Experimenting with Near-Optimal Formulations for Discrete Optimization Problems

Robert Fourer
Industrial Engineering \& Management Sciences
Northwestern University, Evanston, IL, USA
AMPL Optimization LLC
4er@northwestern.edu - 4er@ampl.com

ALIO-INFORMS Joint International Meeting
Buenos Aires, June 6-9, 2010
Session WC08: OR in Practice III - Modeling

Outline

Examples

>1. Paint chip ordering
> 2. Roll ordering

* a. Huge number of patterns
* b. Side constraints
>3. Balanced assignment
>4. Work scheduling

Modeling language observations . . .

> Convenience
$>$ Generality of expressions \& constraints
$>$ Variety of solver support

Example 1: Paint Chip Ordering

Produce paint chips from rolls of material
> Several "groups" (types) of chips
$>$ Various numbers of "colors" per group
$>$ Numerous "patterns" of groups on rolls
Costs proportional to numbers of
> Patterns cut
$>$ Pattern changes
$>$ Width changes
. . . thanks to Collette Coullard for this application

Example 1

Paint Chip Ordering

Model (variables \& objective)

```
var Cut {1..nPats} > = 0, integer; # number of each pattern cut
var PatternChange {1..nPats} binary; # 1 iff a pattern is used
var WebChange {WIDTHS} binary; # 1 iff a width is used
minimize Total_Cost:
    sum {j in 1..nPats} cut_cost[j] * Cut[j] +
    pattern_changeover_factor *
    sum {j in 1..nPats} change_cost[j] * PatternChange[j] +
    web_change_factor *
    sum {w in WIDTHS} (coat_change_cost + slit_change_cost) WebChange [w];
```


Example 1

Paint Chip Ordering

Model (constraints)

```
subject to SatisfyDemand {g in GROUPS}:
    sum {j in 1..nPats} number_of [g,j] * Cut[j] >= ncolors[g];
subject to DefinePatternChange {j in 1..nPats}:
    Cut[j] <= maxuse[j] * PatternChange[j];
subject to DefineWebChange {j in 1..nPats}:
    PatternChange[j] <= WebChange[width[j]];
```

param maxuse $\{j$ in $1 . . n P a t s\}:=$
$\max \{g$ in GROUPS: number_of $[g, j]>0\}$ ncolors $[g] /$ number_of $[g, j] ;$
\# upper limit on Cut[j]
. . . very long solve times

Example 1

Paint Chip Ordering

Model (restricted)

```
subject to DefinePatternChange {j in 1..nPats}:
    Cut[j] <= maxuse[j] * PatternChange[j];
subject to MinPatternUse {j in 1..nPats}:
    Cut[j] >= ceil(minuse[j]) * PatternChange[j];
```

```
param minuse {j in 1..nPats} :=
    min {g in GROUPS: number_of [g,j] > 0} ncolors[g] / number_of [g,j];
    # if you use a pattern at all,
    # use it to cut all colors of at least one group
```

. . . not necessarily optimal, but . . .

Example 1

Paint Chip Ordering

Sample data

param: GROUPS: ncolors	slitwidth cutoff	paint	finish	substrate $:=$		
grp1	8	3.8125	1.75	latex	flat	P40
grp2	3	3.9375	1.75	latex	flat	P40
grp3	32	1.6875	1.00	latex	flat	P40
grp4	4	1.8125	1.00	latex	flat	P40
grp5	3	1.75	1.00	latex	flat	P40
grp6	2	1.75	1.00	latex	semi_gloss P40	
grp7	3	1.875	1.00	latex	flat	P40
grp8	1	1.875	1.00	latex	gloss	P40 ;
param orderqty $:=588500 ;$						
param spoilage_factor $:=.15 ;$						

Example 1

Paint Chip Ordering

Without restriction

> 1812 rows, 1807 columns, 5976 nonzeros
$>7,115,951$ simplex iterations
> 221,368 branch-and-bound nodes
> 14,620.4 seconds

With restriction

> 2402 rows, 1656 columns, 7091 nonzeros
$>230,667$ simplex iterations
> 9,892 branch-and-bound nodes
> 501.55 seconds
Objective value
> Same in both cases

Example 1

Paint Chip Orders (today)

Without restriction

>1724 rows, 1719 columns, 5800 nonzeros
> 49,831 simplex iterations
> 3,157 branch-and-bound nodes
> 4.867 seconds

