
International Conference on Stochastic Programming XII

Update on AMPL Extensions
for Stochastic Programming

David M. Gay

AMPL Optimization LLC

dmg@ampl.com

This talk involves work done partly at Sandia National Labs and includes

material released as SAND2006-4717C. Sandia is a multiprogram laboratory

operated by Sandia Corporation, a Lockheed Martin Company, for the United

States Department of Energy’s National Nuclear Security Administration

under contract DE–AC04–94AL85000.

1

AMPL summary

AMPL: a language for

mathematical programming problems:

minimize f(x)

s.t. ℓ ≤ c(x) ≤ u,

with x ∈ ℜn and c : ℜn → ℜm given

algebraically and some xi discrete.

2

AMPL goals

• Easy transcription from math (avoid mistakes)

•• Explicit indexing (no hidden magic)

• Declare before use (one-pass reading)

• Separate model, data, commands (orthogonality)

• Separate solvers (open solver interface)

• Update entities as needed (lazy evaluation)

• Builtin math. prog. stuff (presolve, reduced costs)

• Aim for large scale nonlinear (sparsity, generality)

3

Example model: dieti.mod

set NUTR; set FOOD;

param cost {FOOD} > 0;

param f_min {FOOD} >= 0;

param f_max {j in FOOD} >= f_min[j];

param n_min {NUTR} >= 0;

param n_max {i in NUTR} >= n_min[i];

param amt {NUTR,FOOD} >= 0;

var Buy {j in FOOD} integer >= f_min[j], <= f_max[j];

minimize Total_Cost:

sum {j in FOOD} cost[j] * Buy[j];

subject to Diet {i in NUTR}:

n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j]

<= n_max[i];

4

Example data file: diet2a.dat (beginning)

data;

set NUTR := A B1 B2 C NA CAL ;

set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;

param: cost f_min f_max :=

BEEF 3.19 2 10

CHK 2.59 2 10

FISH 2.29 2 10

HAM 2.89 2 10

MCH 1.89 2 10

MTL 1.99 2 10

SPG 1.99 2 10

TUR 2.49 2 10 ;

5

Example data file continued: diet2a.dat

param: n_min n_max :=

A 700 20000

C 700 20000

B1 700 20000

B2 700 20000

NA 0 50000

CAL 16000 24000 ;

param amt (tr):

A C B1 B2 NA CAL :=

BEEF 60 20 10 15 938 295

CHK 8 0 20 20 2180 770

FISH 8 10 15 10 945 440

HAM 40 40 35 10 278 430

MCH 15 35 15 15 1182 315

MTL 70 30 15 15 896 400

SPG 25 50 25 15 1329 370

TUR 60 20 15 10 1397 450 ;

6

Example session

ampl: model dieti.mod; data diet2a.dat;

ampl: option solver scplex; solve;

CPLEX 11.2.0: optimal integer solution; objective 119.3

12 MIP simplex iterations; 6 branch-and-bound nodes

ampl: display Buy;

Buy [*] :=

BEEF 9

CHK 2

FISH 2

HAM 8

MCH 10

MTL 10

SPG 7

TUR 2

;

7

Stochastic Programming — Motivation

Data often not known exactly, e.g.,

• prices

•• demands

• rainfall

• transit times

• interest rates

• inflation rates

8

Stochastic Programming Approaches

Approaches include

• Modifying objective: instead of minimizing f(x),

◦◦ minimize E(f(x))

◦ minimize E(f(x)) + αV ar(f(x))

•• Modifying constraints: instead of satisfying a

constraint exactly,

◦ satisfy with probability 1− ǫ

◦◦ fail to satisfy with probability ǫ

9

What’s random?

Potentially random entities include

• lower and upper bounds on

◦◦ variables

◦ constraints

•• coefficients, e.g.,

◦ costs

◦◦ returns

◦ rates

• function arguments

10

AMPL extension: random variables

Debated whether to add “random parameters” or

“random variables”.

Internally, they act like nonlinear variables, and

“random variable” is a conventional term, so random in

a var declaration introduces a random variable:

var x random;

Declarations may specify a value (with = or default):

var y random = Uniform01();

or subsequently be assigned:

let x := Normal(0,2);

11

Dependent random variables

Dependent random variables may only be declared in

var ... = and var ... default declarations:

var x random;

var y = x + 1;

Random variables may appear as variables in

constraint and objective declarations:

s.t. Demand: sum {i in A} build[i] >= y;

12

Seeing random variable values

Printing commands see random variables as strings

expressing distributions...

var x random = Normal01();

var y = x + Uniform(3,5);

display x, y;

gives

x = ’Normal01()’

y = ’Uniform(3, 5) + x’

