGqxupWV0z6pWl/kUvVLeKs86Jo85BZEsEIyQNg4UQQoipZGVVFasqK7Fsm5ZEAsu2WVVZycoceioViqqq3H///fz5z39myZIlXHPNNdxyyy3DPsbpdPKd73yHI488klNPPRVN07j//vsBKCsr44UXXmD27NmsWbOGxYsX8w//8A8kEokRV65++MMf8k//9E8ce+yx7Nu3j8cffxxnzyre0qVLefDBB7n//vtZsmQJ1113HWvXruWKK64AIBAI8PDDD3PmmWeyePFi7rrrLv7nf/6Hww8/fNBzrV27ll27djF//vxh0xJ9Ph/nnHMOb775Jpdeemmf382aNYuXXnoJ0zT5xCc+wRFHHMHVV19NIBBAVcc/5FFs27bH/SxTSDgcxu/3EwqFRr1MKqaPRHOClttbcDe4Ud1/+4dqJSwSLQkarmrA3ege5ghCiP7k83dw8roIMbJEIsHOnTs5+OCDcbvHNv+GDIOwYVCh6xO2QlVMNm3axBlnnEEwGMx7/9NUM9z7J9fP4On3ThGiAMar6IUQQgghJpd/mgZTYmzkHSNEHgpd9EKIwWSultqAAtP2qqkQQghR7GR2FiJPmeIWkS0REi0JNK+Wd9ELIXpLWhYbOzp4JRLhna4uOgyDKl3nMK+XEysqWFlVhWsC8sOFEEJMP6effjqyO2j0JKgSIk+ZoheB5QHpUyUKamNHB03BIJ3pNG2GgVNR2G8Y7Ewk6OypYLS6pmaSRymEEEKIDLnUKcQY6X4dd6NbAipRECHDYEskgl/T6OxZoZrpdBLQNEKGQYWmsSUSIWRIhUkhhBCiWEhQJUQejJBBojlR0NLp43FMMfWEDYOoaeJQFFKWhacnzc+jqqRsG6eiEDVNwhJUCSGEEEVDLq0LMQpW0qJjYweRLRHMqInm1fAt81G1smrUva6gO5BK7U8ReS1CbGusIMcUU1uFruPVNNK2jVNViVsWPk0jblk4FYWUbePVNCqkYIUQQghRNGRWFmIUOjZ2EGwK4qh34G5wY4SN7gqAQM3q3Pe49A7Ouv7SRaolhWehB99SH2bMzOuYojT4dZ1lPh9NwSABXWdXMkmXaZK2bWa7XIRNk1WVlVIFUAghhCgichlciBwZIYPIlgiOegfOOieqW8VZ58RR5yCyJTKqtL1McGanbayYhVaukfwwSfyDeN7HFKVjZVUVqyormevxUKfrWLZNra5zsNvNqspKVlZJhUkhhBCimMilTiFyZIQNzKiJu6Fvp23dr5NoSXRXAMyhWEXv4EzRFWzLxlHrwIyZJHYn8Cz0jPqYorS4VJXVNTUsDwSkT5UQQohp7YorrqCzs5NHH310socyLJmdhciRXqGjeTWMsIHT7czeboQMNK+GXpHbP6c+wZkNqlPFiluoHhWz08SKW9hpe1THFKXJL0GUEEKUtNNPP52jjz6adevWTfZQJt2uXbs4+OCDef311zn66KOzt992221Tom+WpP8JkSPdr+Nb5iPdmibVmsJKWKRaU6Tb0viW+XJeUeodnKkeFfdcN2bYxGg3UFQFM2KO+pjFKmQYNCcSUv5bCCGEyJNt2xjTeB71+/0EAoHJHsaIJKgSYhSqVlZRuaoS27JJtCSwLZvKVZVUrcx9j0v/4MxzsAdngxOzy0QpU1CcyqiPWWySlsWG9nbWNTdze0sL65qb2dDeTtKyJntoRWm44HMqBKZTYYxCCJGriWpxcsUVV/D8889z2223oSgKiqKwa9cuNm3ahKIoPPnkkxx77LG4XC42b97MFVdcwXnnndfnGFdffTWnn3569mfLsrjppps4+OCD8Xg8HHXUUTz00EPDjmPu3Ln84Ac/4POf/zw+n4/Zs2fzX//1X33u09zczIUXXkggEKCqqopzzz2XXbt2ZX9vGAZf+9rXCAQCVFdX88///M9cfvnlfcbb1NTE8uXLs/f51Kc+xY4dO7K/P/jggwE45phjUBQl+7x6P+//+q//YtasWVj9vk+ce+65fP7zn8/+/Nhjj7F06VLcbjfz5s3jxhtvHPfAdGpfBhdigqkulZrVNQSWB7r3O1Xoea0mZQKmyJYIyX1JPAs81JxTQ/nScpy1zim/QrWxo4OmYJB6h4MGt5uwYdAU7K5ouLpGKhpmJC2LjR0dbIlEiJomXk1jmc+XLUQx1O9canFcDxtu/MUyRiGEyFWh26aM5LbbbuP9999nyZIlrF27FoDa2tpssPLtb3+bf//3f2fevHlUVlbmdMybbrqJX//619x1110sXLiQF154gcsuu4za2lpOO+20IR/3ox/9iO9973v8y7/8Cw899BBf/vKXOe200zj00ENJp9OcddZZnHTSSbz44ovous73v/99Vq1axV/+8hecTic333wz69ev55577mHx4sXcdtttPProo5xxxhnZc0SjUa699lqOPPJIurq6uO666zj//PN54403UFWVP/3pTxx//PFs3LiRww8/HKfTOWCcn/nMZ7jqqqt47rnnWLFiBQAdHR00NTXxxBNPAPDiiy/yuc99jp/85Ceccsop7Nixgy9+8YsAXH/99Tm9jvmYUrPeCy+8wDnnnMOsWbNQFGXAhjXbtrnuuuuYOXMmHo+HlStXsm3btskZrChpul/H3ejOO/jJBGeNVzfScFUDjVc3UndhHWULyqZ8QBUyDLZEItQ7HNQ5nbhVlTqnkzqHgy2RiKxm9JIJPjVFocHtRlMUmoJBNnZ0DPu7XI33ClIhxjjVybwkROnIVOZVNAV3gxtFUwg2BenYOD6faX6/H6fTSVlZGTNmzGDGjBlompb9/dq1a/n4xz/O/Pnzqcqh6msymeQHP/gBv/jFLzjrrLOYN28eV1xxBZdddhk//elPh33sJz/5Sb7yla+wYMEC/vmf/5mamhqee+45AB544AEsy+JnP/sZRxxxBIsXL+aee+5hz549bNq0CYDbb7+d73znO5x//vksWrSIO+64Y0DK3gUXXMCaNWtYsGABRx99NL/4xS/461//yjvvvAN0B5QA1dXVzJgxY9DnXFlZydlnn81///d/Z2976KGHqKmpyQZwN954I9/+9re5/PLLmTdvHh//+Mf53ve+N+JrMFZTKqiKRqMcddRR/Md//Megv/9//+//8ZOf/IS77rqLP/7xj3i9Xs466ywSicQEj1SI3Iw1OCtGYcMgapoDmtP6dZ2oaRKWoAoYPvjcHAqxORzOOzCdiPRLCZ67ybwkRGkoZNuUQlm2bNmo7r99+3ZisRgf//jHKS8vz/5333339UmzG8yRRx6Z/f+KojBjxgza2toAePPNN9m+fTs+ny97zKqqKhKJBDt27CAUCtHa2srxxx+fPYamaRx77LF9zrFt2zYuvvhi5s2bR0VFBXPnzgVgz549o3qel156Kb/5zW9IJpMArF+/nosuugi1J0PizTffZO3atX1egy984Qvs3buXWCw2qnONxpT6Jnf22Wdz9tlnD/o727ZZt24d//Zv/8a5554LwH333Ud9fT2PPvooF1100UQOVYhpq0LX8WoaYcPA3WvpPmQYeDVtQLBVikKGQdgwhi2Bngk+G9x9S/T7dZ0PEwlQFGZ6vQN+15JIEDaMYasCTkT65XDjz2WMpULmJSFKQ6HaphSSt98coKrqgCp46XQ6+/+7uroA2LBhAwcddFCf+7lcrmHP5XA4+vysKEp231JXVxfHHnss69evH/C4zOpSLs455xzmzJnD3Xffnd0XtWTJElKpVM7HyBzHtm02bNjAcccdx4svvsiPf/zj7O+7urq48cYbWbNmzYDHuvvNWYVUMjPezp072bdvHytXrsze5vf7OeGEE3j55ZeHnLySyWQ20gUIh8PjPlYhSplf11nm89EUDGL3/BwyDNrSaVZVVpb0F+3R7DEaLvisdDhAUfIKTPuvIAG4nU5sYEskwvJAoCB/AwmeRybzkhBTR6HapoyW0+nENM2c7ltbW8tbb73V57Y33ngjGxAddthhuFwu9uzZM+z+qdFaunQpDzzwAHV1dVRUVAx6n/r6el599VVOPfVUAEzT5LXXXsuWRj9w4ADvvfced999N6eccgoAmzdv7nOMzB6qkV4Pt9vNmjVrWL9+Pdu3b+fQQw9l6dKlfcb73nvvsWDBgryeb76mVPrfcPbt2wd0/1F7q6+vz/5uMDfddBN+vz/7X2Nj47iOU4hS1Xv/zsqqKlZVVmLZNi2JBJZts6qyMluAoVSNZo9RJvhsTadpTaVIWBatqRRt6TTL/X6WV1QM+rtlPt+wQdFEpV8ON/6RxjhdyLwkxNRRqLYpozV37lz++Mc/smvXLtrb2wdUtevtzDPPZMuWLdx3331s27aN66+/vk+Q5fP5+MY3vsE111zDL3/5S3bs2MFrr73G7bffzi9/+cu8x3jppZdSU1PDueeey4svvsjOnTvZtGkTX/va12hpaQHgqquu4qabbuKxxx7jvffe45/+6Z8IBoMoigJ074Wqrq7mv/7rv9i+fTvPPvss1157bZ/z1NXV4fF4aGpqorW1lVAoNOyYNmzYwC9+8QsuvfTSPr+77rrruO+++7jxxht5++232bp1K/fffz//9m//lvdrkIuSCary9Z3vfIdQKJT9r7m5ebKHJMSIJqrcay4G27+zsaODlVVVXN3YyFUNDVzd2MjqmpqSrgg31B6jCk3jmWCQPYPsoRku+Mw3MO29gtR/fIVeQZquwfN4k3lJiMlRiLYpo/WNb3wDTdM47LDDqK2tHXZ/0VlnncV3v/tdvvWtb3HccccRiUT43Oc+1+c+3/ve9/jud7/LTTfdxOLFi1m1ahUbNmzIlivPR1lZGS+88AKzZ89mzZo1LF68mH/4h38gkUhkV67++Z//mYsvvpjPfe5znHTSSZSXl3PWWWdl0+1UVeX+++/nz3/+M0uWLOGaa67hlltu6XMeXdf5yU9+wk9/+lNmzZqVTZsezJlnnklVVRXvvfcel1xyyYDX6Xe/+x1PPfUUxx13HCeeeCI//vGPmTNnTt6vQS4Ueyq0KB6Eoig88sgj2br1H3zwAfPnzx/Qhfm0007j6KOP5rbbbsvpuOFwGL/fTygUGnKJU4jJMpHlXnPZFwSwob09u3+nQtcJGwatPal+q2tqcj7OVNecSHB7SwsNbjduVSVtWWyNxdiRSHAglWJ5IMCKQGDQVMDhXqN8Xr/M36TO4RiQfjkeJe0L9Tee6p+/Mi8JMXkSiQQ7d+7k4IMPHvO+GSNkjKltiujul7V48WIuvPBCvve97032cEY03Psn18/gknmnHHzwwcyYMYNnnnkmO3mFw2H++Mc/8uUvf3lyBydEgWTKvTrqHbgb3Bhhg2BTdwGCmtX5f1nuPYGYPjXnfUHD7d95JRwmallsjUanRQ+j/nuMtsZivB2NoioK1Q4HZao6ZLEI/zDByHC/G0pmpWhLJEJLIoFX08Z1BSmfMU4HMi8JMTXpfgmmRmv37t089dRTnHbaaSSTSe644w527tw5YBWplE2pd0xXVxfbt2/P/rxz507eeOMNqqqqmD17NldffTXf//73WbhwIQcffDDf/e53mTVr1oDu00JMRf3LvQLdm2nt7ibCgeWBUU8Cg618vbfQ5qmjDGq9zhErxw1XAe75YJCWZJL5Hs+ENQCezFWx3gU64pbFjkQCVVGwgAUeD7PdblpTqYIWixiKS1VZXVPD8kBgWqwSTiaZl4QQoju979577+Ub3/gGtm2zZMkSNm7cyOLFiyd7aBNmSs2yW7Zs6dOZObPB7fLLL+fee+/lW9/6FtFolC9+8Yt0dnayfPlympqaxrV8ohATZTzKvfZf+eoKpmj/fZCFCQ/OVeXA8JXjhqoA15pK0WEYLPZ6x7UCXcZoqu7lI9dgLbMS9EwwyIFUimqHgwUeD4t6yuIWqtx4ruORFaTxJ/OSEEJAY2MjL7300mQPY1JNqdn29NNPH1CfvzdFUVi7di1r166dwFEJMTHGWu61f474YCtfZo1GtBNq3jbo+piJVdHd2X2oYGCo8ukfJpNU6Xo2oOp9//HoYTRefZlGG6xlVoiOKC8HRaFMVZnd68vzWItFjHfwKEZP5iUhhBAwxYIqIaazTLnXYFMQbLKBUbotTeWqyiFXqYYqblF2aNmAlS+3qqFW6Bj7DNSIlQ2qhgsGBtu/88mqKv4ai01ID6Px7MuUb7A22+1mRSBAUzBIaypVsF5dE9HUV5Qe2XQvppMpWn9NTLJCvG/k01WIKSRT1jWyJUKiJYHm1UYs9zpUcQsrag1Y+fJoKnNSDra5DEIuk3JLGzEYGGr/jrenAt14NwAebl/XWFbFxhqsFbpYxEQ19RWlYyKrhQox2TINcGOxGB6PZ5JHI6aaWCwG/O19lA+ZgYWYQlSXSs3qGgLLAzldeR6uuEV0a5SyxWWEXwz3WflqjOhYH6vkjz5lVMFA//07uQYVYy0uMdS+rrGuio01WOudCrg3mWSmy9UnFXCixyOmn+Gqheb6GSLEVKFpGoFAgLa2NqC7t1Km8awQQ7Ftm1gsRltbG4FAAE3T8j6WfJIKMQXlWu51pOIWvqU+NK/WZ+Wr9uwqDl1ZxUmaNaZgZ7gKdCHDYH8qxWuRCFtjsTHtDxpqX9dYV8VGG6z1Dw6TlsVj7e28Eg5j2DbVPePMd//TeAWPojQNdUHFTtu0rm8lvDmMZVqyeiVKyowZMwCygZUQuQoEAtn3T75kFhZiihtuv8RIxS2ctU7KFpQNetXaj1qQlY/eK1i9Cy38pauLllSKhR4PS30+YqaZ9/6g8ejLlGuwNljxiKO8XrZ0dfF0MIgTKNd1gg4Hrel0Xs9vNOPJ13Rp0jxdDHVBJbU3RezdGK5ZLtyzC9frTohioCgKM2fOpK6ujnTP560QI3E4HGNaocqQmVOMG9kcPb5y2S+Ra3GLiWp0mCm04Nc0YpZFuabxYTJJQNc5srw87/1B49WXKZdgbbDiEXd99BEfJJM0ulzUOhzELYuWVIqGPJ/faMYzWlJRsDQNdkHFjJvEtsfQAzruRjeqWx1zrzshipGmaQX5kizEaMinpyg42Rw9MYbbL9H7inPFcRWk96eJvxcnEcmtuMV46F1oQVcULNvGr2l0mSY74nEWejxj3h9U6L5MIwVrgxWPsDWNsGmSME38uo6uKPh6Jvf2dJpKhyPv5zcewaNUFCxNg11QSTYnMTtNyo8rR/Wofe6bb687IYQQ3eTTUxRcrl/2Rf6GK0CRueKsutU+wa2iKZQdVkbNJ2uyj5lIvQstpCyLoGGwO5lEAVKWRZ3TyVy3u2D7gwqZzjZUsDZY8Yi4ZeFQVXRFocswKOsJtjyqyoFUCl1Rxvz8ChU8SkXB0ta/WqjiUPAs9uCa6epzv1x73QkhhBiafIKKgsrly75cCR27kQpQGGGDrs1dA4Lb6J+jOGudkxLc9i600JpKkbAskpaFQ1HQVJW3o1E60mm+NGvWmL7IT2Q622DFIzyqigaUaxpx2yZsGHhUlXbDIA2cWFExboHKaAPJlkSCvckkB/crPywVBUvDYNVCOzd3EmwKomhKzr3uhBBCjEw+QUVB5fJlXybusRupAEUmiC2m4DZTaOGxAwfYFotxkMtFRzpNWzpNQFXxaRoVmsZxFRVjOs9Q6WxRy+KkioqCFmIYrHhEuCeQc6sqVQ4HBwyDjlSKtG1zdmUl545DSl0mkNwcChHsSTFc7vcPCCQzQZdLVXk1HGZzOMxfo1Hej8c5zOtlcVkZDlWVioIlpveeyXx63QkhhBiZzJiioEb6si/pJYUxUgEKFIYMbmM7YkTfjeJd5J3wwGplVRX702ne7upCVRTqnE6O8vmocziwgKhhkLSsvI8/WDqb5nDwXizGnR9+yEudnVQ5HEOuXOWTMjhY8Yh/mDEDFIU3u7qoTqfRFIUTKyo4t7Z2XIo/PNnezs/37SNqmiiKgh2P81Y0StqyOK+ubsDqXUsyScQ0OdbnY4nXyxvRKFsiEVK2TaPLNS5NmkVxGG2vOyGEELmRT1JRULlWmxNjN9wVZythDQhurbRF+E9hkh8mabPb0Kv1CS8g4lJVzq+t5b1YDMO2meF0sjOR4M2uLoKGgUNReDkcps7pzCv4GGyP07vRKLuSSbBtqhwONEUZUIhhLCmDwxWPOKOyctzLlIcMgwf372d/Ok29w4FbVUlYFq3pNA/u388ZVVVs7uzMrt5VOxzdz9OyOJBOc6TPh1NVeSsa5e2uLqp1fcwVBUXxm6iKn0IIMV3IJ6ooOEkvmRjDXXFWXeqA4Db8pzDRv0TxHuXFs8AzaQVE/LrOcr+fpmCQ17u62JNM4lAUFEWhweXixVAIb0+gMlr99zjFLYtdiQRORaFM0wjoOh5NG1CIoRAV8AYrHlHoaoSDaUkk2J1IUO1w4Os5l0NVMWyb3YkEW7u6+qzedaTTOFQVv6qytScN84jychrdbj6Ix7lsxgwO93rHdcxCCCFEqZGgShScpJdMrKGuOPcObmM7YiQ/TOI9yov/RD+KQ5nUPVYrq6qImiZ3fvQRtmVR5nBwmNvNIq+XjnR61JXneqft9d7jZNk2wXQaVVWZ43bj6Slt3rsQAzC1K+ApyrC3d1lWn9U7HQim0wQNg7RtA7C4rIwqh4OZTicNLtfgxxNCCCHEkIr4m4KY6iS9ZHL1Dm6j70Zps9vwLPCgOBSsuIUZN1FdKqn21IQXEHGpKif5/WwOh6nWdQIOB56eNLvRVJ4brEDDCT4fKwIB3uzq4oBh4FBVDnK5WFxWln1c70IMg6UMjnYck6nB5WKu2832RAJdUfCoKnHLojWVosHlYobT2Wf1blcySdyyiFsWHlVFVRT+FIlQ53CMufKiENL0XQgxXcknnhAlTvfr3UUpqnXSHWnSB9IkdiWwUhZ2ysY5yzkpTZkrdJ1qXUfrCQQyRlN5bqgCDf8wYwZXNzYSNgxeDoV4MRymoyc4ChnGgEIM/cuij3Yck8mv63ymro6f791L2DAI0b0SFbcscDr5zf792LbNRz237UgkqHE4AChTVRTA21N9cayVF8X0JU3fhRDTXXF/WxBCFESmgMhHd31Eui2No8aBoiuYIRMzbBJ+NTzhvasGK0c+WMAzlFwKNDS63d0pfYrCK+Ew+9PpAYUYxjqOYnB2dTUORWFzOMwbkQgRVeX48nKW+nzETJOP0mnqesq9H0ilqHY4OD0QYI7bjWHbKMCBdHpMlRfF9CZN34UQ013xf1sQQhRExXEVtK5vxYya2IaN4lTwLfPhqHZMWu+qwcqR51p5bqQCDS2JBO6yMjZ2dLA1GsW0LHRFYXFZ2YCqfmMZRzHIVCA8orycdc3NHKtpzO5JZyzvKcxh2TafnzkTFIUyVc3+HqA1lZoSq3KiOBWq6bukDgohpjL51BJimrCSFq4GF+VHlYMNqkdF82hYCaugjZlH0+tpuHLkIxqhQAOK0qeq3/yyMsKGwYvhMF5N61PVb0zjmAC5vqYKoPf0/+otsz/Mr+usCARoCgZpTaWm5KqcKD5jbfouqYNCiFIgM6gQ00SmMbOdtrNXk6FwjZnH0uspn9LjQxVoaE+nWeB249O0UVf1y2Uc+TQIzvd4o31N+5eU732OzErUVF+VE8VnrE3fJXVQCFEKJKgSYpoY78bMhej1NBr9CzR0ARZQ53Dwmbo6FChoVb+xBI0ZvQMot6qOeLzRvqa57g8r5lU5MfWM5bOlUKmDQggx2eSTSohpZLwaM4cMY1J6PfUu0JApqb68ooKVVVUkLKugVf3GEjQOFpDZtk2bYTDL6Rz0ePm+prmuRE1EY2IxfeT72TLW1EEhhCgW8kklxDQyXo2ZJ6vX03B7oVyqWrCqfnsSCZ7p7MSvaXkFjf0DsrZUiqeDQRZ6PBxdXj7o8fJ9TYt9f5goTfl+tow1dVAIIYqFfFoJMQ0VujFzLnt5xtNQqy65rtr039eU+dmlqrwaDvNMMMjmUIhqh4OQYbDI68WhKDkFjYOtOJVrGg7ggGEQN008mpZ9HjtiMd6NRpnpco3pNZWVKDEZRvvZMt5pyUIIMVHk00oIMWbF2utppFWb/ml5LlVFA0xFIWmafJhMEjZNDvd6qXY6SVkWb8ViABxRXp5TgDPYipNH0/DpOl2GQdyy8GgaacviT+EwHyaT2G1tVOt6tmlvMb2mQhTaeKUlCyHERJJZWQhREMVcVW6oVZv+aXl/Cof5SzTKUV4vR5SXsyUSIWZZdJkm891u3o5GURWF7fF4d5BjmiMGOIOt4nlUlRqHgw7DIGKalGlan3Mv8HgIG0a2aa9l20X3morpZTx7SPVOHUy0JFBQcDW4sBIWqbaU9K0SQkwJ8iklhCiIqbaXp39aXtw0CRkGtQ4HnYZBzDRxKArVus7uRILT/H4AdiQSHEiliFlWTgHOUKt4Pl3n7MpKFEVhRyzGh8kkR3m9nOj341CU7B4ry7a5cuZMFCj611SUnonqIWUlLTo3dxLZEsEIGaT2pUABV70LzS99q4QQxU9mZyFEQeW6l6fQ/Z5Gq39aXtyySNk2gZ60PACnqmIBKdvGAI4sL8ev68RNk6sbGpjdr4jEUAZbxVtdVZWtUvhuNIrd1sYCjwdHr6bGmT1bCtCY47mEKKSJ6iHV+zxWl0XigwTYoJVr6FW69K0SQhQ9CaqEEBOqEP2eCqF/Wp5HVXEqCp2GQZmqUulwMNft5k+RCF5VRQFaUynCPSl/uQZUMHKVwkVeL9W6PmmFPoQYzET1kOp9Hs2nkdybxFHvQEEh9VGK8sPKpW+VEKLoyTq6EGJCZfYxaYpCg9uNpig0BYNs7OiY0HFk0vJa02laUymUnmp++9NpArqOAlQ5HNQ5HMxwOjmQTmPZ9qj2NIUMg+ZEglDPypdf12l0uweszPUfS8KyaE2laEunWebzScqfmBSZHlL9y5rrfh0zamKEjYKfx4pb2Ckb1a2ielSslIUZNwt+TiGEKDSZqYUQE2aymgQPpX9a3sFuNwvcbkxFyabpfWnWLI6rqCBpWTmnKuazGjdcoY/JTpUU09NE9ZDqfR7Np6E4FayEhYKC6lTRPJr0rRJCFD35dBJCTJjJahI8lKHS8sYaxPSvKhg2DJqC3XtCVtcMvickM5YjysvZm0wy0+Wi3uksilRJMT1NVA+p/udxzXTR9ZcusMF7tBcjLH2rhBDFTz6dhBATZrKbBA+lf3GNsTTOzXc1brDVLdu2aTMMZjmdOQdnQhTSRPWQ6n0etVzFPc8NCuheHduypW+VEKLoSVAlhBh3vVd+irFJcCHluxrXf3WrLZXi6WCQhR4PR5eXA5ObKimmp949pMarT9VQ5wHG9ZyDGc9+XEKI0iafGEKIcTPY6stRXi8rAgHe7OoqyYa2+azGDba6Va5pOIADhkHcNPFoGjB5qZJietP9ExNk9D/PRAU2E9WPSwhRumRGFkKMm8H2Fj0TCrGqspKrGxuLsvjCWPdTDdXsd7jVuMFWtzyahlvTOJBKETSMbFA12amSQpSiierHJYQoXTIrCyHGRS57i4qpoW0h+2cNV8lvMP1Xt9KWxbZYjP09ZdWf7exkUVkZM51OOgyjZFIlhSgGE9WPSwhR2uRTQgiRl5FWdIqt0t9I8qnYN5Thmv0Opv/qVnMyyV+6unCrKkeXl5O0LLaEwywqK+PS+vqSSZUUohhk+mS5G/p+Vul+nURLonuPlQRVQogRyKeEEGJUcl3RKdZKf4MZr/5Zo6kimAmUNodCvN3VRZmqcrjXyxy3my7T5EA6TbmuszwQkHLqQhTQRPXjEkKUNvmkEEKMSq4rOvnsLZosxbCqllndmuvxEDQMGl0u9qVSPN/ZScqyUBWFMlVlfypVVK+dEFPdRPXjEkKUNrncKYTIWf8VHbeqUud0UudwsCUSIWQYfe6/sqqKVZWVWLZNSyKBZdsTVukvZBg0JxIDxjSY3qtq/Y8x0atqDS4XM51O3o3FeCsWQ1UUKh0OUrZNSyrFa5HIhI1FiOmiamUVlasqsS2bREtCemMJIUZNLr8IIXI22hWd0e4tKoR8Ck4U06qaX9dZ7PXyREcH5ZqGW1GImSaWbbPQ42FrLEaoyPajCTHVDdWPywgZpNpS0rdKCDGiklqpuuGGG1AUpc9/ixYtmuxhCVEy8l3R8es6jW73hAQCmfRETVFocLvRFIWmYJCNHR3DPm4yV9X6W1peToPTiVNV6TRNbOBwr5elPh9R0xzw+heL0awOTicyN00dul/H3ehGdau0b2ineV0zLbe30LyumfYN7VhJa7KHKIQoUiV32eXwww9n48aN2Z91uZorRMEU04rOYMZScGIyVtWGUut0cmR5OWnbplzT8KgqHk2jNZUquiIfUNhy9KVK5qbiYoSMPitS/UnfquI31p6CQhRayb0LdV1nxowZkz0MIUrWaHswTaRCFJwYTcW+8dI7eHWpKmWKQmtPz6piCF77K2Q5+lIlc1NxsJIWHRs7iGyJYEZNNK+Gb5mPqpVVqK7uCwDSt6q4jfYijgRfYqKU3Ltr27ZtzJo1C7fbzUknncRNN93E7Nmzh7x/MpkkmUxmfw6HwxMxTCGmrGJa0elvKpVxH0kxB6+9jVc5+lIzmrlJ5qXxk8sKlPStKm65XsSRFXQx0UrqXXXCCSdw77330tTUxJ133snOnTs55ZRTiAxTLeumm27C7/dn/2tsbJzAEQsxdU3kPqlcZVZ4WtNpWlMpEpaVXeFZ5vMV1VhHkgler25s5KqGBq5ubGR1TU3RfRnIrA72D1j9ul7U+78m0mjnJpmXxkf/FSjVreKsc+KocxDZEsEIdb9Xe/et6v946Vs1uUZTgTbf/bVC5Euxbdue7EGMl87OTubMmcOtt97KP/zDPwx6n8GuCDY2NhIKhaioqJiooQpR1CYifaJQ55CrkxMrZBisa25GU5TsShVAayqFZdtc3diY898zHA7j9/tL/vN3pLlJ5qXxkWhO0HJ7C+6G7kIUGVbCItGSoOGqBtyN3atT7Rvau1e06hwD+lbJnqrJ05xIcHtLCw1uN+5en+cJy6IlkeCqhgYa3e6Cfi4JkevcVNLvqEAgwCGHHML27duHvI/L5cLlck3gqISYOiYiQCn0OYo5PbEUFXvxkmI00twk89L46L0C5XT/7Yv2YCtQmf5UkS0REi0JNK8mfauKQK4p3sXQ0F1MPyV92barq4sdO3Ywc+bMyR6KEFPSRKRP5HOOXEp3F2N6YqkqpnL0U4HMTZND9+v4lvlIt6ZJtaawEhap1hTptjS+Zb4++6Qyfasar26k4aoGGq9upGZ1TbaYhZgcuaZ4F1NDdzF9lNS76hvf+AbnnHMOc+bM4aOPPuL6669H0zQuvvjiyR6aEFPORBQgGO05SiW1r9SqUcnq4PBkbioeo12B0v3S9LfY5FLER1bQxWQoqXdVS0sLF198MQcOHKC2tpbly5fzyiuvUFtbO9lDE2LKmYj0idGeY6qX7i6VoHAoxVCOvhjJ3FQ8MitQgeWBYftUieKV60WcqVJBVZSOkvokuf/++yd7CEKUjIkoTz6ac5RC6e6pHhSK/MjcVHxkBWrqG+kizlhW0HtnEwDjtgJfalkL0538BYUQg5qI9InRnGOqbzyeCkGhTPBCdDNChqxklYjRrKD3ziYIGQb7UikUoN7lwl/AzIJSz1qYruSTQggxpIlIn8j1HFO9sW8xB4UywQvRzUpadGzsILIlghk10bwavmU+qlZWSZGKaaB3NkGXZfFBIoENlGsaVbpesMwCyVooTcX9LUQIMakmogBBrueY6huPizkolAleiG4dGzu6+1PVO3A3uDHCBsGm7n8L0p+qtPXOJvBpGnuTSeodDlAUPkqlOKy8vCCZBVMha0HkRy67CCFGNBHlyXM5x1hLd+dSin28jFQKGJiUsfWf4N2qSp3TSZ3DkU2BEWI6MEIGoc0hFLeC5tNQ3SrOOieOOgeRLRGMkPxbmGpG85mfySao0HXilkXKtnGrKh5VJWVZxE0Tv64TNc0BpdpHo/d5eivEscXkklBYCFGUBtvfk+/KWbGktw2W6rgiECBtWaxrbp6UsRVzWqIQE8VKWux/ZD+dL3SiuTVi78Zwz3FTtrgM3a+TaEl077GS/VVTQj6f+b2zCXyahlNRSFgWKApOVcWjabSlUhiAPYaxFXPWghgb+csJIYpKLpPhaEt3b+zo4LEDB3ArCuWaRtq2JyW9bbCgcHNnJ02dnZOWeicTvBDdaX/hP4RRXSqqWwUVom9HAXDWO9G8GnrF5PxbkKIZo5dPSnP/FPOZLhd/6erCBo4sK2NLOMz78TgNTif37N2b98WvqZ7KLoYmfzkhRFEp9P6etlSKX7W28k40StQ0AahxOJjv8fDKJOWvZ4LCYsitlwleTGdGyCDRkiC8OYxrtgvFpRB7K4ZWoaGWqUTfiWKnbKrPrZ7wgKbQRTMmIjgzQgbJliQ2Nu4G96QEgWP5XO2dTVCuqsxzu1GA/YbB3lSKhR4PS30+YqY5pnlJemiVJpkthRBFYzyCjCfa23k1HMa0bXw9j21Lp+kyTZKWNanpbcWSeicTvJhuegcsyb1Jon+N4l3ipfywcgASuxJYCQsraeH7WHcgM5JCBy0jFc3I9XwTUdHQSlq0PdRG2/+2kd6bBh3cc9zUXlhLzdk1E1o5MdfP1VxTzEOGwbrmZpZ4vczuOWa5po1pXpqIIlBi4slfUAhRFEKGwbvRKAcMgwUeT5/f5RtkhAyDN6NRLMCtqpRpGgCqohA2DNoMY0y58SOde6TJslhS7wab4KF7lU8me1GKegcsnoM9xN+PE30jiupUKT+inLIFZSSaE6gOlbrz64YNCgoRtPQPkIyQQWRLBEe9A2dd92eD0+0EG8KvhLGiFtGt0SHP1/t4nZs7865omEvgZiUtdt20i7b/acMKW6g+Fb1CJ7Ejwb6f70N1qASWByYshXGkz1WXqrKhvT3nFPOwYaArSvZCX0YhLn6NNpVdFDf5SwohJlXvPVQd6TR/jUYJptOc6PfjUBQg/yAjbBjETROfphG3LBKWhUNRsGybtG1Trqoo4/h8RtogXWypd35dx62qRVHUQ4hcjXaFaLCAxXuYl8iWCNG3orgb3VhJCztpU3FGxYjHHEsZ9qECsrJDyzCjJu6Gvqstul8n+HyQZEsSz3zPgPNVrazqczxVU4nvjlN2SNmA4CyyJUJgeWDQ5zeaQHH/Y/vpeLwDO22j1+igghkx0QIaZsRk7717CW0OYZv2hPT9Gulz9dVweFQp5sVy8UsUP5khhRCTKrOHSlMU5peVcZDLxZvRKK+EQgPKjo82yKjQdSodDqp0nSpdx7ZtYqZJ2rap1HWWlJcXfELs/Xwa3G40RaEpGGRjR8eg9x9rmfhCG+34hZgsVtKifUM7zeuaabm9heZ1zbRvaMdKWsM+zggbmFGzT+GJssVllB9ZjpWyiH8Qx7ZsKldVjpj21z9AG20Z9kxApmgK7gY3iqYQbArS9VoXmlfDCPd9fKo1hdFh4DrINej52h9r73M8K20RezdG6qNUn+Pofh0zag44/kjj6tjY93PACBmEXwmDCopLQXWraG4Nxa1gdpmk2lPEt8axDXvY4xTaUJ+rx1VUjLqFxEjtMGSlSWTIO0EIMWkG20N1UkUFAC3JJJXxONW6nneQ4dd1lvv9vBWNkkinmeF0Ytg2IdNkltPJ6X5/QSfEkfaEHVFejkJ3OV4Fsql1xZJbXwyFM4TIVb4rRHqFng1YnO7u97nqUHE1utCrdWZcNgNXgyu3Va+eAG2wFaWRyrAPl+IX3RqlbHEZ4RfDYJNNCUx+mESv0rP3z1CcSnfw1JbCNdOV/b27sbtYRGx7jLLDy9A8WvbcQ1U0HG5cmdWt7HMPm1hRC9WtYnfY3ataZRqqQyUdSWOnbdwHu3E1uLoDwBxWyQphqD1LzYlEXvtYZd+pyIXMjkKISTPYhmKHqnJ8RQU7YjEuqatjkdc7pi/yK6uqSFsWD+7fz+5EAoBFHg+fqasr+IQ41AZpFfhDKMRHySTt6TQdhkGVrnNYeTkn9qTWFUNufbEUzhBiJLl88R/qC7vu1/Et83UHYD0BS6otRfLDJNVnV+M93JvzOAYL0DLjG6kM+0gBmW+pD82rEdkSIdGSQPNqVH2yithfY9nzWWmL2NYY0XeiGGEDVVOxj7ZxVDpQHAqqR8VziIeuV7tINidxz3ZjhAzSbWkqV1UO+hoNO65dCdoeaSO5O9ldOXFPgti7MYyQgdlhYmOjlWkoTgVMUDwK3kVeFBTSHWk0jzbqvl+57E8dSv/P1XxT+aSwhMiFvCOEEJNmuAmuyuEYc0AF3ZPheXV1nFFVRUsiAYpCg8s1LhNi/+eTtiy2xmK82NlJWzpNczIJikKtw0GbYVAWj9OaSrE/leL8urpJn6Rl74CYKsayQgRk0/o6n+8k9IcQVpeFXqfT9dcuVK+a856fwQK0kYKW7GNHCMictU7KFpQNKPLQ7m3Pni/ZnKTrL11gg/cIL8ndyT4FNwBcM1yYi00Uh5INzoZLbRxuXMnWJOYfTFyzXRgdBokdCdIH0pgJE9WjYsdtzJiJElVwzXHhXeLF6DLo2NiBlbJQnSp6QMcz1zNi36/xaNo+1n2sxXDxSxQveWcIISbNRBZq8Os6/vLygh1vqHP0fj7NySSvRyIcMAxmOJ3ETJOUZVHjcODXNN6LxXBrGm93dfFeIsHyiorsF4axXJ0t1Pgnu3CGEEMZywpRb/EP4iSaEziqHDhqHNk9PzBykYmMTHDSe0Upl/1YuQZkur9vAY7McUObQ3S93YVapuI93It3kZeoNzqg4IbRYVB/SX3OFfiGGleyOQk2OGc5SexJEP5DGDNlYnVZ2GkbvN1plDih/OhyfEf5QIPgE0EctQ70gI7RaRDdHcU9f+QeVoXuWZghqXxivMgMKYSYVKU2wWXGvTkU4u2uLhyKQp3DwUyXi12JBA6gI50mZVnsS6VY4PHgUFXSlkVTMEjasnCo6qRV3yu1v4coTWNZIYLu/VgHHjuA0WHgmeNB0RUS7ydQbAWtQiO8OZzznh/VpVKzuiavsuH5BGSZ83nmejCCBp55HvRA9/nKFpdhp2y63u4i/kEc50xn9niqSx3TuCo+VkHXX7pIfZQi+lYU27axLRsrbaEoCqpXRSvTsLosnDVO7KSNjY33SG93emCX2R0AHukFszsAHmo847m/U1L5xHiRd5EQYlKV2gSXeT5zPR6ChsFMp5MtkQgmoAGWbZMCWlMpPKqKW9PQgMaeK7EP7t9Pua4z2+Uq6NXZ0Y6/VP4eonTlu0KU2Y+l+bsLKqjlKqqqkmpN0fl8J44Zju5qdYe6mXHxDKyElfMKz2gLL4wlIHM1uHDOdGKl/lbtMN+CG7mMCyD2XoyuN7pwBBwYIQM7ZKPqKjY2iqGg6ip4IdWSwlHpAB0qjq/Atm2suIXqUVEUZcQUzf77O+OWRdw0cakq7alUQfZ3SiqfKDR5NwkhikKpTXANLhcznU40RWGu281bsRgeTWNfKoVl25i2zUEuF3HLYklZGR5VJaEo7E4kOMnvn/Tqe6X29xClJ9+AJLMfy1HjQHEqWAmLdDiNccDoDg5UBcWlEH4xTGJXAkVR8m7qm6t8ArKRVutGU3Aj13F5DvUQ/H0QbaaG7tVJfZjCVrpfMzNhonQpOGodmF0m3sO9pPanulM065zZyoOp1tSIKZqZ/Z0d6TQH0ml2JRKkLIuUbTPL6ZSeeaIoybtSCCHGQe/eJlUOB4e43XhUFR2o0DT8PV8alpSVscjb/eVnfzoNkA2oeh8rapqEB+mhIsR0p/v1bOnwnO7fsx/LTtu457gxO0ySHyWxFRtUsA0b72FerKRF8Mlg9/0msMfSaFStrKJyVSW2ZZNoSeTcXytfgeUBXLNdmJHuVD7Nq+GocKB5NBRFQfNraF4Nz2IPtZ+uxbfMR7o1Tao1hZWwSLWmSLel8S3zDfv3ynx+/jkS4U+RCBagKwpxyyJsmrwaDo/L8xNiLOQypBBiWhvPghC99yf5dZ2T/H6umDGDk/1+XgqF+EM4TJ3TiWnbdKTThE2TuW43Katv81KpvidE4fRe4XFUO3A2OonvjoPVXYSh/KhyXHNdJJ5JgBO0cm1CeyyNxljSB0fDSlp0bOwgsiUCGhhRA9ccF4EVAWLvxLBNm7LFZbhmuTDDJtXnVuOsc+adoglwXEUF61tbiZomhm3jVBSW+XxU9zTqlb55otjk9W6Mx+PYtk1ZWRkAu3fv5pFHHuGwww7jE5/4REEHKIQQ42E8yvX2N9z+pNluN7U9Xw4yBSHOra4mbds809lZsOp7k1FFcDLIvCRGo/eXfWeNE/ccN44aBxUnV+CocJDuSGNEDHSfnk1bg9xLtk+0fNIHc2GEDIywQejlEOEXwzjqHQRODhDxRIhvi6PMVPAc6umuCjjDiebTCJwRyL6+Ywn6kpZFg8vFUeXl2IBHVfFoGgnLkr55oijl9W4899xzWbNmDV/60pfo7OzkhBNOwOFw0N7ezq233sqXv/zlQo9TCCEKarzK9Q5msP1JQwVcScvCoShjrr43EUFjMZF5SYxG/y/7maDBjttYTgszYmKnbRw1DlTP3/69jLZk+3jJBDsTsTJlHDDo+msXroNceBZ5UB0qgVMD3amTcZPGqxu793MNM558gr7Mvqq0bfdJiZaVe1Gs8ppZX3vtNU455RQAHnroIerr69m9ezf33XcfP/nJTwo6QCFKiREySDQnMEKyN2Yy9S/X61ZV6pxO6npWjkITuHfJr+s0ut3ZoCsTbF3d2MhVDQ1c3djI6pqaUQdCmaBRUxQa3G40RaEpGGRjR/HsBykkmZdEPjL7sWrPre2zN0lxKlSeXYnu00e9H2g8WUmL9g3tNK9rpuX2FprXNdO+oR0raY384FHo2NhBsCmIoino1TqWYZHckyS2NZa9j7PeiaIroIx+X1sueu9LbU2lSFgWrakUbek0y3y+Ua9ShQyD5kSiIJ/vhTyWKB15vftjsRg+nw+Ap556ijVr1qCqKieeeCK7d+8u6ACFKAW9r/qNdxUpMbL+5Xoz/LpeNGklY6m+N549XoqVzEtiLAZLU1PdavZze7T7gcZLJthx1DtwN7gxwsaomxWPJFNy3lHvwFnnxIpbOAIOrJhFYncCz0IPmkebkFW7QvTNK+Sq/ViONV1SsaezvP6qCxYs4NFHH+X888/n97//Pddccw0AbW1tVFRUFHSAQpSCiZgIRe4yaSVhw8BdRGklhZp0p0LQWGgyL4lC6J+mNt5FIEaTxtc/2AHGpXhGpuS8u6H780P1qLjnuom+EcVIGhidBmbYzLnR8lgUom9eIVO98znWdEvFns7y+pdw3XXXcckll3DNNdewYsUKTjrpJKD76uAxxxxT0AEKMdVN1EQoRmeOy8UfIpGCFYQYi0JPusUaNI4nmZfEeBmPIhD5ZC/0D3Z6j6+QxTMyJeeNsNE9VwHeRV6MToNkS5J0RxpHlWNCV+3yXbkv5Kp9vseayP27YnLl9a/v05/+NMuXL2fv3r0cddRR2dtXrFjB+eefX7DBCVEKJmoiFCPrHbyETJOoYbDVMJjhdOLX9bwKQhRCoSfdzF6EpmCwoEFjMaevyLwkppJ8shcGC3agu5mubdhgF2ZsQzUVdgQc1JxTQ8VJFeNWIKPQCrlqn8+xpmMq9nSW919yxowZzJgxA4BwOMyzzz7LoYceyqJFiwo2OCFKwVATYbFUkZpOegcvc91uqnSdPckkR5aXc35t7bhPboMFJeM16RZiL0LGVElfkXlJTAX5Zi9kgp0Djx3A6DRwVDmIvhMlvi2Os8HJ3nv2Fmyv7nD9pYphH3CuF3gKuWqfz7GmYyr2dJbXX/LCCy/k1FNP5atf/SrxeJxly5axa9cubNvm/vvv54ILLij0OIWYsoa66jcR+ejFbKJXPYYLXnYnEuN67uGCkv6TbtyyiJsmLlWlPZXKe9ItxF6EjKmQviLzkpgq8s1esJIWVtrC6DLoeruLdEcaLPAt81FxbAVmzCzYXt2Jaio8WqO9wFPIVft8jjUdU7Gns7wuN7zwwgvZ0rWPPPIItm3T2dnJT37yE77//e8XdIBClIKqlVV9yvXalj3pVaQmS9Ky2NDezrrmZm5vaWFdczMb2ttJWoUtCdxfJnjpP4n5dZ2oaRIex9K4Gzs6eOzAAbpMk2qHo09588yk25FO89euLjZ2dPBcMMiTBw7wYTI55pWg/iXbR6uYys8PR+YlMVX0zl7obaTshY6NHYSeCeE9zEvVJ6pwVDnQfTqOKgdauYazzolWoRF8JkhiT2LAsfNp5zEepdLHIp9WESurqlhVWYll27QkEli2nfeq/WiPVeiy8KK45fXXDIVCVPW8gZqamrjgggsoKytj9erVfPOb3yzoAIUoBcV61W8yTNaqx2RdMWxLpVjf2kpLKgWAV9OY73ZT3ROULA8EWObzcddHH9GWTlPjcKArCiHTJGyavBoOT+pq0FRJX5F5SUwV+WQv9E8ZTHek0ct1lIBCYlcCz1wPsfdixLbFMEMmCgqBFQECpwTofLGzJNp55JsqXchV+3yOVchUbFHc8npXNTY28vLLL1NVVUVTUxP3338/AMFgEHe/iVcI8TfjUUVqKpnMTbvjVbxhKJn0xkf27+eP4TCqoqADrcCHiQTHV1RQpeuEDYPjKipY39pK1DQxbBunorDM5+sTeE1W4DJV0ldkXhJTyXB7lgYzWJlzxamABVbcov2JdhIfdGdBqE6VxIcJOjZ0EH41jHnALIl2HmO9wJOpIJhp3DuW4Go01QgLGdSJ4pbXX/Xqq6/m0ksvpby8nNmzZ3P66acD3ekXRxxxRCHHJ4QoIZO96jERVwx75/x3pNNsDAbpNAxqnE7KNY2UbRM2DF4Nh/lkdTUVPYFVg8vFUeXl2IBHVfFoGgnLmvTVoIkORvMl85KYSkabvdC/4JHm0XDPcRPZEsGIdPeNUhwKmlNDr9JJf5TGjJmYfzUJnBYoiXYeY73AM9kFd8bS0F1MDXn9db/yla9w/PHH09zczMc//nHUnjfjvHnzJHddCDGkwSbFuGnSnEziUJSCrnoMVghjIq4Y9k5v9Oo6EdNEBbpME7ei4FBVHIpCWzrdZ6+TV9NI2zY+TSNoGAQNg7RtF8Vq0FRIX5F5SUxFuWYvDJYy6Kh2oAd00p1psLtXrxw1DrAh1ZbC3G1ip21cs124ZrpQHEr2WFOxncdYL/BMhYI7YmrL+1/TsmXLOPLII9m5cyfz589H13VWr15dyLEJIUpM70kxYpo0JxK0pFJ0mSaLPR42d3aO+aphLlcjx+uKYf/0xo96gkWXw0HatjFsG8OysIGArnOSz5cdzwK3m5/t3ct+wyDWkwbo1jQurKnBPclly6dK+orMS6KUDZYyWHtRLeHNYeI74mgeDTNmktyXRHWq2KqNoivE34vjqHJQfkQ5MH7tPIyQMe57hvO9wCP9osREyOsdFIvFuOqqq/jlL38JwPvvv8+8efO46qqrOOigg/j2t79d0EEKIYpDIcqgnxII8Go4zG/a22lNp/GqKovKyjjY4ynIVcPJvBrZP72x0uGg2uGgLZ3GBio0DV1ViVsWh3g8zCsrywaBj3d0sDUWI2ZZlGka5ZqGYtu8Ho2ysaOjKK6kFnP6isxLotQNljIIkNydxEpYJHYnSLelUR0qdtpGVVTKDi/D6DSIvhXF3ejGSloFb+dhJS06NnZMSDGMfC/wTHbquZge8nq3f+c73+HNN99k06ZNfTYAr1y5kgceeKBggxNCFIdClkF/sbOTj9JpKh0OlpSVsdjrJWHbhAxjzGW6C13+O7OhOdfH9U5vhO69UUd6vYR7yum+FYvx12iUcDrNp3rSVTLl1j9KJqlwOKh3OvGqKjNdLhZ5vcRMk83hcNGULi9WMi+JYpdvWfP+epc5z6QF6hU6jhoHVtrCjJlYSQvvEi9Vq6ooP7IcK2UR/yA+Lu08OjZ2EGwKomgK7gY3iqYQbArSsXHoMudjNdpWEf0/mzOKreCOmNryehc9+uijPPDAA5x44okoipK9/fDDD2fHjh0FG5wQojgUavUnE/T4NQ2PqhLQNByqSsQ02ZVI0Oh2j6nhbaGuRua7oXmwnP9t8TgG3atUXk3Dtm3SwDs9wVrm9VAUBRUo13XStk0onabO4UAFgum0XEkdgcxLoliN90pOJkAKbQ6R3JtEURW8S7z4jvKhOBRcjS70ap0Zl83A1eAqaGpe/1LvUJzFMKZKwR0xteX1Ltq/fz91dXUDbo9Go30mMyHE1FfIXPRM0FPjcOBUFBKWhUNV8agqwXSatlQK3xiuGlboOpqqsqcnQPP0BECjvRo5liCyd87/O11d7E4mmefxsMDjwbJtHKpKezrNS6EQn+rqyr4enp7PznRPSfWYZRExDCy60wjlSurwZF4SE2k0+4cyKznjVda8d1pg2aFlhP8QxtXowjZt0h3pbLqf93DvmM/VX/9S7xnFWAxjKhTcEVNbXu/0ZcuWsWHDBq666iqA7IT1s5/9jJNOOqlwoxNCTLpC5qJnUjDSts0ct5u3o1FswITuUuOmyRl5bhhOWhabOzvZHY/zbiyGX9c5xONhhstFh2HkfDVyrEFk75z/54NB/tTVxcFud59iEwFdpzmRoMuysq/HgrIyPuxZpXMoCjbQYRjMdDpZXlEhV1JHIPOSmAijXXWayJUc3a9Tf3E9jloHkS0R4tvjKLqC/xR/QdP9+pyzX6n3jPEqhjEWU6Xgjpi68no3/eAHP+Dss8/mnXfewTAMbrvtNt555x3+8Ic/8Pzzzxd6jEKISVTI5q+9UzCqHQ4WlpWxPRajs6f637nV1XlfNcysLh1SVka5rrM9FuPVri4WmyaX1NfnfNxCBZF+Xedonw+/ptFpGHh6vXadPa/dIT2FKjKvx/EVFbwaDrPfMKhQVRqcTj5TVydXUnMg85KYCKNddZrolRzVpVK1sgozahJ+JYxlWkS3RlG96rgUjhis1LsRMgpeDGM0RiqoVMwFd8TUlte7avny5bzxxhv88Ic/5IgjjuCpp55i6dKlvPzyy9JkUYgSU+hc9N4pGAFN44SKCg71ePhkTU12ZWi0+q8uzXK5OLysLNv/ankgkHOZ9kIGkbPdbk7z+3n4wAGge4Wq0zDYn06zprqa2W439T3n2BKJUK3rnFVVRbQn7c+lqmyPx9nY0TFuDSoH+wJSiCqPE03mJTHe8ll1moyVnI6NHYRfDOOod6BX6AVPN+xvsFLvhS6GkYvJbu4rRN7/mufPn8/dd99dyLEIIYpUIXPRxyMFY7DVJY+mMdvtHnWKYqGDyGtnzwbg+VCI5p7Xbk11dfb2/q/Hy+EwL4ZCzOrZRzVeJeEH+wJyVHk52DZvRqNT8kuJzEtiPOWz6jTRKzkTXTgis7cssDxA+RHlJPcmcc104Z7tHvnBBSbNfcVky/tflmVZbN++nba2Nqx+ZZVPPfXUMQ9sLP7jP/6DW265hX379nHUUUdx++23c/zxx0/qmISYynINhPqvcAy34lHIFIxCri5BYYPICl3nhnnz2JNIsDeZZKbLxWz3wC8cmddiazQ6IQ0q+38BaUuluKOlBb1nZW8qfikp5nkJZG6a6vJddZqolRwjZBB9N0q6I03Z/LK+Yy9wumHvvWVGyCC1LwUKuOpdaP7x61M1FGnuK4pBXu+wV155hUsuuYTdu3dj23af3ymKgmmaBRlcPh544AGuvfZa7rrrLk444QTWrVvHWWedxXvvvTdoZSghRO6GCoT6r3q4VBUNMBWF5ASseBR6dWk8VtNmu92DBlO9TVSDyt5fQCp1na2xGDsSCd6Lx9EVhdluN0eVl1M3hb6UFPO8BDI3lYLRrjr1rhDYv2lvIVeL+gQ4Bwyif41iHDCoOKkC1aFmx1LIdMPee8usLovEBwmwQSvX0Kv04feZjaJyYq6kua8oBnl9u/nSl77EsmXLeOutt+jo6CAYDGb/6+gYv2Zvubj11lv5whe+wJVXXslhhx3GXXfdRVlZGb/4xS8mdVxClLLMqoemKDS43exMJHj4wAF2xeM0uN1oikJTMMjGcfx8WFlVxarKSizbpiWRwLLtMZfLHW2DybGaqAaVmS8gFT0B1dvRKKZl4VFVFOCtaJStsRjQ/RpETXPAmIpNMc9LIHNTqahaWUXlqkpsyybRkhi0ma6VtGjf0E7zumZabm+heV0z7RvaUd1qtmlvIXVs7ODAYwcwIyauBheuBhfRv0QJvxzGSlikWlOk29LdTYILcO7eKYaaTyO5N9mdbjjDSeqjFLpPx1HnyK5iZQz1uljJ0TeR70+a+4pikNe7bNu2bTz00EMsWLCg0OMZk1QqxZ///Ge+853vZG9TVZWVK1fy8ssvD/qYZDJJMpnM/hwOh8d9nEKUkv5pF3HTJGQY1DocdBoGNkzIikcplMudqAaVmS8gbakUuxMJKjQNt6axO5nEqSgEdJ3diQQLPR7CPSuNxf6lpFjnJRj93CTzUvHq3RNqqNWW8e5LlWGEDGIfxGi9t5XUgRSKQ0F1qrgaXZQtKSP5YZLYjhiOKkdB0w177y0zYyZ2ykYLdDcwTwfTmHFz0HTD8Xxd+n92OhWF/ek0YdPk3OrqKTcXiKkpr5WqE044ge3btxd6LGPW3t6OaZrU19f3ub2+vp59+/YN+pibbroJv9+f/a+xsXEihipEyei96gEQtyxStk1A10lZFvGetKuJWvGY6NWlQhuPFbf+Ml9AWpJJgoaBrqokLAuXouBUFJSe5sPNySRt6TTLfL6ifz2LdV6C0c9NMi8VP92vD7rq1L9QhOpWcdY5B125yVfvFZ8P/uUDOjd3YkZMHBUOFFUhvjWO5tMoP6Kc+kvqaby6kZrVNQXb39R7b5nqUVGcClbCwopbqE4VzaMNSDeciNdlZVUVK/x+tkaj/La9nZdDIaKGQdq2SVpjXw0TYiR5zZJXXXUVX//619m3bx9HHHEEDoejz++PPPLIggxuInznO9/h2muvzf4cDodlAhNiFPoXifCoKk5FodMwKFNVPJoGSBpGriZqxW1lVRVR0+TOjz6iLZkk4HCw3O8HYGssRsqycCgKZwQCU6JPlsxLohhMRF+qzIqP5tcgDapHJd2eRivXcB3kAiD+fhz/iX68i7wFTzfsv7fMNdNF11+6wAbv0V6McPc+M/8pfoxwd7A0Ea+LS1VxqCrlus5Jfj91Ticpy+KZzk4cijIliu2IqS2vd/AFF1wAwOc///nsbYqiYNv2pG4IrqmpQdM0Wltb+9ze2trKjBkzBn2My+XC5XJNxPCEKEmDpaz5dZ3d0ShHeb0oQGsqVfAUtlI33g0qXarKhfX1oCg8eeAAB7lc1DmdhAwDA/hYRQXn19ZOmb9Xsc5LMPq5SealqWu8+1L1XvFRdAVFU3Ae5CTVkiL5URJHpQPLsDBCBp5DPePWfLd3RUO1XMU9zw0K6F69Ox2wWqPrr12Et4TRvBpli8vQXOPbryuTij6757MsY6oU2xFTX17vrp07dxZ6HAXhdDo59thjeeaZZzjvvPOA7hK7zzzzDF/96lcnd3BClLD+JcgPdrtZ4HZjKsqYS5KL8XVuTQ1eVe1TPv7c6uop05sqo1jnJZC5aToZ775UvVd8bNtGcSroDh1FUUh+mCTdngYdyhaVUf3J6gI9q4EG21uWGV/o5VC2+bCz1okRNgi/GEar1jBajXHr1yUVAMVky+vdNWfOnEKPo2CuvfZaLr/8cpYtW8bxxx/PunXriEajXHnllZM9NCFK1lApa8P1qZooxTCGYlYKBT6guOclkLlpOhnPvlR9VsLqnLjnuIm+HUV1qHgO9lB2WBl2wqb63Ops89/xpPsHFuqIbY0N2nzYSln4T/ET3Rodl35dhe5XKMRo5fUOmz17NqeffjqnnXYap59+OvPnzy/0uPL22c9+lv3793Pdddexb98+jj76aJqamgZsEBZC5C7XwKR/ytp4p7ANp3/vrPHulTXVTebfqhCKeV4CmZumk1wqBOar/0qYZ54Ho9Mgvi2Os8GJo9qRbbybMR59oYYy0t6pipMqqDqralzGM1HVU4UYimL375KYg1//+te88MILbNq0ie3bt3PQQQdx2mmnZSezhQsXjsdYJ0Q4HMbv9xMKhaioqJjs4QgxqaZyYLKhvZ2mYJB6h4MKXSdsGLT2TK6yYbk4jeXzV+YlMV30bvZrRs3sniXfUh/OWmc2UBnsfpmAa6hKgGMNwIyQQfO65u69Xr1WylKtKWzLpvHqxnEL7EKGwf5Uite6utgajU65OUsUr1w/g/MKqnrbu3cvzz//PL/73e944IEHsCxr0jvXj4VMXkL8zVQNTEKGwbrmZjRF6bNhuTWVwrJtrm5slKuWRahQn78yL4npYKQAqH1De7YvlF6hd1fla+3ew9S/L1Q+AdhQsuetcwzYOzWWflRDZUwMdvFvcVkZS30+ap1O+awXY5brZ3De77RYLMbmzZvZtGkTzz33HK+//jpLlizh9NNPz/eQQogi0r+pL4B7Apr4FoJsWJ6eZF4S08lg+5ky+veFgr/tbYpsiRBYHujz2EI25i30nrKRMiY2dnRkL/41uN2EDYMXw2G8msaCsrK8zilEPvL6VvGxj32M119/ncWLF3P66afz7W9/m1NPPZXKyspCj08IMUmmcmAiG5anH5mXhPib0fSFGm0ANpJC7ykbLGhqCnYHfMsDgSl78U+UnrwSTN999128Xi+LFi1i0aJFLF68WCYuIUpM78Ckt6kQmGQ2LLem07SmUiQsK9sra5nPJ5NsCZJ5SYi/6V0lsLdMXyhsSDQnsimEZtQc0CtK9+uYUXPAMXIeg1/H3egeU0DVP2PCrarUOZ3UORzZNhBR0xwwH/l1nahpDpi/hBhPeQVVBw4c4Nlnn+XEE0/k97//PSeffDIHHXQQl1xyCXfffXehxyiEmARTPTBZWVXFqspKLNumJZHAsm3plVXCZF4S04ERMrLB0HAyVQLTrWlSrSmshEWqNUVqbwrbttl7z15abm+heV0z4ZfDqC51yAAs24Mqx3MXUiZjYqigCUWZshf/ROkZc6EK27b585//zB133MH69etlQ7AQJWQqV//LkD5VU0ehPn9lXhKlJp9CEoM9xrZtjDYD5yxnn+IVWrWGecActLhE1cqqghWxGK1cig5t7uykKRikzuEYUEa9mAsqialjXAtVvPbaa2zatIlNmzaxefNmIpEIRxxxBFdddRWnnXZa3oMWQhSXUmgMO9X7L4ncyLwkSsVgVf3yKSTRf28TNuy9Zy/OWc4Be6fslE3FKRXEtsYGFJcoZBGL0cql91Qm+yCTDujVNMlKEJMir28axx9/PMcccwynnXYaX/jCFzj11FPx+/2FHpsQokhIYCKKncxLYqobajWq4riKMRWSyFQJTDQnhi1e4T/JT/VZ1X0CukIXscjHSEFTKVz8E6Uhr3ddR0eHpCAIMcWNtcmjEMVE5iUx1Q21IpTan8q5kt9wehevcLr/lkrXe+9U/zLto6kiOF5yDZrk4p+YbHm9+yoqKujs7OShhx5ix44dfPOb36SqqorXXnuN+vp6DjrooEKPUwhRIIVs8ihEsZB5SUxlw60Ixd+Lo2rqsMFQLjLFK4JNQbAZsHcq83Pvi225BGL9n8d4XayToEkUu7zenX/5y19YsWIFgUCAXbt28YUvfIGqqioefvhh9uzZw3333VfocQohCmQy8+OFGC8yL4mpbLgVISNiUHZYGV1/7hoyGMrVUI15A6cEaN/QPujFtpECMZCLdUJAniXVr732Wq688kq2bduGu1dj0E9+8pO88MILBRucEKKw+l8NVd0qzjonjjoHkS2RCS2VK0QhybwkprKR+kpVf7KaylWV2JZNoiWBbdnZQhKjkSle0Xh1Iw1XNdB4dSM1q2vofLGTYFMQRVNwN7hRNIVgU5COjR1Urawa8dyZi3WDPV6I6SKvlapXX32Vn/70pwNuP+igg9i3b9+YByWEGB/FkB8vhibl3/Mn85KYykZKzXPWOftU8htrel3vvVOJPQk6n+lE82tDFqMY7txGyCC0OYTiVtB8WvfFugkuZiFEMcjrXe5yuQiHwwNuf//996mtrR3zoIQQ42O0+fFiYpRCP7DJJvOSmOqGSs3rvSLUv5DEWGRS9oLPBAltDuGodmCEDLyLvCgOZcDFtsHObSUt9j+yn84XOtHcGrF3Y7jnuClbXCYX68S0k9ds/Xd/93esXbuWdDoNgKIo7Nmzh3/+53/mggsuKOgAhRCFk7kamm5Nk2pNYSUsUq0p0m1pfMt8MvFNko0dHTQFg2iKQrXDQZdp8tiBA2zsGDl1JmQYNCcShIzpnbop85KY6oZKzRuvPUmZlD2tTMNZ7cRO2cTeihF9NwrkdrGtY2MH4T+EUV0qqlsFFaJvR4ltjcnFOjHt5PUv9Uc/+hFdXV3U1dURj8c57bTTWLBgAT6fj//v//v/Cj1GIUQB5ZIfLyZOyDDYEolQrevsS6XYHArxl2iU7bEY61tbaUul+tw3E0AlLYsN7e2sa27m9pYW1jU3s6G9naRlTeKzmTwyL4lSoft13I3ucb3I1Xt/rXu2G/d8N7Zlgwrx7XESexIjXmzLHMM124X3cC9WzEJBQS1Tib4TJdmclIt1YlrJ653u9/t5+umneemll3jzzTfp6upi6dKlrFy5Etu2Cz1GIUQBZa6GFio3X4xN2DCImiadpsm2WIwKTSOgaXQpCu/GYjxx4AAX19cPSA+0bZs2w2CW00mD203YMGgKdldxXF0z/ao4yrwkRO76768tW1wGQGJHgtSBFFbMGvFiW+9jOCod3Y/flcBKWFhJC9/HfHKxTkwreX2TuuWWW/jmN7/JySefzMknn5y93TRNLrvsMv7nf/6nYAMUQoyPQubmi/xV6DqaovBuNIpbUXCpKg5VRbdt/LrOe/E4j7W382IoRL3DQYPbTVsqxdPBIAs9Ho4uLwfA7XRiA1siEZYHAtOu0IXMS0Lkrv/+WtWhUn5kObpfx4ybNFzdgHu2O/dj1DkpP6KcsgVlJJoTqA6VuvPrpJy6mFbyerffcsst/PznP+9zm2maXHTRRbzxxhuFGJcQQkwLblUlYZpsSyTYnkjwTizGtliMTsPgEI+HmGHwSjhMvcNBndOJW1Up1zQcwAHDIG6a2WP5dZ2oaRKehvurZF4SIndD7a81wyaVKypHDKiGOoYRNrCTNhXLK+SinZh28nrHb9iwgU984hP4/X4+/elPYxgGF154Ie+++y7PPfdcoccohBAla2NHBxHLok7XiVsWSdMkaposcTiY4XLRnk4TSaeZ4fxbtUaPpuHTdboMg7hl4dE0oHvPlVfTqJhmq1Qg85IQo5VLtcGJOIYQpSKvmfe4447jN7/5Deeddx5Op5Of//znbN++neeee476+vpCj1EIIUpSpkjFXLcbj6ryRjSKR1FQFIWIZfHHUIhyTWNvKsWuRILDvV4Web14VJUah4MOwyBimpRpGiHDoC2dZlVl5bRL/QOZl4QYrULsr5U9ukL8Td7v/DPPPJP77ruPCy64gMWLF/P8889TMw03RwshRL4yRSoa3G4qHd0bvXclEsRMk9ZUioOcTpaUl1OVSvGXri7+FImQsiwa3G58us7ZlZUoikJLIoFX01hVWcnKqul7hVjmJSFGrxD7a2WPrhCjCKrWrFkz6O21tbUEAgG++MUvZm97+OGHxz4yIYQocRW6jlfTCBsGdU4nR5SXs6CsjO2xGCnb5kS/n1kuF7UOB05F4Z1olLeiUaqcTlZXVbGyqoqEZRE2DCp0fdqtUMm8JIQQoljkPAP7/f5Bbz/rrLMKNhghhJhO/LrOMp+PpmAQu+fnsGHQZZrU9RSmAHCoKkeWl9PocrEzHueyujoO76n651LVaRdMZci8JETxMkKGpASKaSXnd/k999yT/f/xeBzLsvB6vQDs2rWLRx99lMWLF8tkJsQ0sSeRYG8yyUyXi9nukStFicFl0vW2RCLZNL6zq6v5a1cXYcPA3RNYxU2T/ek0lT1l1YXMS0IUIytp0bGxg8iWCGbURPNq+JZ196ySEuuilOV16eDcc89lzZo1fOlLX6Kzs5MTTzwRh8NBe3s7t956K1/+8pcLPU4hRJEIGwa37tnD86FQthHtaX4/186ePS2rzo2VS1VZXVPD8kCgTxqfV1VpCgZJ2zZ7Uym2x2J0miaLPR42d3aysqoKlypfUDJkXhKiOHRs7CDYFMRR78Dd4MYIGwSbuhuT16yWPY6idOU1I7/22muccsopADz00EPU19eze/du7rvvPn7yk58UdIBCiOJy6549PHzgAKqi0Oh2oyoKDx84wK179kz20KY0v67T6HZnU/lWVlWxqrKSbbEYW8JhAI4rL2dhWRlNwSAbOzomc7hFR+YlISafETKIbIngqHfgrHOiulWcdU4cdQ4iWyIYoenXQ09MH3ldVo7FYvh8PgCeeuop1qxZg6qqnHjiiezevbugAxRCFI89iQTPh0LUOhzM7ElL8/T87/OhEHsSCUkFLBCXqrI8EGBzOMwsl4vGnrLrAJqisCUSYXkgMG33U/Un85IQk88IG5hRE3dD33lA9+skWhLde6xkf5UoUXmtVC1YsIBHH32U5uZmfv/73/OJT3wCgLa2NioqKgo6QCFE8dibTBI1TQL9vsgHdJ2oabI3mZykkU2+kGHQnEgQMgp3JTZsGJiWRZ3TSdw0iVsW0L2qFTVNwgU811Qn85IQk0+v0NG8Gka472eTETLQvBp6hQRUonTl9e6+7rrruOSSS7jmmmtYsWIFJ510EtB9dfCYY44p6ACFEMVjpsuFV9PoNIzsChVAp2Hg1TRmulwDHvNWVxcfxOPM83hY0lOxrpQkLYuNHR1siUSye8yW+XwF2fPkUlU+TCbZEongUBScqspct5sqhwOvpsketl5kXhJi8ul+Hd8yX/ceKrv7ZyNkkG5LU7mqUlapREnL69396U9/muXLl7N3716OOuqo7O0rVqzg/PPPL9jghBDFZbbbzWl+Pw8fOAB0r1B1Ggb702nWVFf3Sf3bn0rxT++/zx8iEZKWhUtV+ZjPx22HHEJtr4BsqtvY0UFTMEh9T1W+sGHQFOzelL16jI1nXw2HCZsmMcuiWtexgD9FItQ5HHxp1ixJ/etF5iUhikPVyu6KppEtERItCTSvRuWqyuztQpQqxbZte7IHUUzC4TB+v59QKCQpI0IMItfqf5e89Ra/7+zEr2n4dJ2IYRAyTc4KBPjvJUsm8RkUTsgwWNfcjKYo2Z5SAK2pFJZtc3Vj45CBT8gwhm3amzm2DbSn0+xOJEjZNmnLYobTybqFC/ucsxTI5+/g5HURU5H0qRKlItfPYHmXCyFGpULXuWHevGH7VL3V1cUfIhH8mpZdlXI7nZBK8YdIhLe6ukoiFTBsGERNc0DfKL+u05JIEDaMAQFTrumCvY89y+ViocdD3LJQgAPpNMme/VVCCFGMdL8EU2J6kSYnQoi8zHa7OcHvH7Ta3wfxOEnLwtcvoPDpOknL4oN4fKKGOa4qdB1NUWhOJIibZvb2UM8es8H2PGXSBTVFocHtRlOUQUukV+g6Xk3LFqPwaBpVDgcp25b9VEIIIUSRkVlZCFFw8zweXKpKxDC6V6h6RAwDl6oyz+OZxNEVRtKy2NzZyZ5Egq3xOAFNY0FZGTOdTjoMg1WVlQNWqUKGwZZIhHqHI5u653Y6sWFAiXS/rrPM56MpGMTu+TlkGLSl04MeWwghhBCTR1aqhBAFt6S8nI/5fIRMk/2pFAnLYn8qRcg0+ZjPVxKpf5kVp4VlZRzX83y2hMNsi8U4xe/n0LKyAeXVMyl9/VeZhiqRnmkAbNk2LYkElm2zqrKSlVWy4VsIIYQoJnKpUwgxopGKKgzmtkMOyVb/a0ulcKkqZwUC3HbIIQU9z2Tov+I0y+XisPJydsXjtCSTvB6JsCUcxqtpLC4rY6nPR63T2Selr/cK3lDpgi5VZXVNDcsDgSnxugghBORWpEIKWYhSI+9iIcSQxtKDqdbp5L+XLMmpT9V49noaD4MVqPCoKjHTZEciwVy3m5kuF69FIjzR0UGD08mR5eUs8/k4yuvlmVBoVCl9fgmmhBBFqndwpLpVOjZ2ENkSwYyaaF4N3zIfVSurUF3dn+VW0hrxPiOZKhfgxPQi70QhxJAK0YNpSXn5iOl+49nrqZAyE7kNA1ac4pbF+z17qxpcLrbF43yYTFKuacQsi7Rt0xQMsiIQYFVlJVsiEVoSCbyaJil9QogpZ7DgyLZtjDYD5ywn7gY3RtjobgQM1Kzu/izv2NhBsCmIo94x5H2GMtUuwInpRYIqIcSgRlNUYSqcZywGm8ht2+ajdDq74tScSBAyDJb19LDYnUhQoWl4NI1gOk25puFSVd7s6uLqxkZJ6RNCTGn9g6NUW4rg00E8Cz2UH919Ic3pdoLd3Qg4sDwAdP9/R70DZ51z0PsMlwo4VS7AielJwnohxKBGW1ShEOeJmyYd6TRx0yz4ecZisDLobYZBna5ni0g4VJVFZWXMcjqJWxYp28atqsQtC6eq4tG0Ps/Jr+s0ut19AqqQYWSDMyGEGA9GyCDRnMAI5f85Y4SMPsGR6lbRyjVwgHHAwIz/rcWE7tcxoyZGuDtN0Iya6BV955Xe9xlK/wtwblWlzumkzuFgSyQin5ti0snlUSHEoEZbVGEs53GpKn8KhwkZBinbRrFtPJrGAo9n0vsxDbeSZtk2V86cidLzPDZ3dtIUDFKhaaiKQrthYAFLysrwqCqtqdSgr52ktAghcpVvgYdC7GXKjqEnOHI3/G1fqebR0H06RpeBFbfQPFp2vJpXywZSmlfDCBvdK1S9nlPv+wwmn2brQkykkpqt586di6Ioff774Q9/ONnDEmJKyvRJak2nae0pi96aStGWTrPM5yvY5OXXdTTgL9EoXaZJxDB4Px5ncyjEq5EImzs7SVpWQc6Vj5FW7BTIrjhlSqA7FYUyRaHLNGlwOjnY4xn2tcu1IbCYmmRuEoVgJS3aN7TTvK6ZlttbaF7XTPuGdqxkbp+PmXQ9RVNwN7hRNIVgU5COjaP/nNEr9GxwlKF6VBw1DuyUjRkxsRIWqdYU6bY0vmU+dH93EOhb5iPdmibVmhr0PkPp3xA9o9AX+oTIV8m9A9euXcsXvvCF7M8+n28SRyPE1JYpnjCeRRVChoGpKBzl9fJeLMa+VAqPqjK352rkYwcOAJOXLz+aFbveJdD3p1K81tXF1miUfcnkkK/dVNhTJsZO5iYxVmMp8NA/XQ9Gt5epv0xwFGwKgt39sxEy0H06lWdXoigKiZYEmlejclUlVSv/9rmX+f+RLZEh7zMYaYguil3JvQN9Ph8zZsyY7GEIURImok9S2DBImiZLvF7aDYOArlPpcKAAwXSaCk3LKbgYrxK7I03kAM2JRJ/zZkqgL+hpADzcuCSlZXqQuUmMxViDosHS9aA7GEq0JLrTCUfZK2qw4KhqdRVVK6uwEtaQKYqqS6VmdQ2B5YFRpzFOxIU+IfJVcjP1D3/4Q773ve8xe/ZsLrnkEq655hr0Yb6QJJNJkslk9udwODwRwxRiShnPPkmZlaD2dBrLtqnUdRyKQsQ0cfZsRG5PpYYMLiZiP9JgE/kKv5+0bbOuuXnY84702k3U3jUxuUYzN8m8JPoba1DUO11vtHuZhjJccKS61BEDpUw64GhIQ3RRzErqnfi1r32NpUuXUlVVxR/+8Ae+853vsHfvXm699dYhH3PTTTdx4403TuAohRC9ZVaCHjtwgLRl0aUo6LZN2DRZUlZG0rKGDS4mosTuYBN5pijFWM8rKS2lb7Rzk8xL3fItyFCKxhoUDZWul25LU7mqckyvbz7B0VhJQ3RRjBTbtu3JHsRwvv3tb3PzzTcPe5+tW7eyaNGiAbf/4he/4P/+3/9LV1cXLpdr0McOdkWwsbGRUChERU+/GSHE+MqsNq1vbeXdWAy/rnOIx8MMl4sOw2BVZeWggUrIMFjX3IymKNn9SACtqRSWbXN1Y+O4TLyFPq9U/+sWDofx+/1T4vN3POem6T4vFbJKXSlp39DevaeqzjEgKBppTxXI6ypEvnKdm4o+qNq/fz8HejaqD2XevHk4e32xyXj77bdZsmQJ7777LoceemhO55tKk7oQpaYtleKJAwd4Lx7H7FmhGi64aE4kuL2lhQa3G3ev3ycsi5ZEgqsaGmjst1epEMbrvOO1L2yqmEqfvxM5N02l16UQssFDvQO9QscIG6Rbcw8eSlWhgqKJWAGUVUZRSnL9DC76d3ptbS21tbV5PfaNN95AVVXq6uoKPCohxHioczq5YubMnIOLydqPNF7nlZSWqUPmpvFR6Cp1pWQsBR56G890PVkNE9NZyXwyvfzyy/zxj3/kjDPOwOfz8fLLL3PNNddw2WWXUdlToUsIMTXkGlxM1n4k2QclciVz0+iMR5W6UjMZe5hyNZay70JMdcX5rzIPLpeL+++/nxtuuIFkMsnBBx/MNddcw7XXXjvZQxNCjKPJKrErpX1FLmRuGp3xqFI3lRU6jW480/JklVFMdyXz7l66dCmvvPLKZA9DCDHBJqvErpT2FbmQuWl0xrNK3VRS6DS6iUjLk1VGMd1JgqsQoiT4dZ1Gt3vCA5vJOq8QpapqZRWVqyqxLZtESwLbsqlcVZltNjvZjJBBojmBETLG7RyZNDpFU3A3uFE0hWBTkI6NHUVxvMH0XmXsbbquMorpR97hQgghhCgahSrIUGgTVYSh0Gl0E5WWJ6uMYrqTlSohRMkKGQbNiQQhY/yuKAshxofu13E3uovmy/hErPbA39Lo+q/s6H4dM2oOWAma6OMNp9hXGYUYT8XxSSWEEAUkzXSFEIU0kUUYCl2sYyKLf/RfZcQGFLASlpRUFyVPgiohRMnZ2NFBUzBIvcNBg9tN2DBoCnaX9V1dI2V9hRCjM5FFGAqdRpc53oHHDmB0GjhqHdgpe0xpeSNVEVTdKl2bu6RflZhWJKgSQpSUkGGwJRKh3uGgrqcxr9vpxKa7/PnyQECKSgghRmWiS71n0uUiWyIkWhJoXi3vNDoraWGnbYyoQdfbXQC457ipvbB21MfLdV+Z9KsS05F8sxBClJSwYRA1TRrcfa8o+3WdlkSCsGFIUCWEGJWJLsJQyGIdHRs76HymE+9iL76jfKTaUphhE9WhYiUsUm2pnI+fS7Ak/arEdCXvaiFESanQdbyaRtgwcDv/dkU5ZBh4NY0KCaiEEHko5OpRrnT/2CofDhbg6AGd5IdJWv+7ldDmELZp55Sel2uwJP2qxHQl72ohREnx6zrLfD6agkHsnp9DhkFbOs2qykpZpRJC5KVYS70PZ6gAJ7kvSXxrHNcsF+7G3NLzcg2WJjpVUohiIbsFhRAlZ2VVFasqK4mZJu90dREzTVZVVrKyqvuKspRaF0LkayJKvRshg+jbUbre7hpTk+HBGvKmO9J0vdEFDtCrdVS3irPOiaPOQWRLZMjz5drcN5MqmW5Nk2pNdacYtqZIt6XxLfMVfSAqRL7knS2EmDAhwyBsGFTo+sSsGCnK3/5DSq0LIYqblbQ48OQB2v63jcSuBLZp45zhpPYztdR/un7UlfN67wWz0zbJD5OEXgqR2JNAK9dof7gd37E+vEu8I6bnjWZf2WSkSgox2SSoEkKMu4kOZnqXVJ/p9WZLqr8aDnPANKXUuhCiKHVs7GDvz/eSakuB2b0KlNyTJLY1RnxbnLnfmTvqwCoTyLSubyX8xzB23Eb3d686pfenCW0OoWgKznrniOl5uQZLUzFVUoixkne4EGLcTWTfqKFKqicsi+dDIU72+6XUuhBiwozU06n3/cKbw5hREwUFI2KglqmoLhUzZtLxeAflh5VTd2HdqM6vulQCywN0buzEWe/EEXBgxk1SH6VQXApW0qLrL114F3mpPrd62DGONlgaa6ENIaYSeacLIcbVRPeNGqqkukNRiJomjp5UwAwptS6EGA+59nTKMMIG6WAa27S7Ayu3gubWsE0b27CxVZvwK2GqzqoadaBihA3MuInqUdEqtOzjU20prLiFGTPxfcyXc3qeBEtCDCSbCIQQ4yoT5PQvZe7XdaKmSbjAxSJ6l1TvLW3beDWNtG33uV1KrQshxkOmp5OiKbgb3CiaQrApSMfGjkHvr1foOCod2GkbK2mhOrq/otnp7s8sh9+BbdgDCkXkInNsbLDiFmjgOsiFe44b10EuKk+ppO78ulGnFgoh/kb+9QghxtVQQc54BTOZkuqt6TStqRQJy6I1lSJkmpzm9xMyzT63t6XTLPP5ZJVKCFEw/Xs65VJhT/frVCyvQKvQMONm9+pSrPt/FYeCc6YTvVrPqyR59thejdS+FEawe1XM6DBwVDsIrCxMQ14jZJBoToypYqEQU5V8ixBCjKvJ6BuVKZ2+JRKhJZHAq2msqqzklECAFzs7B9yeub8QQhRCvg1wq1ZWYadtWta1EHsvhpWwcNQ6KDu0DN2nj6kkeebYmcqCAO55bmovrB1zVb7RpjoKUYokqBJCjLuhgpzxCmZcqsrqmhqWBwIDSrgPdbsQQhRKpqdTqi2FVq5172XyaCM2wFVdKrXn1eL/mJ/9D+0n+nYURVPQq/VskJKvzLErz6gk2ZLExsbdUJh+W5lUR0e9A3dDbs2EhSg18m1CCDHuhgtyxpN/iPMMdbsQQhSC6laxbZvg00EUh4Lu07Ope1WrRy404axzctBXDsq5cuBoFLrIRP9URwCn2wl2d+n1wPLCpBYKUexkTVYIMWH8uk6j2y0BjRCipHVs7MBoM/Ac4kHzaaS70sS3xdHr9FGtNul+HXdjYVaTxksm1bH/6pvu1zGjZl6FNYSYior3X6kQQgghxBSTWblxznJSXlfeXbI8bmJ2mSiKgpWwSmqfUSbV0Qgb3StUPUZKdRSi1JTOv2ohhBBCiEnWf+VG9ag4qrpT40px5Ub3d+/3SremSbWmsBIWqdYU6bb0mAprCDHVSFAlhBBCCFEgvVdueivllZuqlVVUrqrEtmwSLQlsy6ZyVeWYqwoKMZWU3r9sIYQQQogRjEcRCPjbyk2wKQh2989GyCDdlqZyVWVJrtyoLpWa1TUElgfG5TUVYiqQd7wQQgghpo2J6KmUWaGJbImQaEmgebVpsXJT6MqCQkwl8s4XQgghxLQxVE8lK2pRcVJFQVZZZOVGiOlH/oULIYQQYloYrKeSQ3MQey/Gh3d+SOdLnTiqHAVbuZKVGyGmDylUIYQQQohpYbCeStF3oyR3JbENG0eVA0VTCDYF6djY0fexIYNEcwIjVFrV+4T4/9u7/7io6nx/4K/5xQww/FJAQVAkxZ9YKOb115qFgtdcKFOvTaHV6t4WS0xS2kIzU9vSdc3bo7TdhdrV8HYr915JvOgNTbIEFdIkVAIHC0HE+CENzI/z/YMvs4z8cIAZzgy8no8Hj4dz5sw57zMy5817Pp/zPmQb/PqEiIiI+oU776lk+sUEXakOEhcJZG4yyL3lkLnKAKH5eijvGd6QqqR2vwbL3uzVlIOI/omfLCIiIuoX7uzMJ5gE6G/pIZVKoRqmai6o/v96ums6GGoNqD9Z3+41WADgO99XzMPplKHGgKYbTag/W4/bhbedtiAkchYsqoiIiKjfaN2Zz3DTAKlCCuUQJdzGuJnXabmnVMuIVetrsFxULhYjWY428tO6u2H9t/VoutYE1zBXeER4wNhgdIqCkMgZOdaZgIiIiMiO7uzMV3OqBrVf1sJQbWhzTylIAONtI1RBKotttB7JcrSiqqW7ocxLBqFBgEwtQ9O1Jvzi/QvU4WqHLgiJnBk/TURERNTvtHTmc/F3gcxd1u49pUw6k8U1WC1aRrJaN7ywJ2uviWrd3VAil0AwCZD7yiHoBOhKdXAb4ebQBSGRM+OniYiIiPqtzu4pJVVKLa7BunMky95FSVdvVNzS3VAVpIIgCJC4SJoLQ1cZ9Lf0MP5ihKAXerUgJOoveJUiERER9XtyLzlUwao2hdKAqAHwifGBYBKgu6aDYBLMI1n21jKVTyKTQBWk6rDdu/kYWnU3lLnKoBqmgrHWCP0NPSRSCYz1Rugr9fCI9OAoFZGN8RNFRERE1IHORrLsqb0bFd+tScad3Q1dQ11h+NmAXy7/ApcgF0gUkl4rCIn6GxZVRERERHfRcg1Wb2m81oim8ia4hrq2iaOza6JadzdsvN4I15GuGPjrgfCY6AEXPxeOUBHZCT9ZRERERA6i5TqqmpM1qD9fj4ZLDXAf5w730e6QKCR3bZIh1sgaUX/Ha6qIiIiIHIS5Jbq7DOpxapgaTKg7XYe6b+vQVNFk9TVRHV0j1pqhxgBdmQ6GGoOtD4Oo3+FXF0REREQO4M7rqOQ+ckhcJLh98TZuX7gNlwEuXb4mqr127F3tKkhEd8eiioiIiMgBtG6JDgBShRTqCWoog5X4peQX+D/hD/U4tVXb6qxwahkNUwxSQBWkgqHW0NzcAoDvfF+7HR9RX8aiioiIiMgBtG6J3vpmw0KTAGWA0lxsWaOjwsl024Tbhbe71FWQiO6OY7xEREREDqClJbq+Qo+miiaYdKYuXUfV4s5phFKVFC7+LlD4K1D7dS301fo2jS7kXnIYbxthqOX1VUTd4TRF1ZYtWzBt2jS4ubnB29u73XW0Wi3mz58PNzc3+Pv748UXX4TBwJMDERHZB3MT2ZotbjbcMo2wvcJJMAiQyCRtiqe7dRUkos45zSenqakJixYtwtSpU/GXv/ylzfNGoxHz58/H4MGD8dVXX6G8vBzx8fFQKBTYunWrTWMxGo3Q6/U23Sb1LwqFAjKZTOwwiKiHHCk3Ud9gi5boHU0jNNQYIB8oh9sYN9R+WQsIzYWWocYAfaUePjE+nPpH1E0SQRAEsYPoirS0NCQmJuLnn3+2WH748GE8/PDD+OmnnzBo0CAAwHvvvYf169fjxo0bcHFxaWdrbdXW1sLLyws1NTXw9PS0eE4QBFy/fr3Nvom6w9vbG4MHD4ZEIhE7FCKH0Nn519HZMzc58/tC4qnKqGq+pspf0aZwamlWwe5/RHdn7Tm4z3wdcerUKYSHh5uTFgBER0fj2WefxXfffYeIiIh2X9fY2IjGxkbz49ra2g730VJQ+fv7w83NjX8MU7cIgoCGhgZUVlYCAAICAkSOiIjspTu5qSt5iZxPey3O7aFlumBdXh1013SQucvMBRVvEExke33mE3T9+nWLpAXA/Pj69esdvm7btm3YtGnTXbdvNBrNBdXAgQN7Fiz1e66urgCAyspK+Pv7cyogUR/VndxkbV4i59Lb94aypnCSe7GYIrIVUcd4k5OTIZFIOv35/vvv7RrDSy+9hJqaGvNPWVlZu+u1XEPl5uZm13io/2j5XeL1eUSORezcZG1eIufS0uJcIpNAFaSCRCbBrcxbqD5abdf9yr3kUAWrWDwR2Zmon7C1a9di+fLlna4TGhpq1bYGDx6M06dPWyyrqKgwP9cRpVIJpVJp1T4AcMof2Qx/l4gck9i5qat5iRzfnS3OAd4biqivEfUT7OfnBz8/P5tsa+rUqdiyZYt5OhUAZGVlwdPTE2PHjrXJPoiIqO9jbiJba2lxfufNe+Vecuiu6Zqn57GoInJqTtPiRavVIj8/H1qtFkajEfn5+cjPz0d9fT0AYO7cuRg7diyefPJJFBQU4MiRI3jllVeQkJDAb/z6gbS0tA7vEdOaRCLBwYMH7R4PEfUPzE1kjdYtzlvjvaGI+g6nKao2bNiAiIgIbNy4EfX19YiIiEBERATy8vIAADKZDIcOHYJMJsPUqVPxxBNPID4+Hq+99prIkYvvgQceQGJiothh2NWSJUtw6dIl8+NXX30V9913X5v1ysvLMW/evF6MjIj6MuYmsobcSw6PSA/oK/RoqmiCSWdCU0UT9JV6eER6cJSKqA9wmk9xWloa0tLSOl1n2LBh+Pzzz3snoD5GEAQYjUbI5U7zK2HB1dXV3FGvM51dX0dE1FXMTWStzlqcE5Hzc5qRqr6mxmBAmU6HGoPh7iv3wPLly3H8+HHs2rXL3LWqtLQU2dnZkEgkOHz4MCZNmgSlUomTJ09i+fLliIuLs9hGYmIiHnjgAfNjk8mEbdu2Yfjw4XB1dcW9996L//qv/+o0jpCQEGzevBlLly6Fu7s7hgwZgnfeecdiHa1Wi9jYWKjVanh6emLx4sXmC7oBoKCgALNnz4aHhwc8PT0xadIk87fBraf/paWlYdOmTSgoKDAfc8sfPa2n/02bNg3r16+3iOHGjRtQKBQ4ceIEgOb7xSQlJWHIkCFwd3fHlClTkJ2dbcU7T0RE9E8tLc6DE4MR9FwQghOD4TvflzfbJeoj+EnuZY0mEzKqqvCnsjLsvnYNfyorQ0ZVFRpNJrvsb9euXZg6dSpWrFiB8vJylJeXIzg42Px8cnIy3njjDRQWFmLChAlWbXPbtm348MMP8d577+G7777DmjVr8MQTT+D48eOdvu6tt97Cvffei3PnziE5ORmrV69GVlYWgOZCLTY2FtXV1Th+/DiysrLwww8/YMmSJebXazQaBAUFITc3F2fOnEFycjIUCkWb/SxZsgRr167FuHHjzMfcejutt5eeng5BEMzLDhw4gMDAQMycORMAsGrVKpw6dQrp6en49ttvsWjRIsTExODy5ctWvVdEREStscU5Ud/ET3QvO1pdjcxbtzBIoUCQSoVagwGZt24BAOb7+tp8f15eXnBxcYGbm1u7U99ee+01zJkzx+rtNTY2YuvWrTh69CimTp0KoLm18MmTJ7Fnzx7MmjWrw9dOnz4dycnJAICwsDDk5ORg586dmDNnDo4dO4bz58+jpKTEXPR9+OGHGDduHHJzczF58mRotVq8+OKLGD16NABg5MiR7e7H1dUVarUacrm80+l+ixcvRmJiIk6ePGkuovbv34+lS5dCIpFAq9UiNTUVWq0WgYGBAICkpCRkZmYiNTUVW7dutfp9IyIiIqK+iyNVvajGYEBeXR0GKRTwd3GBSiqFv4sL/BUK5NXV2X0qYHsiIyO7tP6VK1fQ0NCAOXPmQK1Wm38+/PBDFBcXd/raliKs9ePCwkIAQGFhIYKDgy1G0caOHQtvb2/zOi+88AJ+85vfICoqCm+88cZd93c3fn5+mDt3Lvbt2wcAKCkpwalTp6DRaAAA58+fh9FoRFhYmMWxHj9+vMf7JiIiIqK+gyNVvajWYMBtoxFBKsv7VHjJ5bim06HWYIBXLzeKcHd3t3gslUotpsMBgF6vN/+7pU1wRkYGhgwZYrGevdsDv/rqq3j88ceRkZGBw4cPY+PGjUhPT8cjjzzS7W1qNBo8//zz2L17N/bv34/w8HCEh4cDaD5WmUyGM2fOQCaTWbxOrVb36FiIiIiIqO9gUdWLPOVyuMtkqDUYoHJxMS+vMRjgLpPB004FlYuLC4xGo1Xr+vn54cKFCxbL8vPzzdcujR07FkqlElqtttOpfu35+uuv2zweM2YMAGDMmDEoKytDWVmZebTq4sWL+Pnnny1ukBkWFoawsDCsWbMGS5cuRWpqartFlbXHHBsbi5UrVyIzMxP79+9HfHy8+bmIiAgYjUZUVlaapwcSEREREd2J0/96kZdcjkgPD1To9ahoaoLOZEJFUxMq9XpEenjYbZQqJCQE33zzDUpLS1FVVQVTJ00xHnzwQeTl5eHDDz/E5cuXsXHjRosiy8PDA0lJSVizZg0++OADFBcX4+zZs9i9ezc++OCDTuPIycnBm2++iUuXLuGdd97Bxx9/jNWrVwMAoqKiEB4eDo1Gg7Nnz+L06dOIj4/HrFmzEBkZiV9++QWrVq1CdnY2rl69ipycHOTm5pqLsvaOuaSkBPn5+aiqqkJjY2O767m7uyMuLg4pKSkoLCzE0qVLzc+FhYVBo9EgPj4en376KUpKSnD69Gls27YNGRkZnR4rEREREfUfLKp6WdSAAYjx8YFJEHBNp4NJEBDj44OoAfa7T0VSUhJkMhnGjh0LPz8/aLXaDteNjo5GSkoK1q1bh8mTJ6Ours5i9AYANm/ejJSUFGzbtg1jxoxBTEwMMjIyMHz48E7jWLt2LfLy8hAREYHXX38df/zjHxEdHQ2gudX5P/7xD/j4+OBXv/oVoqKiEBoaigMHDgBovoHmzZs3ER8fj7CwMCxevBjz5s3Dpk2b2t3XwoULERMTg9mzZ8PPzw8fffRRh3FpNBoUFBRg5syZGDp0qMVzqampiI+Px9q1azFq1CjExcUhNze3zXpERERE1H9JhDsvoOnnamtr4eXlhZqaGnh6epqX63Q6lJSUYPjw4VDdcU1Ud9QYDKg1GOApl/f6dVRiCAkJQWJiIhITE8UOxWHY+neKyNl1dP7t7/i+EBGJx9pzcN//a95BefWTYoqIiIiIqK/j9D8iIiIiIqIe4FAJ9YrS0lKxQyAiIiIisguOVBEREREREfUAR6qIiIiIeoGhxgBDrQFyTznkXvwTjKgv4SeaiIiIyI5MjSZUH61GXV4djLeNkLnL4BHpgQFRAyBVctIQUV/ATzIRERGRHVUfrcatzFuQyCRQBakgkUlwK/MWqo9Wix0aEdkIiyoiIiIiOzHUGFCXVwfFIAVc/F0gVUnh4u8Chb8CdXl1MNQYxA6RiGyARRURERGRnRhqDTDeNkLuaXnFhdxLDuNtIwy1LKqI+gIWVf2AIAhYuXIlBgwYAIlEgvz8/Lu+prS01Op1+yqJRIKDBw+KHQYREVnJUGOArkznUKM/ck85ZO6yNsWTocYAmbusTbFFRM6Jn+R+IDMzE2lpacjOzkZoaCh8fX3FDsmhvPrqqzh48GCbArK8vBw+Pj7iBEVERFazdSMIW3bpk3vJ4RHpgVuZtwCh+bGhxgB9pR4+MT7sAkjUR/CT3A8UFxcjICAA06ZNEzsUpzJ48GCxQyAiIiu0NIJQDFJAFaSCodbQXMQA8J1v/ReJ9urSNyBqAACgLq8Oums6yNxl8InxMS8nIufH6X8i6a0pCsuXL8dzzz0HrVYLiUSCkJAQAM2jVzNmzIC3tzcGDhyIhx9+GMXFxR1u59atW9BoNPDz84OrqytGjhyJ1NRU8/NlZWVYvHgxvL29MWDAAMTGxqK0tLTD7WVnZ0MikeDYsWOIjIyEm5sbpk2bhqKiIov1/vGPf2DixIlQqVQIDQ3Fpk2bYDD88z37/vvvMWPGDKhUKowdOxZHjx5tM21v/fr1CAsLg5ubG0JDQ5GSkgK9Xg8ASEtLw6ZNm1BQUACJRAKJRIK0tDQAltP/pk2bhvXr11vEduPGDSgUCpw4cQIA0NjYiKSkJAwZMgTu7u6YMmUKsrOzO3wPiIio52zZCMJeXfqkSil85/siODEYQc8FITgxGL7zfdlOnagP4ae5l5kaTajKqELZn8pwbfc1lP2pDFUZVTA1muyyv127duG1115DUFAQysvLkZubCwC4ffs2XnjhBeTl5eHYsWOQSqV45JFHYDK1H0dKSgouXryIw4cPo7CwEO+++655GqFer0d0dDQ8PDzw5ZdfIicnB2q1GjExMWhqauo0vpdffhk7duxAXl4e5HI5nn76afNzX375JeLj47F69WpcvHgRe/bsQVpaGrZs2QIAMBqNiIuLg5ubG7755hvs3bsXL7/8cpt9eHh4IC0tDRcvXsSuXbvw/vvvY+fOnQCAJUuWYO3atRg3bhzKy8tRXl6OJUuWtNmGRqNBeno6BEEwLztw4AACAwMxc+ZMAMCqVatw6tQppKen49tvv8WiRYsQExODy5cvd/oeEBFR99mqEURvdOmTe8mhClZxyh9RH8RPdS+z1RQFa3l5ecHDwwMymcxiOtvChQst1vvrX/8KPz8/XLx4EePHj2+zHa1Wi4iICERGRgKAecQLaC4uTCYT/vznP0MikQAAUlNT4e3tjezsbMydO7fD+LZs2YJZs2YBAJKTkzF//nzodDqoVCps2rQJycnJWLZsGQAgNDQUmzdvxrp167Bx40ZkZWWhuLgY2dnZ5mPbsmUL5syZY7GPV155xfzvkJAQJCUlIT09HevWrYOrqyvUajXkcnmn0/0WL16MxMREnDx50lxE7d+/H0uXLoVEIoFWq0Vqaiq0Wi0CAwMBAElJScjMzERqaiq2bt3a4baJiKj7WjeCcFG5mJd3tRFES3GmClJZbt9LDt01XfM1ViyGiKgDPDv0oju/BQPQnACE5nnW3jO8e+2EffnyZWzYsAHffPMNqqqqzCNUWq223aLq2WefxcKFC3H27FnMnTsXcXFx5mu0CgoKcOXKFXh4eFi8RqfTdTqlEAAmTJhg/ndAQAAAoLKyEkOHDkVBQQFycnLMI1NA8+iUTqdDQ0MDioqKEBwcbFEM3X///W32ceDAAbz99tsoLi5GfX09DAYDPD097/YWWfDz88PcuXOxb98+zJw5EyUlJTh16hT27NkDADh//jyMRiPCwsIsXtfY2IiBAwd2aV9ERGS9jhpBNJY1wnOa9ed6WxVnRNQ/8QzRixzpW7AFCxZg2LBheP/99xEYGAiTyYTx48d3OF1v3rx5uHr1Kj7//HNkZWXhoYceQkJCArZv3476+npMmjQJ+/bta/M6Pz+/TuNQKBTmf7eMcrUUePX19di0aRMeffTRNq9TqVRtlrXn1KlT0Gg02LRpE6Kjo+Hl5YX09HTs2LHDqte3ptFo8Pzzz2P37t3Yv38/wsPDER4ebo5VJpPhzJkzkMlkFq9Tq9Vd3hcREVnPohFEqQ6NFY2AANR/Ww/dVZ1VzSbYpY+IeoJniF7kKN+C3bx5E0VFRXj//ffNU9lOnjx519f5+flh2bJlWLZsGWbOnIkXX3wR27dvx8SJE3HgwAH4+/t3eQSoMxMnTkRRURFGjBjR7vOjRo1CWVkZKioqMGjQIAAwXzPW4quvvsKwYcMsrrW6evWqxTouLi4wGo13jSc2NhYrV65EZmYm9u/fj/j4ePNzERERMBqNqKysNL+nRETUO1oaQXjP8EblZ5UwfmWEcqgSck95l6bZd9Slz3OyJ3RlOpu0WCeivolnhl7kKN+C+fj4YODAgdi7dy8CAgKg1WqRnJzc6Ws2bNiASZMmYdy4cWhsbMShQ4cwZswYAM0jOG+99RZiY2PNTTGuXr2KTz/9FOvWrUNQUFC34tywYQMefvhhDB06FI899hikUikKCgpw4cIFvP7665gzZw7uueceLFu2DG+++Sbq6urM10+1jHqNHDkSWq0W6enpmDx5MjIyMvDZZ59Z7CckJAQlJSXIz89HUFAQPDw8oFQq28Tj7u6OuLg4pKSkoLCwEEuXLjU/FxYWBo1Gg/j4eOzYsQMRERG4ceMGjh07hgkTJmD+/Pndeg+IiKhrGq82QjlU2a1p9q2LM0OtAVKlFLW5tfjx3R9t2mKdiPoenhF62YCoAfCJ8YFgEqC7poNgEnr9XhVSqRTp6ek4c+YMxo8fjzVr1uCtt97q9DUuLi546aWXMGHCBPzqV7+CTCZDeno6AMDNzQ0nTpzA0KFD8eijj2LMmDF45plnoNPpejRyFR0djUOHDuF///d/MXnyZPzLv/wLdu7ciWHDhgEAZDIZDh48iPr6ekyePBm/+c1vzCNSLdMDf/3rX2PNmjVYtWoV7rvvPnz11VdISUmx2M/ChQsRExOD2bNnw8/PDx999FGHMWk0GhQUFGDmzJkYOnSoxXOpqamIj4/H2rVrMWrUKMTFxSE3N7fNekREZB+26gTY0qWvNrfWLi3WiajvkQite0QTamtr4eXlhZqaGouCQKfToaSkBMOHD7f6ep7O2PJu7fRPOTk5mDFjBq5cuYJ77rlH7HA6ZevfKSJn19H5t7/j+2I9Q40BZX8qg0QmMY9UAUBTRRMEk4DgxGCrc64tt0VEzsvaczDPBiKRe7GYsoXPPvsMarUaI0eOxJUrV7B69WpMnz7d4QsqIiKyPVtOs3ek5lJE5Ph4NiCnVldXh/Xr10Or1cLX1xdRUVHd6uxHRER9Q0fNJro6zd5RmksRkXPgGYGcWnx8vEUXPiIi6t/ubDbR3Wn2jtJcioicA88IRERE1OfYYpq9rUa9iKjvY1HVRezrQbbC3yUiIsdmq1EvIur7eGawkkKhAAA0NDTA1dVV5GioL2hoaADwz98tIiJyTGwuRUR3wzOElWQyGby9vVFZWQmg+d5MLTeYJeoKQRDQ0NCAyspKeHt7QyaTiR0SEREREfUAi6ouGDx4MACYCyuinvD29jb/ThERERGR82JR1QUSiQQBAQHw9/eHXq8XOxxyYgqFgiNURERERH0Ei6pukMlk/IOYiIiIiIgAAFKxAyAiIiIiInJmLKqIiIiIiIh6gEUVERERERFRD/Caqju03JC1trZW5EiIiPqXlvMub4xtiXmJiEg81uYmFlV3qKurAwAEBweLHAkRUf9UV1cHLy8vscNwGMxLRETiu1tukgj8StCCyWTCTz/9BA8PD4e8uW9tbS2Cg4NRVlYGT09PscPpNh6HY+FxOJa+chxA145FEATU1dUhMDAQUilnp7dgXuo9feVYeByOhcfhWLp6HNbmJo5U3UEqlSIoKEjsMO7K09PTqX+hW/A4HAuPw7H0leMArD8WjlC1xbzU+/rKsfA4HAuPw7F05TisyU38KpCIiIiIiKgHWFQRERERERH1AIsqJ6NUKrFx40YolUqxQ+kRHodj4XE4lr5yHEDfOhZqX1/6P+4rx8LjcCw8Dsdir+NgowoiIiIiIqIe4EgVERERERFRD7CoIiIiIiIi6gEWVURERERERD3AooqIiIiIiKgHWFQ5uYyMDEyZMgWurq7w8fFBXFyc2CF1W2NjI+677z5IJBLk5+eLHU6XlJaW4plnnsHw4cPh6uqKe+65Bxs3bkRTU5PYoVnlnXfeQUhICFQqFaZMmYLTp0+LHVKXbNu2DZMnT4aHhwf8/f0RFxeHoqIiscPqsTfeeAMSiQSJiYlih9JlP/74I5544gkMHDgQrq6uCA8PR15enthhUS9hbnIMzpybnD0vAcxNjsieuYlFlRP75JNP8OSTT+Kpp55CQUEBcnJy8Pjjj4sdVretW7cOgYGBYofRLd9//z1MJhP27NmD7777Djt37sR7772H3//+92KHdlcHDhzACy+8gI0bN+Ls2bO49957ER0djcrKSrFDs9rx48eRkJCAr7/+GllZWdDr9Zg7dy5u374tdmjdlpubiz179mDChAlih9Jlt27dwvTp06FQKHD48GFcvHgRO3bsgI+Pj9ihUS9gbnIczpqb+kJeApibHI3dc5NATkmv1wtDhgwR/vznP4sdik18/vnnwujRo4XvvvtOACCcO3dO7JB67M033xSGDx8udhh3df/99wsJCQnmx0ajUQgMDBS2bdsmYlQ9U1lZKQAQjh8/LnYo3VJXVyeMHDlSyMrKEmbNmiWsXr1a7JC6ZP369cKMGTPEDoNEwNzk+JwhN/XFvCQIzE1is3du4kiVkzp79ix+/PFHSKVSREREICAgAPPmzcOFCxfEDq3LKioqsGLFCvztb3+Dm5ub2OHYTE1NDQYMGCB2GJ1qamrCmTNnEBUVZV4mlUoRFRWFU6dOiRhZz9TU1ACAw7//HUlISMD8+fMt/l+cyX//938jMjISixYtgr+/PyIiIvD++++LHRb1AuYmx+fouamv5iWAuUls9s5NLKqc1A8//AAAePXVV/HKK6/g0KFD8PHxwQMPPIDq6mqRo7OeIAhYvnw5/v3f/x2RkZFih2MzV65cwe7du/Hb3/5W7FA6VVVVBaPRiEGDBlksHzRoEK5fvy5SVD1jMpmQmJiI6dOnY/z48WKH02Xp6ek4e/Ystm3bJnYo3fbDDz/g3XffxciRI3HkyBE8++yzeP755/HBBx+IHRrZGXOTY3OG3NQX8xLA3OQI7J2bWFQ5mOTkZEgkkk5/WuZIA8DLL7+MhQsXYtKkSUhNTYVEIsHHH38s8lFYfxy7d+9GXV0dXnrpJbFDbpe1x9Hajz/+iJiYGCxatAgrVqwQKfL+KyEhARcuXEB6errYoXRZWVkZVq9ejX379kGlUokdTreZTCZMnDgRW7duRUREBFauXIkVK1bgvffeEzs06ibmJsfC3OR8mJvEZ+/cJLfJVshm1q5di+XLl3e6TmhoKMrLywEAY8eONS9XKpUIDQ2FVqu1Z4hWsfY4/u///g+nTp2CUqm0eC4yMhIajUb0b7atPY4WP/30E2bPno1p06Zh7969do6u53x9fSGTyVBRUWGxvKKiAoMHDxYpqu5btWoVDh06hBMnTiAoKEjscLrszJkzqKysxMSJE83LjEYjTpw4gf/4j/9AY2MjZDKZiBFaJyAgwOLcBABjxozBJ598IlJE1FPMTc2Ym+yvr+UlgLnJUdg7N7GocjB+fn7w8/O763qTJk2CUqlEUVERZsyYAQDQ6/UoLS3FsGHD7B3mXVl7HG+//TZef/118+OffvoJ0dHROHDgAKZMmWLPEK1i7XEAzd8Czp492/zNrFTq+APBLi4umDRpEo4dO2ZueWwymXDs2DGsWrVK3OC6QBAEPPfcc/jss8+QnZ2N4cOHix1Stzz00EM4f/68xbKnnnoKo0ePxvr1650iaQHA9OnT27QNvnTpkkOcm6h7mJuYm3pLX8lLAHOTo7F7brJbCwyyu9WrVwtDhgwRjhw5Inz//ffCM888I/j7+wvV1dVih9ZtJSUlTtlh6dq1a8KIESOEhx56SLh27ZpQXl5u/nF06enpglKpFNLS0oSLFy8KK1euFLy9vYXr16+LHZrVnn32WcHLy0vIzs62eO8bGhrEDq3HnLHD0unTpwW5XC5s2bJFuHz5srBv3z7Bzc1N+Pvf/y52aNQLmJsch7Pmpr6QlwSBucnR2Ds3sahyYk1NTcLatWsFf39/wcPDQ4iKihIuXLggdlg94qyJKzU1VQDQ7o8z2L17tzB06FDBxcVFuP/++4Wvv/5a7JC6pKP3PjU1VezQeswZE5cgCML//M//COPHjxeUSqUwevRoYe/evWKHRL2EuclxOHNucva8JAjMTY7InrlJIgiCYJsxLyIiIiIiov7HsSfWEhEREREROTgWVURERERERD3AooqIiIiIiKgHWFQRERERERH1AIsqIiIiIiKiHmBRRURERERE1AMsqoiIiIiIiHqARRUREREREVEPsKgicjKlpaWQSCTIz88XOxQiIiIAzE1EEkEQBLGDICLrGY1G3LhxA76+vpDL5WKHQ0RExNxE/R6LKiIn0tTUBBcXF7HDICIiMmNuIuL0PyK72bt3LwIDA2EymSyWx8bG4umnn0ZxcTFiY2MxaNAgqNVqTJ48GUePHrVYNyQkBJs3b0Z8fDw8PT2xcuXKNlMsjEYjnnnmGQwfPhyurq4YNWoUdu3aZbGd5cuXIy4uDtu3b0dAQAAGDhyIhIQE6PV68zqNjY1Yv349goODoVQqMWLECPzlL38xP3/hwgXMmzcParUagwYNwpNPPomqqiobv2tERGRPzE1E9sGiishOFi1ahJs3b+KLL74wL6uurkZmZiY0Gg3q6+vxr//6rzh27BjOnTuHmJgYLFiwAFqt1mI727dvx7333otz584hJSWlzX5MJhOCgoLw8ccf4+LFi9iwYQN+//vf4z//8z8t1vviiy9QXFyML774Ah988AHS0tKQlpZmfj4+Ph4fffQR3n77bRQWFmLPnj1Qq9UAgJ9//hkPPvggIiIikJeXh8zMTFRUVGDx4sU2fMeIiMjemJuI7EQgIruJjY0Vnn76afPjPXv2CIGBgYLRaGx3/XHjxgm7d+82Px42bJgQFxdnsU5JSYkAQDh37lyH+01ISBAWLlxofrxs2TJh2LBhgsFgMC9btGiRsGTJEkEQBKGoqEgAIGRlZbW7vc2bNwtz5861WFZWViYAEIqKijqMg4iIHA9zE5HtcaSKyI40Gg0++eQTNDY2AgD27duHf/u3f4NUKkV9fT2SkpIwZswYeHt7Q61Wo7CwsM23gZGRkXfdzzvvvINJkybBz88ParUae/fubbOdcePGQSaTmR8HBASgsrISAJCfnw+ZTIZZs2a1u/2CggJ88cUXUKvV5p/Ro0cDAIqLi61/Q4iISHTMTUS2x/YsRHa0YMECCIKAjIwMTJ48GV9++SV27twJAEhKSkJWVha2b9+OESNGwNXVFY899hiampostuHu7t7pPtLT05GUlIQdO3Zg6tSp8PDwwFtvvYVvvvnGYj2FQmHxWCKRmOfUu7q6drqP+vp6LFiwAH/4wx/aPBcQENDpa4mIyLEwNxHZHosqIjtSqVR49NFHsW/fPly5cgWjRo3CxIkTAQA5OTlYvnw5HnnkEQDNyaG0tLTL+8jJycG0adPwu9/9zrysq9/QhYeHw2Qy4fjx44iKimrz/MSJE/HJJ58gJCSErXKJiJwccxOR7XH6H5GdaTQaZGRk4K9//Ss0Go15+ciRI/Hpp58iPz8fBQUFePzxx9t0Y7LGyJEjkZeXhyNHjuDSpUtISUlBbm5ul7YREhKCZcuW4emnn8bBgwdRUlKC7Oxs8wXFCQkJqK6uxtKlS5Gbm4vi4mIcOXIETz31FIxGY5djJiIicTE3EdkWiyoiO3vwwQcxYMAAFBUV4fHHHzcv/+Mf/wgfHx9MmzYNCxYsQHR0tPmbwq747W9/i0cffRRLlizBlClTcPPmTYtvBq317rvv4rHHHsPvfvc7jB49GitWrMDt27cBAIGBgcjJyYHRaMTcuXMRHh6OxMREeHt7QyrlaYSIyNkwNxHZFm/+S0RERERE1AMs44mIiIiIiHqARRUREREREVEPsKgiIiIiIiLqARZVREREREREPcCiioiIiIiIqAdYVBEREREREfUAiyoiIiIiIqIeYFFFRERERETUAyyqiIiIiIiIeoBFFRERERERUQ+wqCIiIiIiIuqB/wfabidEqRqTvQAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
