
Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 1

Robert Fourer
Industrial Engineering & Management Sciences

Northwestern University, Evanston, IL, USA

AMPL Optimization LLC

4er@northwestern.edu — 4er@ampl.com

What a Pivot — Workshop Honoring Bob Bixby’s 65th Birthday
Erlangen, Germany, 26-28 September 2010

Approaches to
Near-Optimally Solving

Mixed-Integer Programs

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 3

Outline

Breaking up
 Work scheduling
 Balanced dinner assignment
 Progressive party assignment

Cutting off
 Paint chip cutting
 Balanced team assignment

Throwing out
 Roll cutting

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 4

Work Scheduling

Cover demands for workers
 Each “shift” requires a certain number of employees
 Each employee works a certain “schedule” of shifts
 Each schedule that is worked by anyone

must be worked by a fixed minimum number

Minimize total workers needed
 Which schedules are used?
 How many work each of schedule?

Breaking Up 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 5

Work Scheduling

Model using zero-one variables

var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

minimize Total_Cost:

sum {j in SCHEDS} Work[j];

subject to Shift_Needs {i in SHIFTS}:

sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use1 {j in SCHEDS}:

Work[j] >= least_assign * Use[j];

subject to Least_Use2 {j in SCHEDS}:

Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];

Breaking Up 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 6

Work Scheduling

Test data

set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
Mon3 Tue3 Wed3 Thu3 Fri3 ;

param Nsched := 126 ;

set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ;
set SHIFT_LIST[6] := Mon1 Tue1 Wed1 Thu2 Fri2 ;
set SHIFT_LIST[7] := Mon1 Tue1 Wed1 Thu2 Fri3 ;

.......

param required := Mon1 100 Mon2 78 Mon3 52
Tue1 100 Tue2 78 Tue3 52
Wed1 100 Wed2 78 Wed3 52

Breaking Up 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 7

Work Scheduling

Branch & bound

Optimum of relaxation is always 265.6
<= 16: optimum of MIP is 266

>= 20: optimum is integral with Work variables relaxed

least_assign nodes iterations seconds

16 1345687 10113022 115
17 > 30000
18 15870199 125799234 1566
19 206355833 1619459036 11747
20 232603 1105751 19
21 273837 1262181 21
22 96277 533727 10
23 129899 632361 10
24 99489 483954 8

Breaking Up 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 8

Work Scheduling

Two-step approach
 Step 1: Relax integrality of Work variables

Solve for zero-one Use variables

 Step 2: Fix Use variables
Solve for integer Work variables

. . . not necessarily optimal, but . . .

Breaking Up 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 9

Work Scheduling

Typical run of indirect approach

ampl: model sched1.mod;
ampl: data sched.dat;

ampl: let least_assign := 17;
ampl: option solver gurobi;

ampl: let {j in SCHEDS} Work[j].relax := 1;

ampl: solve;

Gurobi 1.1.3: optimal solution; objective 266.5
7898786 simplex iterations;
1556653 branch-and-cut nodes

ampl: fix {j in SCHEDS} Use[j];
ampl: let {j in SCHEDS} Work[j].relax := 0;

ampl: solve;

Gurobi 1.1.3: optimal solution; objective 267
4 simplex iterations;
0 branch-and-cut nodes

Breaking Up 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 10

Work Scheduling

Two-step approach

In this example . . .
 step 2 always trivially easy
 step 2 objective always rounds up step 1 objective

. . . hence optimal

least_assign nodes iterations seconds

16 71924 285172 5
17 1556653 7898786 120
18 5538287 33278060 305
19 6866450 47120495 388
20 117970 440182 9
21 76873 299338 7
22 61727 259012 5
23 111721 392251 8
24 82152 292187 6

Breaking Up 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 11

Work Scheduling: More on Case “17”

CPLEX 12.1
 Direct: 465,596,558 nodes, 112013 seconds
 Indirect: 6,886,122 nodes, _617 seconds

Gurobi 3.0 beta
 Direct: 1,330,555,419 nodes, _69945 seconds
 Indirect: 6,354,683 nodes, 299 seconds

Breaking Up 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Balanced Dinner Assignment