13

Sampling random variables

display {1..5} (Sample(x), Sample(y));

gives

: Sample(x) Sample(y) :=

1 1.51898 3.62453

2 -3.65725 2.50557

3 -0.412257 5.4215

4 0.726723 2.89672

5 -0.606458 3.776

;

14

Conventional uses of random functions

Without random, we get ordinary sampling:

var x := Uniform(0,10);

minimize zot: (x - Normal01())^2;

display x;

expand zot;

gives

x = 6.09209

minimize zot:

(x - 1.51898)^2;

15

New builtin functions

New “builtin” functions for solvers to interpret:

• Expected(ξ)

•• Moment(ξ, n), n = 1, 2, 3, ...

• Percentile(ξ, p), 0 ≤ p ≤ 100

• Sample(ξ)

• StdDev(ξ)

• Variance(ξ)

• Probability(logical condition)

16

What happens when?

Stages indicate what happens when.

SMPS convention: Stage = event followed by decision,

perhaps with first stage “event” known.

A variable is split into separate copies, one for each

realization of its stage (but not of subsequent stages).

For more on SMPS, see

http://myweb.dal.ca/gassmann/smps2.htm

17

New “system suffix” .stage

New reserved suffix .stage, e.g.,

set A; set Stages;

var x {A, s in Stages} suffix stage s;

or

var x {A, s in Stages};

...

let {a in A, s in Stages}

x[a,s].stage := s;

18

Example: stochastic diet problem

Buy in two stages; constrain budget in first stage,

suffer random price changes in second stage.

What to buy in first stage?

Old: var Buy {j in FOOD} integer >= f_min[j],

<= f_max[j];

New: set T = 1 .. 2; # times (stages)

var Buy {FOOD, t in T} integer >= 0

suffix stage t;

s.t. FoodBounds {j in FOOD}: f_min[j]

<= sum{t in T} Buy[j,t] <= f_max[j];

19

Stochastic diet problem (cont’d)

Old: minimize Total_Cost:

sum {j in FOOD} cost[j] * Buy[j];

New: var CostAdj {FOOD} random;

minimize Total_Cost:

sum {j in FOOD} cost[j] * Buy[j,1]

+ Expected(sum {j in FOOD}

cost[j]*CostAdj[j]*Buy[j,2]);

20

Stochastic diet problem (cont’d)

Old: sum {j in FOOD} amt[i,j] * Buy[j]

New: sum {j in FOOD, t in T}

amt[i,j] * Buy[j,t]

param init_budget;

s.t. Init_Bud: sum {j in FOOD} Buy[j,1]

<= init_budget;

...

let{j in FOOD} CostAdj[j]

:= Uniform(.7, 1.3);

21

“Constant” distributions

Assign numerical value to random variable =⇒

simplified problem (for debugging and model

development).

Example:

let{j in FOOD} CostAdj[j]

:= Sample(Uniform(.7, 1.3));

With imported function Expected(x) = x, this works

with conventional solvers.

22

Some things work now

Things that work include

• Most details of random-variable handling

◦◦ Declarations

◦ Assignments of distributions

◦ Assignments of constants

◦ Printing and sampling (in AMPL sessions)

◦ Determining what the solver will see as linear

•• Writing .nl files with random distributions

• Suffix “.stage” and functions of distributions.

23

Nonanticipitivity

Nonanticipitivity is implicit in stating problems

(compact form). The .nl file has sparsity structure for

all constraints and objectives, indicating which

variables appear (and giving linear coefficients). This

includes random variables. Stage structure is in

.stage suffixes. Solvers can split variables if desired.

24

Work in progress

Updates to solver-interface library (for sampling),

sample drivers not yet finished. Plans include

• Routines to pose deterministic equivalents, e.g.,

with stratified sampling such as Latin hypercube.

Options randoptions and ($solver) randoptions

would control sampling and discretization.

•• Program to write .nl file for deterministic

equivalent.

• Program to write SMPS format.

• Solver drivers, e.g., for Gassmann’s MSLiP.

25

Bound computations

Forthcoming additions to ASL (AMPL/Solver interface

Library) include routines for bound computations. See

paper “Bounds from Slopes” in

http://www.sandia.gov/~dmgay/bounds10.pdf

Possible application: importance sampling. Sample

next where support measure times variation bound is

largest.

26

For more details (dmg@ampl.com)

http://www.ampl.com points to

• The AMPL book

•• examples (models, data)

• descriptions of new stuff (in book 2nd ed., not 1st)

• downloads

◦ student binaries; trial-license form

◦◦ solver interface library source

◦ “standard” table handler & source

◦ papers and reports

27