With restriction

> 2344 rows, 1598 columns, 6982 nonzeros
21,598 simplex iterations
> 568 branch-and-bound nodes
>2.872 seconds
(Gurobi 1.1.3, 8 processors)

Example 1

Paint Chip Orders (today, harder case)

Without restriction
>4019 rows, 4009 columns, 15198 nonzeros
$>60,122$ simplex iterations
$>1,955$ branch-and-bound nodes
> 20.626 seconds

With restriction

>5667 rows, 4394 columns, 18464 nonzeros
$>14,468$ simplex iterations
$\rightarrow 150$ branch-and-bound nodes
>5.464 seconds
(Gurobi 1.1.3, 8 processors)

Example 2a: Roll Ordering

Cut large "raw" rolls into smaller ones
> All raw rolls the same width
$>$ Various smaller widths ordered
$>$ Varying numbers of widths ordered
Minimize total raw rolls cut
$>$ By generating patterns during optimization
$>$ By enumerating patterns in advance

Example $2 a$

Roll Ordering

Cutting model

```
set WIDTHS; # set of widths to be cut
param orders {WIDTHS} > 0; # number of each width to be cut
param nPAT integer >= 0; # number of patterns
param nbr {WIDTHS,1..nPAT} integer >= 0;
var Cut {1..nPAT} integer >= 0;
minimize Number:
    sum {j in 1..nPAT} Cut[j]; # total raw rolls cut
subject to Fill {i in WIDTHS}:
sum {j in 1..nPAT} nbr[i,j] * Cut[j] >= orders[i];
    # for each width,
    # rolls cut meet orders
```


Example $2 a$

Roll Ordering

Pattern generation model

```
param roll_width > 0;
param price {WIDTHS} default 0.0;
var Use {WIDTHS} integer >= 0;
minimize Reduced_Cost:
    1 - sum {i in WIDTHS} price[i] * Use[i];
subj to Width_Limit:
    sum {i in WIDTHS} i * Use[i] <= roll_width;
```


Example $2 a$

Roll Ordering

Pattern generation script

```
repeat {
    solve Cutting_Opt;
    let {i in WIDTHS} price[i] := Fill[i].dual;
    solve Pattern_Gen;
    if Reduced_Cost < -0.00001 then {
        let nPAT := nPAT + 1;
        let {i in WIDTHS} nbr[i,nPAT] := Use[i];
        }
    else break;
    };
```


Example $2 a$

Roll Ordering

Pattern enumeration script

```
repeat {
    if curr_sum + curr_width <= roll_width then {
    let pattern[curr_width] := floor((roll_width-curr_sum)/curr_width);
    let curr_sum := curr_sum + pattern[curr_width] * curr_width;
    }
if curr_width != last(WIDTHS) then
    let curr_width := next(curr_width,WIDTHS);
else {
    let nPAT := nPAT + 1;
    let {w in WIDTHS} nbr[w,nPAT] := pattern[w];
    let curr_sum := curr_sum - pattern[last(WIDTHS)] * last(WIDTHS);
    let pattern[last(WIDTHS)] := 0;
    let curr_width := min {w in WIDTHS: pattern[w] > 0} w;
    if curr_width < Infinity then {
        let curr_sum := curr_sum - curr_width;
        let pattern[curr_width] := pattern[curr_width] - 1;
        let curr_width := next(curr_width,WIDTHS);
        }
    else break;
    }
}
```


Example 2a

Roll Ordering

Sample data

param roll_width $:=172 ;$	
param: WIDTHS: orders $:=$	
25.000	5
24.750	73
18.000	14
17.500	4
15.500	23
15.375	5
13.875	29
12.500	87
12.250	9
12.000	31
10.250	6
10.125	14
10.000	43
8.750	15
8.500	21
7.750	5

. . . Robert W. Haessler, "Selection and Design of Heuristic Procedures for Solving Roll Trim Problems" Management Science 34 (1988)

1460-1471, Table 2

Example 2a

Roll Ordering

Patterns generated during optimization (Gilmore-Gomory procedure)
>32.80 rolls in continuous relaxation
>40 rolls rounded up to integer
>34 rolls solving IP using generated patterns
All patterns enumerated in advance
$>27,338,021$ non-dominated patterns - too big
Every 100 th pattern saved
$>273,380$ patterns
> 33 rolls solving IP using enumerated patterns
>50 seconds: b\&b heuristic solves at root (no cuts)
. . . takes much longer to generate than solve

Example 2b:
 Roll Ordering with Side Constraints

Additional restrictions on cutting solution
$>$ No overage (fill all orders exactly) and also . . .
$>$ At most 2% waste per pattern
$>$ At most 8 widths per pattern
$>$ At most 8 widths and 10% waste per pattern

Example 2b

Roll Ordering with Side Constraints

Sample data

param roll_width $:=349 ;$	
param: WIDTHS : orders $:=$	
28.75	7
33.75	23
34.75	23
37.75	31
38.75	10
39.75	39
40.75	58
41.75	47
42.25	19
44.75	13
45.75	$26 ;$

. . . Zeger Degraeve and Linus Schrage, "Optimal Integer Solutions to Industrial Cutting Stock Problems" INFORMS Journal on Computing 11 (1999) 406-419, Table VIII

Roll Ordering with Side Constraints

Patterns generated during opt (without side constr)
>33.78 rolls in continuous relaxation
>41 rolls rounded up to integer
>35 rolls solving IP using generated patterns
All patterns enumerated in advance
$>54,508$ non-dominated patterns
>34 rolls solving IP using enumerated patterns
>200 branch-and-bound nodes
No overage: change $>=$ to $=$
>34 rolls solving IP using enumerated patterns
>0 branch-and-bound nodes
. . . all subsequent tests include this condition

Roll Ordering with Side Constraints

At most 2% waste in any pattern
$>16,362$ non-dominated patterns
$>$ branch-and-bound ran out of memory
> no feasible solutions found!

Minimize total cut rolls instead: keep >=

```
minimize Number:
    sum {j in 1..nPAT} Cut[j];
minimize Over:
    sum {j in 1..nPAT} (sum {i in WIDTHS} nbr[i,j]) * Cut[j];
```

> 296 cut rolls (= 296 orders) solving IP
> 34 raw rolls in that solution
>1279 branch-and-bound nodes
. . . overage is feasible, just not optimal

Roll Ordering with Side Constraints

At most 8 widths in any pattern
$>13,877$ non-dominated patterns having at most 8 widths
> 312 cut rolls (>296 orders) solving IP
>39 raw rolls in that solution
> all feasible solutions have overage!

Allow more patterns

$>$ generate 9-width patterns with one width removed
$>$ 200,186 patterns, some dominated
> 296 cut rolls ($=296$ orders) solving IP
> 37 raw rolls in that solution
>113 branch-and-bound nodes

Example $2 b$

Roll Ordering with Side Constraints

At most 8 widths and 10% waste in any pattern
$>21,098$ patterns, some dominated
> 296 cut rolls (= 296 orders) solving IP
>37 raw rolls in that solution
>142 branch-and-bound nodes

Example 3: Balanced Assignment

Partition people into groups

$>$ diversity measured by several characteristics
$>$ each characteristic has several values
Make groups as diverse as possible
$>$ count "overlaps" for each person in their assigned group

* for each other in group, count \# of matching characteristics
* sum over all others in group
$>$ minimize sum of overlaps
Test data
> 26 people
>4 characteristics ($4,4,4,2$ values)
>5 groups

Balanced Assignment

History

$>$ One attempt at modeling a real application
> Class example of where branch-and-bound fails

* steadily growing tree
* terrible initial lower bound
* gap scarcely grows

```
CPLEX 11.2.0:
Reduced MIP has }161\mathrm{ rows, }265\mathrm{ columns, and }3725\mathrm{ nonzeros.
Reduced MIP has 130 binaries, O generals, O SOSs, and O indicators.
Clique table members: 26.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time = -0.00 sec.
```


Example 3

Balanced Assignment

Active start . . .

Nodes			Cuts/						
	Node		Objective	IInf	Best	Integer	Best Node	ItCnt	Gap
	0	0	0.0000	61			0.0000	99	
*	0+	0				232.0000	0.0000	99	100.00\%
	0	0	0.0000	60		232.0000	Cuts: 55	174	100.00\%
	0	0	0.0000	66		232.0000	Flowcuts: 17	250	100.00\%
	0	0	0.0000	58		232.0000	Flowcuts: 9	300	100.00\%
	0	0	0.0000	57		232.0000	Flowcuts: 13	326	100.00\%
*	0+	0				230.0000	0.0000	326	100.00\%
*	$0+$	0				216.0000	0.0000	326	100.00\%
	0	2	0.0000	57		216.0000	0.0000	326	100.00\%
*	440+	403				214.0000	0.0000	7938	100.00\%
*	552+	339				212.0000	0.0000	10797	100.00\%
	1000	556	69.9315	50		212.0000	0.0000	16491	100.00\%
	2000	1332	42.8547	47		212.0000	0.0000	25669	100.00\%
	3000	2276	81.6541	49		212.0000	5.0928	37332	97.60\%
	4000	3214	77.9166	49		212.0000	5.1140	47933	97.59\%
	5000	4160	71.0567	52		212.0000	6.4918	57582	96.94\%
	6000	5089	97.3040	47		212.0000	7.8042	66662	96.32\%
	7000	6021	158.4869	37		212.0000	9.3981	75348	95.57\%
	8000	6942	157.5392	36		212.0000	11.2257	84237	94.70\%