],
"source": [
"def test(svm, X_test, y_test):\n",
" y_pred = svm(X_test)\n",
" print(svm, \"\\n\")\n",
" validate(y_test, y_pred)\n",
" scatter_comparison(X_test, y_test, y_pred)\n",
"\n",
"\n",
"# train and test\n",
"svm = LinearSVM({\"variance\": 1, \"skewness\": 0}, 0.0)\n",
"test(svm, X_test, y_test)"
]
},
{
"cell_type": "markdown",
"id": "7e324c80-14de-4545-9257-e38d9a5b2ab7",
"metadata": {
"id": "7e324c80-14de-4545-9257-e38d9a5b2ab7"
},
"source": [
"## Linear optimization model\n",
"\n",
"A training or validation set consists of $n$ observations $(x_i, y_i)$ where $y_i = \\pm 1$ and $x_i\\in\\mathbb{R}^p$ for $i=1, \\dots, n$. The training task is to find coefficients $w\\in\\mathbb{R}^p$ and $b\\in\\mathbb{R}$ to achieve high sensitivity and high precision for the validation set. All points $(x_i, y_i)$ for $i\\in 1, \\dots, n$ are successfully classified if\n",
"\n",
"$$\n",
"\\begin{align}\n",
" y_i (w^\\top x_i + b) & > 0 & \\forall i = 1, 2, \\dots, n.\n",
"\\end{align}\n",
"$$\n",
"\n",
"As written, this condition imposes no scale for $w$ or $b$ (that is, if the condition is satisfied for any pair $(w, b)$, then it also satisfied for $(\\gamma w, \\gamma b)$ where $\\gamma > 0$). To remove the ambiguity, a modified condition for correctly classified points is given by\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"y_i (w^\\top x_i + b) & \\geq 1 & \\forall i = 1, 2, \\dots, n\n",
"\\end{align*}\n",
"$$\n",
"\n",
"which defines a **hard-margin** classifier. The size of the margin is determined by the scale of $w$ and $b$.\n",
"\n",
"In practice, it is not always possible to find $w$ and $b$ that perfectly separate all data. The condition for a hard-margin classifier is therefore relaxed by introducing non-negative decision variables $z_i \\geq 0$ where\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"y_i (w^\\top x_i + b) & \\geq 1 - z_i & \\forall i = 1, 2, \\dots, n\n",
"\\end{align*}\n",
"$$\n",
"\n",
"The variables $z_i$ measure the distance of a misclassified point from the separating hyperplane. An equivalent notation is to rearrange this expression as\n",
"\n",
"$$\n",
"\\begin{align*}\n",
" z_i & = \\max(0, 1 - y_i (w^\\top x_i + b)) & \\forall i = 1, 2, \\dots, n\n",
"\\end{align*}\n",
"$$\n",
"\n",
"which is **hinge-loss** function. The training problem is formulated as minimizing the hinge-loss function over all the data samples:\n",
"\n",
"$$\n",
"\\begin{align*}\n",
" \\min_{w, b} \\frac{1}{n}\\sum_{i=1}^n \\left(1 - y_i(w^\\top x_i + b)\\right)^+ .\n",
"\\end{align*}\n",
"$$\n",
"\n",
"Practice has shown that minimizing this term alone produces classifiers with large entries for $w$ which performs poorly on new data samples. For that reason, **regularization** adds a term to penalize the magnitude of $w$. In most formulations a norm $\\|w\\|$ is used for regularization, commonly a sum of squares such as $\\|w\\|_2^2$. Another choice is $\\|w\\|_1$ which, similar to Lasso regression, may result in sparse weighting vector $w$ indicating the elements of the feature vector that can be neglected for classification purposes. These considerations result in the objective function\n",
"\n",
"$$\n",
" \\min_{w, b}\\left[ \\lambda \\|w\\|_1 + \\frac{1}{n}\\sum_{i=1}^n \\left(1 - y_i(w^\\top x_i + b)\\right)^+ \\right]\n",
"$$\n",
"\n",
"The needed weights are a solution to following LP:\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"\\min\\quad & \\lambda \\|w\\|_1 + \\frac{1}{n} \\sum_{i=1}^n z_i \\\\\n",
"\\text{s.t.} \\quad & z_i \\geq 1 - y_i(w^\\top x_i + b) & \\forall i = 1, \\dots, n \\\\\n",
"& z_i\\geq 0 & \\forall i = 1, \\dots, n \\\\\n",
"& w\\in\\mathbb{R}^p \\\\\n",
"& b\\in\\mathbb{R} \\\\\n",
"\\end{align*}\n",
"$$\n",
"\n",
"This is the primal optimization problem in decision variables $w\\in\\mathbb{R}^p$, $b\\in\\mathbb{R}$, and $z\\in\\mathbb{R}^n$, a total of $n + p + 1$ unknowns with $2n$ constraints. This can be recast as a linear program with the usual technique of setting $w = w^+ - w^-$ where $w^+$ and $w^-$ are non-negative. Then\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"\\min\\quad &\\lambda \\sum_{j=1}^p (w^+_j + w^-_j) + \\frac{1}{n} \\sum_{i=1}^n z_i \\\\\n",
"\\text{s.t.} \\quad & z_i \\geq 1 - y_i((w^+ - w^-)^\\top x_i + b) & \\forall i = 1, \\dots, n \\\\\n",
"& z_i \\geq 0 & \\forall i = 1, \\dots, n \\\\\n",
"& w^+_j, w^-_j \\geq 0 & \\forall j = 1, \\dots, p \\\\\n",
"& b\\in\\mathbb{R} \\\\\n",
"\\end{align*}\n",
"$$"
]
},
{
"cell_type": "markdown",
"id": "ece58bfb-1d65-402a-ae55-65e57a3f6c0a",
"metadata": {
"id": "ece58bfb-1d65-402a-ae55-65e57a3f6c0a"
},
"source": [
"### AMPL implementation\n",
"\n",
"The AMPL implementation is a **factory** function. The function accepts a set of training data, creates and solves an AMPL model for $w$ and $b$, then returns a trained `LinearSVM` object that can be applied to a other feature data."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "89afe53b",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "89afe53b",
"outputId": "f5168acc-799d-41bd-f01c-17759810f842"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"LinearSvm(w = {'variance': 0.2395364623336089, 'skewness': 0.05899041681482269}, b = 0.02663639314215303) \n",
"\n",
"Matthews correlation coefficient (MCC) = 0.777\n",
"Sensitivity = 95.3%\n",
"Precision = 85.5%\n",
"Accuracy = 88.7%\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" Predicted Positive Predicted Negative\n",
"Actual Positive 142 7\n",
"Actual Negative 24 102"
],
"text/html": [
"\n",
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAGJCAYAAABinBm7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwbklEQVR4nOzdeXxb5ZX4/89dtFmWJe9JsJOQBRIIWwhbCWvSJjRlgNBStimhM+237ZQO0GXamSlL2l8pQ0uhMAMd2kJpMwMMZSkNpBAgQCi0pGwFAiQhiw2JHce2JGu/y+8PW6p3y7Iky/Z5v168WsvS1SNZuY/OPec5j2Lbto0QQgghhBBCiJyo4z0AIYQQQgghhJjIJKgSQgghhBBCiDGQoEoIIYQQQgghxkCCKiGEEEIIIYQYAwmqhBBCCCGEEGIMJKgSQgghhBBCiDGQoEoIIYQQQgghxkCCKiGEEEIIIYQYAwmqhBBCCCGEEGIMJKgSosQoisJ111033sMY4PTTT+f000/P6r5r1qxh9uzZBR2PEEKI/CvVOagQNm3ahKIobNq0abyHIiYBCarEpPZf//VfKIrCCSeckPMxPvroI6677jpef/31/A1sjHbt2oWiKJn/NE1j5syZnHfeeUUbZym+L0IIUUqmwhz029/+dsDvr7vuOhRFoa2tbRxGN9B//dd/cc8994z3MMQkJ0GVmNTWrVvH7Nmz+fOf/8z27dtzOsZHH33E9ddfX1ITWtpFF13Er3/9a375y19y8cUX88wzz3DiiScWZKxPPvkkTz75ZObn4d6Xu+66i/feey/vYxBCiIlkss9BAGvXrsW27fEexrCGCqpOPfVUYrEYp556avEHJSYdCarEpLVz507++Mc/cvPNN1NbW8u6devGe0h5t3jxYi699FIuu+wyfvjDH/Kb3/yGRCLBHXfckffncjqdOJ3OrO7rcDhwuVx5H4MQQkwUU2EOOvroo3nzzTd5+OGHx3soOVFVFbfbjarK12ExdvIpEpPWunXrqKysZNWqVXz6058eckLr7OzkqquuYvbs2bhcLhoaGvjc5z5HW1sbmzZt4rjjjgPg8ssvz5Q7pK94zZ49mzVr1gw4Zv/1R8lkkmuuuYZjjz0Wv9+P1+vllFNO4dlnn83raz7zzDOB7sk87f/+7/849thj8Xg81NTUcOmll/Lhhx/2edy+ffu4/PLLaWhowOVyMX36dM455xx27do16Gsa6X3pvaYqlUpRVVXF5ZdfPmC8oVAIt9vNN77xjcxtiUSCa6+9lnnz5uFyuWhsbORb3/oWiUSiz2Ofeuopli5dSiAQoLy8nEMPPZR//dd/zel9E0KIfJsKc9CFF17IIYccknW26k9/+hMrV67E7/dTVlbGaaedxosvvjjgfps2bWLJkiW43W7mzp3Lz372s0xJYW933303Z555JnV1dbhcLg477LABFxVnz57N22+/zXPPPZd5/3rPZb3XVH31q1+lvLycaDQ6YEwXXXQR06ZNwzTNzG1PPPEEp5xyCl6vF5/Px6pVq3j77bf7PC6b+VVMDvp4D0CIQlm3bh2rV6/G6XRy0UUXcccdd/DKK69kJiiArq4uTjnlFLZu3crnP/95Fi9eTFtbG7/73e9obm5m4cKFrF27lmuuuYYvfvGLnHLKKQB87GMfG9VYQqEQP//5z7nooov4whe+QDgc5he/+AUrVqzgz3/+M0cffXReXvOOHTsAqK6uBuCee+7h8ssv57jjjuOGG26gpaWFW2+9lRdffJHXXnuNQCAAwPnnn8/bb7/NFVdcwezZs2ltbeWpp55iz549gzacGM374nA4OO+883jooYf42c9+1ifb9cgjj5BIJLjwwgsBsCyLv/u7v2Pz5s188YtfZOHChfz1r3/lJz/5Ce+//z6PPPIIAG+//Taf+tSnOPLII1m7di0ul4vt27cPOjkLIcR4mApzkKZp/Pu//zuf+9znePjhh1m9evWQ933mmWc466yzOPbYY7n22mtRVTUTFL3wwgscf/zxALz22musXLmS6dOnc/3112OaJmvXrqW2tnbAMe+44w4OP/xw/u7v/g5d13nsscf4yle+gmVZ/NM//RMAt9xyC1dccQXl5eX827/9GwD19fWDjvGzn/0s//mf/8n69ev5zGc+k7k9Go3y2GOPsWbNGjRNA+DXv/41l112GStWrODGG28kGo1yxx13sHTpUl577bXM3Dna+VVMYLYQk9CWLVtswH7qqads27Zty7LshoYG+5//+Z/73O+aa66xAfuhhx4acAzLsmzbtu1XXnnFBuy77757wH1mzZplX3bZZQNuP+200+zTTjst87NhGHYikehzn46ODru+vt7+/Oc/3+d2wL722muHfX07d+60Afv666+39+/fb+/bt8/etGmTfcwxx9iA/dvf/tZOJpN2XV2dvWjRIjsWi2Ue+/vf/94G7GuuuSYzDsC+6aabhn3O/q9puPflsssus2fNmpX5+Q9/+IMN2I899lif+33yk5+058yZk/n517/+ta2qqv3CCy/0ud+dd95pA/aLL75o27Zt/+QnP7EBe//+/cOOWQghxsNUmYNuuukm2zAMe/78+fZRRx2VGfO1117b5xxtWZY9f/58e8WKFZn72LZtR6NR++CDD7Y//vGPZ247++yz7bKyMvvDDz/M3LZt2zZb13W7/9fWaDQ6YGwrVqzoM6/Ytm0ffvjhfd6PtGeffdYG7GeffTYzzoMOOsg+//zz+9zvgQcesAH7+eeft23btsPhsB0IBOwvfOELfe63b98+2+/3Z27Pdn4Vk4OU/4lJad26ddTX13PGGWcA3S1iP/vZz3Lffff1Sd3/9re/5aijjuK8884bcIz+ZQZjoWlaJkNjWRbt7e0YhsGSJUt49dVXcz7utddeS21tLdOmTeP0009nx44d3HjjjaxevZotW7bQ2trKV77yFdxud+Yxq1atYsGCBaxfvx4Aj8eD0+lk06ZNdHR0jO2FDuHMM8+kpqaG+++/P3NbR0cHTz31FJ/97Gczt/3f//0fCxcuZMGCBbS1tWX+S5c1pktV0hm2Rx99FMuyCjJmIYTI1VSZg9LH/vd//3feeOONTDVBf6+//jrbtm3j4osv5sCBA5lzeyQSYdmyZTz//PNYloVpmmzcuJFzzz2XGTNmZB4/b948zjrrrAHH9Xg8mf8fDAZpa2vjtNNO44MPPiAYDI76tSiKwmc+8xkef/xxurq6Mrfff//9HHTQQSxduhToLj/v7Ozkoosu6jNXaZrGCSeckJmrijG/itIhQZWYdEzT5L777uOMM85g586dbN++ne3bt3PCCSfQ0tLC008/nbnvjh07WLRoUVHG9atf/YojjzwSt9tNdXU1tbW1rF+/PqcTf9oXv/hFnnrqKZ5++mn+8pe/0Nrayre+9S0Adu/eDcChhx464HELFizI/N7lcnHjjTfyxBNPUF9fz6mnnsp//Md/sG/fvpzH1Z+u65x//vk8+uijmbVRDz30EKlUqk9QtW3bNt5++21qa2v7/HfIIYcA0NraCnSXaJx88sn84z/+I/X19Vx44YU88MADEmAJIcbdVJqD0i655BLmzZs35Nqqbdu2AXDZZZcNOL///Oc/J5FIEAwGaW1tJRaLMW/evAHHGOy2F198keXLl+P1egkEAtTW1mbW1ub6uj772c8Si8X43e9+B3SXaD7++ON85jOfyQS66ddz5plnDng9Tz75ZGauKsb8KkqHrKkSk84zzzzD3r17ue+++7jvvvsG/H7dunV84hOfyMtzDXUl0TTNTN01wG9+8xvWrFnDueeeyze/+U3q6urQNI0bbrghsw4qF/Pnz2f58uU5Pz7tyiuv5Oyzz+aRRx7hD3/4A9/97ne54YYbeOaZZzjmmGPGfHzoXtD8s5/9jCeeeIJzzz2XBx54gAULFnDUUUdl7mNZFkcccQQ333zzoMdobGwEuq/+Pf/88zz77LOsX7+eDRs2cP/993PmmWfy5JNP9nnvhRCimKbSHJSWzlatWbOGRx99dMDv0xe8brrppiHXb5WXlxOPx7N+zh07drBs2TIWLFjAzTffTGNjI06nk8cff5yf/OQnOV9kO/HEE5k9ezYPPPAAF198MY899hixWKzPBcD0sX/9618zbdq0AcfQ9b99vS7G/CpKgwRVYtJZt24ddXV1/Od//ueA3z300EM8/PDD3HnnnXg8HubOnctbb7017PGGK8GorKyks7NzwO27d+9mzpw5mZ8ffPBB5syZw0MPPdTneNdee20Wryg3s2bNAuC9997LlM+lvffee5nfp82dO5evf/3rfP3rX2fbtm0cffTR/PjHP+Y3v/nNoMcfbWnKqaeeyvTp07n//vtZunQpzzzzTGbRcO8xvPHGGyxbtmzE46uqyrJly1i2bBk333wzP/jBD/i3f/s3nn322bwEmkIIkYupOgddeumlfP/73+f666/n7/7u7/r8bu7cuQBUVFQMe36uq6vD7XYPuqdX/9see+wxEokEv/vd75g5c2bm9sE6Go52vrrgggu49dZbCYVC3H///cyePZsTTzxxwOupq6vLar4Z7fwqJiYp/xOTSiwW46GHHuJTn/oUn/70pwf899WvfpVwOJxJ659//vm88cYbg+6xkS5h8Hq9AINOXHPnzuXll18mmUxmbvv9739PU1NTn/ulrxj2Lov405/+xEsvvTS2FzyMJUuWUFdXx5133tmnHfkTTzzB1q1bWbVqFdDd1aj/1cG5c+fi8/kGtDHvbbj3ZTCqqvLpT3+axx57jF//+tcYhtHnyh90T2Qffvghd91114DHx2IxIpEIAO3t7QN+n776OdyYhRCikKbyHJTOVr3++uuZ15d27LHHMnfuXH70ox/1WauUtn///swxli9fziOPPMJHH32U+f327dt54oknRnxNwWCQu+++e8DxvV5v1nMVdJcAJhIJfvWrX7FhwwYuuOCCPr9fsWIFFRUV/OAHPyCVSg35enKdX8XEJJkqMan87ne/IxwOD7hKlnbiiSdmNmH87Gc/yze/+U0efPBBPvOZz/D5z3+eY489lvb2dn73u99x5513ctRRRzF37lwCgQB33nknPp8Pr9fLCSecwMEHH8w//uM/8uCDD7Jy5UouuOACduzYwW9+85vMVay0T33qUzz00EOcd955rFq1ip07d3LnnXdy2GGHDTrB5IPD4eDGG2/k8ssv57TTTuOiiy7KtFSfPXs2V111FQDvv/8+y5Yt44ILLuCwww5D13UefvhhWlpaMq3OBzPc+zKUz372s9x2221ce+21HHHEESxcuLDP7//+7/+eBx54gC996Us8++yznHzyyZimybvvvssDDzzAH/7wB5YsWcLatWt5/vnnWbVqFbNmzaK1tZX/+q//oqGhIbOQWAghim2qz0GXXHIJ3/ve93j99df73K6qKj//+c8566yzOPzww7n88ss56KCD+PDDD3n22WepqKjgscceA+C6667jySef5OSTT+bLX/4ypmly++23s2jRoj7H/cQnPoHT6eTss8/m//2//0dXVxd33XUXdXV17N27t8/zH3vssdxxxx18//vfZ968edTV1Q2o4Oht8eLFzJs3j3/7t38jkUgMuABYUVHBHXfcwd///d+zePFiLrzwQmpra9mzZw/r16/n5JNP5vbbb895fhUT1Hi2HhQi384++2zb7XbbkUhkyPusWbPGdjgcdltbm23btn3gwAH7q1/9qn3QQQfZTqfTbmhosC+77LLM723bth999FH7sMMOy7R07d3a9sc//rF90EEH2S6Xyz755JPtLVu2DGhna1mW/YMf/MCeNWuW7XK57GOOOcb+/e9/P6D1uG2Pvp3tSO6//377mGOOsV0ul11VVWVfcskldnNzc+b3bW1t9j/90z/ZCxYssL1er+33++0TTjjBfuCBB/ocp/9rGu59Gex1pd+HxsZGG7C///3vDzreZDJp33jjjfbhhx9uu1wuu7Ky0j722GPt66+/3g4Gg7Zt2/bTTz9tn3POOfaMGTNsp9Npz5gxw77ooovs999/f8T3QwghCkXmINu+++67bWDQbS9ee+01e/Xq1XZ1dbXtcrnsWbNm2RdccIH99NNP97nf008/bR9zzDG20+m0586da//85z+3v/71r9tut7vP/X73u9/ZRx55pO12u+3Zs2fbN954o/3LX/7SBuydO3dm7rdv3z571apVts/ns4HMe9O/pXpv//Zv/2YD9rx584Z8H5599ll7xYoVtt/vt91utz137lx7zZo19pYtW2zbzn5+FZODYttZbIEthBBCCCHEODn33HN5++23M533hCg1sqZKCCGEEEKUjFgs1ufnbdu28fjjj3P66aePz4CEyIJkqoQQQgghRMmYPn06a9asYc6cOezevZs77riDRCLBa6+9xvz588d7eEIMShpVCCGEEEKIkrFy5Ur+93//l3379uFyuTjppJP4wQ9+IAGVKGmSqRJCCCGEEEKIMZA1VUIIIYQQQggxBhJUCSGEEEIIIcQYyJqqfizL4qOPPsLn86EoyngPRwghpgzbtgmHw8yYMQNVlWt+aTIvCSHE+Ml2bpKgqp+PPvqIxsbG8R6GEEJMWU1NTTQ0NIz3MEqGzEtCCDH+RpqbJKjqx+fzAd1vXEVFxTiPRgghpo5QKERjY2PmPCy6ybwkhBDjJ9u5SYKqftKlFRUVFTJ5CSHEOJASt75kXhJCiPE30twkRetCCCGEEEIIMQYSVAkhhBBCCCHEGEhQJYQQQgghhBBjIGuqhBBCCCHEpGDbNoZhYJrmeA9FTBCapqHr+pjX80pQJYQQQgghJrxkMsnevXuJRqPjPRQxwZSVlTF9+nScTmfOx5CgSgghhBBCTGiWZbFz5040TWPGjBk4nU7pJCpGZNs2yWSS/fv3s3PnTubPn5/z5vMSVAkhhBBCiAktmUxiWRaNjY2UlZWN93DEBOLxeHA4HOzevZtkMonb7c7pOBJUCdFL0DAIGQYVuo5fl38eQgghxESSa5ZBTG35+NzIt0YhgIRlsbG9nS3hMBHTxKtpLPH5WF5VhUtO0EIIIYQQYhjybVEIYGN7Oxs6OtAUhQa3G01R2NDRwcb29vEemhBCCCGEKHESVIkpL2gYbAmHqXc4qHM6casqdU4ndQ4HW8JhgoYx3kMUQgghxCRk2zZf/OIXqaqqQlEUXn/99REfs2vXrqzvW6pOP/10rrzyymHvc8899xAIBIoynnyQoEpMeSHDIGKaVPRbQ+XXdSKmSUiCKiGEEEIUwIYNG7jnnnv4/e9/z969e1m0aNF4D6koHnroIb73ve9lfp49eza33HJLn/t89rOf5f333y/yyHIna6rElNS7IUWFruPVNEKGgbvX/gRBw8CraQOCLSGEEEKIfNixYwfTp0/nYx/72HgPpaiqqqpGvI/H48Hj8RRhNPkhmSoxpSQsi/VtbdzS1MRtzc3c0tTE5s5OjvJ6aUmlaEkmiVsWLckkrakUS3w+6QIohBBCTCFBw6ApHi94+f+aNWu44oor2LNnD4qiMHv2bKA7e7V06VICgQDV1dV86lOfYseOHUMep6Ojg0suuYTa2lo8Hg/z58/n7rvvzvy+qamJCy64gEAgQFVVFeeccw67du0a8nibNm1CURTWr1/PkUceidvt5sQTT+Stt97qc7/f/va3HH744bhcLmbPns2Pf/zjPr//r//6L+bPn4/b7aa+vp5Pf/rTmd/1Lv87/fTT2b17N1dddRWKomT2F+td/vf++++jKArvvvtun+f4yU9+wty5czM/v/XWW5x11lmUl5dTX1/P3//939PW1jbka80nCarElDJUQwoUhZWVlVi2TXM8jmXbrKysZHkWV1KEEEIIMfENduF1fVsbCcsqyPPdeuutrF27loaGBvbu3csrr7wCQCQS4eqrr2bLli08/fTTqKrKeeedhzXEOL773e/yzjvv8MQTT7B161buuOMOampqAEilUqxYsQKfz8cLL7zAiy++SHl5OStXriSZTA47vm9+85v8+Mc/5pVXXqG2tpazzz6bVCoFwF/+8hcuuOACLrzwQv76179y3XXX8d3vfpd77rkHgC1btvC1r32NtWvX8t5777FhwwZOPfXUQZ/noYceoqGhgbVr17J371727t074D6HHHIIS5YsYd26dX1uX7duHRdffDEAnZ2dnHnmmRxzzDFs2bKFDRs20NLSwgUXXDDs68wXuQQvpoz+DSkA3E4nNvBGVxdXNjayNBCQfaqEEEKIKSh94bXe4aDB7SZkGN0XXoFVPUFKPvn9fnw+H5qmMW3atMzt559/fp/7/fKXv6S2tpZ33nln0DVXe/bs4ZhjjmHJkiUAmYwXwP33349lWfz85z/PZIDuvvtuAoEAmzZt4hOf+MSQ47v22mv5+Mc/DsCvfvUrGhoaePjhh7ngggu4+eabWbZsGd/97neB7qDnnXfe4aabbmLNmjXs2bMHr9fLpz71KXw+H7NmzeKYY44Z9HmqqqrQNA2fz9fnfejvkksu4fbbb8+sxXr//ff5y1/+wm9+8xsAbr/9do455hh+8IMf9HnvGhsbef/99znkkEOGPHY+SKZKTBnZNKTw6zqNbrcEVEIIIcQUUkqdgLdt28ZFF13EnDlzqKioyARJe/bsGfT+X/7yl7nvvvs4+uij+da3vsUf//jHzO/eeOMNtm/fjs/no7y8nPLycqqqqojH48OWFAKcdNJJmf9fVVXFoYceytatWwHYunUrJ598cp/7n3zyyWzbtg3TNPn4xz/OrFmzmDNnDn//93/PunXriEajubwdGRdeeCG7du3i5ZdfBrqzVIsXL2bBggWZ1/rss89mXmd5eXnmdyO91nyQb45iyihUQ4reTS8kGBNCCCEmnvSF1wa3u8/tfl2nOR7PXHgthrPPPptZs2Zx1113MWPGDCzLYtGiRUOW65111lns3r2bxx9/nKeeeoply5bxT//0T/zoRz+iq6uLY489dkDZHEBtbW3BXoPP5+PVV19l06ZNPPnkk1xzzTVcd911vPLKKzm3SZ82bRpnnnkm//M//8OJJ57I//zP//DlL3858/uuri7OPvtsbrzxxgGPnT59eq4vJWvyDVBMGX5dZ4nPx4aODuyen4OGQWsqxcrKylGfLBOWxcb2draEw0RME6+mscTnY3lVFS5VksBCCCHERFEqnYAPHDjAe++9x1133cUpp5wCwObNm0d8XG1tLZdddhmXXXYZp5xyCt/85jf50Y9+xOLFi7n//vupq6ujoqJiVGN5+eWXmTlzJtDdDOP9999n4cKFACxcuJAXX3yxz/1ffPFFDjnkEDRNA0DXdZYvX87y5cu59tprCQQCPPPMM6xevXrAczmdTkzTHHFMl1xyCd/61re46KKL+OCDD7jwwgszv1u8eDG//e1vmT17Nvo4XOSWb35iSlleVZW3hhRDNb3Y2N5egJELIYQQolDSF17HuxNwZWUl1dXV/Pd//zfbt2/nmWee4eqrrx72Mddccw2PPvoo27dv5+233+b3v/99Jvi55JJLqKmp4ZxzzuGFF15g586dbNq0ia997Ws0NzcPe9y1a9fy9NNP89Zbb7FmzRpqamo499xzAfj617/O008/zfe+9z3ef/99fvWrX3H77bfzjW98A4Df//73/PSnP+X1119n9+7d3HvvvViWxaGHHjroc82ePZvnn3+eDz/8cNhufatXryYcDvPlL3+ZM844gxkzZmR+90//9E+0t7dz0UUX8corr7Bjxw7+8Ic/cPnll2cVsI2VBFViSnGpKqtqariysZErGhq4srGRVTU1o84slVLttRBCCCHGLp8XXnOlqir33Xcff/nLX1i0aBFXXXUVN91007CPcTqdfOc73+HII4/k1FNPRdM07rvvPgDKysp4/vnnmTlzJqtXr2bhwoX8wz/8A/F4fMTM1Q9/+EP++Z//mWOPPZZ9+/bx2GOP4ezJ4i1evJgHHniA++67j0WLFnHNNdewdu1a1qxZA0AgEOChhx7izDPPZOHChdx555387//+L4cffvigz7V27Vp27drF3Llzhy1L9Pl8nH322bzxxhtccsklfX43Y8YMXnzxRUzT5BOf+ARHHHEEV155JYFAALUIFUSKbdt2wZ9lAgmFQvj9foLB4KjTpGLqaIrHua25mQa3G3evf6hxy6I5HueKhgYa+9VlCyGGJ+ffwcn7IsTI4vE4O3fu5OCDD8Y9xvl3qq+V3rRpE2eccQYdHR05r3+aaIb7/GR7Dp56nxQh8qBUaq+FEEIIkV/+KRpMibGRT4wQOch30wshBpO+WmoDCkzZq6ZCCCFEqZPZWYgcpWust4TDNMfjeDWt6LXXYnJKd5Z8ORzmna4u2g2DKl3nMK+XEysqpMOkEEKIgjn99NOR1UGjJ0GVEDlKN71YGghM6dprkX/pzpKdqRSthoFTUdhvGOyMx+ns6WC0qqZmnEcphBBCiDS51CnEGPl1nUa3WwIqkRfpzpJ+TaOzJ0M13ekkoGkEDYMKTZMOk0IIIUSJkaBKiBwEDYOmeDyvX2wLcUwx8YQMg4hp4lAUkpaFp6fMz6OqJG0bp6IQMU1C8jkRQgghSoZcWhdiFNJrXbaEw0RME6+mscTny3mNS9Aw2J9M8mo4zNZoNC/HFBNburNkyrZxqioxy8KnacQsC6eikLRt6TAphBBClBiZlYUYhfRal3qHgwa3m5BhsKGjAxjdGpfewdmbXV00J5PM93hY7PMRNc2cjikmh96dJQO6zq5Egi7TJGXbzHS5CJmmdJgUQgghSoxcBhciS+m1LvUOB3VOJ25Vpc7ppM7hGPUal3RwlrJtopZFuabxYSLBB7FYzscUk8fyqipWVlYy2+OhTtexbJtaXedgt1s6TAohhBAlSC51CpGl9FqXhn47bft1neZ4nJBhZJU96B2c6YrS/YXZ4SBqmuyOx5nv8Yz6mGJy6d9ZUvapEkIIMVWtWbOGzs5OHnnkkfEeyrBkdhYiS+m1LiHDwO10Zm4PGsao1rj0Ds5syKyb8agqnaZJzLJIyboZQXfALkGUEEJMXqeffjpHH300t9xyy3gPZdzt2rWLgw8+mNdee42jjz46c/utt946IfbNkvI/IbKUXuvSkkrRkkwStyxakklaUymW+HxZf/ntHZx5VJXZbjch06TNMFAVhbBpjvqYpUo6GgohhBBjY9s2xhSeR/1+P4FAYLyHMSIJqoQYhfRaF8u2aY7HsWx71Gtc+gdnB3s8NDiddJkmZYqCU1Em/LqZhGWxvq2NW5qauK25mVuamljf1kbCssZ7aCVpuOBzIgSmE2GMQgiRLSNoEG+KYwQLe05bs2YNzz33HLfeeiuKoqAoCrt27WLTpk0oisITTzzBsccei8vlYvPmzaxZs4Zzzz23zzGuvPJKTj/99MzPlmVxww03cPDBB+PxeDjqqKN48MEHhx3H7Nmz+cEPfsDnP/95fD4fM2fO5L//+7/73KepqYkLLriAQCBAVVUV55xzDrt27cr83jAMvva1rxEIBKiuruZf/uVfuOyyy/qMd8OGDSxdujRzn0996lPs2LEj8/uDDz4YgGOOOQZFUTKvq/fr/u///m9mzJiB1e/7xDnnnMPnP//5zM+PPvooixcvxu12M2fOHK6//vqCB6YT+zK4EEXWf61Lrmtc0gHTlnCYfYkE8zwezq6pYXF5ObVO54TPUOWrS+JkN1yLfiCv7fsLId9bDAghxHiyEhbtG9sJbwljRkw0r4ZviY+q5VWorvyf02699Vbef/99Fi1axNq1awGora3NBCvf/va3+dGPfsScOXOorKzM6pg33HADv/nNb7jzzjuZP38+zz//PJdeeim1tbWcdtppQz7uxz/+Md/73vf413/9Vx588EG+/OUvc9ppp3HooYeSSqVYsWIFJ510Ei+88AK6rvP973+flStX8uabb+J0OrnxxhtZt24dd999NwsXLuTWW2/lkUce4Ywzzsg8RyQS4eqrr+bII4+kq6uLa665hvPOO4/XX38dVVX585//zPHHH8/GjRs5/PDDcfZaapH2mc98hiuuuIJnn32WZcuWAdDe3s6GDRt4/PHHAXjhhRf43Oc+x09/+lNOOeUUduzYwRe/+EUArr322qzex1xMqFnv+eef5+yzz2bGjBkoijJgwZpt21xzzTVMnz4dj8fD8uXL2bZt2/gMVkxqfl2n0e3OOfhJB2dXNjZyRUMDVzY2ckFdHfPKyiZ8QJXPLomTXTr41BSFBrcbTVHY0NHBxvb2YX+XrUJnkPIxxolO5iUhJo/2je10bOhA0RTcDW4UTaFjQwftGwtzTvP7/TidTsrKypg2bRrTpk1D07TM79euXcvHP/5x5s6dS1UW1SuJRIIf/OAH/PKXv2TFihXMmTOHNWvWcOmll/Kzn/1s2Md+8pOf5Ctf+Qrz5s3jX/7lX6ipqeHZZ58F4P7778eyLH7+859zxBFHsHDhQu6++2727NnDpk2bALjtttv4zne+w3nnnceCBQu4/fbbB5TsnX/++axevZp58+Zx9NFH88tf/pK//vWvvPPOO0B3QAlQXV3NtGnTBn3NlZWVnHXWWfzP//xP5rYHH3yQmpqaTAB3/fXX8+1vf5vLLruMOXPm8PGPf5zvfe97I74HYzWhgqpIJMJRRx3Ff/7nfw76+//4j//gpz/9KXfeeSd/+tOf8Hq9rFixgng8XuSRCpGdsQZnpSjdiKN/kw2/rhMxTUISVAHDB5+bg0E2h0I5B6bFKL+U4LmbzEtCTA5G0CC8JYyj3oGzzonqVnHWOXHUOQhvCRe8FHAwS5YsGdX9t2/fTjQa5eMf/zjl5eWZ/+69994+ZXaDOfLIIzP/X1EUpk2bRmtrKwBvvPEG27dvx+fzZY5ZVVVFPB5nx44dBINBWlpaOP744zPH0DSNY489ts9zbNu2jYsuuog5c+ZQUVHB7NmzAdizZ8+oXucll1zCb3/7WxKJBADr1q3jwgsvRO2pkHjjjTdYu3Ztn/fgC1/4Anv37iUajY7quUZjQn2TO+usszjrrLMG/Z1t29xyyy38+7//O+eccw4A9957L/X19TzyyCNceOGFxRyqEFNWvrokTmRBwxixPHS4Fv0fxuOgKEz3egf8LptW+8Uov8zXFgMTncxLQkwORsjAjJi4G/qe03S/Trw5jhEy0P3FPad5+80BqqoO6IKXSqUy/7+rqwuA9evXc9BBB/W5n8vlGva5HA5Hn58VRcmsW+rq6uLYY49l3bp1Ax6Xzi5l4+yzz2bWrFncddddmXVRixYtIplMZn2M9HFs22b9+vUcd9xxvPDCC/zkJz/J/L6rq4vrr7+e1atXD3isu9+clU+TZsbbuXMn+/btY/ny5Znb/H4/J5xwAi+99NKQk1cikchEugChUKjgYxViMks34tjQ0YHd83PQMGhNpVhZWTmpv2iPZo3RcMFnpcMBipJTYNo/gwTgdjqx6V7DtzQQyMvfQILnkcm8JMTEoVfoaF4NI2TgdP/tnGYEDTSvhl5RmHOa0+nENM2s7ltbW8tbb73V57bXX389ExAddthhuFwu9uzZM+z6qdFavHgx999/P3V1dVRUVAx6n/r6el555RVOPfVUAEzT5NVXX820Rj9w4ADvvfced911F6eccgoAmzdv7nOM9Bqqkd4Pt9vN6tWrWbduHdu3b+fQQw9l8eLFfcb73nvvMW/evJxeb64mVPnfcPbt2wd0/1F7q6+vz/xuMDfccAN+vz/zX2NjY0HHKcRk1Xv9Tj66JE5Eo1ljNFyL/qV+P0srKnJq31+s8st8bTEwmcm8JMTEoft1fEt8pFpSJFuSWHGLZEuSVGsK3xJfwbJUs2fP5k9/+hO7du2ira1tQFe73s4880y2bNnCvffey7Zt27j22mv7BFk+n49vfOMbXHXVVfzqV79ix44dvPrqq9x222386le/ynmMl1xyCTU1NZxzzjm88MIL7Ny5k02bNvG1r32N5uZmAK644gpuuOEGHn30Ud577z3++Z//mY6ODhRFAbrXQlVXV/Pf//3fbN++nWeeeYarr766z/PU1dXh8XjYsGEDLS0tBIPBYce0fv16fvnLX3LJJZf0+d0111zDvffey/XXX8/bb7/N1q1bue+++/j3f//3nN+DbEyaoCpX3/nOdwgGg5n/mpqaxntIQoyolFpYD7Z+Z2N7O8urqvo04lhVUzOpO8INtcaoQtN4uqODPYOsoRku+Mw1MO2dQeo/vnxnkKZq8FxoMi8JMT6qlldRubIS27KJN8exLZvKlZVULS/cOe0b3/gGmqZx2GGHUVtbO+z6ohUrVvDd736Xb33rWxx33HGEw2E+97nP9bnP9773Pb773e9yww03sHDhQlauXMn69esz7cpzUVZWxvPPP8/MmTNZvXo1Cxcu5B/+4R+Ix+OZzNW//Mu/cNFFF/G5z32Ok046ifLyclasWJEpt1NVlfvuu4+//OUvLFq0iKuuuoqbbrqpz/Pous5Pf/pTfvaznzFjxoxM2fRgzjzzTKqqqnjvvfe4+OKLB7xPv//973nyySc57rjjOPHEE/nJT37CrFmzcn4PsqHYE2GL4kEoisLDDz+c6Vv/wQcfMHfu3AG7MJ922mkcffTR3HrrrVkdNxQK4ff7CQaDQ6Y4hRgvxWxhnc26IID1bW2Z9TsVuk7IMGjpKfVbVVOT9XEmuqZ4nNuam2lwu3GrKinLYms0yo54nAPJJEsDAZYFAoP+rYZ7j3J5/9J/kzqHY0D5ZSFa2ufrbzzRz78yLwkxfuLxODt37uTggw8e87oZI2h0r6Gq0Iu+jmqysCyLhQsXcsEFF/C9731vvIczouE+P9megyfNJ+Xggw9m2rRpPP3005nJKxQK8ac//Ykvf/nL4zs4IfKkUA0Ien8pdqtq1oHbcOt3Xg6FiFgWWyORKbGHUf81RlujUd6ORFAVhWqHgzJVHfJv5R8mGBnud0PpvQ9aczyOV9MKmkHKZYxTgcxLQkxMul+CqdHavXs3Tz75JKeddhqJRILbb7+dnTt3DsgiTWYT6hPT1dXF9u3bMz/v3LmT119/naqqKmbOnMmVV17J97//febPn8/BBx/Md7/7XWbMmDFg92khJqJCNCAYLPNl2zathsEMp3PEwG24DnDPdXTQnEgw1+Mp2gbA45kV692gI2ZZ7IjHURUFC5jn8TDT7aYlmcxrs4ih5GuTajEymZeEEKK7vO+ee+7hG9/4BrZts2jRIjZu3MjChQvHe2hFM6Fm2S1btvTZmTm9wO2yyy7jnnvu4Vvf+haRSIQvfvGLdHZ2snTpUjZs2FDQ9olCFEshWlj3z3y1JpM81dHBfI+Ho8vLgeEDt6E6wLUkk7QbBgu93oJ2oEsrdFlktsFaOhP0dEcHB5JJqh0O5nk8LOhpi5uvduPZjkcySIUn85IQQkBjYyMvvvjieA9jXE2o2fb0008f0J+/N0VRWLt2LWvXri3iqIQojrG2sO7/RXywzFe5puEADhgGMdPE07Oz+1DBwFDt0z9MJKjS9cxxe9+/EHsYFaoscrTBWjpDdER5OSgKZarKzF5fnsfaLKKYa+pEdmReEkIIARMsqBJiKst1/6ehvogfWlY2IPPl0TR8uk6XYRCzrExQNVwwMNj6nU9WVfHXaLQoexgVcl+mXIO1mW43ywIBNnR00JJM5m2vrmJs6ismH1l0L6aSCdp/TYyzfHxu5OwqxASSSwOCob6IRyxrQObLo6rUOBy0GwZh06RM00YMBoZav+Pt6UBX6A2AC1EWCWMP1vLdLKJYm/qKycNKWLRvbCe8JYwZMdG8Gr4lPqqWV6G6JLMpJpf0BrjRaBSPxzPOoxETTTQaBf72OcqFzMBCTCCjbUAw3BfxrZEIC8vKeCEU6hP4+HSdsyorURRlVMFA//U72QYVY20uMdayyKGMNVjrXQq4N5FgusvVpxSw2OMRU0/7xnY6NnTgqHfgbnBjhAw6NnRnNgNLA5K9EpOKpmkEAgFaW1uB7r2V0hvPCjEU27aJRqO0trYSCATQeip0ciFnUiEmoGwbEIz0RXyxz4dX0/oEPqt6Np6NW9aYgp3hAsCgYbA/meTVcJit0eiY1gflWhY5ktEGa/2Dw4Rl8WhbGy+HQhi2TXXPOHNd/1So4FFMTkbQILwljKPegbOu+/PidDuxUzYt61oIbQ5hmZZkr8SkMm3aNIBMYCVEtgKBQObzkyuZhYWY4IbL9Iz0RbzW6WReWdmggY9LVfOS+egdAPZe3/VmVxfNySTzPR4W+3xETTPn9UGF2Jcp22BtsDVrR3m9bOnq4qmODpxAua7T4XDQkkrl9PpGM55cTZVNmqcKI2RgRkzcDX0vqCT3Jom+G8U1w4V7Zt/sVc0qWZcnJjZFUZg+fTp1dXWkes63QozE4XCMKUOVJjOnKBhZHF1Y2XSCy/aLeLFab6fXd/k1jahlUa5pfJhIENB1jiwvz3l9UKH2ZcomWBtszdqdH33EB4kEjS4XtQ4HMcuiOZmkIcfXN5rxjJZ0FJyc9AodzathhAyc7u4LKmbMJLo9ih7QcTe6Ud1q9+9sCG8JE1gakHO1mBQ0TcvLl2QhRkPOniLvZHF0cWTbCe64igr2p1K8F4sRztMX8Vz0Xt+lKwqWbePXNLpMkx2xGPM9njGvD8p3cDhSsDbYmjVb0wiZJnHTxK/r6IqCr2dyb0ulqHQ4cn59hQgepaPg5KT7dXxLfN1ZKLv750RTArPTpPy4clSP2ue+8eZ490UwCaqEECIncvYUeTfc4mgpL8mPbDrBuVW1TwZCUxQOKyvjkzU1A/aPKobe67uSlkWHYbA7kUABkpZFndPJbLc7b+uD8lnONlSwNtiatZhl4VBVdEWhyzAo69VZ8UAyia4oY359+QoepaPg5Fa1vPvCSXhLmHhzHMWh4FnowTXd1ed+RtBA82roFfK3FkKIXMkZVOTVUIujpbwkv7LpBLe5q2tABuIvkQi1Tue4ZCB6r+9qSSaJWxYJy8KhKGiqytuRCO2pFF+aMWNMX+SLWc422Jo1j6qi0b2Rcsy2CRkGHlWlzTBIASdWVBQsUBltINkcj7M3keDgfu2HpaPg5KC6VGpW1fTp9Ne5uZOODR0omoLu1zGCBqnWFJUrK+XcLIQQYyBnUJFXQy2OlvKS/BqpAUU601BKGYj0+q5HDxxgWzTKQS4X7akUrakUAVXFp2lUaBrHVVSM6XmG25frpIqKvDZiGGzNWqgnkHOrKlUOBwcMg/ZkkpRtc1ZlJecUIKBNB5Kbg0E6ekoMl/r9AwLJdNDlUlVeCYXYHArx10iE92MxDvN6WVhWhkNVpaPgJKP7/7autX/2SvNqVK6szNwuhBAiNzJjirwabHE0SHlJvo3UgEKBITNZO6JR3o1EWOD1Fj2wWl5Vxf5Uire7ulAVhTqnk6N8PuocDiwgYhgkLCvn4w9WzqY5HLwXjXLHhx/yYmcnVQ7HkJmrXEoGB2se8Q/TpoGi8EZXF9WpFJqicGJFBefU1hak+cMTbW38Yt8+IqaJoijYsRhvRSKkLItz6+oGZO+aEwnCpsmxPh+LvF5ej0TYEg6TtG0aXa6CbNIsSsNg2Su50CWEEGMnZ1KRV4MtjpbyksIYrhNc3LIGZLJSlsWfQyE+TCSwW1vHvG9SLlyqynm1tbwXjWLYNtOcTnbG47zR1UWHYeBQFF4KhahzOnMa02Blke9GIuxKJMC2qXI40BRlQCOGsZQMDtc84ozKyoK3KQ8aBg/s38/+VIp6hwO3qhK3LFpSKR7Yv58zqqrY3NmZyd5VOxzdr9OyOJBKcaTPh1NVeSsS4e2uLqp1fVwamYji6p29EkIIMXZyRhV5J+UlxTHcl3mXqg7IZP05FOLNSISjvF7meTzj1uXNr+ss9fvZ0NHBa11d7EkkcCgKiqLQ4HLxQjCIt+e1jVb/ssiYZbErHsepKJRpGgFdx9OrPDJdBpmPDniDNY8oRqv65nic3fE41Q4Hvp7ncqgqhm2zOx5na1dXn+xdeyqFQ1Xxqypbe8owjygvp9Ht5oNYjEunTeNwr7egYxZCCCEmGwmqRN5JeUlxDfXFvXcma0c0yoeJBEd5vZzo9+NQlHFdY7W8qoqIaXLHRx9hWxZlDgeHud0s8HppT6VGPabeZXu9g0nLtulIpVBVlVluN56e1ua9GzFA6a0/GxVFGfb2Lsvqk73TgY5Uig7DIGXbACwsK6PK4WC600mDyzX48YQQQggxpBL+piAmOikvGV+9M1nvRiLYra3M83hwKAoxyyJmmrhUlbZksuhd3lyqykl+P5tDIap1nYDDgafXhsXZdp4brEHDCT4fywIB3ujq4oBh4FBVDnK5WFhWlnlc70YM2XRSLOWgqsHlYrbbzfZ4HF1R8KgqMcuiJZmkweVimtPZJ3u3K5Ho/vtbFh5VRVUU/hwOU+dwjLnzohCy6bsQYqqSM54Qk5xf11ng9VKt67SnUhxIpdgVj5O0LJK2zYwc1y+NVYWuU63raD2BQNpoOs8N1aDhH6ZN48rGRkKGwUvBIC+EQrT3BEe9G3qkA4jhOimWegc8v67zmbo6frF3LyHDIEh3JipmWeB08tv9+7Ftm496btsRj1PjcABQpqoogLen++JYOy+KqUs2fRdCTHWl/W1BCJEX6W6Bd370Ea2pFDUOB7qiEDRNQqbJK6FQ0feuGqmD4UgZk2waNDS63d0lfYrCy6EQ+1OpAY0YxjqOUnBWdTUORWFzKMTr4TBhVeX48nIW+3xETZOPUinqetq9H0gmqXY4OD0QYJbbjWHbKMCBVGpMnRfF1CabvgshprrS/7YghMiL4yoqWNfSQsQ0MWwbp6KwxOfLdIMbj7VDw3UwHMlIDRqa43HcZWVsbG9naySCaVnoisLCsrIBXf3GMo5SkC71PKK8nFuamjhW05jZU85Y3tOYw7JtPj99OigKZaqa+T1ASzI5IbJyojTla9N3KR0UQkxkctYSYopIWBYNLhdHlZdjAx5VxaNpxC0rr2uHRrPX03AdDEc0QoMGFKVPV7+5ZWWEDIMXQiG8mtYnMzemcRRBtu+pAug9+3/1ll4f5td1lgUCbOjooCWZnJBZOVF6xrrpu5QOCiEmA5lBhZgi0u3GU7bd50t3vtYOjWWvp1xajw/VoKEtlWKe241P00bd1S+bceSyQXCuxxvte9q/pXzv50j/jSd6Vk6UnrFu+i6lg0KIyUCCKiGmiEKvHcrHXk+j0b9BQxdgAXUOB5+pq0OBvHb1G0vQmNY7gHKr6ojHG+17mu3fuJSzcmLiGcum7/kqHRRCiPEmZyohppBCZSmChjEuez31btCQbqm+tKKC5VVVxC0rr139xhI0DhaQ2bZNq2Eww+kc9Hi5vqfZ/o2LsTGxmDpy3fR9rKWDQghRKuRMJcQUUqi1Q+O119Nwr8elqnnLzO2Jx3m6sxO/puUUNPYPyFqTSZ7q6GC+x8PR5eWDHi/X97TU14eJySnXTd/HWjoohBClQs5WQkxB+c5SZLOWp5CGej3ZZm36r2tK/+xSVV4JhXi6o4PNwSDVDgdBw2CB14tDUbIKGgfLOJVrGg7ggGEQM008mpZ5HTuiUd6NRJjuco3pPZVMlBgPo930fSylg0IIUUrkbCWEGLNS3etppKxN/7I8l6qiAaaikDBNPkwkCJkmh3u9VDudJC2Lt6JRAI4oL88qwBks4+TRNHy6TpdhELMsPJpGyrL4cyjEh4kEdmsr1bqe2bS3lN5TIfIt19JBIYQoJTIrCyHyopS7yg2VtelflvfnUIg3IxGO8no5orycLeEwUcuiyzSZ63bzdiSCqihsj8W6gxzTHDHAGSyL51FVahwO2g2DsGlSpml9nnuex0PIMDKb9lq2XXLvqZhaCrmHVO/SwXhzHAUFV4MLK26RbE3KvlVCiAlBzlJCiLyYaGt5+pflxUyToGFQ63DQaRhETROHolCt6+yOxznN7wdgRzzOgWSSqGVlFeAMlcXz6TpnVVaiKAo7olE+TCQ4yuvlRL8fh6Jk1lhZts3l06ejQMm/p2LyKdYeUlbConNzJ+EtYYygQXJfEhRw1bvQ/LJvlRCi9MnsLITIq2zX8uR7v6fR6l+WF7MskrZNoKcsD8CpqlhA0rYxgCPLy/HrOjHT5MqGBmb2ayIxlMGyeKuqqjJdCt+NRLBbW5nn8eDotalxes2WAjRm+VxC5FOx9pDq/TxWl0X8gzjYoJVr6FW67FslhCh5ElQJIYoqH/s95UP/sjyPquJUFDoNgzJVpdLhYLbbzZ/DYbyqigK0JJOEekr+sg2oYOQuhQu8Xqp1fdwafQgxmGLtIdX7eTSfRmJvAke9AwWF5EdJyg8rl32rhBAlT/LoQoiiSq9j0hSFBrcbTVHY0NHBxvb2oo4jXZbXkkrRkkyi9HTz259KEdB1FKDK4aDO4WCa08mBVArLtke1piloGDTF4wR7Ml9+XafR7R6Qmes/lrhl0ZJM0ppKscTnk5I/MS7Se0j1b2uu+3XMiIkRMvL+PFbMwk7aqG4V1aNiJS3MmJn35xRCiHyTmVoIUTTjtUnwUPqX5R3sdjPP7cZUlEyZ3pdmzOC4igoSlpV1qWIu2bjhGn2Md6mkmJqKtYdU7+fRfBqKU8GKWygoqE4VzaPJvlVCiJInZychRNGM1ybBQxmqLG+sQUz/roIhw2BDR/eakFU1g68JSY/liPJy9iYSTHe5qHc6S6JUUkxNxdpDqv/zuKa76HqzC2zwHu3FCMm+VUKI0idnJyFE0Yz3JsFD6d9cYywb5+aajRssu2XbNq2GwQynM+vgTIh8KtYeUr2fRy1Xcc9xgwK6V8e2bNm3SghR8iSoEkIUXO/MTyluEpxPuWbj+me3WpNJnuroYL7Hw9Hl5cD4lkqKqan3HlKF2qdqqOcBCvqcgynkflxCiMlNzhhCiIIZLPtylNfLskCAN7q6JuWGtrlk4wbLbpVrGg7ggGEQM008mgaMX6mkmNp0f3GCjP7PU6zAplj7cQkhJi+ZkYUQBTPY2qKng0FWVlZyZWNjSTZfGOt6qqE2+x0uGzdYdsujabg1jQPJJB2GkQmqxrtUUojJqFj7cQkhJi+ZlYUQBZHN2qJS2tA2n/tnDdfJbzD9s1spy2JbNMr+nrbqz3R2sqCsjOlOJ+2GMWlKJYUoBcXaj0sIMbnJWUIIkZORMjql1ulvJLl07BvKcJv9DqZ/dqspkeDNri7cqsrR5eUkLIstoRALysq4pL5+0pRKClEK0vtkuRv6nqt0v068Od69xkqCKiHECOQsIYQYlWwzOqXa6W8whdo/azRdBNOB0uZgkLe7uihTVQ73epnldtNlmhxIpSjXdZYGAtJOXYg8KtZ+XEKIyU3OFEKIUck2o5PL2qLxUgpZtXR2a7bHQ4dh0OhysS+Z5LnOTpKWhaoolKkq+5PJknrvhJjoirUflxBicpPLnUKIrPXP6LhVlTqnkzqHgy3hMEHD6HP/5VVVrKysxLJtmuNxLNsuWqe/oGHQFI8PGNNgemfV+h+j2Fm1BpeL6U4n70ajvBWNoioKlQ4HSdumOZnk1XC4aGMRYqqoWl5F5cpKbMsm3hyXvbGEEKMml1+EEFkbbUZntGuL8iGXhhOllFXz6zoLvV4eb2+nXNNwKwpR08SybeZ7PGyNRgmW2Ho0ISa6ofbjMoIGydak7FslhBjRpMpUXXfddSiK0ue/BQsWjPewhJg0cs3o+HWdRre7KIFAujxRUxQa3G40RWFDRwcb29uHfdx4ZtX6W1xeToPTiVNV6TRNbOBwr5fFPh8R0xzw/peK0WQHpxKZmyYO3a/jbnSjulXa1rfRdEsTzbc103RLE23r27AS1ngPUQhRoibdZZfDDz+cjRs3Zn7W5WquEHlTShmdwYyl4cR4ZNWGUut0cmR5OSnbplzT8KgqHk2jJZksuSYfkN929JOVzE2lxQgafTJS/cm+VaVvrHsKCpFvk+5TqOs606ZNG+9hCDFpjXYPpmLKR8OJ0XTsK5TewatLVSlTFFp69qwqheC1v3y2o5+sZG4qDVbCon1jO+EtYcyIiebV8C3xUbW8CtXVfQFA9q0qbaO9iCPBlyiWSffp2rZtGzNmzMDtdnPSSSdxww03MHPmzCHvn0gkSCQSmZ9DoVAxhinEhFVKGZ3+JlIb95GUcvDaW6Ha0U82o5mbZF4qnGwyULJvVWnL9iKOZNBFsU2qT9UJJ5zAPffcw4YNG7jjjjvYuXMnp5xyCuFhumXdcMMN+P3+zH+NjY1FHLEQE1cx10llK53haUmlaEkmiVtWJsOzxOcrqbGOJB28XtnYyBUNDVzZ2MiqmpqS+zKQzg72D1j9ul7S67+KabRzk8xLhdE/A6W6VZx1Thx1DsJbwhjB7s9q732r+j9e9q0aX6PpQJvr+lohcqXYtm2P9yAKpbOzk1mzZnHzzTfzD//wD4PeZ7Argo2NjQSDQSoqKoo1VCFKWjHKJ/L1HHJ1sriChsEtTU1oipLJVAG0JJNYts2VjY1Z/z1DoRB+v3/Sn39HmptkXiqMeFOc5tuacTd0N6JIs+IW8eY4DVc04G7szk61rW/rzmjVOQbsWyVrqsZPUzzObc3NNLjduHudz+OWRXM8zhUNDTS63Xk9LwmR7dw0qT9RgUCAQw45hO3btw95H5fLhcvlKuKohJg4ihGg5Ps5Srk8cTIq9eYlpWikuUnmpcLonYFyuv/2RXuwDFR6f6rwljDx5jiaV5N9q0pAtiXepbChu5h6JvVl266uLnbs2MH06dPHeyhCTEjFKJ/I5Tmyad1diuWJk1UptaOfCGRuGh+6X8e3xEeqJUWyJYkVt0i2JEm1pvAt8fVZJ5Xet6rxykYarmig8cpGalbVZJpZiPGRbYl3KW3oLqaOSfWp+sY3vsHZZ5/NrFmz+Oijj7j22mvRNI2LLrpovIcmxIRTjAYEo32OyVLaN9m6UUl2cHgyN5WO0WagdL9s+ltqsmniIxl0MR4m1aequbmZiy66iAMHDlBbW8vSpUt5+eWXqa2tHe+hCTHhFKN8YrTPMdFbd0+WoHAopdCOvhTJ3FQ60hmowNLAsPtUidKV7UWcidJBVUwek+pMct999433EISYNIrRnnw0zzEZWndP9KBQ5EbmptIjGaiJb6SLOGPJoPeuJgAKloGfbFULU538BYUQgypG+cRonmOiLzyeCEGhTPBCdDOChmSyJonRZNB7VxMEDYN9ySQKUO9y4c9jZcFkr1qYquRMIYQYUjHKJ7J9jom+sW8pB4UywQvRzUpYtG9sJ7wljBkx0bwaviU+qpZXSZOKKaB3NUGXZfFBPI4NlGsaVbqet8oCqVqYnEr7W4gQYlwVowFBts8x0Rcel3JQKBO8EN3aN7Z3709V78Dd4MYIGXRs6P63IPtTTW69qwl8msbeRIJ6hwMUhY+SSQ4rL89LZcFEqFoQuZHLLkKIERWjPXk2zzHW1t3ZtGIvlJFaAQPjMrb+E7xbValzOqlzODIlMEJMBUbQILg5iOJW0HwaqlvFWefEUecgvCWMEZR/CxPNaM756WqCCl0nZlkkbRu3quJRVZKWRcw08es6EdMc0Kp9NHo/T2/5OLYYXxIKCyFK0mDre3LNnJVKedtgpY7LAgFSlsUtTU3jMrZSLksUolishMX+h/fT+Xwnmlsj+m4U9yw3ZQvL0P068eZ49xorWV81IeRyzu9dTeDTNJyKQtyyQFFwqioeTaM1mcQA7DGMrZSrFsTYyF9OCFFSspkMR9u6e2N7O48eOIBbUSjXNFK2PS7lbYMFhZs7O9nQ2TlupXcywQvRXfYX+mMI1aWiulVQIfJ2BABnvRPNq6FXjM+/BWmaMXq5lDT3LzGf7nLxZlcXNnBkWRlbQiHej8VocDq5e+/enC9+TfRSdjE0+csJIUpKvtf3tCaT/LqlhXciESKmCUCNw8Fcj4eXx6l+PR0UlkJtvUzwYiozggbx5jihzSFcM10oLoXoW1G0Cg21TCXyTgQ7aVN9TnXRA5p8N80oRnAWNAyaEwmwbRoKXDI+3BhyPa/2riYoV1XmuN0owH7DYG8yyXyPh8U+H1HTHNO8JHtoTU4yWwohSkYhgozH29p4JRTCtG18PY9tTaXoMk0SljWu5W2lUnonE7yYanoHLIm9CSJ/jeBd5KX8sHIA4rviWHELK2Hh+1h3IDOSfActIzXNyPb5itHRMGFZPNjayv+1trI3lUIHZrndXFBby1k1NUUts872vJptiXnQMLilqYlFXi8ze45ZrmljmpeK0QRKFJ/8BYUQJSFoGLwbiXDAMJjn8fT5Xa5BRtAweCMSwQLcqkqZpgGgKgohw6DVMMZUGz/Sc480WZZK6d1gEzx0Z/lksheTUe+AxXOwh9j7MSKvR1CdKuVHlFM2r4x4UxzVoVJ3Xt2wwUc+gpb+AZIRNAhvCeOod+Cs6z43ON1OsCH0cggrYhHZGhny+Xofr3NzZ84dDbMJ3BKWxQ27dvG/ra2ELAufqlKh6+yIx/nFvn04VLWowcNI51WXqrK+rS3rEvOQYaArSuZCX1o+Ln6NtpRdlDb5SwohxlXvNVTtqRR/jUToSKU40e/HoShA7kFGyDCImSY+TSNmWcQtC4eiYNk2KdumXFVRCvh6RlogXWqld35dx62qJdHUQ4hsjTZDNFjA4j3MS3hLmMhbEdyNbqyEhZ2wqTijYsRjjqUN+1ABWdmhZZgRE3dD32yL7tfpeK6DRHMCz1zPgOerWl7V53iqphLbHaPskLIBwVl4S5jA0sCgr280geKj+/fzWHs7KdumRtdRgbBpEtA0wqbJPXv3sjkYxLTtopxPRjqvvhIKjarEvFQufonSJzOkEGJcpddQaYrC3LIyDnK5eCMS4eVgcEDb8dEGGRW6TqXDQZWuU6Xr2LZN1DRJ2TaVus6i8vK8T4i9X0+D242mKGzo6GBje/ug9x9rm/h8G+34hRgvVsKibX0bTbc00XxbM023NNG2vg0rYQ37OCNkYEbMPo0nyhaWUX5kOVbSIvZBDNuyqVxZOWLZX/8AbbRt2NMBmaIpuBvcKJpCx4YOul7tQvNqGKG+j0+2JDHaDVwHuQZ9vrZH2/ocz0pZRN+Nkvwo2ec4ul/HjJgDjj/SuNo39j0PBA2Dl0MhVMClKLhVFbem4VYUukyTtmSSrbEYRs8aq2KdT4Y6rx5XUTHqLSRG2g5DMk0iTT4JQohxM9gaqpMqKgBoTiSojMWo1vWcgwy/rrPU7+etSIR4KsU0pxPDtgmaJjOcTk73+/M6IY60JuyI8nIUutvxKpAphSmV2vpSaJwhRLZyzRDpFXomYHG6uz/nqkPF1ehCr9aZduk0XA2u7LJePQHaYBmlkdqwD1fiF9kaoWxhGaEXQmCTKQlMfJhAr9Iz909TnEp38NSaxDXdlfm9u9GN7teJbo9SdngZmkfLPPdQHQ2HG1c6u5V+7R1OAyVk0timsl23ifhMyjQNh6oSTqVI2TYHu900uFzdAVeRzidDrVlqisdzWscq605FNmR2FEKMm8EWFDtUleMrKtgRjXJxXR0LvN4xTbzLq6pIWRYP7N/P7ngcgAUeD5+pq8v7hDjUAmkV+GMwyEeJBG2pFO2GQZWuc1h5OSf2lMKUQm19qTTOEGIk2XzxHyqY0f06viW+7gCsJ2BJtiZJfJig+qxqvId7sx7HYAFaenwjtWEfKSDzLfaheTXCW8LEm+NoXo2qT1YR/Ws083xWyiK6NUrknQhGyEDVVOyjbRyVDhSHgupR8RzioeuVLhJNCdwz3RhBg1RrisqVlYO+R8OOa1ec1odbSexOYAQNIvsSLIlEqfYZTHMZvDvfYuvxGqpLxQQ8isICrxcUhfZUCo+mjfp8ks361KH0P6/mWsonjSVENuQTIYQYN8NNcFUOx5gDKuieDM+tq+OMqiqa43FQFBpcroJMiP1fT8qy2BqN8kJnJ62pFE2JBCgKtQ4HrYZBWSxGSzLJ/mSS8+rqxn2SlrUDYqIYS4YIyJT1dT7XSfCPQawuC71Op+uvXaheNesmE4MFaCMFLZnHjhCQOWudlM0rI7A00GfNWJu3LfN8iaYEXW92gQ3eI7wkdif6NNwAcE1zYS40URxKJjgbrrRxuHElWhKYfzRxzXRhtBuktsYoM1Mw06AyoLH0JRtFsXjpJJtZLheLvF66DION7e0kLQunqhLQdWZ7PCOeTwqxaftY17GWwsUvUbrkkyGEGDfFbNTg13X85eV5O95Qz9H79TQlErwWDnPAMJjmdBI1TZKWRY3DgV/TeC8axa1pvN3VxXvxOEsrKjJfGMZydTZf4x/vxhlCDGUsGaLeYh/EiDfFcVQ5cNQ4MmuHYOQmE2np4KR3Rimb9VjZBmS6v28DjvRxg5uDdL3dhVqm4j3ci3eBl4g3MqDhhtFuUH9x/YDgbLTjSjQlwAbnDCfxPXFCfwxhGBbOiMkR+6B9poWpqNRsUqg6zsvsGT404PGODmodDgK6TqdhsDsSYW4We1jle8/CNCnlE4UiM6QQYlxNtgkuPe7NwSBvd3XhUBTqHA6mu1zsisdxAO2pFEnLYl8yyTyPB4eqkrIsNnR0kLIsHKo6bt33JtvfQ0xOY8kQQfd6rAOPHsBoN/DM8qDoCvH34yi2glahEdocGraEsDfVpVKzqibroKW3XAKy9PN5ZnswOgw8czzoge7nK1tYhp206Xq7i9gHMZzTnZnjqS51TOOq+FgFXW92kfwoSeStCLZtY9k2asLCYypUGxrJKo1pTRaB151sabTBtjnS6yVoGHSZJmWqypFeLybdGfChAqtCru+UUj5RKPIpEkKMq8k2waVfz2yPhw7DYLrTyZZwGBPQAMu2SQItySSenk5ZGtDYcyX2gf37Kdd1Zrpceb06O9rxT5a/h5i8cs0QpddjaX4N1aGilquoqkqyJUnnc504pjmwDRv3oW6mXTQNK25lneEZ7aa/YwnIXA0unNOdWMm/dTvMteFGNuMCiL4Xpev1LhwBR3dnw5CN7VAxHaDHFGwULL8K25O4uxwkvHB8RQW2bROzLDyqiqIoI66p6r++M2ZZxEwTl6rSlkzmZX2nlPKJfJNPkxCiJEy2Ca7B5WK604mmKMx2u3krGsWjaexLJrFsG9O2OcjlImZZLCorw6OqxBWF3fE4J/n94959b7L9PcTkk2tAkl6P5ahxoDgVrLhFKpTCOGBgY6OoCopLIfRCiPiuOIqi5Lypb7ZyCchGytaNpuFGtuPyHOqh4w8daNM1dK9O8sMkTsWmq1xBj5soQYXQoQ5iSZPj8fK2ozsAqnM68fRsvt6STI64RjO9vrM9leJAKsWueJykZZG0bWY4nbJnnihJ8qkUQogC6L23SZXDwSFuNx5VRQcqejpgeTWNRWVl3d2xgP2pFEAmoOp9rIhpEhpkDxUhpjrdr2dah2d1/571WHbKxj3Ljdlukvgoga3YoIJt2HgP82IlLDqe6Oi+3zB7NY2nquVVVK6sxLZs4s3xrPfXylVgaQDXTBdm2EQtU9G8Gi6vA6+mYWsKB+ZpJGo1Zld7OGt2bc77O6XPn38Jh/lzOIwF6IpCzLIImSavhEIFeX1CjIVchhRCTGmFbAjRe32SX9c5ye9nzbRpnOz382IwyB9DIeqcTkzbpj2VImSazHa7SVp9Ny+V7ntC5E/vDI+j2oGz0Ulsdwys7iYM5UeV45rtIv50HJyglWvdm+xm2bK9mMZSPjgaVsKifWM74S1h0MCIGLhmuQgsCxB9J4rTtKk5soyG2S60NpNpp1bjrXSy3Mp9jeZxFRWsa2khYpoYto1TUVji81Hds1Gv7JsnSk1On8ZYLIZt25SVlQGwe/duHn74YQ477DA+8YlP5HWAQghRCIVo19vfcOuTZrrd1PZ8OUh/2TinupqUbfN0Z2feuu+NRxfB8SDzkhiN3uuxnDVO3LPcOGocVJxcgaPCQao9hRE20H16ZsNcyL5le7HlUj6YDSNoYIQMgi8FCb0QwlHvIHBygLAnTGxbDGW6gudQT3dXwGonuqrh+2Qg8/6OZY1mwrJocLk4qrwcG/CoKh5NI25Zsm+eKEk5fRrPOeccVq9ezZe+9CU6Ozs54YQTcDgctLW1cfPNN/PlL3853+MUQoi8KlS73sEMtj5pqC8bCcvCoShj7r5XjKCxlMi8JEajf4YnHTTYMRvLaWGGTeyUjaPGger527+X0bZsL5R0sFOMzJRxwKDrr124DnLhWeBBdagETg10l07GTBqvbOxezzXMeHJZo5leV5Wy7T4l0ZK5F6Uqp5n11Vdf5ZRTTgHgwQcfpL6+nt27d3Pvvffy05/+NK8DFGIyMYIG8aZ4d9ckMW76t+t1qyp1Tid1PZmjYBHXLvl1ncZee7akg60rGxu5oqGBKxsbWVVTM+pAKB00aopCg9uNpihs6OhgY3vprAfJJ5mXRC7S67Fqz6ntszZJcSpUnlWJ7tNJtiSx4hbJliSp1hS+Jb5xy1JZCYu29W003dJE823NNN3SRNv6NqyENfKDR6F9YzsdGzpQNAW9WscyLBJ7EkS3RjP3cdY7UXQFlNGva8tG73Wpo12TNZigYdAUj+fl/J7PY4nJI6dPfzQaxefzAfDkk0+yevVqVFXlxBNPZPfu3XkdoBCTQe+rfoXuIiVG1r9db5pf10umrGQs3fcKucdLqZJ5SYzFYGuTVLeaOW+PpmV7IaWDHUe9A3eDGyNkjHqz4pGkW8476h0465xYMQtHwIEVtYjvjuOZ70HzaEXJ2uVj37x8Zu3HcqypUoo9leX0V503bx6PPPII5513Hn/4wx+46qqrAGhtbaWioiKvAxRiMijGRCiyly4rCRkG7hIqK8nXpDsRgsZ8k3lJ5EP/tUmFbgIxmjK+/sEOUJDmGemW8+6G7vOH6lFxz3YTeT2CkTAwOg3MkJn1RstjkY998/JZ6p3LsaZaKfZUltO/hGuuuYaLL76Yq666imXLlnHSSScB3VcHjznmmLwOUIiJrlgToRidWS4XfwyH89YQYizyPemWatBYSDIviUIpRBOIXKoX+gc7vceXz+YZ6ZbzRsjonqsA7wIvRqdBojlBqj2Fo8pR1Kxdrpn7fGbtcz1WMdfvivGV07++T3/60yxdupS9e/dy1FFHZW5ftmwZ5513Xt4GJ8RkUKyJUIysd/ASNE0ihsFWw2Ca04lf13NqCJEP+Z5002sRNnR05DVoLOXyFZmXxESSS/XCYMEOQLIliW3YYOdnbENtKuwIOKg5u4aKkyoK1iAj3/KZtc/lWFOxFHsqy/kvOW3aNKZNmwZAKBTimWee4dBDD2XBggV5G5wQk8FQE2GpdJGaSnoHL7Pdbqp0nT2JBEeWl3NebW3BJ7fBgpJCTbr5WIuQNlHKV2ReEhNBrtUL6WDnwKMHMDoNHFUOIu9EiG2L4WxwsvfuvXlbq9u75Xz/9WSlsA442ws8+cza53KsqViKPZXl9Je84IILOPXUU/nqV79KLBZjyZIl7Nq1C9u2ue+++zj//PPzPU4hJqyhrvoVox69lBU76zFc8LI7Hi/ocw8XlPSfdGOWRcw0cakqbclkzpNuPtYipE2E8hWZl8REkWv1gpWwsFIWRpdB19tdpNpTYIFviY+KYyswo2be1uoWa1Ph0RrtBZ58Zu1zOdZULMWeynK63PD8889nWtc+/PDD2LZNZ2cnP/3pT/n+97+f1wEKMRlULa/q067Xtuxx7yI1XhKWxfq2Nm5pauK25mZuaWpifVsbCSu/LYH7Swcv/Scxv64TMU1CBWyNu7G9nUcPHKDLNKl2OPq0N09Puu2pFH/t6mJjezvPdnTwxIEDfJhIjDkT1L9l+2iVUvv54ci8JCaK3tULvY1UvdC+sZ3g00G8h3mp+kQVjioHuk/HUeVAK9dw1jnRKjQ6nu4gvic+4Ni5bOdRiFbpY5HLVhHLq6pYWVmJZds0x+NYtp1z1n60x8p3W3hR2nL6awaDQap6PkAbNmzg/PPPp6ysjFWrVvHNb34zrwMUYjIo1at+42G8sh7jdcWwNZlkXUsLzckkAF5NY67bTXVPULI0EGCJz8edH31EaypFjcOBrigETZOQafJKKDSu2aCJUr4i85KYKHKpXuhfMphqT6GX6ygBhfiuOJ7ZHqLvRYlui2IGTRQUAssCBE4J0PlC56TYziPXUul8Zu1zOVY+S7FFacvpU9XY2MhLL71EVVUVGzZs4L777gOgo6MDd7+JVwjxN4XoIjWRjOei3UI1bxhKurzx4f37+VMohKoo6EAL8GE8zvEVFVTpOiHD4LiKCta1tBAxTQzbxqkoLPH5+gRe4xW4TJTyFZmXxEQy3JqlwQzW5lxxKmCBFbNoe7yN+AfdVRCqUyX+YZz29e2EXglhHjAnxXYeY73Ak+4gmN64dyzB1Wi6EeYzqBOlLae/6pVXXskll1xCeXk5M2fO5PTTTwe6yy+OOOKIfI5PCDGJjHfWoxhXDHvX/LenUmzs6KDTMKhxOinXNJK2TcgweCUU4pPV1VT0BFYNLhdHlZdjAx5VxaNpxC1r3LNBxQ5GcyXzkphIRlu90L/hkebRcM9yE94Sxgh37xulOBQ0p4ZepZP6KIUZNTH/ahI4LTAptvMY6wWe8W64M5YN3cXEkNNf9ytf+QrHH388TU1NfPzjH0ft+TDOmTNHateFEEMabFKMmSZNiQQORclr1mOwRhjFuGLYu7zRq+uETRMV6DJN3IqCQ1VxKAqtqVSftU5eTSNl2/g0jQ7DoMMwSNl2SWSDJkL5isxLYiLKtnphsJJBR7UDPaCT6kyB3Z29ctQ4wIZkaxJzt4mdsnHNdOGa7kJxKJljTcTtPMZ6gWciNNwRE1vO/5qWLFnCkUceyc6dO5k7dy66rrNq1ap8jk0IMcn0nhTDpklTPE5zMkmXabLQ42FzZ+eYrxpmczWyUFcM+5c3ftQTLLocDlK2jWHbGJaFDQR0nZN8vsx45rnd/HzvXvYbBtGeMkC3pnFBTQ3ucW5bPlHKV2ReEpPZYCWDtRfWEtocIrYjhubRMKMmiX0JVKeKrdooukLsvRiOKgflR5QDhdvOwwgaBV8znOsFHtkvShRDTp+gaDTKFVdcwa9+9SsA3n//febMmcMVV1zBQQcdxLe//e28DlIIURry0Qb9lECAV0IhftvWRksqhVdVWVBWxsEeT16uGo7n1cj+5Y2VDgfVDgetqRQ2UKFp6KpKzLI4xONhTllZJgh8rL2drdEoUcuiTNMo1zQU2+a1SISN7e0lcSW1lMtXZF4Sk91gJYMAid0JrLhFfHecVGsK1aFip2xURaXs8DKMToPIWxHcjW6shJX37TyshEX7xvaiNMPI9QLPeJeei6khp0/7d77zHd544w02bdrUZwHw8uXLuf/++/M2OCFEachnG/QXOjv5KJWi0uFgUVkZC71e4rZN0DDG3KY73+2/0wuas31c7/JG6F4bdaTXS6inne5b0Sh/jUQIpVJ8qqdcJd1u/aNEggqHg3qnE6+qMt3lYoHXS9Q02RwKlUzr8lIl85Iodbm2Ne+vd5vzdFmgXqHjqHFgpSzMqImVsPAu8lK1soryI8uxkhaxD2IF2c6jfWM7HRs6UDQFd4MbRVPo2NBB+8ah25yP1Wi3iuh/bk4rtYY7YmLL6VP0yCOPcP/993PiiSeiKErm9sMPP5wdO3bkbXBCiNKQr+xPOujxaxoeVSWgaThUlbBpsisep9HtHtOGt/m6GpnrgubBav63xWIYdGepvJqGbdukgHd6grX0+6EoCipQruukbJtgKkWdw4EKdKRSciV1BDIviVJV6ExOOkAKbg6S2JtAURW8i7z4jvKhOBRcjS70ap1pl07D1eDKa2le/1bvUJrNMCZKwx0xseX0Kdq/fz91dXUDbo9EIn0mMyHExJfPWvR00FPjcOBUFOKWhUNV8agqHakUrckkvjFcNazQdTRVZU9PgObpCYBGezVyLEFk75r/d7q62J1IMMfjYZ7Hg2XbOFSVtlSKF4NBPtXVlXk/PD3nzlRPS/WoZRE2DCy6ywjlSurwZF4SxTSa9UPpTE6h2pr3LgssO7SM0B9DuBpd2KZNqj2VKffzHu4d83P117/Ve1opNsOYCA13xMSW0yd9yZIlrF+/niuuuAIgM2H9/Oc/56STTsrf6IQQ4y6ftejpEoyUbTPL7ebtSAQbMKG71bhpckaOC4YTlsXmzk52x2K8G43i13UO8XiY5nLRbhhZX40caxDZu+b/uY4O/tzVxcFud59mEwFdpykep8uyMu/HvLIyPuzJ0jkUBRtoNwymO50sraiQK6kjkHlJFMNos07FzOTofp36i+px1DoIbwkT2x5D0RX8p/jzWu7X5zn7tXpPK1QzjLGYKA13xMSV06fpBz/4AWeddRbvvPMOhmFw66238s477/DHP/6R5557Lt9jFEKMo3xu/tq7BKPa4WB+WRnbo1E6e7r/nVNdnfNVw3R26ZCyMsp1ne3RKK90dbHQNLm4vj7r4+YriPTrOkf7fPg1jU7DwNPrvevsee8O6WlUkX4/jq+o4JVQiP2GQYWq0uB08pm6OrmSmgWZl0QxjDbrVOxMjupSqVpehRkxCb0cwjItIlsjqF61II0jBmv1bgSNvDfDGI2RGiqVcsMdMbHl9KlaunQpr7/+Oj/84Q854ogjePLJJ1m8eDEvvfSSbLIoxCST71r03iUYAU3jhIoKDvV4+GRNTSYzNFr9s0szXC4OLyvL7H+1NBDIuk17PoPImW43p/n9PHTgANCdoeo0DPanUqyurmam2019z3NsCYep1nVWVFUR6Sn7c6kq22MxNra3F2yDysG+gOSjy2OxybwkCi2XrNN4ZHLaN7YTeiGEo96BXqHnvdywv8Favee7GUY2xntzXyFy/tc8d+5c7rrrrnyORQhRovJZi16IEozBskseTWOm2z3qEsV8B5FXz5wJwHPBIE09793q6urM7f3fj5dCIV4IBpnRs46qUC3hB/sCclR5Odg2b0QiE/JLicxLopByyToVO5NT7MYR6bVlgaUByo8oJ7E3gWu6C/dM98gPzjPZ3FeMt5z/ZVmWxfbt22ltbcXq11b51FNPHfPAxuI///M/uemmm9i3bx9HHXUUt912G8cff/y4jkmIiSzbQKh/hmO4jEc+SzDymV2C/AaRFbrOdXPmsCceZ28iwXSXi5nugV840u/F1kikKBtU9v8C0ppMcntzM3pPZm8ifikp5XkJZG6a6HLNOhUrk2MEDSLvRki1pyibW9Z37HkuN+y9tswIGiT3JUEBV70LzV+4faqGIpv7ilKQ0yfs5Zdf5uKLL2b37t3Ytt3nd4qiYJpmXgaXi/vvv5+rr76aO++8kxNOOIFbbrmFFStW8N577w3aGUoIkb2hAqH+WQ+XqqIBpqKQKELGI9/ZpUJk02a63YMGU70Va4PK3l9AKnWdrdEoO+Jx3ovF0BWFmW43R5WXUzeBvpSU8rwEMjdNBqPNOvXuENh/0958Zov6BDgHDCJ/jWAcMKg4qQLVoWbGks9yw95ry6wui/gHcbBBK9fQq/Th15mNonNitmRzX1EKcvp286UvfYklS5bw1ltv0d7eTkdHR+a/9vbCbfaWjZtvvpkvfOELXH755Rx22GHceeedlJWV8ctf/nJcxyXEZJbOemiKQoPbzc54nIcOHGBXLEaD242mKGzo6GBjAc8Py6uqWFlZiWXbNMfjWLY95na5o91gcqyKtUFl+gtIRU9A9XYkgmlZeFQVBXgrEmFrNAp0vwcR0xwwplJTyvMSyNw0WVQtr6JyZSW2ZRNvjg+6ma6VsGhb30bTLU0039ZM0y1NtK1vQ3WrmU1786l9YzsHHj2AGTZxNbhwNbiIvBkh9FIIK26RbEmSak11bxKch+fuXWKo+TQSexPd5YbTnCQ/SqL7dBx1jkwWK22o98VKjH4T+f5kc19RCnL6lG3bto0HH3yQefPm5Xs8Y5JMJvnLX/7Cd77zncxtqqqyfPlyXnrppUEfk0gkSCQSmZ9DoVDBxynEZNK/7CJmmgQNg1qHg07DwIaiZDwmQ7vcYm1Qmf4C0ppMsjsep0LTcGsauxMJnIpCQNfZHY8z3+Mh1JNpLPUvJaU6L8Ho5yaZl0pX7z2hhsq2FHpfqjQjaBD9IErLPS0kDyRRHAqqU8XV6KJsURmJDxNEd0RxVDnyWm7Ye22ZGTWxkzZaoHsD81RHCjNmDlpuWMj3pf+506ko7E+lCJkm51RXT7i5QExMOWWqTjjhBLZv357vsYxZW1sbpmlSX1/f5/b6+nr27ds36GNuuOEG/H5/5r/GxsZiDFWISaN31gMgZlkkbZuArpO0LGI9ZVfFyngUO7uUb4XIuPWX/gLSnEjQYRjoqkrcsnApCk5FQenZfLgpkaA1lWKJz1fy72epzksw+rlJ5qXSp/v1QbNO/RtFqG4VZ51z0MxNrnpnfD741w/o3NyJGTZxVDhQVIXY1hiaT6P8iHLqL66n8cpGalbV5G19U++1ZapHRXEqWHELK2ahOlU0jzag3LAY78vyqiqW+f1sjUT4XVsbLwWDRAyDlG2TsMaeDRNiJDnNkldccQVf//rX2bdvH0cccQQOh6PP74888si8DK4YvvOd73D11Vdnfg6FQjKBCTEK/ZtEeFQVp6LQaRiUqSoeTQOkDCNbxcq4La+qImKa3PHRR7QmEgQcDpb6/QBsjUZJWhYOReGMQGBC7JMl85IoBcXYlyqd8dH8GqRA9aik2lJo5Rqug1wAxN6P4T/Rj3eBN+/lhv3Xlrmmu+h6swts8B7txQh1rzPzn+LHCHUHS8V4X1yqikNVKdd1TvL7qXM6SVoWT3d24lCUCdFsR0xsOX2Czz//fAA+//nPZ25TFAXbtsd1QXBNTQ2aptHS0tLn9paWFqZNmzboY1wuFy6XqxjDE2JSGqxkza/r7I5EOMrrRQFaksm8l7BNdoXeoNKlqlxQXw+KwhMHDnCQy0Wd00nQMDCAj1VUcF5t7YT5e5XqvASjn5tkXpq4Cr0vVe+Mj6IrKJqC8yAnyeYkiY8SOCodWIaFETTwHOop2Oa7vTsaquUq7jluUED36t3lgNUaXX/tIrQlhObVKFtYhuYq7H5d6VL0mT3nsrSJ0mxHTHw5fbp27tyZ73HkhdPp5Nhjj+Xpp5/m3HPPBbpb7D799NN89atfHd/BCTGJ9W9BfrDbzTy3G1NRxtySXBTWOTU1eFW1T/v4c6qrJ8zeVGmlOi+BzE1TSaH3peqd8bFtG8WpoDt0FEUh8WGCVFsKdChbUEb1J6vz9KoGGmxtWXp8wZeCmc2HnbVOjJBB6IUQWrWG0WIUbL8u6QAoxltOn65Zs2blexx5c/XVV3PZZZexZMkSjj/+eG655RYikQiXX375eA9NiElrqJK14fapKpZSGEMpmwwNPqC05yWQuWkqKeS+VH0yYXVO3LPcRN6OoDpUPAd7KDusDDtuU31OdWbz30LS/QMbdUS3RgfdfNhKWvhP8RPZGinIfl353q9QiNHK6RM2c+ZMTj/9dE477TROP/105s6dm+9x5eyzn/0s+/fv55prrmHfvn0cffTRbNiwYcACYSFE9rINTPqXrBW6hG04/ffOKvReWRPdeP6t8qGU5yWQuWkqyaZDYK76Z8I8czwYnQaxbTGcDU4c1Y7MxrtphdgXaigjrZ2qOKmCqhVVBRlPsbqnCjEUxe6/S2IWfvOb3/D888+zadMmtm/fzkEHHcRpp52Wmczmz59fiLEWRSgUwu/3EwwGqaioGO/hCDGuJnJgsr6tjQ0dHdQ7HFToOiHDoKVncpUFy6VpLOdfmZfEVNF7s18zYmbWLPkW+3DWOjOBymD3SwdcQ3UCHGsAZgQNmm5p6l7r1StTlmxJYls2jVc2FiywCxoG+5NJXu3qYmskMuHmLFG6sj0H5xRU9bZ3716ee+45fv/733P//fdjWda471w/FjJ5CfE3EzUwCRoGtzQ1oSlKnwXLLckklm1zZWOjXLUsQfk6/8q8JKaCkQKgtvVtmX2h9Aq9uytfS/capv77QuUSgA0l87x1jgFrp8ayH9VQr3ewi38Ly8pY7PNR63TKuV6MWbbn4Jw/adFolM2bN7Np0yaeffZZXnvtNRYtWsTpp5+e6yGFECWk/6a+AO4ibOKbD7JgeWqSeUlMJYOtZ0rrvy8U/G1tU3hLmMDSQJ/H5nNj3nyvKRsp4NvY3p65+NfgdhMyDF4IhfBqGvPKynJ6TiFykdO3io997GO89tprLFy4kNNPP51vf/vbnHrqqVRWVuZ7fEKIcTKRAxNZsDz1yLwkxN+MZl+o0QZgI8n3mrLhAj7HisCEvfgnJp+cCkzfffddvF4vCxYsYMGCBSxcuFAmLiEmmd6BSW8TITBJL1huSaVoSSaJW1Zmr6wlPp9MspOQzEtC/E3vLoG9pfeFwoZ4UzxTUmdGzAF7Rel+HTNiDjhG1mPw67gb3WMKqPoHfKpbxVnnxFHnILwlTMeBOBHTHDAf+XWdiGkOmL+EKKScgqoDBw7wzDPPcOKJJ/KHP/yBk08+mYMOOoiLL76Yu+66K99jFEKMg4kemCyvqmJlZSWWbdMcj2PZtuyVNYnJvCSmAiNoZIKh4aS7BKZaUiRbklhxi2RLkuTeJLZts/fuvTTf1kzTLU2EXgqhutQhA7DMHlRZPnc+jRTweaPKhL34JyafMTeqsG2bv/zlL9x+++2sW7dOFgQLMYlM5O5/abJP1cSRr/OvzEtissmlkcRgj7FtG6PVwDnD2ad5hVatYR4wB20uUbW8Km9NLEYrm26Cf0h1sqGjgzqHY0Ab9VJuqCQmjoI2qnj11VfZtGkTmzZtYvPmzYTDYY444giuuOIKTjvttJwHLYQoLZNhY9iJvv+SyI7MS2KyGKzLXS6NJPqvbcKGvXfvxTnDOWDtlJ20qTilgujW6IDmEvlsYjFa/ffl6h/w6X6d5VZ39cGWcJjmeByvpklVghgXOX3TOP744znmmGM47bTT+MIXvsCpp56K3+/P99iEECVCAhNR6mReEhPdUNmoiuMqxtRIIt0lMN4UH7Z5hf8kP9UrqvsEdPluYpGLkboJToaLf2JyyOlT197eLiUIQkxwY93kUYhSIvOSmOiGyggl9yez7uQ3nN7NK5zuv5XS9V471b9N+2i6CBZKtt0E5eKfGG85ffoqKiro7OzkwQcfZMeOHXzzm9+kqqqKV199lfr6eg466KB8j1MIkSf53ORRiFIh85KYyIbLCMXei6Fq6rDBUDayKaXrf7Etm0Cs/+so1MW64fblEqIU5PTpfPPNN1m2bBmBQIBdu3bxhS98gaqqKh566CH27NnDvffem+9xCiHyZDzr44UoFJmXxEQ2XEbICBuUHVZG11+6hgyGsjVUKV3glABt69sGvdg2UiAGcrFOCMixpfrVV1/N5ZdfzrZt23D32hj0k5/8JM8//3zeBieEyK+R9vwoZqtcIfJJ5iUxkY20r1T1J6upXFmJbdnEm+PYlt1nXVG20qV0jVc20nBFA41XNlKzqobOFzrp2NCBoim4G9womkLHhg7aN7ZTtbxqxOdOX6wb7PFCTBU5ZapeeeUVfvaznw24/aCDDmLfvn1jHpQQojBKoT5eDE3av+dO5iUxkY1Umuesc2a1rmg0z5d+fHxPnM6nO9H82pDNKIZ7biNoENwcRHEraD6t+2JdkZtZCFEKcvqUu1wuQqHQgNvff/99amtrxzwoIURhjLY+XhTHZNgPbLzJvCQmupG63EF+1xWlS/Y6nu4guDmIo9qBETTwLvCiOJQBF9sGe24rYbH/4f10Pt+J5taIvhvFPctN2cIyuVgnppycZuu/+7u/Y+3ataRSKQAURWHPnj38y7/8C+eff35eByiEyJ/01dBUS4pkSxIrbpFsSZJqTeFb4pOJb5xsbG9nQ0cHmqJQ7XDQZZo8euAAG9tHLp0JGgZN8ThBY2qXbsq8JCa6oUrzCrUmKV2yp5VpOKud2Emb6FtRIu9GgOwutrVvbCf0xxCqS0V1q6BC5O0I0a1RuVgnppyc/qX++Mc/pquri7q6OmKxGKeddhrz5s3D5/Px//1//1++xyiEyKNs6uNF8QQNgy3hMNW6zr5kks3BIG9GImyPRlnX0kJrMtnnvukAKmFZrG9r45amJm5rbuaWpibWt7WRsKxxfDXjR+YlMVnofh13o7ugF7l6r691z3TjnuvGtmxQIbY9RnxPfMSLbeljuGa68B7uxYpaKCioZSqRdyIkmhJysU5MKTl90v1+P0899RQvvvgib7zxBl1dXSxevJjly5dj23a+xyiEyKNs9/wQxREyDCKmSadpsi0apULTCGgaXYrCu9Eojx84wEX19QPKA23bptUwmOF00uB2EzIMNnR0d3FcVTP1ujjKvCRE9vqvry1bWAZAfEec5IEkVtQa8WJb72M4Kh3dj98Vx4pbWAkL38d8crFOTCk5fZO66aab+OY3v8nJJ5/MySefnLndNE0uvfRS/vd//zdvAxRCFIbs+VEaKnQdTVF4NxLBrSi4VBWHqqLbNn5d571YjEfb2nghGKTe4aDB7aY1meSpjg7mezwcXV4OgNvpxAa2hMMsDQSmXKMLmZeEyF7/9bWqQ6X8yHJ0v44ZM2m4sgH3THf2x6hzUn5EOWXzyog3xVEdKnXn1Uk7dTGl5PRpv+mmm/jFL37R5zbTNLnwwgt5/fXX8zEuIYSYEtyqStw02RaPsz0e551olG3RKJ2GwSEeD1HD4OVQiHqHgzqnE7eqUq5pOIADhkHMNDPH8us6EdMkNAXXV8m8JET2hlpfa4ZMKpdVjhhQDXUMI2RgJ2wqllbIRTsx5eT0iV+/fj2f+MQn8Pv9fPrTn8YwDC644ALeffddnn322XyPUQghJq2N7e2ELYs6XSdmWSRMk4hpssjhYJrLRVsqRTiVYprzb90aPZqGT9fpMgxiloVH04DuNVdeTaNiimWpQOYlIUYrm26DxTiGEJNFTjPvcccdx29/+1vOPfdcnE4nv/jFL9i+fTvPPvss9fX1+R6jEEJMSukmFbPdbjyqyuuRCB5FQVEUwpbFn4JByjWNvckku+JxDvd6WeD14lFVahwO2g2DsGlSpmkEDYPWVIqVlZVTrvQPZF4SYrTysb5W1ugK8Tc5f/LPPPNM7r33Xs4//3wWLlzIc889R80UXBwthBC5SjepaHC7qXR0L/TeFY8TNU1akkkOcjpZVF5OVTLJm11d/DkcJmlZNLjd+HSdsyorURSF5ngcr6axsrKS5VVT9wqxzEtCjF4+1tfKGl0hRhFUrV69etDba2trCQQCfPGLX8zc9tBDD419ZEIIMclV6DpeTSNkGNQ5nRxRXs68sjK2R6MkbZsT/X5muFzUOhw4FYV3IhHeikSocjpZVVXF8qoq4pZFyDCo0PUpl6GSeUkIIUSpyHoG9vv9g96+YsWKvA1GCCGmEr+us8TnY0NHB3bPzyHDoMs0qetpTAHgUFWOLC+n0eViZyzGpXV1HN7T9c+lqlMumEqTeUmI0mUEDSkJFFNK1p/yu+++O/P/Y7EYlmXh9XoB2LVrF4888ggLFy6UyUyIKSK+J05ibwLXdFdWnaLE4NLlelvC4UwZ31nV1fy1q4uQYeDuCaxipsn+VIrKnrbqQuYlIUqRlbBo39hOeEsYM2KieTV8S7r3rJIW62Iyy+nSwTnnnMPq1av50pe+RGdnJyeeeCIOh4O2tjZuvvlmvvzlL+d7nEKIEmGEDPbcvIfgc8HMhOk/zc/Mq2eiV8jVyNFyqSqrampYGgj0KePzqiobOjpI2TZ7k0m2R6N0miYLPR42d3ayvKoKlypfUNJkXhKiNLRvbKdjQweOegfuBjdGyKBjQ/fG5DWrZI2jmLxympFfffVVTjnlFAAefPBB6uvr2b17N/feey8//elP8zpAIURp2XPzHg48dABFVXA3ulFUhQMPHWDPzXvGe2gTml/XaXS7M6V8y6uqWFlZybZolC2hEADHlZczv6yMDR0dbGxvH8/hlhyZl4QYf0bQILwljKPegbPOiepWcdY5cdQ5CG8JYwSn3h56YurI6bJyNBrF5/MB8OSTT7J69WpUVeXEE09k9+7deR2gEKJ0xPfECT4XxFHrwDm9uyzN6en+3+BzQeJ74lIKmCcuVWVpIMDmUIgZLheNPW3XATRFYUs4zNJAYMqup+pP5iUhxp8RMjAjJu6GvvOA7teJN8e711jJ+ioxSeWUqZo3bx6PPPIITU1N/OEPf+ATn/gEAK2trVRUVOR1gEKI0pHYm8CMmOiBvpOiHtAxIyaJvYlxGtn4CxoGTfE4QSN/V2JDhoFpWdQ5ncRMk5hlAd1ZrYhpEsrjc010Mi8JMf70Ch3Nq2GE+p6bjKCB5tWkRFxMajl9uq+55houvvhirrrqKpYtW8ZJJ50EdF8dPOaYY/I6QCFE6XBNd3VPmJ1GJkMFYHR2T5iu6a4Bj3mrq4sPYjHmeDws6ulYN5kkLIuN7e1sCYeJmCZeTWOJz5eXNU8uVeXDRIIt4TAORcGpqsx2u6lyOPBqGhWSpcqQeUmI8af7dXxLfN1rqOzun42gQao1ReXKSslSiUktp0/3pz/9aZYuXcrevXs56qijMrcvW7aM8847L2+DE0KUFvdMN/7T/Bx46ADQnaEyOg1S+1NUr67uU/q3P5nkn99/nz+GwyQsC5eq8jGfj1sPOYRap3Oop5hwNra3s6Gjg/qernwhw2BDR/ei7FVj3Hj2lVCIkGkStSyqdR0L+HM4TJ3DwZdmzJDSv15kXhKiNFQt7+5oGt4SJt4cR/NqVK6szNwuxGSl2LZtj/cgSkkoFMLv9xMMBqVkRIhBZNv97+K33uIPnZ34NQ2frhM2DIKmyYpAgP9ZtGgcX0H+BA2DW5qa0BQls6cUQEsyiWXbXNnYOGTgEzSMYTftTR/bBtpSKXbH4yRtm5RlMc3p5Jb58/s852Qg59/ByfsiJiLZp0pMFtmeg+VTLoQYFb1CZ851c4bdp+qtri7+GA7j17RMVsrtdEIyyR/DYd7q6poUpYAhwyBimgP2jfLrOs3xOCHDGBAwZVsu2PvYM1wu5ns8xCwLBTiQSpHoWV8lhBClSPdLMCWmFtnkRAiRE/dMN/4T/IN2+/sgFiNhWfj6BRQ+XSdhWXwQixVrmAVVoetoikJTPE7MNDO3Bw1jyDVP6XJBTVFocLvRFGXQFukVuo5X0zLNKDyaRpXDQdK2ZT2VEEIIUWJkVhZC5N0cjweXqhI2jO4MVY+wYeBSVeZ4POM4uvxIWBabOzvZE4+zNRYjoGnMKytjutNJu2GwsrJyQJYqaBhsCYepdzgypXtupxMbBrRI9+s6S3w+NnR0YPf8HDQMWlOpQY8thBBCiPEjmSohRN4tKi/nYz4fQdNkfzJJ3LLYn0wSNE0+5vNNitK/dMZpflkZx/W8ni2hENuiUU7x+zm0rGxAe/V0SV//LNNQLdLTGwBbtk1zPI5l26ysrGR5lSz4FkIIIUqJXOoUQowolwXHtx5ySKb7X2syiUtVWREIcOshhwz5mJGaN5SK/hmnGS4Xh5WXsysWozmR4LVwmC2hEF5NY2FZGYt9Pmqdzj4lfb0zeEOVC7pUlVU1NSwNBCbE+yKEEJDdnCGNLMRkI59iIcSQrIRF+8Z2wlvCmU5/viU+qpZXobqGT3TXOp38z6JFWe1TVci9ngphsAYVHlUlaprsiMeZ7XYz3eXi1XCYx9vbaXA6ObK8nCU+H0d5vTwdDI6qpM8vwZQQokT1Do5UtzrinDGWeWWw55SATJQK+SQKIYbUvrGdjg0dOOoduBvcGCGje1NHoGZVdnswLSovH7Hcr5B7PeVTOpNmw4CMU8yyeL9nbVWDy8W2WIwPEwnKNY2oZZGybTZ0dLAsEGBlZSVbwmGa43G8miYlfUKICWew4Mi2bYxWA+cM55BzxljmlXwEZEIUigRVQohBGUGD8JYwjnoHzrruwMHpdoLdvaljYGkgL1cIR9O8YbwMlkmzbZuPUqlMxqkpHidoGCzp2cNidzxOhabh0TQ6UinKNQ2XqvJGVxdXNjZKSZ8QYkLrHxwlW5N0PNWBZ76H8qO7L6T1nzOAMc0r+bjQJ0ShSFgvhBiUETIwI2afDX2he+8RM2JihIwhHjk6vZs3xEyT9lSKmGkO2bxhPAzWBr3VMKjT9UwTCYeqsqCsjBlOJzHLImnbuFWVmGXhVFU8mtbnNfl1nUa3u09AFTSMTHAmhBCFYAQN4k1xjGDu55n+F91Ut4pWroEDjAMGZuxvW0z0njPGMq8M9pzOOieOOgfhLeExvR4h8kEujwohBqVX6GheDSNkdF9J7GEEDTSvNmBSzFWFruNSVf4cChE0DJK2jWLbeDSNeR7PuO/HNFwmzbJtLp8+HaXndWzu7GRDRwcVmoaqKLQZBhawqKwMj6rSkkwO2pBioq0pE0KMn1zXE+WzdC4dHLkb/rauVPNo6D4do8vAilloHi0z3t5zRq7zymDPCd0BWbw53v2eyPoqMY4m1Ww9e/ZsFEXp898Pf/jD8R6WEBOS7tfxLfGRakmRbElixS2SLUlSrSl8S3x5m7z8uo4GvBmJ0GWahA2D92MxNgeDvBIOs7mzk4Rl5eW5cjFSG3QFMhmndAt0p6JQpih0mSYNTicHezy0JJO0plIs8fkGlPtluyGwmJhkbhL5YCUs2ta30XRLE823NdN0SxNt69uwEtmdH9Olc4qm4G5wo2gKHRs6aN84+vNM74tuaapHxVHjwE7amGFz0DljLPPKYM8J+b/QJ0SuJt0ncO3atXzhC1/I/Ozz+cZxNEJMbFXLu5snhLeEiTfH0bwalSsrM7fnQ9AwMBWFo7xe3otG2ZdM4lFVZvd01nv0wAFg/BpWjKYNeu8W6PuTSV7t6mJrJMK+RGLIhhQTYU2ZGDuZm8RYjWU9Ub7XyKaDo44NHWB3/2wEDXSfTuVZlSiKMuSckeu8MtRzplpTVK6slCyVGHeT7hPo8/mYNm3aeA9DiElBdanUrKohsDRQsPa1IcMgYZos8nppMwwCuk6lw4ECdKRSVGhaVsFFofa48us6S3w+NnR0DNoGHaApHu/zvOkW6PN6NgAeblyDtWdPH6M5Hs+svxITm8xNYizGGhQVonRusOCoalUVVcursOLWkHPGWOaVYlzoEyJXk26m/uEPf8j3vvc9Zs6cycUXX8xVV12FPswXkkQiQSKRyPwcCoWKMUwhJpR02UYhpDNBbakUlm1Tqes4FIWwaeJUVeqcTtqSySGDi2KsR0pnl3q3QV/m95OybW5pahr2eUfaY2q0GwKLiWk0c5PMS6K/sQZFhVgjO1xwpLrUEeeMXOaVYlzoEyJXk+qT+LWvfY3FixdTVVXFH//4R77zne+wd+9ebr755iEfc8MNN3D99dcXcZRCiN7SmaBHDxwgZVl0KQq6bRMyTRaVlZGwrGGDi2LscdW7rC+ddUo3pRjr846UCZMs1cQ32rlJ5qVussHr34w1KCpk6VwhL7qV0nMKMRLFtm17vAcxnG9/+9vceOONw95n69atLFiwYMDtv/zlL/l//+//0dXVhcvlGvSxg10RbGxsJBgMUtGz34wQorDS2aZ1LS28G43i13UO8XiY5nLRbhisrKwcNFAJGga3NDWhKUpmPRJASzKJZdtc2dhYkKAk388r3f+6hUIh/H7/hDj/FnJumurzkmzwOri29W3da6rqHAOComz2aJL3VYjcZDs3lXxQtX//fg70LFQfypw5c3D2+mKT9vbbb7No0SLeffddDj300KyebyJN6kJMNq3JJI8fOMB7sRhmT4ZquOCiKR7ntuZmGtxu3L1+H7csmuNxrmhooLHfWqV8KNTzFmpd2EQxkc6/xZybJtL7kg+Z4KHegV6hY4QMUi3ZBw+TVb6ComJkACXLKCaTbM/BJf9Jr62tpba2NqfHvv7666iqSl1dXZ5HJYQohDqnkzXTp2cdXIzXeqRCPe9I669E6ZC5qTDy3aVuMsnXeqJCls5JNkxMZZPmzPTSSy/xpz/9iTPOOAOfz8dLL73EVVddxaWXXkplT4cuIcTEkG1wMV7rkWQdlMiWzE2jIxu8jqyU1xONpe27EBNdaf6rzIHL5eK+++7juuuuI5FIcPDBB3PVVVdx9dVXj/fQhBAFNFhnvsH2g5oszysmFpmbRqcQXeomsnyX0RWyLE+yjGKqmzSf7sWLF/Pyyy+P9zCEEEU2WGe+YmSKxut5xcQic9PoyAav3fJdRleMsjzJMoqpTgpchRCTgl/XaXS7ix7YjNfzCjFZVS2vonJlJbZlE2+OY1t2SW3wagQN4k1xjKBRsOdIl9EpmoK7wY2iKXRs6KB9Y3tJHG8wvbOMvU3VLKOYeuQTLoQQQoiSUaobvBarCUO+y+iKVZYnWUYx1UmmSggxaQUNg6Z4nKBRuCvKQojC0P067kZ3yXwZL0a2B/5WRtc/s6P7dcyIOSATVOzjDafUs4xCFFJpnKmEECKPZDNdIUQ+FbMJQ76bdRSz+Uf/LCM2oIAVt6Slupj0JKgSQkw6G9vb2dDRQb3DQYPbTcgw2NDR3dZ3VY209RVCjE4xmzDku4wufbwDjx7A6DRw1Dqwk/aYyvJG6iKoulW6NnfJflViSpGgSggxqQQNgy3hMPUOB3U9G/O6nU5sutufLw0EpKmEEGJUit3qPV0uF94SJt4cR/NqOZfRWQkLO2VjRAy63u4CwD3LTe0FtaM+XrbrymS/KjEVyTcLIcSkEjIMIqZJg7vvFWW/rtMcjxMyDAmqhBCjUuwmDPls1tG+sZ3OpzvxLvTiO8pHsjWJGTJRHSpW3CLZmsz6+NkES7JflZiq5FMthJhUKnQdr6YRMgzczr9dUQ4aBl5No0ICKiFEDvKZPcqW7h9b58PBAhw9oJP4MEHL/7QQ3BzENu2syvOyDZZkvyoxVcmnWggxqfh1nSU+Hxs6OrB7fg4aBq2pFCsrKyVLJYTISam2eh/OUAFOYl+C2NYYrhku3I3ZledlGywVu1RSiFIhqwWFEJPO8qoqVlZWEjVN3unqImqarKysZHlV9xVlabUuhMhVMVq9G0GDyNsRut7uGtMmw4NtyJtqT9H1ehc4QK/WUd0qzjonjjoH4S3hIZ8v281906WSqZYUyZZkd4lhS5JUawrfEl/JB6JC5Eo+2UKIohmpY1TeKcrf/kNarQshSpuVsDjwxAFa/6+V+K44tmnjnOak9jO11H+6ftSd83qvBbNTNokPEwRfDBLfE0cr12h7qA3fsT68i7wjlueNZl3ZeJRKCjHeJKgSQhRcth2j8qV3S/XpXm+mpforoRAHTFNarQshSlL7xnb2/mIvydYkmN0XohJ7EkS3RoltizH7O7NHfc5MBzIt61oI/SmEHbPR/d1Zp9T+FMHNQRRNwVnvHLE8L9tgaSKWSgoxVvIJF0IUXDHb6w7VUj1uWTwXDHKy3y+t1oUQRZNtht4IGoQ2hzAjJgoKRthALVNRXSpm1KT9sXbKDyun7oK6UT2/6lIJLA3QubETZ70TR8CBGTNJfpREcSlYCYuuN7vwLvBSfU71sGMcbbA01kYbQkwk8kkXQhRUsdvrDtVS3aEoREwTR08pYJq0WhdCFMJoM/RGyCDVkcI27e7Ayq2guTVs08Y2bGzVJvRyiKoVVaM+ZxohAzNmonpUtAot8/hkaxIrZmFGTXwf82VdnifBkhADySICIURBpTtG9S8p0f06ZsQcsOh5rHq3VO8tZdt4NY2Ubfe5XVqtCyEKIZ2hVzQFd4MbRVPo2NBB+8b2Qe+vV+g4Kh3YKRsrYaE6ur+i2anuc5bD78A27JzOmeljY4MVs0AD10Eu3LPcuA5yUXlKJXXn1RWkHFuIqUL+9QghCirbjlH5km6p3pJK0ZJMErcsWpJJgqbJaX4/QdPsc3trKsUSn0+yVEKIvOmfoc+mw57u16lYWoFWoWHGui84mdHu/1UcCs7pTvRqPadzZubYXo3kviRGR3dWzGg3cFQ7CCzPT8WAETSIN8XH1LFQiIlKvkUIIQpqNB2j8iXdOn1LOExzPI5X01hZWckpgQAvdHYOuD19fyGEyIdcN8CtWl6FnbJpvqWZ6HtRrLiFo9ZB2aFl6D59TC3J08dOdxYEcM9xU3tB7Zi78hW7GZEQpUiCKiFEwRW7va5LVVlVU8PSQICQYVCh65lM1FC3CyFEvqQz9MnWJFq51r2WyaONmKFXXSq159bi/5if/Q/uJ/J2BEVT0Kv1TJCSq/SxK8+oJNGcwMbG3ZCf/baK2YxIiFIl3yaEEAU3Xu11/UMETUPdLoQQ+aC6VWzbpuOpDhSHgu7TM6V7VatGbjThrHNy0FcOKsjefvluMlHsZkRClCrJyQohikb367gb83NlVAghSlX7xnaMVgPPIR40n0aqK0VsWwy9Th9VtmkinDOL3YxIiFJVuv9KhRBCCCEmmHTmxjnDSXldeXfL8piJ2WWiKApW3JpU64x6NyNyup2Z2wvVjEiIUjV5/lULIYQQQoyz/pkb1aPiqOoujZuMmZt0M6JUS4pkSxIrbpFsSZJqTY2psYYQE40EVUIIIYQQeVLsbSRKQdXyKipXVmJbNvHmOLZlF7QZkRClaPL9yxZCCCGEGEEhmkDA+GwjMd7GqxmREKVEPvFCCCGEmDKKsadSsbeRKBX57iwoxEQin3whhBBCTBlD7alkRSwqTqrIS5ZFMjdCTD3yL1wIIYQQU8Jgeyo5NAfR96J8eMeHdL7YiaPKkbfMlWRuhJg6pFGFEEIIIaaEwfZUirwbIbErgW3YOKocKJpCx4YO2je2931s0CDeFMcITq7ufUKI/JDLJ0IIIYSYEvrvqWTFLOK74ihOBa1MQw/oaB4N7O71UIGlAVS3WvA1WIVWqKYcQoi/kX9ZQgghhJgS+nfmsy2bVEcKVVVxz3J3B1Q994s3xzFCBl2buwZdgwVQs6pmPF/OsIygQXJ/kq5Xu4hsjUzYgFCIiUKCKiGEEEJMGb078xkHDFSHiusgF2ULyzL3Se8plc5Y9V6D5XQ7+2SySi3z07u7YdebXSSbk3gO8eA7xocZNSdEQCjERFRaZwIhhBBCiALq35kv+FKQ0AshjHZjwJ5SKGBGTNwN7j7H6J3JKrWgKt3dUPNr2FEbrVwj2ZwkFohRfkR5SQeEQkxk8q9JCCGEEFNOujOfs86J5tUG3VPKilt91mClpTNZvRteFFK2a6J6dzdUdAXbstFrdOy4TXxXnLJ5ZSUdEAoxkcm/JiGEEEJMWcPtKaW61D5rsPpnsgodlIx2o+J0d0N3gxvbtlGcSndg6NFIdaQwYyZ2yi5qQCjEVCGrFIUQQggx5el+HXeje0CgVLW8isqVldiWTbw5jm3ZmUxWoaVL+RRNwd3gHrLde+Y19OpuqHk03LPcmP9/e/ceFlWd/wH8PcwMw224qKAgKFLgFQ2F/Im6ZqHgmgtl6toU2kXbwhKTlC54ydS2NNfcnlIrsF0Nt61sVxIXXdEkS1AhDUIlcLAQJIyLxmVmzu8PH2YduTgwM5yZ8f16Hp7HOefMOZ/vkTkfPvP9nu+p06LlcgskDhJoG7RoqWqBMlzJXioiM+MnioiIiKgDnfVkWVJ7Dyq+1SQZN89u6BzkDM2vGvx27jc4+jtCIpf0WEFIdLthUUVERER0C633YPWUpotNaK5ohnOQc5s4Orsn6sbZDZsuNcE52Bm9/9AbytFKOHo7soeKyEL4ySIiIiKyEq33UdUerUXD6QZcO3sNrsNd4TrEFRK55JaTZIjVs0Z0u+M9VURERERWQj8luqsUbsPdoLumQ/3xetR/V4/mymaj74nq6B6xG2lqNWgsb4SmVmPuZhDddvjVBREREZEVuPk+KpmXDBJHCa4WXsXVM1fh2Muxy/dEtTcde1dnFSSiW2NRRURERGQFbpwSHQAc5A5wG+kGRYACv5X+Bp9HfOA23M2ofXVWOLX2hsn7yuHk7wRNneb65BYA+kzvY7H2EdkzFlVEREREVuDGKdFvfNiw0CxA4avQF1vG6Khw0l3V4WrR1S7NKkhEt8Y+XiIiIiIr0DolektlC5orm6Fr1HXpPqpWNw8jdHBygKOPI+Q+ctR9U4eWmpY2E13IPGTQXtVCU8f7q4i6w2aKqrVr1yIyMhIuLi7w9PRsdxu1Wo3p06fDxcUFPj4+eOGFF6DR8OJARESWwdxE5maOhw23DiNsr3ASNAIkUkmb4ulWswoSUeds5pPT3NyMWbNmYdy4cfjggw/arNdqtZg+fTr69euHr7/+GhUVFYiPj4dcLse6devMGotWq0VLS4tZ90m3F7lcDqlUKnYYRGQia8pNZB/MMSV6R8MINbUayHrL4DLUBXVf1QHC9UJLU6tBS1ULvGK8OPSPqJskgiAIYgfRFWlpaUhMTMSvv/5qsHzfvn24//778fPPP6Nv374AgPfeew/Lly/H5cuX4ejo2M7e2qqrq4OHhwdqa2vh7u5usE4QBFy6dKnNsYm6w9PTE/369YNEIhE7FCKr0Nn119pZMjfZ8nkh8VRnVF+/p8pH3qZwap2sgrP/Ed2asddgu/k64tixYwgNDdUnLQCIjo7G008/je+//x5hYWHtvq+pqQlNTU3613V1dR0eo7Wg8vHxgYuLC/8Ypm4RBAHXrl1DVVUVAMDX11fkiIjIUrqTm7qSl8j2tDfFuSW0Dhesz6tH48VGSF2l+oKKDwgmMj+7+QRdunTJIGkB0L++dOlSh+9bv349Vq9efcv9a7VafUHVu3dv04Kl256zszMAoKqqCj4+PhwKSGSnupObjM1LZFt6+tlQxhROMg8WU0TmImofb3JyMiQSSac/P/zwg0VjePHFF1FbW6v/KS8vb3e71nuoXFxcLBoP3T5af5d4fx6RdRE7Nxmbl8i2tE5xLpFK4OTvBIlUgiuZV1BzoMaix5V5yOAU4MTiicjCRP2ELV26FPPnz+90m6CgIKP21a9fPxw/ftxgWWVlpX5dRxQKBRQKhVHHAMAhf2Q2/F0isk5i56au5iWyfjdPcQ7w2VBE9kbUT7C3tze8vb3Nsq9x48Zh7dq1+uFUAJCVlQV3d3cMGzbMLMcgIiL7x9xE5tY6xfnND++VecjQeLHx+vA8FlVENs1mpnhRq9XIz8+HWq2GVqtFfn4+8vPz0dDQAACYOnUqhg0bhkcffRQFBQXYv38/XnnlFSQkJPAbv9tAWlpah8+IuZFEIsGePXssHg8R3R6Ym8gYN05xfiM+G4rIfthMUbVixQqEhYVh5cqVaGhoQFhYGMLCwpCXlwcAkEql2Lt3L6RSKcaNG4dHHnkE8fHxePXVV0WOXHz33HMPEhMTxQ7DoubMmYOzZ8/qX69atQp33XVXm+0qKiowbdq0HoyMiOwZcxMZQ+YhgzJciZbKFjRXNkPXqENzZTNaqlqgDFeyl4rIDtjMpzgtLQ1paWmdbjNw4EB8+eWXPROQnREEAVqtFjKZzfxKGHB2dtbPqNeZzu6vIyLqKuYmMlZnU5wTke2zmZ4qe1Or0aC8sRG1Gs2tNzbB/PnzcfjwYWzevFk/a1VZWRmys7MhkUiwb98+jBkzBgqFAkePHsX8+fMRFxdnsI/ExETcc889+tc6nQ7r16/HoEGD4OzsjFGjRuGf//xnp3EEBgZizZo1mDt3LlxdXdG/f3+88847Btuo1WrExsbCzc0N7u7umD17tv6GbgAoKCjA5MmToVQq4e7ujjFjxui/Db5x+F9aWhpWr16NgoICfZtb/+i5cfhfZGQkli9fbhDD5cuXIZfLceTIEQDXnxeTlJSE/v37w9XVFWPHjkV2drYRZ56IiOh/Wqc4D0gMgP+z/ghIDECf6X34sF0iO8FPcg9r0umQUV2Nv5SXY8vFi/hLeTkyqqvRpNNZ5HibN2/GuHHjsGDBAlRUVKCiogIBAQH69cnJyXj99ddRVFSEkSNHGrXP9evX46OPPsJ7772H77//HkuWLMEjjzyCw4cPd/q+N998E6NGjcKpU6eQnJyMxYsXIysrC8D1Qi02NhY1NTU4fPgwsrKy8OOPP2LOnDn696tUKvj7+yM3NxcnTpxAcnIy5HJ5m+PMmTMHS5cuxfDhw/VtvnE/N+4vPT0dgiDol+3evRt+fn6YOHEiAGDRokU4duwY0tPT8d1332HWrFmIiYnBuXPnjDpXREREN+IU50T2iZ/oHnagpgaZV66gr1wOfycn1Gk0yLxyBQAwvU8fsx/Pw8MDjo6OcHFxaXfo26uvvoopU6YYvb+mpiasW7cOBw4cwLhx4wBcn1r46NGj2Lp1KyZNmtThe8ePH4/k5GQAQEhICHJycrBp0yZMmTIFBw8exOnTp1FaWqov+j766CMMHz4cubm5iIiIgFqtxgsvvIAhQ4YAAIKDg9s9jrOzM9zc3CCTyTod7jd79mwkJibi6NGj+iJq165dmDt3LiQSCdRqNVJTU6FWq+Hn5wcASEpKQmZmJlJTU7Fu3TqjzxsRERER2S/2VPWgWo0GefX16CuXw8fREU4ODvBxdISPXI68+nqLDwVsT3h4eJe2P3/+PK5du4YpU6bAzc1N//PRRx+hpKSk0/e2FmE3vi4qKgIAFBUVISAgwKAXbdiwYfD09NRv8/zzz+PJJ59EVFQUXn/99Vse71a8vb0xdepU7Ny5EwBQWlqKY8eOQaVSAQBOnz4NrVaLkJAQg7YePnzY5GMTERERkf1gT1UPqtNocFWrhb+T4XMqPGQyXGxsRJ1GA48enijC1dXV4LWDg4PBcDgAaGlp0f+7dZrgjIwM9O/f32A7S08PvGrVKjz88MPIyMjAvn37sHLlSqSnp+OBBx7o9j5VKhWee+45bNmyBbt27UJoaChCQ0MBXG+rVCrFiRMnIJVKDd7n5uZmUluIiIiIyH6wqOpB7jIZXKVS1Gk0cHJ01C+v1WjgKpXC3UIFlaOjI7RarVHbent748yZMwbL8vPz9fcuDRs2DAqFAmq1utOhfu355ptv2rweOnQoAGDo0KEoLy9HeXm5vreqsLAQv/76q8EDMkNCQhASEoIlS5Zg7ty5SE1NbbeoMrbNsbGxWLhwITIzM7Fr1y7Ex8fr14WFhUGr1aKqqko/PJCIiIiI6GYc/teDPGQyhCuVqGxpQWVzMxp1OlQ2N6OqpQXhSqXFeqkCAwPx7bffoqysDNXV1dB1MinGvffei7y8PHz00Uc4d+4cVq5caVBkKZVKJCUlYcmSJdixYwdKSkpw8uRJbNmyBTt27Og0jpycHLzxxhs4e/Ys3nnnHXzyySdYvHgxACAqKgqhoaFQqVQ4efIkjh8/jvj4eEyaNAnh4eH47bffsGjRImRnZ+PChQvIyclBbm6uvihrr82lpaXIz89HdXU1mpqa2t3O1dUVcXFxSElJQVFREebOnatfFxISApVKhfj4eHz22WcoLS3F8ePHsX79emRkZHTaViIiIiK6fbCo6mFRvXohxssLOkHAxcZG6AQBMV5eiOpluedUJCUlQSqVYtiwYfD29oZare5w2+joaKSkpGDZsmWIiIhAfX29Qe8NAKxZswYpKSlYv349hg4dipiYGGRkZGDQoEGdxrF06VLk5eUhLCwMr732Gt566y1ER0cDuD7V+RdffAEvLy/87ne/Q1RUFIKCgrB7924A1x+g+csvvyA+Ph4hISGYPXs2pk2bhtWrV7d7rJkzZyImJgaTJ0+Gt7c3Pv744w7jUqlUKCgowMSJEzFgwACDdampqYiPj8fSpUsxePBgxMXFITc3t812RERERHT7kgg330Bzm6urq4OHhwdqa2vh7u6uX97Y2IjS0lIMGjQITjfdE9UdtRoN6jQauMtkPX4flRgCAwORmJiIxMREsUOxGub+nSKydR1df293PC9EROIx9hps/3/NWymP26SYIiIiIiKydxz+R0REREREZAJ2lVCPKCsrEzsEIiIiIiKLYE8VERERERGRCdhTRURERNQDNLUaaOo0kLnLIPPgn2BE9oSfaCIiIiIL0jXpUHOgBvV59dBe1ULqKoUyXIleUb3goOCgISJ7wE8yERERkQXVHKjBlcwrkEglcPJ3gkQqwZXMK6g5UCN2aERkJiyqiIiIiCxEU6tBfV495H3lcPRxhIOTAxx9HCH3kaM+rx6aWo3YIRKRGbCoIiIiIrIQTZ0G2qtayNwN77iQecigvaqFpo5FFZE9YFF1GxAEAQsXLkSvXr0gkUiQn59/y/eUlZUZva29kkgk2LNnj9hhEBGRkTS1GjSWN1pV74/MXQapq7RN8aSp1UDqKm1TbBGRbeIn+TaQmZmJtLQ0ZGdnIygoCH369BE7JKuyatUq7Nmzp00BWVFRAS8vL3GCIiIio5l7IghzztIn85BBGa7ElcwrgHD9taZWg5aqFnjFeHEWQCI7wU/ybaCkpAS+vr6IjIwUOxSb0q9fP7FDICIiI7ROBCHvK4eTvxM0dZrrRQyAPtON/yLRUrP09YrqBQCoz6tH48VGSF2l8Irx0i8nItvH4X8i6akhCvPnz8ezzz4LtVoNiUSCwMBAANd7ryZMmABPT0/07t0b999/P0pKSjrcz5UrV6BSqeDt7Q1nZ2cEBwcjNTVVv768vByzZ8+Gp6cnevXqhdjYWJSVlXW4v+zsbEgkEhw8eBDh4eFwcXFBZGQkiouLDbb74osvMHr0aDg5OSEoKAirV6+GRvO/c/bDDz9gwoQJcHJywrBhw3DgwIE2w/aWL1+OkJAQuLi4ICgoCCkpKWhpaQEApKWlYfXq1SgoKIBEIoFEIkFaWhoAw+F/kZGRWL58uUFsly9fhlwux5EjRwAATU1NSEpKQv/+/eHq6oqxY8ciOzu7w3NARESmM+dEEJaapc9B4YA+0/sgIDEA/s/6IyAxAH2m9+F06kR2hJ/mHqZr0qE6oxrlfynHxS0XUf6XclRnVEPXpLPI8TZv3oxXX30V/v7+qKioQG5uLgDg6tWreP7555GXl4eDBw/CwcEBDzzwAHS69uNISUlBYWEh9u3bh6KiIrz77rv6YYQtLS2Ijo6GUqnEV199hZycHLi5uSEmJgbNzc2dxvfyyy9j48aNyMvLg0wmw+OPP65f99VXXyE+Ph6LFy9GYWEhtm7dirS0NKxduxYAoNVqERcXBxcXF3z77bfYtm0bXn755TbHUCqVSEtLQ2FhITZv3ozt27dj06ZNAIA5c+Zg6dKlGD58OCoqKlBRUYE5c+a02YdKpUJ6ejoEQdAv2717N/z8/DBx4kQAwKJFi3Ds2DGkp6fju+++w6xZsxATE4Nz5851eg6IiKj7zDURRE/M0ifzkMEpwIlD/ojsED/VPcxcQxSM5eHhAaVSCalUajCcbebMmQbbffjhh/D29kZhYSFGjBjRZj9qtRphYWEIDw8HAH2PF3C9uNDpdHj//fchkUgAAKmpqfD09ER2djamTp3aYXxr167FpEmTAADJycmYPn06Ghsb4eTkhNWrVyM5ORnz5s0DAAQFBWHNmjVYtmwZVq5ciaysLJSUlCA7O1vftrVr12LKlCkGx3jllVf0/w4MDERSUhLS09OxbNkyODs7w83NDTKZrNPhfrNnz0ZiYiKOHj2qL6J27dqFuXPnQiKRQK1WIzU1FWq1Gn5+fgCApKQkZGZmIjU1FevWretw30RE1H03TgTh6OSoX97ViSBaizMnfyfD/XvI0Hix8fo9ViyGiKgDvDr0oJu/BQNwPQEI18dZe07w7LEL9rlz57BixQp8++23qK6u1vdQqdXqdouqp59+GjNnzsTJkycxdepUxMXF6e/RKigowPnz56FUKg3e09jY2OmQQgAYOXKk/t++vr4AgKqqKgwYMAAFBQXIycnR90wB13unGhsbce3aNRQXFyMgIMCgGLr77rvbHGP37t14++23UVJSgoaGBmg0Gri7u9/qFBnw9vbG1KlTsXPnTkycOBGlpaU4duwYtm7dCgA4ffo0tFotQkJCDN7X1NSE3r17d+lYRERkvI4mgmgqb4J7pPHXenMVZ0R0e+IVogdZ07dgM2bMwMCBA7F9+3b4+flBp9NhxIgRHQ7XmzZtGi5cuIAvv/wSWVlZuO+++5CQkIANGzagoaEBY8aMwc6dO9u8z9vbu9M45HK5/t+tvVytBV5DQwNWr16NBx98sM37nJyc2ixrz7Fjx6BSqbB69WpER0fDw8MD6enp2Lhxo1Hvv5FKpcJzzz2HLVu2YNeuXQgNDUVoaKg+VqlUihMnTkAqlRq8z83NrcvHIiIi4xlMBFHWiKbKJkAAGr5rQOOFRqMmm+AsfURkCl4hepC1fAv2yy+/oLi4GNu3b9cPZTt69Ogt3+ft7Y158+Zh3rx5mDhxIl544QVs2LABo0ePxu7du+Hj49PlHqDOjB49GsXFxbjzzjvbXT948GCUl5ejsrISffv2BQD9PWOtvv76awwcONDgXqsLFy4YbOPo6AitVnvLeGJjY7Fw4UJkZmZi165diI+P168LCwuDVqtFVVWV/pwSEVHPaJ0IwnOCJ6o+r4L2ay0UAxSQucu6NMy+o1n63CPc0VjeaJYp1onIPvHK0IOs5VswLy8v9O7dG9u2bYOvry/UajWSk5M7fc+KFSswZswYDB8+HE1NTdi7dy+GDh0K4HoPzptvvonY2Fj9pBgXLlzAZ599hmXLlsHf379bca5YsQL3338/BgwYgIceeggODg4oKCjAmTNn8Nprr2HKlCm44447MG/ePLzxxhuor6/X3z/V2usVHBwMtVqN9PR0REREICMjA59//rnBcQIDA1FaWor8/Hz4+/tDqVRCoVC0icfV1RVxcXFISUlBUVER5s6dq18XEhIClUqF+Ph4bNy4EWFhYbh8+TIOHjyIkSNHYvr06d06B0RE1DVNF5qgGKDo1jD7G4szTZ0GDgoH1OXW4ad3fzLrFOtEZH94RehhvaJ6wSvGC4JOQOPFRgg6ocefVeHg4ID09HScOHECI0aMwJIlS/Dmm292+h5HR0e8+OKLGDlyJH73u99BKpUiPT0dAODi4oIjR45gwIABePDBBzF06FA88cQTaGxsNKnnKjo6Gnv37sV//vMfRERE4P/+7/+wadMmDBw4EAAglUqxZ88eNDQ0ICIiAk8++aS+R6p1eOAf/vAHLFmyBIsWLcJdd92Fr7/+GikpKQbHmTlzJmJiYjB58mR4e3vj448/7jAmlUqFgoICTJw4EQMGDDBYl5qaivj4eCxduhSDBw9GXFwccnNz22xHRESWYa6ZAFtn6avLrbPIFOtEZH8kwo1zRBPq6urg4eGB2tpag4KgsbERpaWlGDRokNH383TGnE9rp//JycnBhAkTcP78edxxxx1ih9Mpc/9OEdm6jq6/tzueF+NpajUo/0s5JFKJvqcKAJormyHoBAQkBhidc825LyKyXcZeg3k1EInMg8WUOXz++edwc3NDcHAwzp8/j8WLF2P8+PFWX1AREZH5mXOYvTVNLkVE1o9XA7Jp9fX1WL58OdRqNfr06YOoqKhuzexHRET2oaPJJro6zN5aJpciItvAKwLZtPj4eINZ+IiI6PZ282QT3R1mby2TSxGRbeAVgYiIiOyOOYbZm6vXi4jsH4uqLuK8HmQu/F0iIrJu5ur1IiL7xyuDkeRyOQDg2rVrcHZ2FjkasgfXrl0D8L/fLSIisk6cXIqIboVXCCNJpVJ4enqiqqoKwPVnM7U+YJaoKwRBwLVr11BVVQVPT09IpVKxQyIiIiIiE7Co6oJ+/foBgL6wIjKFp6en/neKiIiIiGwXi6oukEgk8PX1hY+PD1paWsQOh2yYXC5nDxURERGRnWBR1Q1SqZR/EBMREREREQDAQewAiIiIiIiIbBmLKiIiIiIiIhOwqCIiIiIiIjIB76m6SesDWevq6kSOhIjo9tJ63eWDsQ0xLxERicfY3MSi6ib19fUAgICAAJEjISK6PdXX18PDw0PsMKwG8xIRkfhulZskAr8SNKDT6fDzzz9DqVRa5cN96+rqEBAQgPLycri7u4sdTrexHdaF7bAu9tIOoGttEQQB9fX18PPzg4MDR6e3Yl7qOfbSFrbDurAd1qWr7TA2N7Gn6iYODg7w9/cXO4xbcnd3t+lf6FZsh3VhO6yLvbQDML4t7KFqi3mp59lLW9gO68J2WJeutMOY3MSvAomIiIiIiEzAooqIiIiIiMgELKpsjEKhwMqVK6FQKMQOxSRsh3VhO6yLvbQDsK+2UPvs6f/YXtrCdlgXtsO6WKodnKiCiIiIiIjIBOypIiIiIiIiMgGLKiIiIiIiIhOwqCIiIiIiIjIBiyoiIiIiIiITsKiycRkZGRg7diycnZ3h5eWFuLg4sUPqtqamJtx1112QSCTIz88XO5wuKSsrwxNPPIFBgwbB2dkZd9xxB1auXInm5maxQzPKO++8g8DAQDg5OWHs2LE4fvy42CF1yfr16xEREQGlUgkfHx/ExcWhuLhY7LBM9vrrr0MikSAxMVHsULrsp59+wiOPPILevXvD2dkZoaGhyMvLEzss6iHMTdbBlnOTreclgLnJGlkyN7GosmGffvopHn30UTz22GMoKChATk4OHn74YbHD6rZly5bBz89P7DC65YcffoBOp8PWrVvx/fffY9OmTXjvvffw0ksviR3aLe3evRvPP/88Vq5ciZMnT2LUqFGIjo5GVVWV2KEZ7fDhw0hISMA333yDrKwstLS0YOrUqbh69arYoXVbbm4utm7dipEjR4odSpdduXIF48ePh1wux759+1BYWIiNGzfCy8tL7NCoBzA3WQ9bzU32kJcA5iZrY/HcJJBNamlpEfr37y+8//77YodiFl9++aUwZMgQ4fvvvxcACKdOnRI7JJO98cYbwqBBg8QO45buvvtuISEhQf9aq9UKfn5+wvr160WMyjRVVVUCAOHw4cNih9It9fX1QnBwsJCVlSVMmjRJWLx4sdghdcny5cuFCRMmiB0GiYC5yfrZQm6yx7wkCMxNYrN0bmJPlY06efIkfvrpJzg4OCAsLAy+vr6YNm0azpw5I3ZoXVZZWYkFCxbgb3/7G1xcXMQOx2xqa2vRq1cvscPoVHNzM06cOIGoqCj9MgcHB0RFReHYsWMiRmaa2tpaALD689+RhIQETJ8+3eD/xZb861//Qnh4OGbNmgUfHx+EhYVh+/btYodFPYC5yfpZe26y17wEMDeJzdK5iUWVjfrxxx8BAKtWrcIrr7yCvXv3wsvLC/fccw9qampEjs54giBg/vz5+NOf/oTw8HCxwzGb8+fPY8uWLXjqqafEDqVT1dXV0Gq16Nu3r8Hyvn374tKlSyJFZRqdTofExESMHz8eI0aMEDucLktPT8fJkyexfv16sUPpth9//BHvvvsugoODsX//fjz99NN47rnnsGPHDrFDIwtjbrJutpCb7DEvAcxN1sDSuYlFlZVJTk6GRCLp9Kd1jDQAvPzyy5g5cybGjBmD1NRUSCQSfPLJJyK3wvh2bNmyBfX19XjxxRfFDrldxrbjRj/99BNiYmIwa9YsLFiwQKTIb18JCQk4c+YM0tPTxQ6ly8rLy7F48WLs3LkTTk5OYofTbTqdDqNHj8a6desQFhaGhQsXYsGCBXjvvffEDo26ibnJujA32R7mJvFZOjfJzLIXMpulS5di/vz5nW4TFBSEiooKAMCwYcP0yxUKBYKCgqBWqy0ZolGMbcd///tfHDt2DAqFwmBdeHg4VCqV6N9sG9uOVj///DMmT56MyMhIbNu2zcLRma5Pnz6QSqWorKw0WF5ZWYl+/fqJFFX3LVq0CHv37sWRI0fg7+8vdjhdduLECVRVVWH06NH6ZVqtFkeOHMFf//pXNDU1QSqVihihcXx9fQ2uTQAwdOhQfPrppyJFRKZibrqOucny7C0vAcxN1sLSuYlFlZXx9vaGt7f3LbcbM2YMFAoFiouLMWHCBABAS0sLysrKMHDgQEuHeUvGtuPtt9/Ga6+9pn/9888/Izo6Grt378bYsWMtGaJRjG0HcP1bwMmTJ+u/mXVwsP6OYEdHR4wZMwYHDx7UT3ms0+lw8OBBLFq0SNzgukAQBDz77LP4/PPPkZ2djUGDBokdUrfcd999OH36tMGyxx57DEOGDMHy5cttImkBwPjx49tMG3z27FmruDZR9zA3MTf1FHvJSwBzk7WxeG6y2BQYZHGLFy8W+vfvL+zfv1/44YcfhCeeeELw8fERampqxA6t20pLS21yhqWLFy8Kd955p3DfffcJFy9eFCoqKvQ/1i49PV1QKBRCWlqaUFhYKCxcuFDw9PQULl26JHZoRnv66acFDw8PITs72+DcX7t2TezQTGaLMywdP35ckMlkwtq1a4Vz584JO3fuFFxcXIS///3vYodGPYC5yXrYam6yh7wkCMxN1sbSuYlFlQ1rbm4Wli5dKvj4+AhKpVKIiooSzpw5I3ZYJrHVxJWamioAaPfHFmzZskUYMGCA4OjoKNx9993CN998I3ZIXdLRuU9NTRU7NJPZYuISBEH497//LYwYMUJQKBTCkCFDhG3btokdEvUQ5ibrYcu5ydbzkiAwN1kjS+YmiSAIgnn6vIiIiIiIiG4/1j2wloiIiIiIyMqxqCIiIiIiIjIBiyoiIiIiIiITsKgiIiIiIiIyAYsqIiIiIiIiE7CoIiIiIiIiMgGLKiIiIiIiIhOwqCIiIiIiIjIBiyoiG1NWVgaJRIL8/HyxQyEiIgLA3EQkEQRBEDsIIjKeVqvF5cuX0adPH8hkMrHDISIiYm6i2x6LKiIb0tzcDEdHR7HDICIi0mNuIuLwPyKL2bZtG/z8/KDT6QyWx8bG4vHHH0dJSQliY2PRt29fuLm5ISIiAgcOHDDYNjAwEGvWrEF8fDzc3d2xcOHCNkMstFotnnjiCQwaNAjOzs4YPHgwNm/ebLCf+fPnIy4uDhs2bICvry969+6NhIQEtLS06LdpamrC8uXLERAQAIVCgTvvvBMffPCBfv2ZM2cwbdo0uLm5oW/fvnj00UdRXV1t5rNGRESWxNxEZBksqogsZNasWfjll19w6NAh/bKamhpkZmZCpVKhoaEBv//973Hw4EGcOnUKMTExmDFjBtRqtcF+NmzYgFGjRuHUqVNISUlpcxydTgd/f3988sknKCwsxIoVK/DSSy/hH//4h8F2hw4dQklJCQ4dOoQdO3YgLS0NaWlp+vXx8fH4+OOP8fbbb6OoqAhbt26Fm5sbAODXX3/Fvffei7CwMOTl5SEzMxOVlZWYPXu2Gc8YERFZGnMTkYUIRGQxsbGxwuOPP65/vXXrVsHPz0/QarXtbj98+HBhy5Yt+tcDBw4U4uLiDLYpLS0VAAinTp3q8LgJCQnCzJkz9a/nzZsnDBw4UNBoNPpls2bNEubMmSMIgiAUFxcLAISsrKx297dmzRph6tSpBsvKy8sFAEJxcXGHcRARkfVhbiIyP/ZUEVmQSqXCp59+iqamJgDAzp078cc//hEODg5oaGhAUlIShg4dCk9PT7i5uaGoqKjNt4Hh4eG3PM4777yDMWPGwNvbG25ubti2bVub/QwfPhxSqVT/2tfXF1VVVQCA/Px8SKVSTJo0qd39FxQU4NChQ3Bzc9P/DBkyBABQUlJi/AkhIiLRMTcRmR+nZyGyoBkzZkAQBGRkZCAiIgJfffUVNm3aBABISkpCVlYWNmzYgDvvvBPOzs546KGH0NzcbLAPV1fXTo+Rnp6OpKQkbNy4EePGjYNSqcSbb76Jb7/91mA7uVxu8FoikejH1Ds7O3d6jIaGBsyYMQN//vOf26zz9fXt9L1ERGRdmJuIzI9FFZEFOTk54cEHH8TOnTtx/vx5DB48GKNHjwYA5OTkYP78+XjggQcAXE8OZWVlXT5GTk4OIiMj8cwzz+iXdfUbutDQUOh0Ohw+fBhRUVFt1o8ePRqffvopAgMDOVUuEZGNY24iMj8O/yOyMJVKhYyMDHz44YdQqVT65cHBwfjss8+Qn5+PgoICPPzww21mYzJGcHAw8vLysH//fpw9exYpKSnIzc3t0j4CAwMxb948PP7449izZw9KS0uRnZ2tv6E4ISEBNTU1mDt3LnJzc1FSUoL9+/fjscceg1ar7XLMREQkLuYmIvNiUUVkYffeey969eqF4uJiPPzww/rlb731Fry8vBAZGYkZM2YgOjpa/01hVzz11FN48MEHMWfOHIwdOxa//PKLwTeDxnr33Xfx0EMP4ZlnnsGQIUOwYMECXL16FQDg5+eHnJwcaLVaTJ06FaGhoUhMTISnpyccHHgZISKyNcxNRObFh/8SERERERGZgGU8ERERERGRCVhUERERERERmYBFFRERERERkQlYVBEREREREZmARRUREREREZEJWFQRERERERGZgEUVERERERGRCVhUERERERERmYBFFRERERERkQlYVBEREREREZmARRUREREREZEJ/h/+3yAAGjJ7egAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
],
"source": [
"def svm_factory_lp(X, y, lambd=1):\n",
" \"\"\"\n",
" Creates a linear support vector machine (SVM) model using linear programming.\n",
"\n",
" Parameters:\n",
" X : DataFrame\n",
" Feature matrix as a DataFrame.\n",
" y : Series\n",
" Target vector as a Series.\n",
" lambd : float, optional\n",
" Regularization parameter. Default is 1.\n",
"\n",
" Returns:\n",
" LinearSvm :\n",
" A trained linear SVM model.\n",
" \"\"\"\n",
"\n",
" m = AMPL()\n",
"\n",
" m.eval(\n",
" \"\"\"\n",
" set P;\n",
" set N;\n",
"\n",
" param lambd;\n",
" param X{N,P};\n",
" param y{N};\n",
"\n",
" # Decision variables\n",
" var wp{P} >= 0;\n",
" var wn{P} >= 0;\n",
" var b;\n",
" var z{N} >= 0;\n",
" var w{p in P} = wp[p] - wn[p];\n",
"\n",
" minimize lasso: sum{i in N} z[i] / card(N)\n",
" + lambd * sum{p in P} (wp[p]+wn[p]);\n",
"\n",
" subject to hingeloss{i in N}:\n",
" z[i] >= 1-y[i]*(sum{p in P} w[p]*X[i,p] + b);\n",
"\n",
" \"\"\"\n",
" )\n",
"\n",
" # Use dataframe columns and index to index variables and constraints\n",
" m.set[\"P\"] = list(X.columns)\n",
" m.set[\"N\"] = np.array(X.index)\n",
"\n",
" m.param[\"lambd\"] = lambd\n",
" m.param[\"y\"] = y\n",
"\n",
" m.param[\"X\"] = X\n",
"\n",
" m.option[\"solver\"] = SOLVER_LO\n",
"\n",
" m.solve(verbose=False)\n",
"\n",
" w = pd.Series([m.var[\"w\"][p].value() for p in X.columns], index=X.columns)\n",
" b = m.var[\"b\"].value()\n",
"\n",
" return LinearSVM(w, b)\n",
"\n",
"\n",
"# Train and test\n",
"svm_lp = svm_factory_lp(X_train, y_train)\n",
"test(svm_lp, X_test, y_test)"
]
},
{
"cell_type": "markdown",
"id": "562ba753-f1e8-46f0-810e-9a826e8d811b",
"metadata": {
"id": "562ba753-f1e8-46f0-810e-9a826e8d811b"
},
"source": [
"## Quadratic programming model\n",
"\n",
"### Primal form\n",
"\n",
"The standard formulation of a linear support vector machine uses training sets with $p$-element feature vectors $x_i\\in\\mathbb{R}^p$ along with classification labels for those vectors, $y_i = \\pm 1$. A classifier is defined by two parameters: a weight vector $w\\in\\mathbb{R}^p$ and a bias term $b\\in\\mathbb{R}$\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"y^{pred} & = \\text{sgn}(w^\\top x + b)\n",
"\\end{align*}\n",
"$$\n",
"\n",
"If a separating hyperplane exists, then we choose $w$ and $b$ so that a hard-margin classifier exists for the training set $(x_i, y_i)$ where\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"y_i \\left( w^\\top x_i + b \\right) & \\geq 1 & \\forall i \\in 1, 2, \\dots, n\n",
"\\end{align*}\n",
"$$\n",
"\n",
"This can always be done if a separating hyperplane exists. But if a separating hyperplane does not exist, we introduce non-negative slack variables $z_i$ to relax the constraints and settle for a soft-margin classifier\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"y_i \\left( w^\\top x_i + b \\right) & \\geq 1 - z_i& \\forall i \\in 1, 2, \\dots, n\n",
"\\end{align*}\n",
"$$\n",
"\n",
"The training objective is to minimize the total distance to misclassified data points. This leads to the optimization problem\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"\\min\\quad & \\frac{1}{2} \\|w \\|_2^2 + \\frac{c}{n} \\sum_{i=1}^n z_i \\\\\n",
"\\text{s.t.} \\quad & z_i \\geq 1 - y_i(w^\\top x_i + b) & \\forall i = 1, \\dots, n \\\\\n",
"& z_i\\geq 0 & \\forall i = 1, \\dots, n \\\\\n",
"& w\\in\\mathbb{R}^p \\\\\n",
"& b\\in\\mathbb{R} \\\\\n",
"\\end{align*}\n",
"$$\n",
"\n",
"where $\\frac{1}{2} \\|\\bar{w}\\|_2^2$ is included to regularize the solution for $w$. Choosing larger values of $c$ will reduce the number and size of misclassifications. The trade-off will be larger weights $w$ and the accompanying risk of over over-fitting the training data."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "7fdf300f",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "7fdf300f",
"outputId": "67b1b207-b4e7-41ce-d552-774be3806b21"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"LinearSvm(w = {'variance': 0.3033555525912086, 'skewness': 0.099369295011854}, b = -0.08537894540894428) \n",
"\n",
"Matthews correlation coefficient (MCC) = 0.714\n",
"Sensitivity = 88.6%\n",
"Precision = 85.7%\n",
"Accuracy = 85.8%\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" Predicted Positive Predicted Negative\n",
"Actual Positive 132 17\n",
"Actual Negative 22 104"
],
"text/html": [
"\n",