Example 3

Balanced Assignment

. . . bogs down completely

NodeNodes Left	Objective	IInf	Best Integer	Cuts/ Best Node	ItCnt	Gap
62440005769420	91.8882	46	212.0000	55.4261	37227229	73.86\%
62450005770348	123.4752	34	212.0000	55.4272	37233744	73.86\%
62460005771270	63.5603	48	212.0000	55.4289	37239584	73.85\%
62470005772192	106.5663	43	212.0000	55.4294	37245120	73.85\%
62480005773112	64.0217	47	212.0000	55.4308	37251128	73.85\%
62490005774034	181.2576	31	212.0000	55.4310	37257940	73.85\%
62500005774954	119.4546	35	212.0000	55.4320	37263877	73.85\%
Elapsed time $=9116.25 \mathrm{sec} .($ (ree size $=1616.65 \mathrm{MB})$						
Nodefile size $=1488.81 \mathrm{MB}$ (685.88 MB after compression)						
62510005775885	182.0327	29	212.0000	55.4328	37270210	73.85\%
62520005776807	140.1960	39	212.0000	55.4330	37275647	73.85\%
62530005777720	91.9423	43	212.0000	55.4346	37281516	73.85\%
62540005778648	127.8185	35	212.0000	55.4355	37286884	73.85\%
8 flow-cover cuts						
2 Gomory cuts						
1 zero-half cut						
9 mixed-integer rounding cuts						
CPLEX 11.2.0: ran out of memory.						

Example 3

Balanced Assignment

Definition of overlap for person i

```
minimize TotalOverlap:
    sum {i in PEOPLE} Overlap[i];
subj to OverlapDefn {i in PEOPLE, j in 1..numberGrps}:
    Overlap[i] >=
        sum {i2 in PEOPLE diff {i}: title[i2] = title[i]} Assign[i2,j] +
        sum {i2 in PEOPLE diff {i}: loc[i2] = loc[i]} Assign[i2,j] +
        sum {i2 in PEOPLE diff {i}: dept[i2] = dept[i]} Assign[i2,j] +
        sum {i2 in PEOPLE diff {i}: sex[i2] = sex[i]} Assign[i2,j]
        - maxOverlap[i] * (1 - Assign[i,j]);
```

$>$ maxOverlap[i] must be \geq greatest overlap possible
$>$ Smaller values give stronger b\&b lower bounds

* theoretically correct: $4 *$ (maxInGrp-1) $\rightarrow 0.0$
* empirically justified: 1 * (maxInGrp-1) $\rightarrow 156.8$

Example 3

Balanced Assignment

Symmetry constraint 1

```
subject to BreakSymm1
    {i in FIRST_PEOPLE, j in ord(i,FIRST_PEOPLE)+1..numberGrps}:
        Assign[i,j] = 0;
```

$>$ choose the first (numberGrps-1) people in some way
$>$ assign the i th person to one of the first i groups

Example 3

Balanced Assignment

Symmetry constraint 2

```
set TYPES = setof {i in PEOPLE} (title[i],loc[i],dept[i],sex[i]);
set TYPEpeople {(t1,t2,t3,t4) in TYPES} =
    {i in PEOPLE: title[i]=t1 and loc[i]=t2 and
            dept[i]=t3 and sex[i]=t4} ordered by PEOPLE;
subject to BreakSymm2 {(t1,t2,t3,t4) in TYPES,
    pnum in 1..card(TYPEpeople[t1,t2,t3,t4])-1, j in 1..numberGrps, k in 1..j-1}:
        Assign[member(pnum+1,TYPEpeople[t1,t2,t3,t4]),k]
            <= 1 - Assign[member(pnum,TYPEpeople[t1,t2,t3,t4]),j];
```

> identify "types" of people who are identical in all four characteristics
$>$ order the people of each type, and order the groups
$>$ with each type, assign higher-numbered people to higher-numbered groups

Example 3

Balanced Assignment

Symmetry strategies

$>$ BreakSymm1 increases the b\&b lower bound a bit
$>$ BreakSymm2 does not increase the lower bound
$>$ CPLEX's symmetry directive is more effective

* set symmetry=5 for greatest symmetry-breaking effort

Example 3

Balanced Assignment

Group size limits

```
subj to GroupSize {j in 1..numberGrps}:
    minInGrp <= sum {i in PEOPLE} Assign[i,j] <= maxInGrp;
```

$>$ minInGrp must be smaller than group size average
$>$ maxInGrp must be larger than group size average
$>$ Tighter limits give stronger b\&b lower bounds

```
* floor(card(PEOPLE)/numberGrps) - 1
    ceil (card(PEOPLE)/numberGrps) + 1 -> 156.8
* floor(card(PEOPLE)/numberGrps)
    ceil (card(PEOPLE)/numberGrps) }\quad->177.
```


Example 3

Balanced Assignment

Group sizes

```
param minInGrp := floor (card(PEOPLE)/numberGrps);
param nMinInGrp := numberGrps - card{PEOPLE} mod numberGrps;
subj to GroupSizeMin {j in 1..nMinInGrp}:
    sum {i in PEOPLE} Assign[i,j] = minInGrp;
subj to GroupSizeMax {j in nMinInGrp+1..numberGrps}:
    sum {i in PEOPLE} Assign[i,j] = minInGrp + 1;
```

$>$ Compute exact sizes of all groups
$>$ b\&b lower bound increases from 177.6 to 183.36

* 16.2% to 13.5% below best known solution of 212

Example 3

Balanced Assignment

Incorporating enhancements . . .

```
ampl: model gs1f.mod;
ampl: data gs1b.dat;
ampl: option solver cplex;
ampl: option cplex_options 'symmetry 5 mipdisplay 2 mipinterval 1000';
ampl: solve;
MIP Presolve eliminated 54 rows and O columns.
MIP Presolve modified 2636 coefficients.
Reduced MIP has }197\mathrm{ rows, 156 columns, and 2585 nonzeros.
Reduced MIP has 130 binaries, O generals, O SOSs, and O indicators.
Clique table members: 62.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time = 0.03 sec.
```


Example 3

Balanced Assignment

Much more promising start . . .

Example 3

Balanced Assignment

. . . leads to successful conclusion

Example 4: Work Scheduling

Cover demands for workers
$>$ Each "shift" requires a certain number of employees
$>$ Each employee works a certain "schedule" of shifts
$>$ Each schedule that is worked by anyone must be worked by a fixed minimum number

Minimize total workers needed
$>$ Which schedules are used?
$>$ How many work each of schedule?

Example 4

Work Scheduling

Model using zero-one variables

```
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
minimize Total_Cost:
    sum {j in SCHEDS} Work[j];
subject to Shift_Needs {i in SHIFTS}:
    sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];
subject to Least_Use1 {j in SCHEDS}:
    Work[j] >= least_assign * Use[j];
subject to Least_Use2 {j in SCHEDS}:
    Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
```


Example 4

Work Scheduling

Test data

```
set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
    Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
    Mon3 Tue3 Wed3 Thu3 Fri3 ;
param Nsched := 126 ;
set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ;
set SHIFT_LIST[6] := Mon1 Tue1 Wed1 Thu2 Fri2 ;
set SHIFT_LIST[7] := Mon1 Tue1 Wed1 Thu2 Fri3 ;
.......
param required := Mon1 100 Mon2 78 Mon3 52
    Tue1 }100\mathrm{ Tue2 78 Tue3 52
    Wed1 100 Wed2 }78\mathrm{ Wed3 52
```

Example 4

Work Scheduling

Direct approach

$>$ Apply branch-and-bound to whole problem
> Branch "up" first

Indirect approach

> Step 1: Relax integrality of Work variables Solve for zero-one Use variables
> Step 2: Fix Use variables
Solve for integer Work variables
. . . not necessarily optimal, but . . .