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAGJCAYAAABinBm7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvmElEQVR4nOzdeXzcVb34/9dnmS2TyUz2LklbukALZStlk0KBVilWBIoi25XivfpVr3gBl6v3XlmqP5HLFYtwBUUF0d4LXGQRKxUKFCiCUtkECrSlSwJt0jTJzGT2z/L7I50xeyaTmckkeT999CGZ5fM5M5l8zrzPeZ/3UWzbthFCCCGEEEIIkRN1rBsghBBCCCGEEOOZBFVCCCGEEEIIMQoSVAkhhBBCCCHEKEhQJYQQQgghhBCjIEGVEEIIIYQQQoyCBFVCCCGEEEIIMQoSVAkhhBBCCCHEKEhQJYQQQgghhBCjIEGVEEIIIYQQQoyCBFVClBhFUbj++uvHuhn9nH766Zx++ulZPXb16tXMmjWroO0RQgiRf6XaBxXCpk2bUBSFTZs2jXVTxAQgQZWY0H7yk5+gKAonnnhizsf48MMPuf7663nttdfy17BR2rVrF4qiZP5pmsaMGTM4//zzi9bOUnxfhBCilEyGPui3v/1tv/uvv/56FEWhra1tDFrX309+8hPuueeesW6GmOAkqBIT2rp165g1axZ/+ctf2L59e07H+PDDD7nhhhtKqkNLu/jii/n1r3/NL3/5Sy655BKefvppTjrppIK09YknnuCJJ57I/DzU+3LXXXfx7rvv5r0NQggxnkz0PghgzZo12LY91s0Y0mBB1WmnnUYsFuO0004rfqPEhCNBlZiwdu7cyZ/+9CduueUWamtrWbdu3Vg3Ke8WLVrEZZddxuWXX84PfvADfvOb35BIJLjjjjvyfi6n04nT6czqsQ6HA5fLlfc2CCHEeDEZ+qBjjjmGN954g4cffnism5ITVVVxu92oqnwdFqMnnyIxYa1bt47KykpWrlzJpz71qUE7tM7OTq6++mpmzZqFy+WioaGBz372s7S1tbFp0yaOP/54AK644opMukN6xGvWrFmsXr263zH7rj9KJpNce+21HHfccfj9frxeL6eeeirPPPNMXl/zmWeeCXR35mn/93//x3HHHYfH46GmpobLLruMDz74oNfz9u3bxxVXXEFDQwMul4upU6dy7rnnsmvXrgFf03DvS881ValUiqqqKq644op+7Q2FQrjdbr7+9a9nbkskElx33XXMnTsXl8tFY2Mj3/zmN0kkEr2e++STT7JkyRICgQDl5eUcdthh/Nu//VtO75sQQuTbZOiDLrroIg499NCsZ6v+/Oc/s2LFCvx+P2VlZSxdupQXXnih3+M2bdrE4sWLcbvdzJkzh5/+9KeZlMKe7r77bs4880zq6upwuVwcfvjh/QYVZ82axVtvvcWzzz6bef969mU911R95Stfoby8nGg02q9NF198MVOmTME0zcxtjz/+OKeeeiperxefz8fKlSt56623ej0vm/5VTAz6WDdAiEJZt24dq1atwul0cvHFF3PHHXfw8ssvZzoogK6uLk499VS2bt3K5z73ORYtWkRbWxu/+93vaG5uZsGCBaxZs4Zrr72WL3zhC5x66qkAfOQjHxlRW0KhED//+c+5+OKL+fznP084HOYXv/gFZ511Fn/5y1845phj8vKad+zYAUB1dTUA99xzD1dccQXHH388N954Iy0tLdx666288MILvPrqqwQCAQAuuOAC3nrrLa688kpmzZpFa2srTz75JHv27Bmw4MRI3heHw8H555/PQw89xE9/+tNes12PPPIIiUSCiy66CADLsvjkJz/J5s2b+cIXvsCCBQv429/+xo9+9CPee+89HnnkEQDeeustPvGJT3DUUUexZs0aXC4X27dvH7BzFkKIsTAZ+iBN0/iP//gPPvvZz/Lwww+zatWqQR/79NNPc/bZZ3Pcccdx3XXXoapqJih6/vnnOeGEEwB49dVXWbFiBVOnTuWGG27ANE3WrFlDbW1tv2PecccdHHHEEXzyk59E13Uee+wxvvzlL2NZFv/8z/8MwNq1a7nyyispLy/n3//93wGor68fsI2f+cxn+O///m/Wr1/Ppz/96czt0WiUxx57jNWrV6NpGgC//vWvufzyyznrrLO46aabiEaj3HHHHSxZsoRXX30103eOtH8V45gtxAS0ZcsWG7CffPJJ27Zt27Isu6Ghwf6Xf/mXXo+79tprbcB+6KGH+h3Dsizbtm375ZdftgH77rvv7veYmTNn2pdffnm/25cuXWovXbo087NhGHYikej1mI6ODru+vt7+3Oc+1+t2wL7uuuuGfH07d+60AfuGG26w9+/fb+/bt8/etGmTfeyxx9qA/dvf/tZOJpN2XV2dvXDhQjsWi2We+/vf/94G7GuvvTbTDsC++eabhzxn39c01Pty+eWX2zNnzsz8/Mc//tEG7Mcee6zX4z7+8Y/bs2fPzvz861//2lZV1X7++ed7Pe7OO++0AfuFF16wbdu2f/SjH9mAvX///iHbLIQQY2Gy9EE333yzbRiGPW/ePPvoo4/OtPm6667rdY22LMueN2+efdZZZ2UeY9u2HY1G7UMOOcT+6Ec/mrntnHPOscvKyuwPPvggc9u2bdtsXdftvl9bo9Fov7adddZZvfoV27btI444otf7kfbMM8/YgP3MM89k2jl9+nT7ggsu6PW4Bx54wAbs5557zrZt2w6Hw3YgELA///nP93rcvn37bL/fn7k92/5VTAyS/icmpHXr1lFfX88ZZ5wBdJeI/cxnPsN9993Xa+r+t7/9LUcffTTnn39+v2P0TTMYDU3TMjM0lmXR3t6OYRgsXryYV155JefjXnfdddTW1jJlyhROP/10duzYwU033cSqVavYsmULra2tfPnLX8btdmees3LlSubPn8/69esB8Hg8OJ1ONm3aREdHx+he6CDOPPNMampquP/++zO3dXR08OSTT/KZz3wmc9v//d//sWDBAubPn09bW1vmXzqtMZ2qkp5he/TRR7EsqyBtFkKIXE2WPih97P/4j//g9ddfz2QT9PXaa6+xbds2LrnkEg4cOJC5tkciEZYtW8Zzzz2HZVmYpsnGjRs577zzmDZtWub5c+fO5eyzz+53XI/Hk/nvYDBIW1sbS5cu5f333ycYDI74tSiKwqc//Wn+8Ic/0NXVlbn9/vvvZ/r06SxZsgToTj/v7Ozk4osv7tVXaZrGiSeemOmritG/itIhQZWYcEzT5L777uOMM85g586dbN++ne3bt3PiiSfS0tLCU089lXnsjh07WLhwYVHa9atf/YqjjjoKt9tNdXU1tbW1rF+/PqcLf9oXvvAFnnzySZ566in++te/0trayje/+U0Adu/eDcBhhx3W73nz58/P3O9yubjpppt4/PHHqa+v57TTTuM///M/2bdvX87t6kvXdS644AIeffTRzNqohx56iFQq1Suo2rZtG2+99Ra1tbW9/h166KEAtLa2At0pGqeccgr/9E//RH19PRdddBEPPPCABFhCiDE3mfqgtEsvvZS5c+cOurZq27ZtAFx++eX9ru8///nPSSQSBINBWltbicVizJ07t98xBrrthRdeYPny5Xi9XgKBALW1tZm1tbm+rs985jPEYjF+97vfAd0pmn/4wx/49Kc/nQl006/nzDPP7Pd6nnjiiUxfVYz+VZQOWVMlJpynn36avXv3ct9993Hffff1u3/dunV87GMfy8u5BhtJNE0zk3cN8Jvf/IbVq1dz3nnn8Y1vfIO6ujo0TePGG2/MrIPKxbx581i+fHnOz0+76qqrOOecc3jkkUf44x//yHe+8x1uvPFGnn76aY499thRHx+6FzT/9Kc/5fHHH+e8887jgQceYP78+Rx99NGZx1iWxZFHHsktt9wy4DEaGxuB7tG/5557jmeeeYb169ezYcMG7r//fs4880yeeOKJXu+9EEIU02Tqg9LSs1WrV6/m0Ucf7Xd/esDr5ptvHnT9Vnl5OfF4POtz7tixg2XLljF//nxuueUWGhsbcTqd/OEPf+BHP/pRzoNsJ510ErNmzeKBBx7gkksu4bHHHiMWi/UaAEwf+9e//jVTpkzpdwxd//vX62L0r6I0SFAlJpx169ZRV1fHf//3f/e776GHHuLhhx/mzjvvxOPxMGfOHN58880hjzdUCkZlZSWdnZ39bt+9ezezZ8/O/Pzggw8ye/ZsHnrooV7Hu+6667J4RbmZOXMmAO+++24mfS7t3XffzdyfNmfOHL72ta/xta99jW3btnHMMcfwwx/+kN/85jcDHn+kqSmnnXYaU6dO5f7772fJkiU8/fTTmUXDPdvw+uuvs2zZsmGPr6oqy5YtY9myZdxyyy18//vf59///d955pln8hJoCiFELiZrH3TZZZfxve99jxtuuIFPfvKTve6bM2cOABUVFUNen+vq6nC73QPu6dX3tscee4xEIsHvfvc7ZsyYkbl9oIqGI+2vLrzwQm699VZCoRD3338/s2bN4qSTTur3eurq6rLqb0bav4rxSdL/xIQSi8V46KGH+MQnPsGnPvWpfv++8pWvEA6HM9P6F1xwAa+//vqAe2ykUxi8Xi/AgB3XnDlzeOmll0gmk5nbfv/739PU1NTrcekRw55pEX/+85958cUXR/eCh7B48WLq6uq48847e5Ujf/zxx9m6dSsrV64Euqsa9R0dnDNnDj6fr18Z856Gel8Goqoqn/rUp3jsscf49a9/jWEYvUb+oLsj++CDD7jrrrv6PT8WixGJRABob2/vd3969HOoNgshRCFN5j4oPVv12muvZV5f2nHHHcecOXP4r//6r15rldL279+fOcby5ct55JFH+PDDDzP3b9++nccff3zY1xQMBrn77rv7Hd/r9WbdV0F3CmAikeBXv/oVGzZs4MILL+x1/1lnnUVFRQXf//73SaVSg76eXPtXMT7JTJWYUH73u98RDof7jZKlnXTSSZlNGD/zmc/wjW98gwcffJBPf/rTfO5zn+O4446jvb2d3/3ud9x5550cffTRzJkzh0AgwJ133onP58Pr9XLiiSdyyCGH8E//9E88+OCDrFixggsvvJAdO3bwm9/8JjOKlfaJT3yChx56iPPPP5+VK1eyc+dO7rzzTg4//PABO5h8cDgc3HTTTVxxxRUsXbqUiy++OFNSfdasWVx99dUAvPfeeyxbtowLL7yQww8/HF3Xefjhh2lpacmUOh/IUO/LYD7zmc9w2223cd1113HkkUeyYMGCXvf/wz/8Aw888ABf/OIXeeaZZzjllFMwTZN33nmHBx54gD/+8Y8sXryYNWvW8Nxzz7Fy5UpmzpxJa2srP/nJT2hoaMgsJBZCiGKb7H3QpZdeyne/+11ee+21XrerqsrPf/5zzj77bI444giuuOIKpk+fzgcffMAzzzxDRUUFjz32GADXX389TzzxBKeccgpf+tKXME2T22+/nYULF/Y67sc+9jGcTifnnHMO/+///T+6urq46667qKurY+/evb3Of9xxx3HHHXfwve99j7lz51JXV9cvg6OnRYsWMXfuXP793/+dRCLRbwCwoqKCO+64g3/4h39g0aJFXHTRRdTW1rJnzx7Wr1/PKaecwu23355z/yrGqbEsPShEvp1zzjm22+22I5HIoI9ZvXq17XA47La2Ntu2bfvAgQP2V77yFXv69Om20+m0Gxoa7Msvvzxzv23b9qOPPmoffvjhmZKuPUvb/vCHP7SnT59uu1wu+5RTTrG3bNnSr5ytZVn297//fXvmzJm2y+Wyjz32WPv3v/99v9Ljtj3ycrbDuf/+++1jjz3WdrlcdlVVlX3ppZfazc3Nmfvb2trsf/7nf7bnz59ve71e2+/32yeeeKL9wAMP9DpO39c01Psy0OtKvw+NjY02YH/ve98bsL3JZNK+6aab7COOOMJ2uVx2ZWWlfdxxx9k33HCDHQwGbdu27aeeeso+99xz7WnTptlOp9OeNm2affHFF9vvvffesO+HEEIUivRBtn333XfbwIDbXrz66qv2qlWr7OrqatvlctkzZ860L7zwQvupp57q9binnnrKPvbYY22n02nPmTPH/vnPf25/7Wtfs91ud6/H/e53v7OPOuoo2+1227NmzbJvuukm+5e//KUN2Dt37sw8bt++ffbKlSttn89nA5n3pm9J9Z7+/d//3QbsuXPnDvo+PPPMM/ZZZ51l+/1+2+1223PmzLFXr15tb9myxbbt7PtXMTEotp3FFthCCCGEEEKMkfPOO4+33norU3lPiFIja6qEEEIIIUTJiMVivX7etm0bf/jDHzj99NPHpkFCZEFmqoQQQgghRMmYOnUqq1evZvbs2ezevZs77riDRCLBq6++yrx588a6eUIMSApVCCGEEEKIkrFixQr+93//l3379uFyuTj55JP5/ve/LwGVKGkyUyWEEEIIIYQQoyBrqoQQQgghhBBiFCSoEkIIIYQQQohRkDVVfViWxYcffojP50NRlLFujhBCTBq2bRMOh5k2bRqqKmN+adIvCSHE2Mm2b5Kgqo8PP/yQxsbGsW6GEEJMWk1NTTQ0NIx1M0qG9EtCCDH2huubJKjqw+fzAd1vXEVFxRi3RgghJo9QKERjY2PmOiy6Sb8khBBjJ9u+SYKqPtKpFRUVFdJ5CSHEGJAUt96kXxJCiLE3XN8kSetCCCGEEEIIMQoSVAkhhBBCCCHEKEhQJYQQQgghhBCjIGuqhBBCCCHEhGDbNoZhYJrmWDdFjBOapqHr+qjX80pQJYQQQgghxr1kMsnevXuJRqNj3RQxzpSVlTF16lScTmfOx5CgSgghhBBCjGuWZbFz5040TWPatGk4nU6pJCqGZds2yWSS/fv3s3PnTubNm5fz5vMSVAkhhBBCiHEtmUxiWRaNjY2UlZWNdXPEOOLxeHA4HOzevZtkMonb7c7pOBJUCdFD0DAIGQYVuo5flz8PIYQQYjzJdZZBTG75+NzIt0YhgIRlsbG9nS3hMBHTxKtpLPb5WF5VhUsu0EIIIYQQYgjybVEIYGN7Oxs6OtAUhQa3G01R2NDRwcb29rFumhBCCCGEKHESVIlJL2gYbAmHqXc4qHM6casqdU4ndQ4HW8JhgoYx1k0UQgghxARk2zZf+MIXqKqqQlEUXnvttWGfs2vXrqwfW6pOP/10rrrqqiEfc8899xAIBIrSnnyQoEpMeiHDIGKaVPRZQ+XXdSKmSUiCKiGEEEIUwIYNG7jnnnv4/e9/z969e1m4cOFYN6koHnroIb773e9mfp41axZr167t9ZjPfOYzvPfee0VuWe5kTZWYlHoWpKjQdbyaRsgwcPfYnyBoGHg1rV+wJYQQQgiRDzt27GDq1Kl85CMfGeumFFVVVdWwj/F4PHg8niK0Jj9kpkpMKgnLYn1bG2ubmrituZm1TU1s7uzkaK+XllSKlmSSuGXRkkzSmkqx2OeTKoBCCCHEJBI0DJri8YKn/69evZorr7ySPXv2oCgKs2bNArpnr5YsWUIgEKC6uppPfOIT7NixY9DjdHR0cOmll1JbW4vH42HevHncfffdmfubmpq48MILCQQCVFVVce6557Jr165Bj7dp0yYURWH9+vUcddRRuN1uTjrpJN58881ej/vtb3/LEUccgcvlYtasWfzwhz/sdf9PfvIT5s2bh9vtpr6+nk996lOZ+3qm/51++uns3r2bq6++GkVRMvuL9Uz/e++991AUhXfeeafXOX70ox8xZ86czM9vvvkmZ599NuXl5dTX1/MP//APtLW1Dfpa80mCKjGpDFaQAkVhRWUllm3THI9j2TYrKitZnsVIihBCCCHGv4EGXte3tZGwrIKc79Zbb2XNmjU0NDSwd+9eXn75ZQAikQjXXHMNW7Zs4amnnkJVVc4//3ysQdrxne98h7fffpvHH3+crVu3cscdd1BTUwNAKpXirLPOwufz8fzzz/PCCy9QXl7OihUrSCaTQ7bvG9/4Bj/84Q95+eWXqa2t5ZxzziGVSgHw17/+lQsvvJCLLrqIv/3tb1x//fV85zvf4Z577gFgy5YtfPWrX2XNmjW8++67bNiwgdNOO23A8zz00EM0NDSwZs0a9u7dy969e/s95tBDD2Xx4sWsW7eu1+3r1q3jkksuAaCzs5MzzzyTY489li1btrBhwwZaWlq48MILh3yd+SJD8GLS6FuQAsDtdGIDr3d1cVVjI0sCAdmnSgghhJiE0gOv9Q4HDW43IcPoHngFVh4MUvLJ7/fj8/nQNI0pU6Zkbr/gggt6Pe6Xv/wltbW1vP322wOuudqzZw/HHnssixcvBsjMeAHcf//9WJbFz3/+88wM0N13300gEGDTpk187GMfG7R91113HR/96EcB+NWvfkVDQwMPP/wwF154IbfccgvLli3jO9/5DtAd9Lz99tvcfPPNrF69mj179uD1evnEJz6Bz+dj5syZHHvssQOep6qqCk3T8Pl8vd6Hvi699FJuv/32zFqs9957j7/+9a/85je/AeD222/n2GOP5fvf/36v966xsZH33nuPQw89dNBj54PMVIlJI5uCFH5dp9HtloBKCCGEmERKqRLwtm3buPjii5k9ezYVFRWZIGnPnj0DPv5LX/oS9913H8cccwzf/OY3+dOf/pS57/XXX2f79u34fD7Ky8spLy+nqqqKeDw+ZEohwMknn5z576qqKg477DC2bt0KwNatWznllFN6Pf6UU05h27ZtmKbJRz/6UWbOnMns2bP5h3/4B9atW0c0Gs3l7ci46KKL2LVrFy+99BLQPUu1aNEi5s+fn3mtzzzzTOZ1lpeXZ+4b7rXmg3xzFJNGoQpS9Cx6IcGYEEIIMf6kB14b3O5et/t1neZ4PDPwWgznnHMOM2fO5K677mLatGlYlsXChQsHTdc7++yz2b17N3/4wx948sknWbZsGf/8z//Mf/3Xf9HV1cVxxx3XL20OoLa2tmCvwefz8corr7Bp0yaeeOIJrr32Wq6//npefvnlnMukT5kyhTPPPJP/+Z//4aSTTuJ//ud/+NKXvpS5v6uri3POOYebbrqp33OnTp2a60vJmnwDFJOGX9dZ7POxoaMD++DPQcOgNZViRWXliC+WCctiY3s7W8JhIqaJV9NY7POxvKoKlyqTwEIIIcR4USqVgA8cOMC7777LXXfdxamnngrA5s2bh31ebW0tl19+OZdffjmnnnoq3/jGN/iv//ovFi1axP33309dXR0VFRUjastLL73EjBkzgO5iGO+99x4LFiwAYMGCBbzwwgu9Hv/CCy9w6KGHomkaALqus3z5cpYvX851111HIBDg6aefZtWqVf3O5XQ6MU1z2DZdeumlfPOb3+Tiiy/m/fff56KLLsrct2jRIn77298ya9Ys9DEY5JZvfmJSWV5VlbeCFIMVvdjY3l6AlgshhBCiUNIDr2NdCbiyspLq6mp+9rOfsX37dp5++mmuueaaIZ9z7bXX8uijj7J9+3beeustfv/732eCn0svvZSamhrOPfdcnn/+eXbu3MmmTZv46le/SnNz85DHXbNmDU899RRvvvkmq1evpqamhvPOOw+Ar33tazz11FN897vf5b333uNXv/oVt99+O1//+tcB+P3vf8+Pf/xjXnvtNXbv3s29996LZVkcdthhA55r1qxZPPfcc3zwwQdDVutbtWoV4XCYL33pS5xxxhlMmzYtc98///M/097ezsUXX8zLL7/Mjh07+OMf/8gVV1yRVcA2WhJUiUnFpaqsrKnhqsZGrmxo4KrGRlbW1Ix4ZqmUcq+FEEIIMXr5HHjNlaqq3Hffffz1r39l4cKFXH311dx8881DPsfpdPLtb3+bo446itNOOw1N07jvvvsAKCsr47nnnmPGjBmsWrWKBQsW8I//+I/E4/FhZ65+8IMf8C//8i8cd9xx7Nu3j8ceewznwVm8RYsW8cADD3DfffexcOFCrr32WtasWcPq1asBCAQCPPTQQ5x55pksWLCAO++8k//93//liCOOGPBca9asYdeuXcyZM2fItESfz8c555zD66+/zqWXXtrrvmnTpvHCCy9gmiYf+9jHOPLII7nqqqsIBAKoRcggUmzbtgt+lnEkFArh9/sJBoMjniYVk0dTPM5tzc00uN24e/yhxi2L5nicKxsaaOyTly2EGJpcfwcm74sQw4vH4+zcuZNDDjkE9yj738m+VnrTpk2cccYZdHR05Lz+abwZ6vOT7TV48n1ShMiDUsm9FkIIIUR++SdpMCVGRz4xQuQg30UvhBhIerTUBhSYtKOmQgghRKmT3lmIHKVzrLeEwzTH43g1rei512JiSleWfCkc5u2uLtoNgypd53Cvl5MqKqTCpBBCiII5/fTTkdVBIydBlRA5She9WBIITOrca5F/6cqSnakUrYaBU1HYbxjsjMfpPFjBaGVNzRi3UgghhBBpMtQpxCj5dZ1Gt1sCKpEX6cqSfk2j8+AM1VSnk4CmETQMKjRNKkwKIYQQJUaCKiFyEDQMmuLxvH6xLcQxxfgTMgwipolDUUhaFp6DaX4eVSVp2zgVhYhpEpLPiRBCCFEyZGhdiBFIr3XZEg4TMU28msZiny/nNS5Bw2B/Mskr4TBbo9G8HFOMb+nKkinbxqmqxCwLn6YRsyycikLStqXCpBBCCFFipFcWYgTSa13qHQ4a3G5ChsGGjg5gZGtcegZnb3R10ZxMMs/jYZHPR9Q0czqmmBh6VpYM6Dq7Egm6TJOUbTPD5SJkmlJhUgghhCgxMgwuRJbSa13qHQ7qnE7cqkqd00mdwzHiNS7p4Cxl20Qti3JN44NEgvdjsZyPKSaO5VVVrKisZJbHQ52uY9k2tbrOIW63VJgUQgghSpAMdQqRpfRal4Y+O237dZ3meJyQYWQ1e9AzONMVpfsLs8NB1DTZHY8zz+MZ8THFxNK3sqTsUyWEEGKyWr16NZ2dnTzyyCNj3ZQhSe8sRJbSa11ChoHb6czcHjSMEa1x6Rmc2ZBZN+NRVTpNk5hlkZJ1M4LugF2CKCGEmLhOP/10jjnmGNauXTvWTRlzu3bt4pBDDuHVV1/lmGOOydx+6623jot9syT9T4gspde6tKRStCSTxC2LlmSS1lSKxT5f1l9+ewZnHlVllttNyDRpMwxURSFsmiM+ZqmSioZCCCHE6Ni2jTGJ+1G/308gEBjrZgxLgiohRiC91sWybZrjcSzbHvEal77B2SEeDw1OJ12mSZmi4FSUcb9uJmFZrG9rY21TE7c1N7O2qYn1bW0kLGusm1aShgo+x0NgOh7aKIQQ2TKCBvGmOEawsNe01atX8+yzz3LrrbeiKAqKorBr1y42bdqEoig8/vjjHHfccbhcLjZv3szq1as577zzeh3jqquu4vTTT8/8bFkWN954I4cccggej4ejjz6aBx98cMh2zJo1i+9///t87nOfw+fzMWPGDH72s5/1ekxTUxMXXnghgUCAqqoqzj33XHbt2pW53zAMvvrVrxIIBKiuruZf//Vfufzyy3u1d8OGDSxZsiTzmE984hPs2LEjc/8hhxwCwLHHHouiKJnX1fN1/+xnP2PatGlYfb5PnHvuuXzuc5/L/Pzoo4+yaNEi3G43s2fP5oYbbih4YDq+h8GFKLK+a11yXeOSDpi2hMPsSySY6/FwTk0Ni8rLqXU6x/0MVb6qJE50Q5XoB/Javr8Q8r3FgBBCjCUrYdG+sZ3wljBmxETzavgW+6haXoXqyv817dZbb+W9995j4cKFrFmzBoDa2tpMsPKtb32L//qv/2L27NlUVlZmdcwbb7yR3/zmN9x5553MmzeP5557jssuu4za2lqWLl066PN++MMf8t3vfpd/+7d/48EHH+RLX/oSS5cu5bDDDiOVSnHWWWdx8skn8/zzz6PrOt/73vdYsWIFb7zxBk6nk5tuuol169Zx9913s2DBAm699VYeeeQRzjjjjMw5IpEI11xzDUcddRRdXV1ce+21nH/++bz22muoqspf/vIXTjjhBDZu3MgRRxyBs8dSi7RPf/rTXHnllTzzzDMsW7YMgPb2djZs2MAf/vAHAJ5//nk++9nP8uMf/5hTTz2VHTt28IUvfAGA6667Lqv3MRfjqtd77rnnOOecc5g2bRqKovRbsGbbNtdeey1Tp07F4/GwfPlytm3bNjaNFROaX9dpdLtzDn7SwdlVjY1c2dDAVY2NXFhXx9yysnEfUOWzSuJElw4+NUWhwe1GUxQ2dHSwsb19yPuyVegZpHy0cbyTfkmIiaN9YzsdGzpQNAV3gxtFU+jY0EH7xsJc0/x+P06nk7KyMqZMmcKUKVPQNC1z/5o1a/joRz/KnDlzqMoieyWRSPD973+fX/7yl5x11lnMnj2b1atXc9lll/HTn/50yOd+/OMf58tf/jJz587lX//1X6mpqeGZZ54B4P7778eyLH7+859z5JFHsmDBAu6++2727NnDpk2bALjtttv49re/zfnnn8/8+fO5/fbb+6XsXXDBBaxatYq5c+dyzDHH8Mtf/pK//e1vvP3220B3QAlQXV3NlClTBnzNlZWVnH322fzP//xP5rYHH3yQmpqaTAB3ww038K1vfYvLL7+c2bNn89GPfpTvfve7w74HozWugqpIJMLRRx/Nf//3fw94/3/+53/y4x//mDvvvJM///nPeL1ezjrrLOLxeJFbKkR2RhuclaJ0IY6+RTb8uk7ENAlJUAUMHXxuDgbZHArlHJgWI/1Sgudu0i8JMTEYQYPwljCOegfOOieqW8VZ58RR5yC8JVzwVMCBLF68eESP3759O9FolI9+9KOUl5dn/t1777290uwGctRRR2X+W1EUpkyZQmtrKwCvv/4627dvx+fzZY5ZVVVFPB5nx44dBINBWlpaOOGEEzLH0DSN4447rtc5tm3bxsUXX8zs2bOpqKhg1qxZAOzZs2dEr/PSSy/lt7/9LYlEAoB169Zx0UUXoR7MkHj99ddZs2ZNr/fg85//PHv37iUajY7oXCMxrr7JnX322Zx99tkD3mfbNmvXruU//uM/OPfccwG49957qa+v55FHHuGiiy4qZlOFmLTyVSVxPAsaxrDpoUOV6P8gHgdFYarX2+++bErtFyP9Ml9bDIx30i8JMTEYIQMzYuJu6H1N0/068eY4RshA9xf3mubt0weoqtqvCl4qlcr8d1dXFwDr169n+vTpvR7ncrmGPJfD4ej1s6IomXVLXV1dHHfccaxbt67f89KzS9k455xzmDlzJnfddVdmXdTChQtJJpNZHyN9HNu2Wb9+PccffzzPP/88P/rRjzL3d3V1ccMNN7Bq1ap+z3X36bPyacL0eDt37mTfvn0sX748c5vf7+fEE0/kxRdfHLTzSiQSmUgXIBQKFbytQkxk6UIcGzo6sA/+HDQMWlMpVlRWTugv2iNZYzRU8FnpcICi5BSY9p1BAnA7ndh0r+FbEgjk5XcgwfPwpF8SYvzQK3Q0r4YRMnC6/35NM4IGmldDryjMNc3pdGKaZlaPra2t5c033+x122uvvZYJiA4//HBcLhd79uwZcv3USC1atIj777+furo6KioqBnxMfX09L7/8MqeddhoApmnyyiuvZEqjHzhwgHfffZe77rqLU089FYDNmzf3OkZ6DdVw74fb7WbVqlWsW7eO7du3c9hhh7Fo0aJe7X333XeZO3duTq83V+Mq/W8o+/btA7p/qT3V19dn7hvIjTfeiN/vz/xrbGwsaDuFmKh6rt/JR5XE8Wgka4yGKtG/xO9nSUVFTuX7i5V+ma8tBiYy6ZeEGD90v45vsY9US4pkSxIrbpFsSZJqTeFb7CvYLNWsWbP485//zK5du2hra+tX1a6nM888ky1btnDvvfeybds2rrvuul5Bls/n4+tf/zpXX301v/rVr9ixYwevvPIKt912G7/61a9ybuOll15KTU0N5557Ls8//zw7d+5k06ZNfPWrX6W5uRmAK6+8khtvvJFHH32Ud999l3/5l3+ho6MDRVGA7rVQ1dXV/OxnP2P79u08/fTTXHPNNb3OU1dXh8fjYcOGDbS0tBAMBods0/r16/nlL3/JpZde2uu+a6+9lnvvvZcbbriBt956i61bt3LffffxH//xHzm/B9mYMEFVrr797W8TDAYz/5qamsa6SUIMq5RKWA+0fmdjezvLq6p6FeJYWVMzoSvCDbbGqELTeKqjgz0DrKEZKvjMNTDtOYPUt335nkGarMFzoUm/JMTYqFpeReWKSmzLJt4cx7ZsKldUUrW8cNe0r3/962iaxuGHH05tbe2Q64vOOussvvOd7/DNb36T448/nnA4zGc/+9lej/nud7/Ld77zHW688UYWLFjAihUrWL9+faZceS7Kysp47rnnmDFjBqtWrWLBggX84z/+I/F4PDNz9a//+q9cfPHFfPazn+Xkk0+mvLycs846K5Nup6oq9913H3/9619ZuHAhV199NTfffHOv8+i6zo9//GN++tOfMm3atEza9EDOPPNMqqqqePfdd7nkkkv6vU+///3veeKJJzj++OM56aST+NGPfsTMmTNzfg+yodjjYYviASiKwsMPP5ypW//+++8zZ86cfrswL126lGOOOYZbb701q+OGQiH8fj/BYHDQKU4hxkoxS1hnsy4IYH1bW2b9ToWuEzIMWg6m+q2sqcn6OONdUzzObc3NNLjduFWVlGWxNRplRzzOgWSSJYEAywKBAX9XQ71Hubx/6d9JncPRL/2yECXt8/U7Hu/XX+mXhBg78XicnTt3csghh4x63YwRNLrXUFXoRV9HNVFYlsWCBQu48MIL+e53vzvWzRnWUJ+fbK/BE+aTcsghhzBlyhSeeuqpTOcVCoX485//zJe+9KWxbZwQeVKoAgQ9vxS7VTXrwG2o9TsvhUJELIutkcik2MOo7xqjrdEob0UiqIpCtcNBmaoO+rvyDxGMDHXfYHrug9Ycj+PVtILOIOXSxslA+iUhxifdL8HUSO3evZsnnniCpUuXkkgkuP3229m5c2e/WaSJbFx9Yrq6uti+fXvm5507d/Laa69RVVXFjBkzuOqqq/je977HvHnzOOSQQ/jOd77DtGnT+u0+LcR4VIgCBAPNfNm2TathMM3pHDZwG6oC3LMdHTQnEszxeIq2AfBYzor1LNARsyx2xOOoioIFzPV4mOF205JM5rVYxGDytUm1GJ70S0II0Z3ed8899/D1r38d27ZZuHAhGzduZMGCBWPdtKIZV73sli1beu3MnF7gdvnll3PPPffwzW9+k0gkwhe+8AU6OztZsmQJGzZsKGj5RCGKpRAlrPvOfLUmkzzZ0cE8j4djysuBoQO3wSrAtSSTtBsGC7zeglagSyt0WmS2wVp6Juipjg4OJJNUOxzM9XiYf7Asbr7KjWfbHplBKjzpl4QQAhobG3nhhRfGuhljalz1tqeffnq/+vw9KYrCmjVrWLNmTRFbJURxjLaEdd8v4gPNfJVrGg7ggGEQM008B3d2HywYGKx8+geJBFW6njluz8cXYg+jQqVFjjRYS88QHVleDopCmaoyo8eX59EWiyjmmjqRHemXhBBCwDgLqoSYzHLd/2mwL+KHlZX1m/nyaBo+XafLMIhZViaoGioYGGj9zserqvhbNFqUPYwKuS9TrsHaDLebZYEAGzo6aEkm87ZXVzE29RUTjyy6F5PJOK2/JsZYPj43cnUVYhzJpQDBYF/EI5bVb+bLo6rUOBy0GwZh06RM04YNBgZbv+M9WIGu0BsAFyItEkYfrOW7WESxNvUVE4eVsGjf2E54SxgzYqJ5NXyLfVQtr0J1ycymmFjSG+BGo1E8Hs8Yt0aMN9FoFPj75ygX0gMLMY6MtADBUF/Et0YiLCgr4/lQqFfg49N1zq6sRFGUEQUDfdfvZBtUjLa4xGjTIgcz2mCtZyrg3kSCqS5Xr1TAYrdHTD7tG9vp2NCBo96Bu8GNETLo2NA9sxlYEpDZKzGhaJpGIBCgtbUV6N5bKb3xrBCDsW2baDRKa2srgUAA7WCGTi7kSirEOJRtAYLhvogv8vnwalqvwGflwY1n45Y1qmBnqAAwaBjsTyZ5JRxmazQ6qvVBuaZFDmekwVrf4DBhWTza1sZLoRCGbVN9sJ25rn8qVPAoJiYjaBDeEsZR78BZ1/15cbqd2CmblnUthDaHsExLZq/EhDJlyhSATGAlRLYCgUDm85Mr6YWFGOeGmukZ7ot4rdPJ3LKyAQMfl6rmZeajZwDYc33XG11dNCeTzPN4WOTzETXNnNcHFWJfpmyDtYHWrB3t9bKlq4snOzpwAuW6TofDQUsqldPrG0l7cjVZNmmeLIyQgRkxcTf0HlBJ7k0SfSeKa5oL94zes1c1K2VdnhjfFEVh6tSp1NXVkTp4vRViOA6HY1QzVGnSc4qCkcXRhZVNJbhsv4gXq/R2en2XX9OIWhblmsYHiQQBXeeo8vKc1wcVal+mbIK1gdas3fnhh7yfSNDoclHrcBCzLJqTSRpyfH0jac9ISUXBiUmv0NG8GkbIwOnuHlAxYybR7VH0gI670Y3qVrvvsyG8JUxgSUCu1WJC0DQtL1+ShRgJuXqKvJPF0cWRbSW44ysq2J9K8W4sRjhPX8Rz0XN9l64oWLaNX9PoMk12xGLM83hGvT4o38HhcMHaQGvWbE0jZJrETRO/rqMrCr6DnXtbKkWlw5Hz6ytE8CgVBScm3a/jW+zrnoWyu39ONCUwO03Kjy9H9ai9HhtvjncPgklQJYQQOZGrp8i7oRZHS3pJfmRTCc6tqr1mIDRF4fCyMj5eU9Nv/6hi6Lm+K2lZdBgGuxMJFCBpWdQ5ncxyu/O2Piif6WyDBWsDrVmLWRYOVUVXFLoMg7IelRUPJJPoijLq15ev4FEqCk5sVcu7B07CW8LEm+MoDgXPAg+uqa5ejzOCBppXQ6+Q37UQQuRKrqAirwZbHC3pJfmVTSW4zV1d/WYg/hqJUOt0jskMRM/1XS3JJHHLImFZOBQFTVV5KxKhPZXii9OmjeqLfDHT2QZas+ZRVTS6N1KO2TYhw8CjqrQZBingpIqKggUqIw0km+Nx9iYSHNKn/LBUFJwYVJdKzcqaXpX+Ojd30rGhA0VT0P06RtAg1ZqickWlXJuFEGIU5Aoq8mqwxdGSXpJfwxWgSM80lNIMRHp916MHDrAtGmW6y0V7KkVrKkVAVfFpGhWaxvEVFaM6z1D7cp1cUZHXQgwDrVkLHQzk3KpKlcPBAcOgPZkkZducXVnJuQUIaNOB5OZgkI6DKYZL/P5+gWQ66HKpKi+HQmwOhfhbJMJ7sRiHe70sKCvDoapSUXCC0f1/X9fad/ZK82pUrqjM3C6EECI30mOKvBpocTRIekm+DVeAQoFBZ7J2RKO8E4kw3+stemC1vKqK/akUb3V1oSoKdU4nR/t81DkcWEDEMEhYVs7HHyidTXM4eDca5Y4PPuCFzk6qHI5BZ65ySRkcqHjEP06ZAorC611dVKdSaIrCSRUVnFtbW5DiD4+3tfGLffuImCaKomDHYrwZiZCyLM6rq+s3e9ecSBA2TY7z+Vjo9fJaJMKWcJikbdPochVkk2ZRGgaavZKBLiGEGD25koq8GmhxtKSXFMZQleDiltVvJitlWfwlFOKDRAK7tXXU+yblwqWqnF9by7vRKIZtM8XpZGc8zutdXXQYBg5F4cVQiDqnM6c2DZQW+U4kwq5EAmybKocDTVH6FWIYTcrgUMUjzqisLHiZ8qBh8MD+/exPpah3OHCrKnHLoiWV4oH9+zmjqorNnZ2Z2btqh6P7dVoWB1IpjvL5cKoqb0YivNXVRbWuj0khE1FcPWevhBBCjJ5cUUXeSXpJcQz1Zd6lqv1msv4SCvFGJMLRXi9zPZ4xq/Lm13WW+P1s6Ojg1a4u9iQSOBQFRVFocLl4PhjEe/C1jVTftMiYZbErHsepKJRpGgFdx9MjPTKdBpmPCngDFY8oRqn65nic3fE41Q4HvoPncqgqhm2zOx5na1dXr9m79lQKh6riV1W2HkzDPLK8nEa3m/djMS6bMoUjvN6CtlkIIYSYaCSoEnkn6SXFNdgX954zWTuiUT5IJDja6+Ukvx+HoozpGqvlVVVETJM7PvwQ27Ioczg43O1mvtdLeyo14jb1TNvrGUxatk1HKoWqqsx0u/EcLG3esxADlN76sxFRlCFv77KsXrN3OtCRStFhGKRsG4AFZWVUORxMdTppcLkGPp4QQgghBlXC3xTEeCfpJWOr50zWO5EIdmsrcz0eHIpCzLKImSYuVaUtmSx6lTeXqnKy38/mUIhqXSfgcODpsWFxtpXnBirQcKLPx7JAgNe7ujhgGDhUlekuFwvKyjLP61mIIZtKiqUcVDW4XMxyu9kej6MrCh5VJWZZtCSTNLhcTHE6e83e7Uokun//loVHVVEVhb+Ew9Q5HKOuvCiEbPouhJis5IonxATn13Xme71U6zrtqRQHUil2xeMkLYukbTMtx/VLo1Wh61TrOtrBQCBtJJXnBivQ8I9TpnBVYyMhw+DFYJDnQyHaDwZHPQt6pAOIoSoplnoFPL+u8+m6On6xdy8hwyBI90xUzLLA6eS3+/dj2zYfHrxtRzxOjcMBQJmqogDeg9UXR1t5UUxesum7EGKyK+1vC0KIvEhXC7zzww9pTaWocTjQFYWgaRIyTV4OhYq+d9VwFQyHmzHJpkBDo9vdndKnKLwUCrE/lepXiGG07SgFZ1dX41AUNodCvBYOE1ZVTigvZ5HPR9Q0+TCVou5gufcDySTVDgenBwLMdLsxbBsFOJBKjaryopjcZNN3IcRkV/rfFoQQeXF8RQXrWlqImCaGbeNUFBb7fJlqcGOxdmioCobDGa5AQ3M8jrusjI3t7WyNRDAtC11RWFBW1q+q32jaUQrSqZ5HlpeztqmJ4zSNGQfTGcsPFuawbJvPTZ0KikKZqmbuB2hJJsfFrJwoTfna9F1SB4UQ45lctYSYJBKWRYPLxdHl5diAR1XxaBpxy8rr2qGR7PU0VAXDYQ1ToAFF6VXVb05ZGSHD4PlQCK+m9ZqZG1U7iiDb91QB9IP7f/WUXh/m13WWBQJs6OigJZkcl7NyovSMdtN3SR0UQkwE0oMKMUmky42nbLvXl+58rR0azV5PuZQeH6xAQ1sqxVy3G5+mjbiqXzbtyGWD4FyPN9L3tG9J+Z7nSP+Ox/usnCg9o930XVIHhRATgQRVQkwShV47lI+9nkaib4GGLsAC6hwOPl1XhwJ5reo3mqAxrWcA5VbVYY830vc0299xKc/KifFnNJu+5yt1UAghxppcqYSYRAo1SxE0jDHZ66lngYZ0SfUlFRUsr6oibll5reo3mqBxoIDMtm1aDYNpTueAx8v1Pc32d1yMjYnF5JHrpu+jTR0UQohSIVcqISaRQq0dGqu9noZ6PS5VzdvM3J54nKc6O/FrWk5BY9+ArDWZ5MmODuZ5PBxTXj7g8XJ9T0t9fZiYmHLd9H20qYNCCFEq5GolxCSU71mKbNbyFNJgryfbWZu+65rSP7tUlZdDIZ7q6GBzMEi1w0HQMJjv9eJQlKyCxoFmnMo1DQdwwDCImSYeTcu8jh3RKO9EIkx1uUb1nspMlBgLI930fTSpg0IIUUrkaiWEGLVS3etpuFmbvml5LlVFA0xFIWGafJBIEDJNjvB6qXY6SVoWb0ajABxZXp5VgDPQjJNH0/DpOl2GQcyy8GgaKcviL6EQHyQS2K2tVOt6ZtPeUnpPhci3XFMHhRCilEivLITIi1KuKjfYrE3ftLy/hEK8EYlwtNfLkeXlbAmHiVoWXabJHLebtyIRVEVheyzWHeSY5rABzkCzeB5VpcbhoN0wCJsmZZrW69xzPR5ChpHZtNey7ZJ7T8XkUsg9pHqmDsab4ygouBpcWHGLZGtS9q0SQowLcpUSQuTFeFvL0zctL2aaBA2DWoeDTsMgapo4FIVqXWd3PM5Svx+AHfE4B5JJopaVVYAz2CyeT9c5u7ISRVHYEY3yQSLB0V4vJ/n9OBQls8bKsm2umDoVBUr+PRUTT7H2kLISFp2bOwlvCWMEDZL7kqCAq96F5pd9q4QQpU96ZyFEXmW7liff+z2NVN+0vJhlkbRtAgfT8gCcqooFJG0bAziqvBy/rhMzTa5qaGBGnyISgxloFm9lVVWmSuE7kQh2aytzPR4cPTY1Tq/ZUoDGLM8lRD4Vaw+pnuexuizi78fBBq1cQ6/SZd8qIUTJk6BKCFFU+djvKR/6puV5VBWnotBpGJSpKpUOB7Pcbv4SDuNVVRSgJZkkdDDlL9uACoavUjjf66Va18es0IcQAynWHlI9z6P5NBJ7EzjqHSgoJD9MUn54uexbJYQoeTKPLoQoqvQ6Jk1RaHC70RSFDR0dbGxvL2o70ml5LakULckkysFqfvtTKQK6jgJUORzUORxMcTo5kEph2faI1jQFDYOmeJzgwZkvv67T6Hb3m5nr25a4ZdGSTNKaSrHY55OUPzEm0ntI9S1rrvt1zIiJETLyfh4rZmEnbVS3iupRsZIWZszM+zmFECLfpKcWQhTNWG0SPJi+aXmHuN3MdbsxFSWTpvfFadM4vqKChGVlnaqYy2zcUIU+xjpVUkxOxdpDqud5NJ+G4lSw4hYKCqpTRfNosm+VEKLkydVJCFE0Y7VJ8GAGS8sbbRDTt6pgyDDY0NG9JmRlzcBrQtJtObK8nL2JBFNdLuqdzpJIlRSTU7H2kOp7HtdUF11vdIEN3mO8GCHZt0oIUfrk6iSEKJqx3iR4MH2La4xm49xcZ+MGmt2ybZtWw2Ca05l1cCZEPhVrD6me51HLVdyz3aCA7tWxLVv2rRJClDwJqoQQBddz5qcUNwnOp1xn4/rObrUmkzzZ0cE8j4djysuBsU2VFJNTzz2kCrVP1WDnAQp6zoEUcj8uIcTEJlcMIUTBDDT7crTXy7JAgNe7uibkhra5zMYNNLtVrmk4gAOGQcw08WgaMHapkmJy0/3FCTL6nqdYgU2x9uMSQkxc0iMLIQpmoLVFTwWDrKis5KrGxpIsvjDa9VSDbfY71GzcQLNbHk3DrWkcSCbpMIxMUDXWqZJCTETF2o9LCDFxSa8shCiIbNYWldKGtvncP2uoSn4D6Tu7lbIstkWj7D9YVv3pzk7ml5Ux1emk3TAmTKqkEKWgWPtxCSEmNrlKCCFyMtyMTqlV+htOLhX7BjPUZr8D6Tu71ZRI8EZXF25V5ZjychKWxZZQiPllZVxaXz9hUiWFKAXpfbLcDb2vVbpfJ94c715jJUGVEGIYcpUQQoxItjM6pVrpbyCF2j9rJFUE04HS5mCQt7q6KFNVjvB6mel202WaHEilKNd1lgQCUk5diDwq1n5cQoiJTa4UQogRyXZGJ5e1RWOlFGbV0rNbszweOgyDRpeLfckkz3Z2krQsVEWhTFXZn0yW1HsnxHhXrP24hBATmwx3CiGy1ndGx62q1Dmd1DkcbAmHCRpGr8cvr6piRWUllm3THI9j2XbRKv0FDYOmeLxfmwbSc1at7zGKPavW4HIx1enknWiUN6NRVEWh0uEgads0J5O8Eg4XrS1CTBZVy6uoXFGJbdnEm+OyN5YQYsRk+EUIkbWRzuiMdG1RPuRScKKUZtX8us4Cr5c/tLdTrmm4FYWoaWLZNvM8HrZGowRLbD2aEOPdYPtxGUGDZGtS9q0SQgxrQs1UXX/99SiK0uvf/Pnzx7pZQkwYuc7o+HWdRre7KIFAOj1RUxQa3G40RWFDRwcb29uHfN5Yzqr1tai8nAanE6eq0mma2MARXi+LfD4iptnv/S8VI5kdnEykbxo/dL+Ou9GN6lZpW99G09ommm9rpmltE23r27AS1lg3UQhRoibcsMsRRxzBxo0bMz/rMporRN6U0ozOQEZTcGIsZtUGU+t0clR5OSnbplzT8KgqHk2jJZksuSIfkN9y9BOV9E2lxQgavWak+pJ9q0rfaPcUFCLfJtynUNd1pkyZMtbNEGLCGukeTMWUj4ITI6nYVyg9g1eXqlKmKLQc3LOqFILXvvJZjn6ikr6pNFgJi/aN7YS3hDEjJppXw7fYR9XyKlRX9wCA7FtV2kY6iCPBlyiWCffp2rZtG9OmTcPtdnPyySdz4403MmPGjEEfn0gkSCQSmZ9DoVAxminEuFVKMzp9jacy7sMp5eC1p0KVo59oRtI3Sb9UONnMQMm+VaUt20EcmUEXxTahPlUnnngi99xzDxs2bOCOO+5g586dnHrqqYSHqJZ144034vf7M/8aGxuL2GIhxq9irpPKVnqGpyWVoiWZJG5ZmRmexT5fSbV1OOng9arGRq5saOCqxkZW1tSU3JeB9Oxg34DVr+slvf6rmEbaN0m/VBh9Z6BUt4qzzomjzkF4Sxgj2P1Z7blvVd/ny75VY2skFWhzXV8rRK4U27btsW5EoXR2djJz5kxuueUW/vEf/3HAxww0ItjY2EgwGKSioqJYTRWipBUjfSJf55DRyeIKGgZrm5rQFCUzUwXQkkxi2TZXNTZm/fsMhUL4/f4Jf/0drm+Sfqkw4k1xmm9rxt3QXYgizYpbxJvjNFzZgLuxe3aqbX1b94xWnaPfvlWypmrsNMXj3NbcTIPbjbvH9TxuWTTH41zZ0ECj253X65IQ2fZNE/oTFQgEOPTQQ9m+ffugj3G5XLhcriK2SojxoxgBSr7PUcrpiRNRqRcvKUXD9U3SLxVGzxkop/vvX7QHmoFK708V3hIm3hxH82qyb1UJyDbFuxQ2dBeTz4Qetu3q6mLHjh1MnTp1rJsixLhUjPSJXM6RTenuUkxPnKhKqRz9eCB909jQ/Tq+xT5SLSmSLUmsuEWyJUmqNYVvsa/XOqn0vlWNVzXScGUDjVc1UrOyJlPMQoyNbFO8S2lDdzF5TKhP1de//nXOOeccZs6cyYcffsh1112HpmlcfPHFY900IcadYhQgGOk5Jkpq30SrRiWzg0OTvql0jHQGSvfLpr+lJpsiPjKDLsbChPpUNTc3c/HFF3PgwAFqa2tZsmQJL730ErW1tWPdNCHGnWKkT4z0HOO9dPdECQoHUwrl6EuR9E2lIz0DFVgSGHKfKlG6sh3EGS8VVMXEMaGuJPfdd99YN0GICaMY5clHco6JULp7vAeFIjfSN5UemYEa/4YbxBnNDHrPbAKgYDPwEy1rYbKT36AQYkDFSJ8YyTnG+8Lj8RAUSgcvRDcjaMhM1gQxkhn0ntkEQcNgXzKJAtS7XPjzmFkw0bMWJiu5UgghBlWM9IlszzHeN/Yt5aBQOnghulkJi/aN7YS3hDEjJppXw7fYR9XyKilSMQn0zCbosizej8exgXJNo0rX85ZZIFkLE1NpfwsRQoypYhQgyPYc433hcSkHhdLBC9GtfWN79/5U9Q7cDW6MkEHHhu6/BdmfamLrmU3g0zT2JhLUOxygKHyYTHJ4eXleMgvGQ9aCyI0MuwghhlWM8uTZnGO0pbuzKcVeKMOVAgbGpG19O3i3qlLndFLncGRSYISYDIygQXBzEMWtoPk0VLeKs86Jo85BeEsYIyh/C+PNSK756WyCCl0nZlkkbRu3quJRVZKWRcw08es6EdPsV6p9JHqep6d8HFuMLQmFhRAlaaD1PbnOnJVKettAqY7LAgFSlsXapqYxaVsppyUKUSxWwmL/w/vpfK4Tza0RfSeKe6absgVl6H6deHO8e42VrK8aF3K55vfMJvBpGk5FIW5ZoCg4VRWPptGaTGIA9ijaVspZC2J05DcnhCgp2XSGIy3dvbG9nUcPHMCtKJRrGinbHpP0toGCws2dnWzo7Byz1Dvp4IXoTvsL/SmE6lJR3SqoEHkrAoCz3onm1dArxuZvQYpmjFwuKc19U8ynuly80dWFDRxVVsaWUIj3YjEanE7u3rs358Gv8Z7KLgYnvzkhREnJ9/qe1mSSX7e08HYkQsQ0AahxOJjj8fDSGOWvp4PCUsitlw5eTGZG0CDeHCe0OYRrhgvFpRB9M4pWoaGWqUTejmAnbarPrS56QJPvohnFCM6ChkFzIgG2TUOBU8aHakOu19We2QTlqspstxsF2G8Y7E0mmefxsMjnI2qao+qXZA+tiUl6SyFEyShEkPGHtjZeDoUwbRvfwee2plJ0mSYJyxrT9LZSSb2TDl5MNj0DlsTeBJG/RfAu9FJ+eDkA8V1xrLiFlbDwfaQ7kBlOvoOW4YpmZHu+YlQ0TFgWD7a28n+trexNpdCBmW43F9bWcnZNTVHTrLO9rmabYh40DNY2NbHQ62XGwWOWa9qo+qViFIESxSe/QSFESQgaBu9EIhwwDOZ6PL3uyzXICBoGr0ciWIBbVSnTNABURSFkGLQaxqhy44c793CdZamk3g3UwUP3LJ909mIi6hmweA7xEHsvRuS1CKpTpfzIcsrmlhFviqM6VOrOrxsy+MhH0NI3QDKCBuEtYRz1Dpx13dcGp9sJNoReCmFFLCJbI4Oer+fxOjd35lzRMJvALWFZ3LhrF//b2krIsvCpKhW6zo54nF/s24dDVYsaPAx3XXWpKuvb2rJOMQ8ZBrqiZAb60vIx+DXSVHZR2uQ3KYQYUz3XULWnUvwtEqEjleIkvx+HogC5BxkhwyBmmvg0jZhlEbcsHIqCZdukbJtyVUUp4OsZboF0qaXe+XUdt6qWRFEPIbI10hmigQIW7+FewlvCRN6M4G50YyUs7IRNxRkVwx5zNGXYBwvIyg4rw4yYuBt6z7bofp2OZztINCfwzPH0O1/V8qpex1M1ldjuGGWHlvULzsJbwgSWBAZ8fSMJFB/dv5/H2ttJ2TY1uo4KhE2TgKYRNk3u2buXzcEgpm0X5Xoy3HX15VBoRCnmpTL4JUqf9JBCiDGVXkOlKQpzysqY7nLxeiTCS8Fgv7LjIw0yKnSdSoeDKl2nStexbZuoaZKybSp1nYXl5XnvEHu+nga3G01R2NDRwcb29gEfP9oy8fk20vYLMVashEXb+jaa1jbRfFszTWubaFvfhpWwhnyeETIwI2avwhNlC8ooP6ocK2kRez+GbdlUrqgcNu2vb4A20jLs6YBM0RTcDW4UTaFjQwddr3SheTWMUO/nJ1uSGO0GrumuAc/X9mhbr+NZKYvoO1GSHyZ7HUf365gRs9/xh2tX+8be14GgYfBSKIQKuBQFt6ri1jTcikKXadKWTLI1FsM4uMaqWNeTwa6rx1dUjHgLieG2w5CZJpEmnwQhxJgZaA3VyRUVADQnElTGYlTres5Bhl/XWeL382YkQjyVYorTiWHbBE2TaU4np/v9ee0Qh1sTdmR5OQrd5XgVyKTClEpufSkUzhAiW7nOEOkVeiZgcbq7P+eqQ8XV6EKv1ply2RRcDa7sZr0OBmgDzSgNV4Z9qBS/yNYIZQvKCD0fAptMSmDigwR6lZ55fJriVLqDp9YkrqmuzP3uRje6Xye6PUrZEWVoHi1z7sEqGg7VrvTsVvq1dzgNlJBJY5vKBwkLt2aCT8P0qoRTKVK2zSFuNw0uV3fAVaTryWBrlpri8ZzWscq6U5EN6R2FEGNmoAXFDlXlhIoKdkSjXFJXx3yvd1Qd7/KqKlKWxQP797M7HgdgvsfDp+vq8t4hDrZAWgX+FAzyYSJBWypFu2FQpescXl7OSQdTYUoht75UCmcIMZxsvvgPFszofh3fYl93AHYwYEm2Jkl8kKD67Gq8R3izbsdAAVq6fcOVYR8uIPMt8qF5NcJbwsSb42hejaqPVxH9WzRzPitlEd0aJfJ2BCNkoGoq9jE2jkoHikNB9ah4DvXQ9XIXiaYE7hlujKBBqjVF5YrKAd+jIdu1K07rw60kdicwggaRfQmOD0U4ImZgdBgEK1K0zdbYdoTCvkU2DpfKfK8XFIX2VAqPpo34epLN+tTB9L2u5prKJ4UlRDbkEyGEGDNDdXBVDseoAyro7gzPq6vjjKoqmuNxUBQaXK6CdIh9X0/KstgajfJ8ZyetqRRNiQQoCrUOB62GQVksRksyyf5kkvPr6sa8k5a1A2K8GM0MEZBJ6+t8tpPgn4JYXRZ6nU7X37pQvWrWRSYGCtCGC1oyzx0mIHPWOimbW0ZgSaDXmrE2b1vmfImmBF1vdIEN3iO9JHYnehXcAHBNcWEuMFEcSiY4Gyq1cah2JVoSmH8ycc1wYbQbpLbGqO1MEVIsYn4Nvd0k7jI4NKTg11x0LS+nyzDY2N5O0rJwqioBXWeWxzPs9aQQm7aPdh1rKQx+idIlnwwhxJgpZqEGv67jLy/P2/EGO0fP19OUSPBqOMwBw2CK00nUNElaFjUOB35N491oFLem8VZXF+/G4yypqMh8YRjN6Gy+2j/WhTOEGMxoZoh6ir0fI94Ux1HlwFHjyKwdguGLTKSlg5OeM0rZrMfKNiDT/b0LcKSPG9wcpOutLtQyFe8RXrzzvUS8kX4FN4x2g/pL6vsFZyNtV6IpATY4pzmJ74kT+lMIM2niOGBRgY3TtilXVCr2KlhzvBxxwMdDJvxfsoNah4OArtNpGOyORJiTxR5W+d6zME1S+UShSA8phBhTE62DS7d7czDIW11dOBSFOoeDqS4Xu+JxHEB7KkXSstiXTDLX48GhqqQsiw0dHaQsC4eqjln1vYn2+xAT02hmiKB7PdaBRw9gtBt4ZnpQdIX4e3EUW0Gr0AhtDg2ZQtiT6lKpWVmTddDSUy4BWfp8nlkejA4Dz2wPeqD7fGULyrCTNl1vdRF7P4ZzqjNzPNWljqpdFR+poOuNLpIfJom8GcG2bWzLxkpZ6IpCwFJRyjXsDotApxPFY6OEbY6q8hI0DLpMkzJV5SivF5PuGfDBAqtCru+UVD5RKPIpEkKMqYnWwaVfzyyPhw7DYKrTyZZwGBPQAMu2SQItySSeg5WyNKDx4EjsA/v3U67rzHC58jo6O9L2T5Tfh5i4cp0hSq/H0vwaqkNFLVdRVZVkS5LOZztxTHFgGzbuw9xMuXgKVtzKeoZnpJv+jiYgczW4cE51YiX/Xu0w14Ib2bQLIPpulK7XunAEHBhBAztoo+oqNjZKSkFXVKwySDYnUaY7iHrhhIoKbNsmZll4VBVFUYZdU9V3fWfMsoiZJi5VpS2ZzMv6TknlE/kmnyYhREmYaB1cg8vFVKcTTVGY5XbzZjSKR9PYl0xi2TambTPd5SJmWSwsK8OjqsQVhd3xOCf7/WNefW+i/T7ExJNrQJJej+WocaA4Fay4RSqUwjhgdAcHqoLiUgg9HyK+K46iKDlv6putXAKy4WbrRlJwI9t2eQ7z0PHHDrSpGrpXJ/lBElvpfs/MuInSpeCodWB2mVTN9+IKdAdAdU4nnoObr7ckk8Ou0Uyv72xPpTiQSrErHidpWSRtm2lOp+yZJ0qSfCqFEKIAeu5tUuVwcKjbjUdV0YGKgxWwvJrGwrKy7upYwP5UCiATUPU8VsQ0CQ2wh4oQk53u1zOlw7N6/MH1WHbKxj3Tjdlukvgwga3YoIJt2HgP92IlLDoe7+h+3BB7NY2lquVVVK6oxLZs4s3xrPfXylVgSQDXDBdm2EQtU9G8Go4KB5pHQ1EUNL+G5tXwLPDQcE5tzvs7pa+ffw2H+Us4jAXoikLMsgiZJi+HQgV5fUKMhgxDCiEmtUIWhOi5Psmv65zs97N6yhRO8ft5IRjkT6EQdU4npm3TnkoRMk1mud0krd6bl0r1PSHyp+cMj6PagbPRSWx3DKzuIgzlR5fjmuUi/lQcnKCVa92b7GZZsr2YRpM+OBJWwqJ9YzvhLWHQwIgYuGa6CCwLEH07im3alC0owzXNhRkyqT63Gmedk+VW7ms0j6+oYF1LCxHTxLBtnIrCYp+P6oMb9cq+eaLU5PRpjMVi2LZNWVkZALt37+bhhx/m8MMP52Mf+1heGyiEEIVQiHK9fQ21PmmG203twS8H6S8b51ZXk7JtnurszFv1vbGoIjgWpF8SI9FzPZazxol7phtHjYOKUypwVDhItacwwga6T89smAvZl2wvtlzSB7NhBA2MkEHwxSCh50M46h0ETgkQ9oSJbYuhTFXwHObprgo4xYnm0wicEci8v6NZo5mwLBpcLo4uL8cGPKqKR9OIW5bsmydKUk6fxnPPPZdVq1bxxS9+kc7OTk488UQcDgdtbW3ccsstfOlLX8p3O4UQIq8KVa53IAOtTxrsy0bCsnAoyqir7xUjaCwl0i+Jkeg7w5MOGuyYjeW0MMMmdsrGUeNA9fz972WkJdsLJR3sFGNmyjhg0PW3LlzTXXjme1AdKoHTAt2pkzGTxqsau9dzDdGeXNZoptdVpWy7V0q0zNyLUpVTz/rKK69w6qmnAvDggw9SX1/P7t27uffee/nxj3+c1wYKMZEYQYN4UxwjKGtjxlLfcr1uVaXO6aTu4MxRsIhrl/y6TmOPPVvSwdZVjY1c2dDAVY2NrKypGXEglA4aNUWhwe1GUxQ2dHSwsb101oPkk/RLIhfp9Vi159b2WpukOBUqz65E9+kkW5JYcYtkS5JUawrfYt+YzVJZCYu29W00rW2i+bZmmtY20ba+DSthDf/kEWjf2E7Hhg4UTUGv1rEMi8SeBNGt0cxjnPVOFF0BZeTr2rLRc13qSNdkDSRoGDTF43m5vufzWGLiyOnTH41G8fl8ADzxxBOsWrUKVVU56aST2L17d14bKMRE0HPUr9BVpMTw+pbrTfPresmklYym+l4h93gpVdIvidEYaG2S6lYz1+2RlGwvpHSw46h34G5wY4SMEW9WPJx0yXlHvQNnnRMrZuEIOLCiFvHdcTzzPGgerSizdvnYNy+fs/ajOdZkScWezHL6rc6dO5dHHnmE888/nz/+8Y9cffXVALS2tlJRUZHXBgoxERSjIxTZS6eVhAwDdwmlleSr0x0PQWO+Sb8k8qHv2qRCF4EYSRpf32AHKEjxjHTJeXdD9/VD9ai4Z7mJvBbBSBgYnQZmyMx6o+XRyMe+eflM9c7lWJMtFXsyy+kv4dprr+WSSy7h6quvZtmyZZx88slA9+jgsccem9cGCjHeFasjFCMz0+XiT+Fw3gpCjEa+O91SDRoLSfolUSiFKAKRS/ZC32CnZ/vyWTwjXXLeCBndfRXgne/F6DRINCdItadwVDmKOmuX68x9Pmftcz1WMdfvirGV01/fpz71KZYsWcLevXs5+uijM7cvW7aM888/P2+NE2IiKFZHKIbXM3gJmiYRw2CrYTDF6cSv6zkVhMiHfHe66bUIGzo68ho0lnL6ivRLYjzJJXthoGAHINmSxDZssPPTtsE2FXYEHNScU0PFyRUFK5CRb/mctc/lWJMxFXsyy/k3OWXKFKZMmQJAKBTi6aef5rDDDmP+/Pl5a5wQE8FgHWGpVJGaTHoGL7Pcbqp0nT2JBEeVl3N+bW3BO7eBgpJCdbr5WIuQNl7SV6RfEuNBrtkL6WDnwKMHMDoNHFUOIm9HiG2L4WxwsvfuvXlbq9uz5Hzf9WSlsA442wGefM7a53KsyZiKPZnl9Ju88MILOe200/jKV75CLBZj8eLF7Nq1C9u2ue+++7jgggvy3U4hxq3BRv2KkY9eyoo96zFU8LI7Hi/ouYcKSvp2ujHLImaauFSVtmQy5043H2sR0sZD+or0S2K8yDV7wUpYWCkLo8ug660uUu0psMC32EfFcRWYUTNva3WLtanwSI10gCefs/a5HGsypmJPZjkNNzz33HOZ0rUPP/wwtm3T2dnJj3/8Y773ve/ltYFCTARVy6t6leu1LXvMq0iNlYRlsb6tjbVNTdzW3MzapibWt7WRsPJbErivdPDStxPz6zoR0yRUwNK4G9vbefTAAbpMk2qHo1d583Sn255K8beuLja2t/NMRwePHzjAB4nEqGeC+pZsH6lSKj8/FOmXxHjRM3uhp+GyF9o3thN8Koj3cC9VH6vCUeVA9+k4qhxo5RrOOidahUbHUx3E98T7HTuX7TwKUSp9NHLZKmJ5VRUrKiuxbJvmeBzLtnOetR/psfJdFl6Utpx+m8FgkKqDH6ANGzZwwQUXUFZWxsqVK/nGN76R1wYKMRGU6qjfWBirWY+xGjFsTSZZ19JCczIJgFfTmON2U30wKFkSCLDY5+PODz+kNZWixuFAVxSCpknINHk5FBrT2aDxkr4i/ZIYL3LJXuibMphqT6GX6ygBhfiuOJ5ZHqLvRolui2IGTRQUAssCBE4N0Pl854TYziPXVOl8ztrncqx8pmKL0pbTp6qxsZEXX3yRqqoqNmzYwH333QdAR0cH7j4drxDi7wpRRWo8GctFu4Uq3jCYdHrjw/v38+dQCFVR0IEW4IN4nBMqKqjSdUKGwfEVFaxraSFimhi2jVNRWOzz9Qq8xipwGS/pK9IvifFkqDVLAxmozLniVMACK2bR9oc24u93Z0GoTpX4B3Ha17cTejmEecCcENt5jHaAJ11BML1x72iCq5FUI8xnUCdKW06/1auuuopLL72U8vJyZsyYwemnnw50p18ceeSR+WyfEGICGetZj2KMGPbM+W9PpdjY0UGnYVDjdFKuaSRtm5Bh8HIoxMerq6k4GFg1uFwcXV6ODXhUFY+mEbesMZ8NKnYwmivpl8R4MtLshb4FjzSPhnumm/CWMEa4e98oxaGgOTX0Kp3UhynMqIn5N5PA0sCE2M5jtAM8Y11wZzQbuovxIaff7pe//GVOOOEEmpqa+OhHP4p68MM4e/ZsyV0XQgxqoE4xZpo0JRI4FCWvsx4DFcIoxohhz/RGr64TNk1UoMs0cSsKDlXFoSi0plK91jp5NY2UbePTNDoMgw7DIGXbJTEbNB7SV6RfEuNRttkLA6UMOqod6AGdVGcK7O7ZK0eNA2xItiYxd5vYKRvXDBeuqS4Uh5I51njczmO0AzzjoeCOGN9y/mtavHgxRx11FDt37mTOnDnous7KlSvz2TYhxATTs1MMmyZN8TjNySRdpskCj4fNnZ2jHjXMZjSyUCOGfdMbPzwYLLocDlK2jWHbGJaFDQR0nZN9vkx75rrd/HzvXvYbBtGDaYBuTePCmhrcY1y2fLykr0i/JCaygVIGay+qJbQ5RGxHDM2jYUZNEvsSqE4VW7VRdIXYuzEcVQ7KjywHCredhxE0Cr5mONcBHtkvShRDTp+gaDTKlVdeya9+9SsA3nvvPWbPns2VV17J9OnT+da3vpXXRgohSkM+yqCfGgjwcijEb9vaaEml8Koq88vKOMTjycuo4ViORvZNb6x0OKh2OGhNpbCBCk1DV1VilsWhHg+zy8oyQeBj7e1sjUaJWhZlmka5pqHYNq9GImxsby+JkdRSTl+RfklMdAOlDAIkdiew4hbx3XFSrSlUh4qdslEVlbIjyjA6DSJvRnA3urESVt6387ASFu0b24tSDCPXAZ6xTj0Xk0NOn/Zvf/vbvP7662zatKnXAuDly5dz//33561xQojSkM8y6M93dvJhKkWlw8HCsjIWeL3EbZugYYy6THe+y3+nFzRn+7ye6Y3QvTbqKK+X0MFyum9Go/wtEiGUSvGJg+kq6XLrHyYSVDgc1DudeFWVqS4X871eoqbJ5lCoZEqXlyrpl0Spy7WseV89y5yn0wL1Ch1HjQMrZWFGTayEhXehl6oVVZQfVY6VtIi9HyvIdh7tG9vp2NCBoim4G9womkLHhg7aNw5e5ny0RrpVRN9rc1qpFdwR41tOn6JHHnmE+++/n5NOOglFUTK3H3HEEezYsSNvjRNClIZ8zf6kgx6/puFRVQKahkNVCZsmu+JxGt3uUW14m6/RyFwXNA+U878tFsOge5bKq2nYtk0KePtgsJZ+PxRFQQXKdZ2UbRNMpahzOFCBjlRKRlKHIf2SKFWFnslJB0jBzUESexMoqoJ3oRff0T4Uh4Kr0YVerTPlsim4Glx5Tc3rW+odSrMYxngpuCPGt5w+Rfv376eurq7f7ZFIpFdnJoQY//KZi54OemocDpyKQtyycKgqHlWlI5WiNZnEN4pRwwpdR1NV9hwM0DwHA6CRjkaOJojsmfP/dlcXuxMJZns8zPV4sGwbh6rSlkrxQjDIJ7q6Mu+H5+C1M3WwpHrUsggbBhbdaYQykjo06ZdEMY1k/VB6JqdQZc17pgWWHVZG6E8hXI0ubNMm1Z7KpPt5j/CO+lx99S31nlaKxTDGQ8EdMb7l9ElfvHgx69ev58orrwTIdFg///nPOfnkk/PXOiHEmMtnLno6BSNl28x0u3krEsEGTOguNW6anJHjguGEZbG5s5PdsRjvRKP4dZ1DPR6muFy0G0bWo5GjDSJ75vw/29HBX7q6OMTt7lVsIqDrNMXjdFlW5v2YW1bGBwdn6RyKgg20GwZTnU6WVFTISOowpF8SxTDSWadizuTofp36i+tx1DoIbwkT2x5D0RX8p/rzmu7X65x9Sr2nFaoYxmiMl4I7YvzK6dP0/e9/n7PPPpu3334bwzC49dZbefvtt/nTn/7Es88+m+82CiHGUD43f+2ZglHtcDCvrIzt0SidB6v/nVtdnfOoYXp26dCyMsp1ne3RKC93dbHANLmkvj7r4+YriPTrOsf4fPg1jU7DwNPjves8+N4derBQRfr9OKGigpdDIfYbBhWqSoPTyafr6mQkNQvSL4liGOmsU7FnclSXStXyKsyISeilEJZpEdkaQfWqBSkcMVCpdyNo5L0YxkgMV1CplAvuiPEtp0/VkiVLeO211/jBD37AkUceyRNPPMGiRYt48cUXZZNFISaYfOei90zBCGgaJ1ZUcJjHw8drajIzQyPVd3ZpmsvFEWVlmf2vlgQCWZdpz2cQOcPtZqnfz0MHDgDdM1SdhsH+VIpV1dXMcLupP3iOLeEw1brOWVVVRA6m/blUle2xGBvb2wu2QeVAX0DyUeWx2KRfEoWWy6zTWMzktG9sJ/R8CEe9A71Cz3u6YV8DlXrPdzGMbIz15r5C5PzXPGfOHO666658tkUIUaLymYteiBSMgWaXPJrGDLd7xCmK+Q4ir5kxA4Bng0GaDr53q6qrM7f3fT9eDIV4Phhk2sF1VIUqCT/QF5Cjy8vBtnk9EhmXX0qkXxKFlMusU7FncopdOCK9tiywJED5keUk9iZwTXXhnuEe/sl5Jpv7irGW81+WZVls376d1tZWrD5llU877bRRN2w0/vu//5ubb76Zffv2cfTRR3PbbbdxwgknjGmbhBjPsg2E+s5wDDXjkc8UjHzOLkF+g8gKXef62bPZE4+zN5FgqsvFDHf/Lxzp92JrJFKUDSr7fgFpTSa5vbkZ/eDM3nj8UlLK/RJI3zTe5TrrVKyZHCNoEHknQqo9Rdmcst5tz3O6Yc+1ZUbQILkvCQq46l1o/sLtUzUY2dxXlIKcPmEvvfQSl1xyCbt378a27V73KYqCaZp5aVwu7r//fq655hruvPNOTjzxRNauXctZZ53Fu+++O2BlKCFE9gYLhPrOerhUFQ0wFYVEEWY88j27VIjZtBlu94DBVE/F2qCy5xeQSl1nazTKjnicd2MxdEVhhtvN0eXl1I2jLyWl3C+B9E0TwUhnnXpWCOy7aW8+Z4t6BTgHDCJ/i2AcMKg4uQLVoWbaks90w55ry6wui/j7cbBBK9fQq/Sh15mNoHJitmRzX1EKcvp288UvfpHFixfz5ptv0t7eTkdHR+Zfe3vhNnvLxi233MLnP/95rrjiCg4//HDuvPNOysrK+OUvfzmm7RJiIkvPemiKQoPbzc54nIcOHGBXLEaD242mKGzo6GBjAa8Py6uqWFFZiWXbNMfjWLY96nK5I91gcrSKtUFl+gtIxcGA6q1IBNOy8KgqCvBmJMLWaBTofg8iptmvTaWmlPslkL5poqhaXkXlikpsyybeHB9wM10rYdG2vo2mtU0039ZM09om2ta3obrVzKa9+dS+sZ0Djx7ADJu4Gly4GlxE3ogQejGEFbdItiRJtaa6NwnOw7l7phhqPo3E3kR3uuEUJ8kPk+g+HUedIzOLlTbY+2IlRr6JfF+yua8oBTl9yrZt28aDDz7I3Llz892eUUkmk/z1r3/l29/+duY2VVVZvnw5L7744oDPSSQSJBKJzM+hUKjg7RRiIumbdhEzTYKGQa3DQadhYENRZjwmQrncYm1Qmf4C0ppMsjsep0LTcGsauxMJnIpCQNfZHY8zz+MhdHCmsdS/lJRqvwQj75ukXypdPfeEGmy2pdD7UqUZQYPo+1Fa7mkheSCJ4lBQnSquRhdlC8tIfJAguiOKo8qR13TDnmvLzKiJnbTRAt0bmKc6Upgxc8B0w0K+L32vnU5FYX8qRcg0Obe6etz1BWJ8ymmm6sQTT2T79u35bsuotbW1YZom9fX1vW6vr69n3759Az7nxhtvxO/3Z/41NjYWo6lCTBg9Zz0AYpZF0rYJ6DpJyyJ2MO2qWDMexZ5dyrdCzLj1lf4C0pxI0GEY6KpK3LJwKQpORUE5uPlwUyJBayrFYp+v5N/PUu2XYOR9k/RLpU/36wPOOvUtFKG6VZx1zgFnbnLVc8bn/X97n87NnZhhE0eFA0VViG2Nofk0yo8sp/6SehqvaqRmZU3e1jf1XFumelQUp4IVt7BiFqpTRfNo/dINi/G+LK+qYpnfz9ZIhN+1tfFiMEjEMEjZNglr9LNhQgwnp17yyiuv5Gtf+xr79u3jyCOPxOFw9Lr/qKOOykvjiuHb3/4211xzTebnUCgkHZgQI9C3SIRHVXEqCp2GQZmq4tE0QNIwslWsGbflVVVETJM7PvyQ1kSCgMPBEr8fgK3RKEnLwqEonBEIjIt9sqRfEqWgGPtSpWd8NL8GKVA9Kqm2FFq5hmu6C4DYezH8J/nxzvfmPd2w79oy11QXXW90gQ3eY7wYoe51Zv5T/Rih7mCpGO+LS1VxqCrlus7Jfj91TidJy+Kpzk4cijIuiu2I8S2nT/AFF1wAwOc+97nMbYqiYNv2mC4IrqmpQdM0Wlpaet3e0tLClClTBnyOy+XC5XIVo3lCTEgDpaz5dZ3dkQhHe70oQEsymfcUtomu0BtUulSVC+vrQVF4/MABprtc1DmdBA0DA/hIRQXn19aOm99XqfZLMPK+Sfql8avQ+1L1nPFRdAVFU3BOd5JsTpL4MIGj0oFlWBhBA89hnoJtvtuzoqFaruKe7QYFdK/enQ5YrdH1ty5CW0JoXo2yBWVorsLu15VORZ9x8FqWNl6K7YjxL6dP186dO/PdjrxwOp0cd9xxPPXUU5x33nlAd4ndp556iq985Stj2zghJrC+JcgPcbuZ63ZjKsqoS5KLwjq3pgavqvYqH39udfW42ZsqrVT7JZC+aTIp9L5UPWd8bNtGcSroDh1FUUh8kCDVlgIdyuaXUf3x6jy9qv4GWluWbl/wxWBm82FnrRMjZBB6PoRWrWG0GAXbr0sqAIqxltOna+bMmfluR95cc801XH755SxevJgTTjiBtWvXEolEuOKKK8a6aUJMWIOlrA21T1WxlEIbStlEKPABpd0vgfRNk0kh96XqNRNW58Q9003krQiqQ8VziIeyw8uw4zbV51ZnNv8tJN3fv1BHdGt0wM2HraSF/1Q/ka2RguzXle/9CoUYqZw+YTNmzOD0009n6dKlnH766cyZMyff7crZZz7zGfbv38+1117Lvn37OOaYY9iwYUO/BcJCiOxlu69I35S1QqewDaXv3lmF3itrvBvL31U+lHK/BNI3TSbZVAjMVd+ZMM9sD0anQWxbDGeDE0e1I7Pxbloh9oUazHBrpypOrqDqrKqCtKdY1VOFGIxi990lMQu/+c1veO6559i0aRPbt29n+vTpLF26NNOZzZs3rxBtLYpQKITf7ycYDFJRUTHWzRFiTPXcVNKMmGheLdNh56uSVKGsb2tjQ0cH9Q4HFbpOyDBoOdi5yoLl0jSa66/0S2KyGOi6XLagDN8iH85aZyZQyeX6PdoAzAgaNK1t6l7r1WOmLNmSxLZsGq9qLFhgZwQNop1JnjfDbFGiMpgm8ibba3BOQVVPe/fu5dlnn+X3v/89999/P5ZljfnO9aMhnZcQf9e2vi2zr4heoXdXdWrpzoHP534r+RY0DNY2NaEpSq8Fyy3JJJZtc1Vjo4xalqB8XX+lXxKTwXAB0Eiu3/kcQMuct87Rb+3UaPqNwV7vQG3XjvXC0nL8Xqdc68WoZXsNzvmTFo1G2bx5M5s2beKZZ57h1VdfZeHChZx++um5HlIIUUL67isCf8+ND28JE1gSKHgqSa5kwfLkJP2SmEwGWs+UNtLrdz435s33mrLhAr6B2p54MkilpuJfWZbTOYXIRU7fKj7ykY/w6quvsmDBAk4//XS+9a1vcdppp1FZWZnv9gkhxkgx9hUpFFmwPPlIvyTE343k+p3vAbR8rykbKuALLAmM28E/MfHklGD6zjvv4PV6mT9/PvPnz2fBggXScQkxwfSsMtVTPvcVKZT0guWWVIqWZJK4ZWX2ylrs88ks1QQk/ZIQfzfc9Rsb4k3xTEqdGTH7XdN1v44ZMfsdI+s2+HXcje5RBTV9Az7VreKsc+Koc2RmwgrRdiFykVNQdeDAAZ5++mlOOukk/vjHP3LKKacwffp0LrnkEu666658t1EIMQbSVaZSLSmSLUmsuEWyJUmqNYVvsa/kR/+WV1WxorISy7ZpjsexbFv2yprApF8Sk4ERNDLB0FAGu34n9yaxbZu9d++l+bZmmtY2EXoxhOpShx1Ay/bc+TRcwKegjNvBPzHxjLpQhW3b/PWvf+X2229n3bp1siBYiAlkPFf/S5N9qsaPfF1/pV8SE00u1+KBnmPbNkargXOas1fxCq1awzxgDlhcomp51Zj1A9lUE+zc3FmQwhhCpBW0UMUrr7zCpk2b2LRpE5s3byYcDnPkkUdy5ZVXsnTp0pwbLYQoLYXcb6VYxvv+SyI70i+JiWKgKne5FJLoe/3Ghr1378U5zdlv/ZGdtKk4tYLo1mi/4hL5LGIxUn335eobNOl+vaCbLQsxEjl90zjhhBM49thjWbp0KZ///Oc57bTT8Pv9+W6bEKJEDFVlSohSIP2SGO8Gm42qOL5iVMUY0tfveFN8yOIV/pP9VJ9V3SugK4UqsMMFTRNh8E9MDDl96trb2yUFQYhxbrSbPApRSqRfEuPdYDNCyf3JvFRi7Vm8wun+eypdz/VHfQfQSqEKbLZBkwz+ibGW06evoqKCzs5OHnzwQXbs2ME3vvENqqqqeOWVV6ivr2f69On5bqcQIk8mwjopIfqSfkmMZ0PNCMXejaFq6pDBUDaySaXrO9iWTSDW93UUarBOgiZR6nL6dL7xxhssW7aMQCDArl27+PznP09VVRUPPfQQe/bs4d577813O4UQeTKW+fFCFIr0S2I8G2pGyAgblB1eRtdfuwYNhrI1WCpd4NQAbevbBhxsGy4QAxmsEwJyLKl+zTXXcMUVV7Bt2zbc7r9fAD7+8Y/z3HPP5a1xQoj8Gm7Pj2KWyhUin6RfEuPZcPtKVX+8msoVldiWTbw5jm3ZORVjSKfSNV7VSMOVDTRe1UjNyho6n++uoKdoCu4GN4qm0LGhg/aN7VQtrxr23OnBuoGeL8RkkdNM1csvv8xPf/rTfrdPnz6dffv2jbpRQojCKIX8eDE4Kf+eO+mXxHg2XGqes86Z12IMPVPp4nvidD7ViebXBi1GMdS5jaBBcHMQxa2g+bTuwboiF7MQohTk9Cl3uVyEQqF+t7/33nvU1taOulFCiMIYaX68KI6EZbGxvZ0t4TAR08SraSz2+VheVYVLldSZbEi/JMa7bEqD53NdUTplr+OpDoKbgziqHRhBA+98L4pD6TfYNtC5rYTF/of30/lcJ5pbI/pOFPdMN2ULymSwTkw6OfXWn/zkJ1mzZg2pVAoARVHYs2cP//qv/8oFF1yQ1wYKIfInPRqaakmRbElixS2SLUlSrSl8i33S8Y2Rje3tbOjoQFMUqh0OukyTRw8cYGP78KkzQcOgKR4naEzu1E3pl8R4N1hqXqHWJKVT9rQyDWe1EztpE30zSuSdCJDdYFv7xnZCfwqhulRUtwoqRN6KEN0alcE6Menk9Jf6wx/+kK6uLurq6ojFYixdupS5c+fi8/n4//6//y/fbRRC5FE2+fGieIKGwZZwmGpdZ18yyeZgkDciEbZHo6xraaE1mez12HQAlbAs1re1sbapiduam1nb1MT6tjYSljWGr2bsSL8kJgrdr+NudBd0kKvn+lr3DDfuOW5sywYVYttjxPfEhx1sSx/DNcOF9wgvVtRCQUEtU4m8HSHRlJDBOjGp5PRJ9/v9PPnkk7zwwgu8/vrrdHV1sWjRIpYvX45t2/luoxAij2SjxNISMgwipkmnabItGqVC0whoGl2KwjvRKH84cICL6+v7pQfatk2rYTDN6aTB7SZkGGzo6K7iuLJm8lVxlH5JiOz1XV9btqAMgPiOOMkDSayoNexgW89jOCod3c/fFceKW1gJC99HfDJYJyaVnL5J3XzzzXzjG9/glFNO4ZRTTsncbpoml112Gf/7v/+btwYKIQpD9vwoDRW6jqYovBOJ4FYUXKqKQ1XRbRu/rvNuLMajbW08HwxS73DQ4HbTmkzyZEcH8zwejikvB8DtdGIDW8JhlgQCk67QhfRLQmSv7/pa1aFSflQ5ul/HjJk0XNWAe4Y7+2PUOSk/spyyuWXEm+KoDpW68+uknLqYVHL6tN9888384he/6HWbaZpcdNFFvPbaa/lolxBCTApuVSVummyLx9kej/N2NMq2aJROw+BQj4eoYfBSKES9w0Gd04lbVSnXNBzAAcMgZpqZY/l1nYhpEpqE66ukXxIie4OtrzVDJpXLKocNqAY7hhEysBM2FUsqZNBOTDo5feLXr1/Pxz72Mfx+P5/61KcwDIMLL7yQd955h2eeeSbfbRRCiAlrY3s7YcuiTteJWRYJ0yRimix0OJjictGWShFOpZji/Hu1Ro+m4dN1ugyDmGXh0TSge82VV9OomGSzVCD9khAjlU21wWIcQ4iJIqee9/jjj+e3v/0t5513Hk6nk1/84hds376dZ555hvr6+ny3UQghJqR0kYpZbjceVeW1SASPoqAoCmHL4s/BIOWaxt5kkl3xOEd4vcz3evGoKjUOB+2GQdg0KdM0goZBayrFisrKSZf6B9IvCTFS+VhfK2t0hfi7nD/5Z555Jvfeey8XXHABCxYs4Nlnn6VmEi6OFkKIXKWLVDS43VQ6uhd674rHiZomLckk051OFpaXU5VM8kZXF38Jh0laFg1uNz5d5+zKShRFoTkex6tprKisZHnV5B0hln5JiJHLx/paWaMrxAiCqlWrVg14e21tLYFAgC984QuZ2x566KHRt0wIISa4Cl3Hq2mEDIM6p5Mjy8uZW1bG9miUpG1zkt/PNJeLWocDp6LwdiTCm5EIVU4nK6uqWF5VRdyyCBkGFbo+6WaopF8SQghRKrLugf1+/4C3n3XWWXlrjBBCTCZ+XWexz8eGjg7sgz+HDIMu06TuYGEKAIeqclR5OY0uFztjMS6rq+OIg1X/XKo66YKpNOmXhChdRtCQlEAxqWT9Kb/77rsz/x2LxbAsC6/XC8CuXbt45JFHWLBggXRmQkwS8T1xEnsTuKa6sqoUJQaWTtfbEg5n0vjOrq7mb11dhAwD98HAKmaa7E+lqDxYVl1IvyREKbISFu0b2wlvCWNGTDSvhm9x955VUmJdTGQ5DR2ce+65rFq1ii9+8Yt0dnZy0kkn4XA4aGtr45ZbbuFLX/pSvtsphCgRRshgzy17CD4bzHSY/qV+ZlwzA71CRiNHyqWqrKypYUkg0CuNz6uqbOjoIGXb7E0m2R6N0mmaLPB42NzZyfKqKlyqfEFJk35JiNLQvrGdjg0dOOoduBvcGCGDjg3dG5PXrJQ1jmLiyqlHfuWVVzj11FMBePDBB6mvr2f37t3ce++9/PjHP85rA4UQpWXPLXs48NABFFXB3ehGURUOPHSAPbfsGeumjWt+XafR7c6k8i2vqmJFZSXbolG2hEIAHF9ezryyMjZ0dLCxvX0sm1typF8SYuwZQYPwljCOegfOOieqW8VZ58RR5yC8JYwRnHx76InJI6dh5Wg0is/nA+CJJ55g1apVqKrKSSedxO7du/PaQCFE6YjviRN8Noij1oFzandamtPT/f/BZ4PE98QlFTBPXKrKkkCAzaEQ01wuGg+WXQfQFIUt4TBLAoFJu56qL+mXhBh7RsjAjJi4G3r3A7pfJ94c715jJeurxASV00zV3LlzeeSRR2hqauKPf/wjH/vYxwBobW2loqIirw0UQpSOxN4EZsRED/TuFPWAjhkxSexNjFHLxl7QMGiKxwka+RuJDRkGpmVR53QSM01ilgV0z2pFTJNQHs813km/JMTY0yt0NK+GEep9bTKCBppXkxRxMaHl9Om+9tprueSSS7j66qtZtmwZJ598MtA9OnjsscfmtYFCiNLhmurq7jA7jcwMFYDR2d1huqa6+j2n680uYu/H8Mz2UL6wvJjNLYqEZbGxvZ0t4TAR08SraSz2+fKy5smlqnyQSLAlHMahKDhVlVluN1UOB15No0JmqTKkXxJi7Ol+Hd9iX/caKrv7ZyNokGpNUbmiUmapxISW06f7U5/6FEuWLGHv3r0cffTRmduXLVvG+eefn7fGCSFKi3uGG/9SPwceOgB0z1AZnQap/SmqV1X3Sv1L7k/y3r+8R/hPYayEhepS8X3Ex6G3Hoqz1jnYKcadje3tbOjooP5gVb6QYbCho3tR9spRbjz7cihEyDSJWhbVuo4F/CUcps7h4IvTpknqXw/SLwlRGqqWd1c0DW8JE2+Oo3k1KldUZm4XYqJSbNu2x7oRpSQUCuH3+wkGg5IyIsQAsq3+9+Ylb9L5x040v4bu0zHCBmbQJHBWgIX/s3AMX0H+BA2DtU1NaIqS2VMKoCWZxLJtrmpsHDTwCRrGkJv2po9tA22pFLvjcZK2TcqymOJ0snbevF7nnAjk+jsweV/EeCT7VImJIttrsHzKhRAjolfozL5+9pD7VHW92UX4T2E0v5aZlXK6nSRJEv5TmK43uyZEKmDIMIiYZr99o/y6TnM8Tsgw+gVM2aYL9jz2NJeLeR4PMctCAQ6kUiQOrq8SQohSpPslmBKTi2xyIoTIiXuGG/+J/gGr/cXej2ElLHRfn4IWPh0rYRF7P1asZhZUha6jKQpN8Tgx08zcHjSMQdc8pdMFNUWhwe1GU5QBS6RX6DpeTcsUo/BoGlUOB0nblvVUQgghRImRXlkIkXee2R5Ul4oRNnC6exS0CBuoLhXPbM8Yti4/EpbF5s5O9sTjbI3FCGgac8vKmOp00m4YrKis7DdLFTQMtoTD1DscmdQ9t9OJDf1KpPt1ncU+Hxs6OrAP/hw0DFpTqQGPLYQQQoixIzNVQoi8K19Yju8jPsygSXJ/EitukdyfxAya+D7imxCpf+kZp3llZRxf3v16toRCbItGOdXv57Cysn7l1dMpfX1nmQYrkZ7eANiybZrjcSzbZkVlJcurZMG3EEIIUUpkqFMIMaxcFhwfeuuhmep/ydYkqkslcFaAQ289NK/nGQt9Z5ymuVwcXl7OrliM5kSCV8NhtoRCeDWNBWVlLPL5qHU6e6X0uXsUmRgsXdClqqysqWFJIDBkUQshhCgl2VzLx8v1XohsyadYCDEoK2HRvrGd8JZwptKfb7GPquVVqK6hJ7qdtU4W/s/CrPapGs15xsJABSo8qkrUNNkRjzPL7Waqy8Ur4TB/aG+nwenkqPJyFvt8HO318lQwOKKUPr8EU0KIEtUzOFLd6rDX8nxc7yUgE6VIPolCiEG1b2ynY0MHjnoH7gY3Rsjo3tQRqFmZ3R5M5QvLh033y8d5iiFdBt2GfjNOMcvivYNrqxpcLrbFYnyQSFCuaUQti5Rts6Gjg2WBACsqK9kSDtMcj+PVNEnpE0KMOwMFR7ZtY7QaOKc5B72Wj+Z6P94G4MTkIkGVEGJARtAgvCWMo96Bs+7vZdGxuzd1DCwJ5GWEsFjnGY2ByqDbts2HqVRmxqkpHidoGCw+uIfF7nicCk3Do2l0pFKUaxouVeX1ri6uamyUlD4hxLjWNzhKtibpeLIDzzwP5cd0D6T1vZYDo7rej5cBODE5SVgvhBiQETIwI2avDX2he+8RM2JihIxBnpn7ecyYSao9hRkz836e0RioDHqrYVCn65kiEg5VZX5ZGdOcTmKWRdK2casqMcvCqap4NK1XQQq/rtPodvcKqIKGkQnOhBCiEIygQbwpjhHM/TrTdzBMdato5Ro4wDhgYMb+vsVEz2v5aPqVgc7prHPiqHMQ3hIe1esRIh9keFQIMSC9QkfzahihPmXRgwaaV+vXKY7mPKpLJfSXEEbQwE7a2IqN5tHwzPXk7Ty5GqoMumXbXDF1Kgrd+0pt7uxkQ0cHFZqGqii0GQYWsLCsDI+q0pJMDliQItsNgYUQItf1RPlMnUsHR+6Gv68r1Twauk/H6DKwYhaaR8u0t2efkWu/MtA5oTsgizfHu98TWV8lxtCE6q1nzZqFoii9/v3gBz8Y62YJMS7pfh3fYh+plhTJloNl0VuSpFpT+Bb78tZ56X4dNIi8EcHsMjHCBrH3YgQ3Bwm/HKZzcydWwsrLuXIxXBl0BTIzTukS6E5FoUxR6DJNGpxODvF4aEkmaU2lWOzz9Uv3y3ZDYDE+Sd8k8sFKWLStb6NpbRPNtzXTtLaJtvVtWV8f06lziqbgbnCjaAodGzpo3zjy60zPQbc01aPiqHFgJ23MsDlgnzGafmWgc0L+B/qEyNWE+wSuWbOGz3/+85mffT7fGLZGiPGtanl38YTwljDx5jiaV6NyRWXm9nwwggaKqeA92kv03SjJfUlUj4p7Vvdo5IFHDwBjly8/kjLoPUug708meaWri62RCPsSiUELUoxkQ2AxfknfJEZrNOuJ8r12NR0cdWzoALv7ZyNooPt0Ks+uRFGUQfuMXPuVwc6Zak1RuaJSZqnEmJtwn0Cfz8eUKVPGuhlCTAiqS6VmZQ2BJYGCla81QgZmwsS70IvRZqAHdByVDlAg1ZFCq9Cy6vQLVWLXr+ss9vnY0NExYBl0gKZ4vFfBiXQJ9LkHNwAeqiDFQOXZ08dojscz66/E+CZ9kxiN0QZFhUidGyg4qlpZRdXyKqy4Nej1eDT9SjEG+oTI1YTrqX/wgx/w3e9+lxkzZnDJJZdw9dVXow/xhSSRSJBIJDI/h0KhYjRTiHElnbZRkGMfTOlItaWwLRu9UkdxKJhhE9XZvRA52ZYctNMvRond9OxSzzLoy/x+UrbN2qamIddBDbfH1Eg3BBbj00j6JumXRF+jDYoKsUZ2qOBIdanD9hm59CvFGOgTIlcT6pP41a9+lUWLFlFVVcWf/vQnvv3tb7N3715uueWWQZ9z4403csMNNxSxlUKIntIpHQcePYCVslC6FGzdxgyZlC0sw0pYQ3b6xSix2zOtLz3rlC5KUe9w0OB2EzIMNnR0n3dlTfbnHW4mTGapxr+R9k3SL3WTDV7/brRBUSFT5wo56FZK5xRiOIpt2/ZYN2Io3/rWt7jpppuGfMzWrVuZP39+v9t/+ctf8v/+3/+jq6sLl8s14HMHGhFsbGwkGAxScXC/GSFEYaVnm1rWtRB9J4ru1/Ec6sE1xYXRblC5onLAAMkIGjStbULRlExKDECyJYlt2TRe1ViQjjdoGKxtakJTlMw6KICWZBLLtrmqsXFEwZBU/+sWCoXw+/3j4vpbyL5psvdLssHrwNrWt3UPINU5+gVF2QwgyfsqRG6y7ZtKPqjav38/Bw4cGPIxs2fPxtnji03aW2+9xcKFC3nnnXc47LDDsjrfeOrUhZhokq1JDvzhALF3Y1imNWynH2+K03xbM+4GN6r77/dbcYt4c5yGKxtwN7r7PW+0muJxbmtupsHtxt0j6IlbFs3xOFc2NNDoHvl5h1t/NdGNp+tvMfum8fS+5EMmeKh3oFfoGCGDVEv2wcNEla+gqBgzgDLLKCaSbK/BJf9Jr62tpba2Nqfnvvbaa6iqSl1dXZ5bJYQoBGedk6mrp2bdIRdrL62+CrUOarj1V6J0SN9UGPmuUjeR5Gs9USFT52Q2TExmE+bK9OKLL/LnP/+ZM844A5/Px4svvsjVV1/NZZddRuXBCl1CiPEh205/rErsyjookS3pm0ZGNngdXimvJyrGGlchSlVp/lXmwOVycd9993H99deTSCQ45JBDuPrqq7nmmmvGumlCiAIaqxK7A1UEHGgfKjG5Sd80MmM1+1yq8p1GV8i0PJllFJPdhPl0L1q0iJdeemmsmyGEKLKxKrE7UEVAmaESfUnfNDKywWu3fKfRFSMtT2YZxWQnCa5CiAlB9+u4G91F77T9uk6j2y0BlRB5UrW8isoVldiWTbw5jm3ZJbXBqxE0iDfFMYJGwc6RTqNTNAV3gxtFU+jY0EH7xvaSON5Aes4y9jRZZxnF5COfcCGEEEKUjFLd4LVYRRjynUZXrLQ8mWUUk53MVAkhJqxijCgLIQpjrGafB1OM2R74expd35kd3a9jRsx+M0HFPt5QSn2WUYhCKo0rlRBC5JGU9RVC5FMxizDku1hHMYt/9J1lxAaU7r0D5dorJjoJqoQQE46U9RVC5FMxizDkO40ufbwDjx7A6DRw1Dqwk/ao0vKGqyKoulW6NnfJwJaYVCSoEkJMKFLWVwiRb8Uu9Z7PrSKshIWdsjEiBl1vdQHgnumm9sLaER8v2ywAGdgSk5F8sxBCTChS1lcIkW/FLsKQz2Id7Rvb6XyqE+8CL76jfSRbk5ghE9WhYsUtkq3JrI+fTbAkA1tispJPtRBiQpHNQ4UQhTAWG43r/tFVPhwowNEDOokPErT8TwvBzUFs084qPS/bYEkGtsRkJZ9qIcSEImV9hRCFUKql3ocyWICT2JcgtjWGa5oLd2N26XnZBksysCUmK1ktKISYcNJlfc2oSdfbXZhRs9eIspRaF0Lkqhil3o2gQeStCF1vdY3qOjXQhryp9hRdr3WBA/RqHdWt4qxz4qhzEN4SHvR82W7umx7YSrWkSLYku1MMW5KkWlP4FvtKPhAVIlfyyRZCFM1wFaPyTenxP5BS60KI0mYlLA48foDW/2slviuObdo4pzip/XQt9Z+qH/F1qufMvZ2ySXyQIPhCkPieOFq5RttDbfiO8+Fd6B02PW8kWQBjkSopxFiToEoIUXDFDmZ6Lqb2TvVmUltCL4cwD5hSkUoIUZLaN7az9xd7SbYmweweiErsSRDdGiW2Lcasb88a8TUzHci0rGsh9OcQdsxG93fPOqX2pwhuDqJoCs5657DpedkGS+MxVVKI0ZJPuBCi4IpZXnewxdRW3CL4bBD/KX6pSCWEKJpsZ+iNoEFocwgzYqKgYIQN1DIV1aViRk3aH2un/PBy6i6sG9H5VZdKYEmAzo2dOOudOAIOzJhJ8sMkikvBSlh0vdGFd76X6nOrh2zjSIOl0RbaEGI8kU+6EKKgil1ed7DF1IpD6f6y4lB63S4VqYQQhTDSGXojZJDqSGGbdve1yq2guTVs08Y2bGzVJvRSiKqzqkZ8rTJCBmbMRPWoaBVa5vnJ1iRWzMKMmvg+4ss6PU+CJSH6k0UEQoiCSgc5fVNKdL+OGTH7LXoercEWU9up7rLBdsru3T6pSCWEKID0DL2iKbgb3CiaQseGDto3tg/4eL1Cx1HpwE7ZWAkL1dH9FS19zXL4HdiGndM1M31sbLBiFmjgmu7CPdONa7qLylMrqTu/TtaWCjEK8tcjhCiobCtG5e18g1SeMoMm/qV+zKApFamEEAXVd4Y+mwp7ul+nYkkFWoWGGesecDKj3f+vOBScU53o1XpO18zMsb0ayX1JjI7uWTGj3cBR7SCwPD8ZA1JZVUxm8i1CCFFQY7Fv1GCLqQOnBuh8vlMqUgkhCirXDXCrlldhp2ya1zYTfTeKFbdw1DooO6wM3aePagAofex0ZUEA92w3tRfWjvoaKJVVhZCgSghRBMUurzvUYmqpSCWEKLT0DH2yNYlWrnWvZfJow87Qqy6V2vNq8X/Ez/4H9xN5K4KiKejVeiZIyVX62JVnVJJoTmBj427Iz35bxSxGJESpkm8TQoiCG6vyuoMtppZF1kKIQlLdKrZt0/FkB4pDQffpmdS9qpXDF5pw1jmZ/uXpBdnbL9/Xv2IXIxKiVMmcrBCiaHS/jrsxPyOjQghRqto3tmO0GngO9aD5NFJdKWLbYuh1+ohmm8bDNbPYxYiEKFWl+1cqhBBCCDHOpGdunNOclNeVd5csj5mYXSaKomDFrQm1zqhnMSKn25m5XSqrislm4vxVCyGEEEKMsb4zN6pHxVHVnRo3EWduBqu4KpVVxWQjQZUQQgghRJ4UexuJUlC1vIrKFZXYlk28OY5t2VJZVUw6E+8vWwghhBBiGIUoAgFjs43EWBurYkRClBL5xAshhBBi0ijGnkrF3kaiVEhlVTGZySdfCCGEEJPGYHsqWRGLipMr8jLLIjM3Qkw+8hcuhBBCiElhoD2VHJqD6LtRPrjjAzpf6MRR5cjbzJXM3AgxeUihCiGEEEJMCgPtqRR5J0JiVwLbsHFUOVA0hY4NHbRvbO/93KBBvCmOEZxY1fuEEPkhwydCCCGEmBT67qlkxSziu+IoTgWtTEMP6GgeDezu9VCBJQFUt1rwNViFVqiiHEKIv5O/LCGEEEJMCn0r89mWTaojhaqquGe6uwOqg4+LN8cxQgZdm7sGXIMFULOyZixfzpCMoEFyf5KuV7qIbI2M24BQiPFCgiohhBBCTBo9K/MZBwxUh4pruouyBWWZx6T3lErPWPVcg+V0O3vNZJXazE/P6oZdb3SRbE7iOdSD71gfZtQcFwGhEONRaV0JhBBCCCEKqG9lvuCLQULPhzDajX57SqGAGTFxN7h7HaPnTFapBVXp6oaaX8OO2mjlGsnmJLFAjPIjy0s6IBRiPJO/JiGEEEJMOunKfM46J5pXG3BPKStu9VqDlZaeyepZ8KKQsl0T1bO6oaIr2JaNXqNjx23iu+KUzS0r6YBQiPFM/pqEEEIIMWkNtaeU6lJ7rcHqO5NV6KBkpBsVp6sbuhvc2LaN4lS6A0OPRqojhRkzsVN2UQNCISYLWaUohBBCiElP9+u4G939AqWq5VVUrqjEtmzizXFsy87MZBVaOpVP0RTcDe5By71nXkOP6oaaR8M9040ZMkntT6GoCmaXSao1hW+xT2aphMgz+YsSQgghhBjEUDNZhTTQRsXDFcnoW93QM9uD0WkQ2xbD2eBEcShFCwiFmGwkqBJCCCGEGEZ6DVaxJJoTJPcm8cz29GvHUGuielY3TOxL4JnnofqT1fgW+XDWOmWGSogCkb8sIYQQQogSkV5HFdwcpOtvXUTfi+I9wot3vhfFoQxbJGOsZtaEmOxkTZUQQgghRInIlET3apQfUY4VtQj/JUz4jTDJlmTWa6IGWyPWkxE0iDfFMYJGvl+GEJOODF0IIYQQQpSAvuuo9EodxakQeTtC5M0IzirniNdEDVSOfaRVBYUQw5OgSgjx/7d372FR1fkfwN/DDAz3iwoKgqIpXtFQyJ+omYWCay6kqatTSJq2hiUmKV3wkiltaq65PnmpQHc13NayXUlcdEWTSEGFvCAqgYOJIGFcdLnMzPn94cOsE4IDw3BmxvfreXge58y5fL5H5nz4zPd7voeIiEzA/VOiA4CVtRUchzhC7iPHfwv/C48XPOA4yFGvfbVUODX2hll3tYatty1UVap7k1sA6DKpi9HaR2TJWFQRERERmYD7p0S//2HDQr0AuadcW2zpo7nCSXNHgzt5d1o1qyARPRz7eImIiIhMQOOU6A2lDagvrYemVtOq+6ga/XYYoZWtFWw8bGDtYY2qH6rQUNHQZKILmYsM6jtqqKp4fxVRW5hNUbVmzRoEBwfD3t4erq6uD1xHqVRi0qRJsLe3h4eHB958802oVLw4EBGRcTA3UXtrj4cNNw4jfFDhJKgESKSSJsXTw2YVJKKWmc0np76+HtOmTcPIkSPx2WefNXlfrVZj0qRJ6NatG77//nuUlJQgMjIS1tbWWLt2bbvGolar0dDQ0K77pEeLtbU1pFKp2GEQkYFMKTeRZWiPKdGbG0aoqlRB1lkG+wH2qPquChDuFVqqShUayhrgFubGoX9EbSQRBEEQO4jWSEpKQkxMDH799Ved5QcPHsSzzz6LGzduoGvXrgCArVu3YtmyZbh16xZsbGwesLemqqqq4OLigsrKSjg7O+u8JwgCbt682eTYRG3h6uqKbt26QSKRiB0KkUlo6fpr6oyZm8z5vJB4ylPK791T5WHdpHBqnKyCs/8RPZy+12CL+ToiMzMT/v7+2qQFAKGhoViwYAEuXLiAgICAB25XV1eHuro67euqqqpmj9FYUHl4eMDe3p5/DFObCIKAu3fvoqysDADg6ekpckREZCxtyU2tyUtkfh40xbkxNA4XrM6uRu31WkgdpNqCig8IJmp/FvMJunnzpk7SAqB9ffPmzWa3S0hIwKpVqx66f7VarS2oOnfubFiw9Mizs7MDAJSVlcHDw4NDAYksVFtyk755icxLRz8bSp/CSebCYoqovYjaxxsXFweJRNLiz6VLl4waw1tvvYXKykrtT3Fx8QPXa7yHyt7e3qjx0KOj8XeJ9+cRmRaxc5O+eYnMS+MU5xKpBLbetpBIJbidehsVhyuMelyZiwy2PrYsnoiMTNRP2JIlSxAVFdXiOr1799ZrX926dcOpU6d0lpWWlmrfa45cLodcLtfrGAA45I/aDX+XiEyT2LmptXmJTN9vpzgH+GwoIksj6ifY3d0d7u7u7bKvkSNHYs2aNdrhVACQlpYGZ2dnDBw4sF2OQURElo+5idpb4xTnv314r8xFhtrrtfeG57GoIjJrZjPFi1KpRE5ODpRKJdRqNXJycpCTk4OamhoAwIQJEzBw4EC8+OKLyM3NxaFDh/Duu+8iOjqa3/g9ApKSkpp9Rsz9JBIJ9u/fb/R4iOjRwNxE+rh/ivP78dlQRJbDbIqq5cuXIyAgACtWrEBNTQ0CAgIQEBCA7OxsAIBUKsWBAwcglUoxcuRIvPDCC4iMjMR7770ncuTie+qppxATEyN2GEY1Y8YMXL58Wft65cqVePzxx5usV1JSgokTJ3ZgZERkyZibSB8yFxmcAp3QUNqA+tJ6aGo1qC+tR0NZA5wCndhLRWQBzOZTnJSUhKSkpBbX6dmzJ7799tuOCcjCCIIAtVoNmcxsfiV02NnZaWfUa0lL99cREbUWcxPpq6UpzonI/JlNT5WlqVSpUFxbi0qV6uErGyAqKgrHjh3Dpk2btLNWFRUVIT09HRKJBAcPHsTw4cMhl8tx4sQJREVFISIiQmcfMTExeOqpp7SvNRoNEhIS0KtXL9jZ2WHo0KH4xz/+0WIcvr6+WL16NWbOnAkHBwd0794dW7Zs0VlHqVQiPDwcjo6OcHZ2xvTp07U3dANAbm4uxo0bBycnJzg7O2P48OHab4PvH/6XlJSEVatWITc3V9vmxj967h/+FxwcjGXLlunEcOvWLVhbW+P48eMA7j0vJjY2Ft27d4eDgwNGjBiB9PR0Pc48ERHR/zROce4T4wPv17zhE+ODLpO68GG7RBaCn+QOVqfRIKW8HH8uLsbm69fx5+JipJSXo06jMcrxNm3ahJEjR2LevHkoKSlBSUkJfHx8tO/HxcXhgw8+QF5eHoYMGaLXPhMSErBr1y5s3boVFy5cwOLFi/HCCy/g2LFjLW63bt06DB06FGfPnkVcXBwWLVqEtLQ0APcKtfDwcFRUVODYsWNIS0vDTz/9hBkzZmi3VygU8Pb2RlZWFk6fPo24uDhYW1s3Oc6MGTOwZMkSDBo0SNvm+/dz//6Sk5MhCIJ22d69e+Hl5YUxY8YAABYuXIjMzEwkJyfjxx9/xLRp0xAWFoYrV67oda6IiIjuxynOiSwTP9Ed7HBFBVJv30ZXa2t429qiSqVC6u3bAIBJXbq0+/FcXFxgY2MDe3v7Bw59e++99zB+/Hi991dXV4e1a9fi8OHDGDlyJIB7UwufOHEC27Ztw9ixY5vddtSoUYiLiwMA+Pn5ISMjAxs3bsT48eNx5MgRnDt3DoWFhdqib9euXRg0aBCysrIQFBQEpVKJN998E/379wcA9O3b94HHsbOzg6OjI2QyWYvD/aZPn46YmBicOHFCW0Tt2bMHM2fOhEQigVKpRGJiIpRKJby8vAAAsbGxSE1NRWJiItauXav3eSMiIiIiy8Weqg5UqVIhu7oaXa2t4WFjA1srK3jY2MDD2hrZ1dVGHwr4IIGBga1a/+rVq7h79y7Gjx8PR0dH7c+uXbtQUFDQ4raNRdj9r/Py8gAAeXl58PHx0elFGzhwIFxdXbXrvPHGG3j55ZcREhKCDz744KHHexh3d3dMmDABu3fvBgAUFhYiMzMTCoUCAHDu3Dmo1Wr4+fnptPXYsWMGH5uIiIiILAd7qjpQlUqFO2o1vG11n1PhIpPhem0tqlQquHTwRBEODg46r62srHSGwwFAQ0OD9t+N0wSnpKSge/fuOusZe3rglStXYtasWUhJScHBgwexYsUKJCcn47nnnmvzPhUKBV5//XVs3rwZe/bsgb+/P/z9/QHca6tUKsXp06chlUp1tnN0dDSoLURERERkOVhUdSBnmQwOUimqVCrY2thol1eqVHCQSuFspILKxsYGarVar3Xd3d1x/vx5nWU5OTnae5cGDhwIuVwOpVLZ4lC/B/nhhx+avB4wYAAAYMCAASguLkZxcbG2t+rixYv49ddfdR6Q6efnBz8/PyxevBgzZ85EYmLiA4sqfdscHh6O+fPnIzU1FXv27EFkZKT2vYCAAKjVapSVlWmHBxIRERER/RaH/3UgF5kMgU5OKG1oQGl9PWo1GpTW16OsoQGBTk5G66Xy9fXFyZMnUVRUhPLycmhamBTj6aefRnZ2Nnbt2oUrV65gxYoVOkWWk5MTYmNjsXjxYuzcuRMFBQU4c+YMNm/ejJ07d7YYR0ZGBj788ENcvnwZW7ZswZdffolFixYBAEJCQuDv7w+FQoEzZ87g1KlTiIyMxNixYxEYGIj//ve/WLhwIdLT03Ht2jVkZGQgKytLW5Q9qM2FhYXIyclBeXk56urqHrieg4MDIiIiEB8fj7y8PMycOVP7np+fHxQKBSIjI/HVV1+hsLAQp06dQkJCAlJSUlpsKxERERE9OlhUdbCQTp0Q5uYGjSDgem0tNIKAMDc3hHQy3nMqYmNjIZVKMXDgQLi7u0OpVDa7bmhoKOLj47F06VIEBQWhurpap/cGAFavXo34+HgkJCRgwIABCAsLQ0pKCnr16tViHEuWLEF2djYCAgLw/vvv46OPPkJoaCiAe1Odf/PNN3Bzc8OTTz6JkJAQ9O7dG3v37gVw7wGav/zyCyIjI+Hn54fp06dj4sSJWLVq1QOPNXXqVISFhWHcuHFwd3fHF1980WxcCoUCubm5GDNmDHr06KHzXmJiIiIjI7FkyRL069cPERERyMrKarIeERERET26JMJvb6B5xFVVVcHFxQWVlZVwdnbWLq+trUVhYSF69eoF29/cE9UWlSoVqlQqOMtkHX4flRh8fX0RExODmJgYsUMxGe39O0Vk7pq7/j7qeF6IiMSj7zXY8v+aN1Euj0gxRURERERk6Tj8j4iIiIiIyADsKqEOUVRUJHYIRERERERGwZ4qIiIiIiIiA7CnioiIiKgDqCpVUFWpIHOWQebCP8GILAk/0URERERGpKnToOJwBaqzq6G+o4bUQQqnQCd0CukEKzkHDRFZAn6SiYiIiIyo4nAFbqfehkQqga23LSRSCW6n3kbF4QqxQyOidsKiioiIiMhIVJUqVGdXw7qrNWw8bGBlawUbDxtYe1ijOrsaqkqV2CESUTtgUUVERERkJKoqFdR31JA5695xIXORQX1HDVUViyoiS8Ci6hEgCALmz5+PTp06QSKRICcn56HbFBUV6b2upZJIJNi/f7/YYRARkZ5UlSrUFteaVO+PzFkGqYO0SfGkqlRB6iBtUmwRkXniJ/kRkJqaiqSkJKSnp6N3797o0qWL2CGZlJUrV2L//v1NCsiSkhK4ubmJExQREemtvSeCaM9Z+mQuMjgFOuF26m1AuPdaValCQ1kD3MLcOAsgkYXgJ/kRUFBQAE9PTwQHB4sdilnp1q2b2CEQEZEeGieCsO5qDVtvW6iqVPeKGABdJun/RaKxZunrFNIJAFCdXY3a67WQOkjhFuamXU5E5o/D/0TSUUMUoqKi8Nprr0GpVEIikcDX1xfAvd6r0aNHw9XVFZ07d8azzz6LgoKCZvdz+/ZtKBQKuLu7w87ODn379kViYqL2/eLiYkyfPh2urq7o1KkTwsPDUVRU1Oz+0tPTIZFIcOTIEQQGBsLe3h7BwcHIz8/XWe+bb77BsGHDYGtri969e2PVqlVQqf53zi5duoTRo0fD1tYWAwcOxOHDh5sM21u2bBn8/Pxgb2+P3r17Iz4+Hg0NDQCApKQkrFq1Crm5uZBIJJBIJEhKSgKgO/wvODgYy5Yt04nt1q1bsLa2xvHjxwEAdXV1iI2NRffu3eHg4IARI0YgPT292XNARESGa8+JIIw1S5+V3ApdJnWBT4wPvF/zhk+MD7pM6sLp1IksCD/NHUxTp0F5SjmK/1yM65uvo/jPxShPKYemTmOU423atAnvvfcevL29UVJSgqysLADAnTt38MYbbyA7OxtHjhyBlZUVnnvuOWg0D44jPj4eFy9exMGDB5GXl4dPPvlEO4ywoaEBoaGhcHJywnfffYeMjAw4OjoiLCwM9fX1Lcb3zjvvYMOGDcjOzoZMJsOcOXO073333XeIjIzEokWLcPHiRWzbtg1JSUlYs2YNAECtViMiIgL29vY4efIktm/fjnfeeafJMZycnJCUlISLFy9i06ZN2LFjBzZu3AgAmDFjBpYsWYJBgwahpKQEJSUlmDFjRpN9KBQKJCcnQxAE7bK9e/fCy8sLY8aMAQAsXLgQmZmZSE5Oxo8//ohp06YhLCwMV65cafEcEBFR27XXRBAdMUufzEUGWx9bDvkjskD8VHew9hqioC8XFxc4OTlBKpXqDGebOnWqznqff/453N3dcfHiRQwePLjJfpRKJQICAhAYGAgA2h4v4F5xodFo8Omnn0IikQAAEhMT4erqivT0dEyYMKHZ+NasWYOxY8cCAOLi4jBp0iTU1tbC1tYWq1atQlxcHGbPng0A6N27N1avXo2lS5dixYoVSEtLQ0FBAdLT07VtW7NmDcaPH69zjHfffVf7b19fX8TGxiI5ORlLly6FnZ0dHB0dIZPJWhzuN336dMTExODEiRPaImrPnj2YOXMmJBIJlEolEhMToVQq4eXlBQCIjY1FamoqEhMTsXbt2mb3TUREbXf/RBA2tjba5a2dCKKxOLP1ttXdv4sMtddr791jxWKIiJrBq0MH+u23YADuJQDh3jhr19GuHXbBvnLlCpYvX46TJ0+ivLxc20OlVCofWFQtWLAAU6dOxZkzZzBhwgRERERo79HKzc3F1atX4eTkpLNNbW1ti0MKAWDIkCHaf3t6egIAysrK0KNHD+Tm5iIjI0PbMwXc652qra3F3bt3kZ+fDx8fH51i6IknnmhyjL179+Ljjz9GQUEBampqoFKp4Ozs/LBTpMPd3R0TJkzA7t27MWbMGBQWFiIzMxPbtm0DAJw7dw5qtRp+fn4629XV1aFz586tOhYREemvuYkg6orr4Bys/7W+vYozIno08QrRgUzpW7DJkyejZ8+e2LFjB7y8vKDRaDB48OBmh+tNnDgR165dw7fffou0tDQ888wziI6Oxvr161FTU4Phw4dj9+7dTbZzd3dvMQ5ra2vtvxt7uRoLvJqaGqxatQpTpkxpsp2trW2TZQ+SmZkJhUKBVatWITQ0FC4uLkhOTsaGDRv02v5+CoUCr7/+OjZv3ow9e/bA398f/v7+2lilUilOnz4NqVSqs52jo2Orj0VERPrTmQiiqBZ1pXWAANT8WIPaa7V6TTbBWfqIyBC8QnQgU/kW7JdffkF+fj527NihHcp24sSJh27n7u6O2bNnY/bs2RgzZgzefPNNrF+/HsOGDcPevXvh4eHR6h6glgwbNgz5+fno06fPA9/v168fiouLUVpaiq5duwKA9p6xRt9//z169uypc6/VtWvXdNaxsbGBWq1+aDzh4eGYP38+UlNTsWfPHkRGRmrfCwgIgFqtRllZmfacEhFRx2icCMJ1tCvKvi6D+ns15D3kkDnLWjXMvrlZ+pyDnFFbXNsuU6wTkWXilaEDmcq3YG5ubujcuTO2b98OT09PKJVKxMXFtbjN8uXLMXz4cAwaNAh1dXU4cOAABgwYAOBeD866desQHh6unRTj2rVr+Oqrr7B06VJ4e3u3Kc7ly5fj2WefRY8ePfD888/DysoKubm5OH/+PN5//32MHz8ejz32GGbPno0PP/wQ1dXV2vunGnu9+vbtC6VSieTkZAQFBSElJQVff/21znF8fX1RWFiInJwceHt7w8nJCXK5vEk8Dg4OiIiIQHx8PPLy8jBz5kzte35+flAoFIiMjMSGDRsQEBCAW7du4ciRIxgyZAgmTZrUpnNAREStU3etDvIe8jYNs7+/OFNVqWAlt0JVVhV+/uTndp1inYgsD68IHaxTSCe4hblB0AiovV4LQSN0+LMqrKyskJycjNOnT2Pw4MFYvHgx1q1b1+I2NjY2eOuttzBkyBA8+eSTkEqlSE5OBgDY29vj+PHj6NGjB6ZMmYIBAwZg7ty5qK2tNajnKjQ0FAcOHMC///1vBAUF4f/+7/+wceNG9OzZEwAglUqxf/9+1NTUICgoCC+//LK2R6pxeODvf/97LF68GAsXLsTjjz+O77//HvHx8TrHmTp1KsLCwjBu3Di4u7vjiy++aDYmhUKB3NxcjBkzBj169NB5LzExEZGRkViyZAn69euHiIgIZGVlNVmPiIiMo71mAmycpa8qq8ooU6wTkeWRCPfPEU2oqqqCi4sLKisrdQqC2tpaFBYWolevXnrfz9OS9nxaO/1PRkYGRo8ejatXr+Kxxx4TO5wWtffvFJG5a+76+6jjedGfqlKF4j8XQyKVaHuqAKC+tB6CRoBPjI/eObc990VE5kvfazCvBiKRubCYag9ff/01HB0d0bdvX1y9ehWLFi3CqFGjTL6gIiKi9teew+xNaXIpIjJ9vBqQWauursayZcugVCrRpUsXhISEtGlmPyIisgzNTTbR2mH2pjK5FBGZB14RyKxFRkbqzMJHRESPtt9ONtHWYfamMrkUEZkHXhGIiIjI4rTHMPv26vUiIsvHoqqVOK8HtRf+LhERmbb26vUiIsvHK4OerK2tAQB3796FnZ2dyNGQJbh79y6A//1uERGRaeLkUkT0MLxC6EkqlcLV1RVlZWUA7j2bqfEBs0StIQgC7t69i7KyMri6ukIqlYodEhEREREZgEVVK3Tr1g0AtIUVkSFcXV21v1NEREREZL5YVLWCRCKBp6cnPDw80NDQIHY4ZMasra3ZQ0VERERkIVhUtYFUKuUfxEREREREBACwEjsAIiIiIiIic8aiioiIiIiIyAAsqoiIiIiIiAzAe6p+o/GBrFVVVSJHQkT0aGm87vLB2LqYl4iIxKNvbmJR9RvV1dUAAB8fH5EjISJ6NFVXV8PFxUXsMEwG8xIRkfgelpskAr8S1KHRaHDjxg04OTmZ5MN9q6qq4OPjg+LiYjg7O4sdTpuxHaaF7TAtltIOoHVtEQQB1dXV8PLygpUVR6c3Yl7qOJbSFrbDtLAdpqW17dA3N7Gn6jesrKzg7e0tdhgP5ezsbNa/0I3YDtPCdpgWS2kHoH9b2EPVFPNSx7OUtrAdpoXtMC2taYc+uYlfBRIRERERERmARRUREREREZEBWFSZGblcjhUrVkAul4sdikHYDtPCdpgWS2kHYFltoQezpP9jS2kL22Fa2A7TYqx2cKIKIiIiIiIiA7CnioiIiIiIyAAsqoiIiIiIiAzAooqIiIiIiMgALKqIiIiIiIgMwKLKzKWkpGDEiBGws7ODm5sbIiIixA6pzerq6vD4449DIpEgJydH7HBapaioCHPnzkWvXr1gZ2eHxx57DCtWrEB9fb3Yoelly5Yt8PX1ha2tLUaMGIFTp06JHVKrJCQkICgoCE5OTvDw8EBERATy8/PFDstgH3zwASQSCWJiYsQOpdV+/vlnvPDCC+jcuTPs7Ozg7++P7OxsscOiDsLcZBrMOTeZe14CmJtMkTFzE4sqM7Zv3z68+OKLeOmll5Cbm4uMjAzMmjVL7LDabOnSpfDy8hI7jDa5dOkSNBoNtm3bhgsXLmDjxo3YunUr3n77bbFDe6i9e/fijTfewIoVK3DmzBkMHToUoaGhKCsrEzs0vR07dgzR0dH44YcfkJaWhoaGBkyYMAF37twRO7Q2y8rKwrZt2zBkyBCxQ2m127dvY9SoUbC2tsbBgwdx8eJFbNiwAW5ubmKHRh2Aucl0mGtusoS8BDA3mRqj5yaBzFJDQ4PQvXt34dNPPxU7lHbx7bffCv379xcuXLggABDOnj0rdkgG+/DDD4VevXqJHcZDPfHEE0J0dLT2tVqtFry8vISEhAQRozJMWVmZAEA4duyY2KG0SXV1tdC3b18hLS1NGDt2rLBo0SKxQ2qVZcuWCaNHjxY7DBIBc5PpM4fcZIl5SRCYm8Rm7NzEniozdebMGfz888+wsrJCQEAAPD09MXHiRJw/f17s0FqttLQU8+bNw1//+lfY29uLHU67qaysRKdOncQOo0X19fU4ffo0QkJCtMusrKwQEhKCzMxMESMzTGVlJQCY/PlvTnR0NCZNmqTz/2JO/vnPfyIwMBDTpk2Dh4cHAgICsGPHDrHDog7A3GT6TD03WWpeApibxGbs3MSiykz99NNPAICVK1fi3XffxYEDB+Dm5oannnoKFRUVIkenP0EQEBUVhT/+8Y8IDAwUO5x2c/XqVWzevBmvvPKK2KG0qLy8HGq1Gl27dtVZ3rVrV9y8eVOkqAyj0WgQExODUaNGYfDgwWKH02rJyck4c+YMEhISxA6lzX766Sd88skn6Nu3Lw4dOoQFCxbg9ddfx86dO8UOjYyMucm0mUNussS8BDA3mQJj5yYWVSYmLi4OEomkxZ/GMdIA8M4772Dq1KkYPnw4EhMTIZFI8OWXX4rcCv3bsXnzZlRXV+Ott94SO+QH0rcd9/v5558RFhaGadOmYd68eSJF/uiKjo7G+fPnkZycLHYorVZcXIxFixZh9+7dsLW1FTucNtNoNBg2bBjWrl2LgIAAzJ8/H/PmzcPWrVvFDo3aiLnJtDA3mR/mJvEZOzfJ2mUv1G6WLFmCqKioFtfp3bs3SkpKAAADBw7ULpfL5ejduzeUSqUxQ9SLvu34z3/+g8zMTMjlcp33AgMDoVAoRP9mW992NLpx4wbGjRuH4OBgbN++3cjRGa5Lly6QSqUoLS3VWV5aWopu3bqJFFXbLVy4EAcOHMDx48fh7e0tdjitdvr0aZSVlWHYsGHaZWq1GsePH8df/vIX1NXVQSqVihihfjw9PXWuTQAwYMAA7Nu3T6SIyFDMTfcwNxmfpeUlgLnJVBg7N7GoMjHu7u5wd3d/6HrDhw+HXC5Hfn4+Ro8eDQBoaGhAUVERevbsaewwH0rfdnz88cd4//33ta9v3LiB0NBQ7N27FyNGjDBmiHrRtx3AvW8Bx40bp/1m1srK9DuCbWxsMHz4cBw5ckQ75bFGo8GRI0ewcOFCcYNrBUEQ8Nprr+Hrr79Geno6evXqJXZIbfLMM8/g3LlzOsteeukl9O/fH8uWLTOLpAUAo0aNajJt8OXLl03i2kRtw9zE3NRRLCUvAcxNpsboucloU2CQ0S1atEjo3r27cOjQIeHSpUvC3LlzBQ8PD6GiokLs0NqssLDQLGdYun79utCnTx/hmWeeEa5fvy6UlJRof0xdcnKyIJfLhaSkJOHixYvC/PnzBVdXV+HmzZtih6a3BQsWCC4uLkJ6errOub97967YoRnMHGdYOnXqlCCTyYQ1a9YIV65cEXbv3i3Y29sLf/vb38QOjToAc5PpMNfcZAl5SRCYm0yNsXMTiyozVl9fLyxZskTw8PAQnJychJCQEOH8+fNih2UQc01ciYmJAoAH/piDzZs3Cz169BBsbGyEJ554Qvjhhx/EDqlVmjv3iYmJYodmMHNMXIIgCP/617+EwYMHC3K5XOjfv7+wfft2sUOiDsLcZDrMOTeZe14SBOYmU2TM3CQRBEFonz4vIiIiIiKiR49pD6wlIiIiIiIycSyqiIiIiIiIDMCiioiIiIiIyAAsqoiIiIiIiAzAooqIiIiIiMgALKqIiIiIiIgMwKKKiIiIiIjIACyqiIiIiIiIDMCiisjMFBUVQSKRICcnR+xQiIiIADA3EUkEQRDEDoKI9KdWq3Hr1i106dIFMplM7HCIiIiYm+iRx6KKyIzU19fDxsZG7DCIiIi0mJuIOPyPyGi2b98OLy8vaDQaneXh4eGYM2cOCgoKEB4ejq5du8LR0RFBQUE4fPiwzrq+vr5YvXo1IiMj4ezsjPnz5zcZYqFWqzF37lz06tULdnZ26NevHzZt2qSzn6ioKERERGD9+vXw9PRE586dER0djYaGBu06dXV1WLZsGXx8fCCXy9GnTx989tln2vfPnz+PiRMnwtHREV27dsWLL76I8vLydj5rRERkTMxNRMbBoorISKZNm4ZffvkFR48e1S6rqKhAamoqFAoFampq8Lvf/Q5HjhzB2bNnERYWhsmTJ0OpVOrsZ/369Rg6dCjOnj2L+Pj4JsfRaDTw9vbGl19+iYsXL2L58uV4++238fe//11nvaNHj6KgoABHjx7Fzp07kZSUhKSkJO37kZGR+OKLL/Dxxx8jLy8P27Ztg6OjIwDg119/xdNPP42AgABkZ2cjNTUVpaWlmD59ejueMSIiMjbmJiIjEYjIaMLDw4U5c+ZoX2/btk3w8vIS1Gr1A9cfNGiQsHnzZu3rnj17ChERETrrFBYWCgCEs2fPNnvc6OhoYerUqdrXs2fPFnr27CmoVCrtsmnTpgkzZswQBEEQ8vPzBQBCWlraA/e3evVqYcKECTrLiouLBQBCfn5+s3EQEZHpYW4ian/sqSIyIoVCgX379qGurg4AsHv3bvzhD3+AlZUVampqEBsbiwEDBsDV1RWOjo7Iy8tr8m1gYGDgQ4+zZcsWDB8+HO7u7nB0dMT27dub7GfQoEGQSqXa156enigrKwMA5OTkQCqVYuzYsQ/cf25uLo4ePQpHR0ftT//+/QEABQUF+p8QIiISHXMTUfvj9CxERjR58mQIgoCUlBQEBQXhu+++w8aNGwEAsbGxSEtLw/r169GnTx/Y2dnh+eefR319vc4+HBwcWjxGcnIyYmNjsWHDBowcORJOTk5Yt24dTp48qbOetbW1zmuJRKIdU29nZ9fiMWpqajB58mT86U9/avKep6dni9sSEZFpYW4ian8sqoiMyNbWFlOmTMHu3btx9epV9OvXD8OGDQMAZGRkICoqCs899xyAe8mhqKio1cfIyMhAcHAwXn31Ve2y1n5D5+/vD41Gg2PHjiEkJKTJ+8OGDcO+ffvg6+vLqXKJiMwccxNR++PwPyIjUygUSElJweeffw6FQqFd3rdvX3z11VfIyclBbm4uZs2a1WQ2Jn307dsX2dnZOHToEC5fvoz4+HhkZWW1ah++vr6YPXs25syZg/3796OwsBDp6enaG4qjo6NRUVGBmTNnIisrCwUFBTh06BBeeuklqNXqVsdMRETiYm4ial8sqoiM7Omnn0anTp2Qn5+PWbNmaZd/9NFHcHNzQ3BwMCZPnozQ0FDtN4Wt8corr2DKlCmYMWMGRowYgV9++UXnm0F9ffLJJ3j++efx6quvon///pg3bx7u3LkDAPDy8kJGRgbUajUmTJgAf39/xMTEwNXVFVZWvIwQEZkb5iai9sWH/xIRERERERmAZTwREREREZEBWFQREREREREZgEUVERERERGRAVhUERERERERGYBFFRERERERkQFYVBERERERERmARRUREREREZEBWFQREREREREZgEUVERERERGRAVhUERERERERGYBFFRERERERkQH+H9RoJbd6wXPpAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
],
"source": [
"def svm_factory_dual(X, y, c=1):\n",
" \"\"\"\n",
" Creates a linear support vector machine (SVM) model using the dual formulation\n",
" and quadratic programming.\n",
"\n",
" Parameters:\n",
" X : DataFrame\n",
" Feature matrix as a DataFrame.\n",
" y : Series\n",
" Target vector as a Series.\n",
" c : float, optional\n",
" Regularization parameter. Default is 1.\n",
"\n",
" Returns:\n",
" LinearSvm :\n",
" A trained linear SVM model.\n",
" \"\"\"\n",
"\n",
" m = AMPL()\n",
"\n",
" m.eval(\n",
" \"\"\"\n",
" set P;\n",
" set N;\n",
"\n",
" param y{N};\n",
" param F{P,N};\n",
" param C;\n",
"\n",
" # Decision variables\n",
" var w{P};\n",
" var a{N} >= 0 <= C;\n",
"\n",
" minimize qp: 1/2 * sum{p in P} w[p]^2 - sum{i in N} a[i];\n",
"\n",
" subject to bias:\n",
" sum{i in N} y[i] * a[i] = 0;\n",
"\n",
" subject to projection{p in P}:\n",
" w[p] = sum{i in N} F[p,i] * a[i];\n",
" \"\"\"\n",
" )\n",
"\n",
" # Use dataframe columns and index to index variables and constraints\n",
" m.set[\"P\"] = list(X.columns)\n",
" m.set[\"N\"] = np.array(X.index)\n",
"\n",
" # Model parameters\n",
" C = c / len(X.index)\n",
" m.param[\"C\"] = C\n",
" m.param[\"y\"] = y\n",
" m.param[\"F\"] = X.mul(y, axis=0).T\n",
"\n",
" # Solve QP with the interior point method\n",
" m.option[\"solver\"] = SOLVER_NLO\n",
"\n",
" m.solve(verbose=False)\n",
"\n",
" P = m.set[\"P\"].members()\n",
" N = m.set[\"N\"].members()\n",
"\n",
" # Extract solution\n",
" w = pd.Series([m.var[\"w\"][p].value() for p in X.columns], index=X.columns)\n",
" a = pd.Series([m.var[\"a\"][i].value() for i in X.index], index=X.index)\n",
"\n",
" # Find alpha closest to the center of [0, c/n]\n",
" i = a.index[(a - C / 2).abs().argmin()]\n",
" b = y.loc[i] - X.loc[i, :].dot(w)\n",
"\n",
" return LinearSVM(w, b)\n",
"\n",
"\n",
"# Train and test\n",
"svm_lp = svm_factory_dual(X_train, y_train)\n",
"test(svm_lp, X_test, y_test)"
]
},
{
"cell_type": "markdown",
"id": "3743af5d-f42b-41a1-b2eb-4c9e17cecefa",
"metadata": {
"id": "3743af5d-f42b-41a1-b2eb-4c9e17cecefa"
},
"source": [
"## Kernelized SVM\n",
"\n",
"### Nonlinear feature spaces\n",
"\n",
"A linear SVM assumes the existence of a linear hyperplane that separates labeled sets of data points. Frequently, however, this is not possible and some sort of nonlinear method is needed.\n",
"\n",
"Consider a binary classification done given by a function\n",
"\n",
"$$y^{pred} = \\text{sgn} \\left( w^\\top \\phi(x) + b \\right)$$\n",
"\n",
"where $\\phi(x)$ is a function mapping $x$ into a higher dimensional \"feature space\". That is, $\\phi : \\mathbb{R}^{p} \\rightarrow \\mathbb{R}^d$ where $d \\geq p $. The additional dimensions may include features such as powers of the terms in $x$, or products of those terms, or other types of nonlinear transformations. As before, we wish to find a choice for $w\\in\\mathbb{R}^d$ such that the soft-margin classifier\n",
"\n",
"$$\n",
"\\begin{align}\n",
"y_i \\left( w^\\top \\phi(x_i) + b \\right) & \\geq 1 - z_i & i = 1, 2, \\ldots, n\n",
"\\end{align}\n",
"$$\n",
"\n",
"Using the machinery as before, we set up the Lagrangian\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"\\mathcal{L} & = \\frac{1}{2} \\|w\\|_2^2 + \\frac{c}{n}\\sum_{i=1}^n z_i + \\sum_{i=1}^n \\alpha_i \\left( 1 - z_i - y_i \\left( w^\\top \\phi(x_i) + b \\right)\\right) + \\sum_{i=1}^n \\beta_i (-z_i) \\\\\n",
"\\end{align*}\n",
"$$\n",
"\n",
"then take derivatives to find\n",
"\n",
"$$\n",
"\\begin{align*}\n",
" \\frac{\\partial \\mathcal{L}}{\\partial z_i} & = \\frac{c}{n} - \\alpha_i - \\beta_i = 0 \\implies 0 \\leq \\alpha_i \\leq \\frac{c}{n}\\\\\n",
" \\frac{\\partial \\mathcal{L}}{\\partial w} & = w - \\sum_{i=1}^n \\alpha_i y_i \\phi(x_i) = 0 \\implies w = \\sum_{i=1}^n \\alpha_i y_i \\phi(x_i) \\\\\n",
"\\frac{\\partial \\mathcal{L}}{\\partial b} & = - \\frac{c}{n}\\sum_{i=1}^n \\alpha_i y_i = 0 \\implies \\sum_{i=1}^n \\alpha_i y_i = 0\n",
"\\end{align*}\n",
"$$\n",
"\n",
"This is similar to the case of a linear SVM, but now the vector of weights $w\\in\\mathbb{R}^d$ which can be a high dimensional space with nonlinear features. Working through the algebra, we are once again left with a quadratic program in $n$ variables $\\alpha_i$ for $i = 1, \\dots, n$.\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"\\min_{\\alpha_i}\\quad & \\frac{1}{2} \\sum_{i=1}^n\\sum_{j=1}^n \\alpha_i \\alpha_j y_i y_j \\phi(x_i)^\\top \\phi(x_j) - \\sum_{i=1}^n \\alpha_i \\\\\n",
"\\text{s.t.}\\quad & \\alpha_i \\in \\left[0, \\frac{c}{n}\\right] & i = 1, \\dots, n \\\\\n",
"& \\sum_{i=1}^n \\alpha_i y_i = 0 \\\\\n",
"\\end{align*}\n",
"$$\n",
"\n",
"where the resulting classifier is given by\n",
"\n",
"$$y^{pred} = \\text{sgn} \\left( \\sum_{i=1}^n \\alpha_i y_i \\phi(x_i)^\\top \\phi(x) + b \\right)$$\n",
"\n",
"### The kernel trick\n",
"\n",
"This is an interesting situation where the separating hyperplane is embedded in a high dimensional space of nonlinear features determined by the mapping $\\phi(x)$, but all we need for computation are the inner products $\\phi(x_i)^\\top\\phi(x_j)$ to train the classifier, and the inner products $\\phi(x_i)^\\top\\phi(x)$ to use the classifier. If we had a function $K(x, z)$ that returned the value $\\phi(x)^\\top\\phi(z)$ then we would never need to actually compute $\\phi(x)$, $\\phi(z)$ or their inner product.\n",
"\n",
"Mercer's theorem turns the analysis on its head by specifying conditions for which a function $K(x, z)$ to be expressed as an inner product for some $\\phi(x)$. If $K(x, z)$ is symmetric (i.e, $K(x, z) = K(z, x)$, and if the Gram matrix constructed for any collection of points $x_1, x_2, \\ldots, x_n$\n",
"\n",
"$$\n",
"\\begin{bmatrix}\n",
" K(x_1, x_1) & \\dots & K(x_1, x_n) \\\\\n",
" \\vdots & \\ddots & \\vdots \\\\\n",
" K(x_n, x_1) & \\dots & K(x_n, x_n)\n",
"\\end{bmatrix}\n",
"$$\n",
"\n",
"is positive semi-definite, then there is some $\\phi(x)$ for which $K(x, z)$ is an inner product. We call such functions kernels. The practical consequence is that we can train and implement nonlinear classifiers using kernel and without ever needing to compute the higher dimensional features. This remarkable result is called the \"kernel trick\".\n",
"\n",
"### Implementation\n",
"\n",
"To take advantage of the kernel trick, we assume an appropriate kernel $K(x, z)$ has been identified, then replace all instances of $\\phi(x_i)^\\top \\phi(x)$ with the kernel. The \"kernelized\" SVM is given by a solution to\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"\\min_{\\alpha_i}\\quad & \\frac{1}{2} \\sum_{i=1}^n\\sum_{j=1}^n \\alpha_i \\alpha_j y_i y_j K(x_i, x_j) - \\sum_{i=1}^n \\alpha_i \\\\\n",
"\\text{s.t.}\\quad & \\sum_{i=1}^n \\alpha_i y_i = 0 \\\\\n",
"& \\alpha_i \\in \\left[0, \\frac{c}{n}\\right] & i = 1, \\dots, n \\\\\n",
"\\end{align*}\n",
"$$\n",
"\n",
"where\n",
"\n",
"$$\n",
"\\begin{align}\n",
"b & = y_i - \\sum_{j=1}^n \\alpha_j y_j K(x_j, x_i) & \\forall i\\in 1, 2, \\ldots, n\\quad \\text{s.t.}\\quad 0 < \\alpha_i < \\frac{c}{n}\n",
"\\end{align}\n",
"$$\n",
"\n",
"where the resulting classifier is given by\n",
"\n",
"$$y^{pred} = \\text{sgn} \\left( \\sum_{i=1}^n \\alpha_i y_i K(x_i, x) + b \\right)$$\n",
"\n",
"We define the $n\\times n$ positive symmetric semi-definite Gram matrix\n",
"\n",
"$$\n",
"G = \\begin{bmatrix}\n",
" y_1 y_1 K(x_1, x_1) & \\dots & y_1 y_n K(x_1, x_n) \\\\\n",
" \\vdots & \\ddots & \\vdots \\\\\n",
" y_n y_1 K(x_n, x_1) & \\dots & y_n y_n K(x_n, x_n)\n",
"\\end{bmatrix}\n",
"$$\n",
"\n",
"We factor $G = F F^\\top$ where $F$ has dimensions $n \\times q$ and where $q$ is the rank of $G$. The factorization is not unique. As demonstrated in the Python code below, one suitable factorization is the spectral factorization $G = U\\Lambda U^T$ where $\\Lambda$ is a $q\\times q$ diagonal matrix of non-zero eigenvalues, and $U$ is an $n\\times q$ normal matrix such that $U^\\top U = I_q$. Then\n",
"\n",
"$$F = U\\Lambda^{1/2}$$\n",
"\n",
"Once this factorization is complete, the optimization problem for the kernalized SVM is the same as for the linear SVM in the dual formulation\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"\\min\\quad & \\frac{1}{2} \\alpha^\\top F F^\\top \\alpha - 1^\\top \\alpha \\\\\n",
"\\text{s.t.}\\quad & \\sum_{i=1}^n \\alpha_i y_i = 0 \\\\\n",
"& 0 \\leq \\alpha_i \\leq \\frac{c}{n} & \\alpha\\in\\mathbb{R}^n \\\\\n",
"\\end{align*}\n",
"$$\n",
"\n",
"The result is a quadratic program for the dual coefficients $\\alpha$ and auxiliary variables $v$.\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"\\min\\quad & \\frac{1}{2} v^\\top v - 1^\\top \\alpha\\\\\n",
"\\text{s.t.}\\quad & y^\\top \\alpha = 1 \\\\\n",
"& v = F^\\top \\alpha & u\\in\\mathbb{R}^{q} \\\\\n",
"& 0 \\leq \\alpha_i \\leq \\frac{c}{n} & \\alpha\\in\\mathbb{R}^n \\\\\n",
"\\end{align*}\n",
"$$\n",
"\n",
"Summarizing, the essential difference between training the linear and kernelized SVM is the need to compute and factor the Gram matrix. The result will be a set of non-zero coefficients $\\alpha_i > 0$ the define a set of support vectors $\\mathcal{SV}$. The classifier is then given by\n",
"\n",
"$$y^{pred} = \\text{sgn} \\left( \\sum_{i\\in\\mathcal{SV}} \\alpha_i y_i K(x_i, x) + b \\right)$$\n",
"\n",
"The implementation of the kernelized SVM is split into two parts. The first part is a class used to create instances of the classifier.\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "1d3f892f-19c9-433a-aa64-65ef734a4395",
"metadata": {
"id": "1d3f892f-19c9-433a-aa64-65ef734a4395"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"\n",
"class KernelSVM:\n",
" \"\"\"\n",
" Kernel Support Vector Machine (SVM) class.\n",
" \"\"\"\n",
"\n",
" def __init__(self, X, y, a, b, kernel):\n",
" \"\"\"\n",
" Initialize the Kernel SVM with weights and bias.\n",
"\n",
" :param X: numpy array or list, training data.\n",
" :param y: numpy array or list, target labels.\n",
" :param a: numpy array or list, alpha values for the support vectors.\n",
" :param b: float, bias value.\n",
" :param kernel: function, kernel function to be used in the SVM.\n",
" \"\"\"\n",
" self.X = np.array(X)\n",
" self.u = np.multiply(np.array(a), np.array(y))\n",
" self.b = b\n",
" self.kernel = kernel\n",
"\n",
" def __call__(self, Z):\n",
" \"\"\"\n",
" Compute the decision function.\n",
"\n",
" :param Z: pandas DataFrame, test data.\n",
" :return: pandas Series, predicted labels.\n",
" \"\"\"\n",
" K = [\n",
" [self.kernel(self.X[i, :], Z.loc[j, :]) for j in Z.index]\n",
" for i in range(len(self.X))\n",
" ]\n",
" y_pred = np.sign((self.u @ K) + self.b)\n",
" return pd.Series(y_pred, index=Z.index)\n",
"\n",
" def __repr__(self):\n",
" \"\"\"\n",
" Returns:\n",
" str: String representation of the Linear SVM\n",
" \"\"\"\n",
" return f\"KernelSvm(b = {self.b})\""
]
},
{
"cell_type": "markdown",
"id": "83eebe9d-9561-4a46-8a35-c4028c3a7739",
"metadata": {
"id": "83eebe9d-9561-4a46-8a35-c4028c3a7739"
},
"source": [
"The second part of the implementation is a factory function containing the optimization model for training an SVM. Given training data and a kernal function, the factory returns an instance of a kernelized SVM. The default is a linear kernel."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "2a3087a0",
"metadata": {
"id": "2a3087a0"
},
"outputs": [],
"source": [
"def svm_factory_kernel(X, y, c=1, tol=1e-8, kernel=lambda x, z: x @ z):\n",
" \"\"\"\n",
" Creates a linear support vector machine (SVM) model using the dual formulation\n",
" and quadratic programming.\n",
"\n",
" Parameters:\n",
" X : DataFrame\n",
" Feature matrix as a DataFrame.\n",
" y : Series\n",
" Target vector as a Series.\n",
" c : float, optional\n",
" Regularization parameter. Default is 1.\n",
"\n",
" Returns:\n",
" LinearSvm :\n",
" A trained linear SVM model.\n",
" \"\"\"\n",
"\n",
" # Convert to numpy arrays for speed improvement\n",
" n, p = X.shape\n",
" X_ = X.to_numpy()\n",
" y_ = y.to_numpy()\n",
"\n",
" # Gram matrix\n",
" G = np.zeros((n, n))\n",
" for i in range(n):\n",
" for j in range(i, n):\n",
" G[j, i] = G[i, j] = y_[i] * y_[j] * kernel(X_[i, :], X_[j, :])\n",
"\n",
" # Factor the Gram matrix\n",
" eigvals, eigvecs = np.linalg.eigh(G)\n",
" idx = eigvals >= tol * max(eigvals)\n",
" F = pd.DataFrame(eigvecs[:, idx] @ np.diag(np.sqrt(eigvals[idx])), index=X.index)\n",
"\n",
" # Build model\n",
" m = AMPL()\n",
"\n",
" m.eval(\n",
" \"\"\"\n",
" set Q;\n",
" set N;\n",
"\n",
" param y{N};\n",
" param F{N,Q};\n",
" param C;\n",
"\n",
" # Decision variables\n",
" var u{Q};\n",
" var a{N} >= 0 <= C;\n",
"\n",
" minimize qp: 1/2 * sum{q in Q} u[q]^2 - sum{i in N} a[i];\n",
"\n",
" subject to bias:\n",
" sum{i in N} y[i] * a[i] = 0;\n",
"\n",
" subject to projection{q in Q}:\n",
" u[q] = sum{i in N} F[i,q] * a[i];\n",
" \"\"\"\n",
" )\n",
"\n",
" # Use dataframe columns and index to index variables and constraints\n",
" m.set[\"Q\"] = list(F.columns)\n",
" m.set[\"N\"] = np.array(F.index)\n",
"\n",
" # Model parameters\n",
" C = c / len(F.index)\n",
" m.param[\"C\"] = C\n",
" m.param[\"y\"] = y\n",
" m.param[\"F\"] = F\n",
"\n",
" # Solve QP with the interior point method\n",
" m.option[\"solver\"] = SOLVER_NLO\n",
"\n",
" m.solve(verbose=False)\n",
"\n",
" # Extract solution\n",
" a = pd.Series([m.var[\"a\"][i].value() for i in X.index], index=X.index)\n",
"\n",
" # Find b by locating a closest to the center of [0, c/n]\n",
" j = a.index[(a - C / 2).abs().argmin()]\n",
" b = y.loc[j] - sum(\n",
" [a[i] * y.loc[i] * kernel(X.loc[i, :], X.loc[j, :]) for i in X.index]\n",
" )\n",
"\n",
" # Display the support vectors\n",
" y_support = pd.Series(\n",
" [1 if a[i] > 1e-4 * C else -1 for i in X.index], index=X.index\n",
" )\n",
" scatter_labeled_data(\n",
" X,\n",
" y_support,\n",
" colors=[\"b\", \"y\"],\n",
" labels=[\"Support Vector\", \"\"],\n",
" title=\"Support Vectors\",\n",
" )\n",
"\n",
" # Find support vectors\n",
" SV = [i for i in X.index if a[i] > 1e-3 * C]\n",
"\n",
" return KernelSVM(X.loc[SV, :], y.loc[SV], a.loc[SV], b, kernel)"
]
},
{
"cell_type": "markdown",
"id": "512c77bb-ed3c-45e3-a10c-7e6e15183327",
"metadata": {
"id": "512c77bb-ed3c-45e3-a10c-7e6e15183327"
},
"source": [
"### Linear kernel\n",
"\n",
"For comparison with the previous cases, the first kernel we consider is a linear kernel\n",
"\n",
"$$ K(x, z) = x^\\top z $$\n",
"\n",
"which should reproduce the results obtained earlier."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "3fabde16-fff3-4b1a-9a2f-ef6ad42100df",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "3fabde16-fff3-4b1a-9a2f-ef6ad42100df",
"outputId": "ea73d0a9-7da9-4691-f5e7-749b2e8b209d"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"KernelSvm(b = -0.11015200409218262) \n",
"\n",
"Matthews correlation coefficient (MCC) = 0.707\n",
"Sensitivity = 87.9%\n",
"Precision = 85.6%\n",
"Accuracy = 85.5%\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" Predicted Positive Predicted Negative\n",
"Actual Positive 131 18\n",
"Actual Negative 22 104"
],
"text/html": [
"\n",
"