Example 4

Work Scheduling

Typical run of indirect approach

```
ampl: model sched1.mod; data sched.dat;
ampl: let least_assign := 16;
ampl: option solver cplex;
ampl: option cplex_options 'branch 1';
ampl: let {j in SCHEDS} Work[j].relax := 1;
ampl: solve;
CPLEX 11.2.0: optimal integer solution; objective 265.6
870496 MIP simplex iterations
55911 branch-and-bound nodes
ampl: fix {j in SCHEDS} Use[j];
ampl: let {j in SCHEDS} Work[j].relax := 0;
ampl: solve;
CPLEX 11.2.0: optimal integer solution; objective }26
24 MIP simplex iterations
4 branch-and-bound nodes
```

Example 4

Work Scheduling

Direct approach (CPLEX 11.2, 1 processor)

least_assign	nodes	iterations	seconds	
16	113214	1097779	122	
17				gave up
18	6063049	139707354	8568	
19				gave up
20	50823	839531	48	
23	1316985	25751165	1428	
24	23386	315922	21	

$>$ gave up because tree still growing after 5+ hours

Example 4

Work Scheduling

Indirect approach (CPLEX 11.2, 1 processor)

least_assign	nodes	iterations	seconds
16	55911	870496	73
17	1082098	18664635	1364
18	969105	17605901	1276
19	2759853	51802234	3699
20	84325	1530127	89
23	92779	1415715	90
24	72215	1062010	66

$>$ step 2 always trivially easy
$>$ step 2 objective always rounds up step 1 objective

> . . . hence optimal

Example 4

Work Scheduling

Direct approach (Gurobi 1.1.3, 8 processors)

least_assign	nodes	iterations	seconds	
16	1345687	10113022	115	
17				gave up
18	15870199	125799234	1566	
19	206355833	1619459036	11747	
20	232603	1105751	19	
21	273837	1262181	21	
22	96277	533727	10	
23	129899	632361	10	
24	99489	483954	8	

gave up because tree still growing after $8+$ hours

Example 4

Work Scheduling

Indirect approach (Gurobi 1.1.3, 8 processors)

least_assign	nodes	iterations	seconds	
16	71924	285172	5	
17	1556653	7898786	120	
18	5538287	33278060	305	
19	6866450	47120495	388	
20	117970	440182	9	integer
21	76873	299338	7	integer
22	61727	259012	5	integer
23	111721	392251	8	integer
24	82152	292187	6	integer

$>$ step 1 sometimes gives an integer solution
$>$ step 2 always trivially easy
$>$ step 2 objective always rounds up step 1 objective
. . . hence optimal

Example 4

Work Scheduling: More on Case "17"

CPLEX 12.1
> Direct: $465,596,558$ nodes, 112013 seconds
$>$ Indirect:
$6,886,122$ nodes, 617 seconds
Gurobi 3.0 beta
$>$ Direct: 1,330,555,419 nodes, 69945 seconds
> Indirect: 6,354,683 nodes, 299 seconds
Observations
$>$ step 1 gives fractional solution
$>$ step 2 trivially easy and rounds up step 1 objective
. . . hence optimal

Observations

Convenience

$>$ quick formulation changes
$>$ simple scripts
Generality of expressions \& constraints
$>$ more than arithmetic expressions
$>$ more than "range" constraints
Variety of solver support
$>$ constraint programming
$>$ nondifferentiable optimization
$>$ global optimization
. . . diversity of interfaces

Observations

Generality

Scheduling model using "implies" operator

```
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
minimize Total_Cost:
    sum {j in SCHEDS} Work[j];
subject to Shift_Needs {i in SHIFTS}:
    sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];
subject to Least_Use1_logical {j in SCHEDS}:
    Use[j] = 1 ==> Work[j] >= least_assign;
subject to Least_Use2_logical {j in SCHEDS}:
    Use[j] = 0 ==> Work[j] = 0;
```


. . . don't need upper bounds on integer variables

Observations

Generality

Scheduling model using variable ranges

```
var Work {j in SCHEDS} integer, in {0} union
    interval [least_assign, (max {i in SHIFT_LIST[j]} required[i])];
minimize Total_Cost:
    sum {j in SCHEDS} Work[j];
subject to Shift_Needs {i in SHIFTS}:
    sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];
```

. . . don't need zero-one variables

Generality

Other possibilities
$>$ and, or, not
$>$ count, atleast, atmost
$>$ alldifferent, numberof ("global" constraints)
$>$ variables in subscripts ("element" constraints)
$>$ object-valued, set-valued variables

Implementations

$>$ Comet (Dynadec)
$>$ LINGO (LINDO Systems)
$>$ OPL (ILOG)
. . . only "captive" languages so far