Setting
 meeting of employees from around the world

at New York offices of a Wall Street firm

Given
 title, location, department, sex,

for each of about 1000 people

Assign
 these people to around 25 dinner groups

So that
 the groups are as “diverse” as possible

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Minimum “Variation” Model

set PEOPLE; # individuals to be assigned

set CATEG;
param type {PEOPLE,CATEG} symbolic default "";

set TYPES {k in CATEG} = setof {i in PEOPLE} type[i,k];

categories by which people are classified;
type of each person in each category

param numberGrps integer > 0;
param minInGrp integer > 0;
param maxInGrp integer >= minInGrp;

number of groups; bounds on size of groups

A similar approach: “Market Sharing: Assigning Retailers to Company Divisions,” in:
H.P. Williams, Model Building in Mathematical Programming,

3rd edition, Wiley (1990), pp. 259–260.

Thanks also to Collette Coullard.

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

(variables and objective)

var Assign {i in PEOPLE, j in 1..numberGrps} binary;

assignments of people to groups

var MinType {k in CATEG, t in TYPES[k]}
<= floor (card {i in PEOPLE: type[i,k] = t} / numberGrps);

var MaxType {k in CATEG, t in TYPES[k]}
>= ceil (card {i in PEOPLE: type[i,k] = t} / numberGrps);

min/max of each type over all groups

minimize TotalVariation:
sum {k in CATEG, t in TYPES[k]}

(MaxType[k,t] - MinType[k,t]);

Sum of variation over all types

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

(constraints)

subj to AssignAll {i in PEOPLE}:
sum {j in 1..numberGrps} Assign[i,j] = 1;

subj to GroupSize {j in 1..numberGrps}:
minInGrp <= sum {i in PEOPLE} Assign[i,j] <= maxInGrp;

subj to MinTypeDefn
{j in 1..numberGrps, k in CATEG, t in TYPES[k]}:

MinType[k,t] <= sum {i in PEOPLE: type[i,k] = t} Assign[i,j];

subj to MaxTypeDefn
{j in 1..numberGrps, k in CATEG, t in TYPES[k]}:

MaxType[k,t] >= sum {i in PEOPLE: type[i,k] = t} Assign[i,j];

Defining constraints for
min and max type variables

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Solving for Minimum Variation

1054 variables:
1000 binary variables
54 linear variables

560 constraints, all linear; 12200 nonzeros
1 linear objective; 54 nonzeros.

CPLEX 3.0:

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node

0 0 17.0000 299 17.0000
10 10 17.0000 322 17.0000
20 20 17.0000 332 17.0000
30 30 17.0000 328 17.0000
40 40 17.0000 329 17.0000
50 50 17.0000 329 17.0000
60 60 17.0000 339 17.0000
70 70 17.0000 344 17.0000
80 80 17.0000 342 17.0000

.......

16

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

(continued)

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node

250 250 43.6818 74 17.0000
260 260 46.5000 58 17.0000

* 265 263 47.0000 0 47.0000 17.0000
270 266 17.0000 314 47.0000 17.0000
280 276 17.0000 351 47.0000 17.0000
290 286 17.0000 340 47.0000 17.0000
300 296 17.0000 337 47.0000 17.0000
310 306 17.0000 341 47.0000 17.0000

.....

630 609 21.5208 243 47.0000 17.0000
640 618 23.3028 244 47.0000 17.0000
650 626 17.3796 269 47.0000 17.0000
660 636 17.7981 271 47.0000 17.0000

* 666 440 19.0000 0 19.0000 17.0000
670 440 17.0000 147 19.0000 17.0000
680 446 17.0714 213 19.0000 17.0000
690 454 17.5000 186 19.0000 17.0000

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

(concluded)

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node

700 461 17.1364 268 19.0000 17.0000
710 468 17.3117 267 19.0000 17.0000
720 475 17.0000 211 19.0000 17.0000
730 484 17.2652 226 19.0000 17.0000
740 490 17.0000 106 19.0000 17.0000
750 497 17.0000 24 19.0000 17.0000

* 752 0 17.0000 0 17.0000

Times (seconds):
Input = 0.266667
Solve = 864.733
Output = 0.166667

CPLEX 3.0: optimal integer solution; objective 17
45621 simplex iterations
752 branch-and-bound nodes

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Scaling Up

Real model was more complicated
 Rooms hold from 20–25 to 50–55 people
 Must avoid isolating assignments:

 a person is “isolated” in a group that contains
no one from the same location
with the same or “adjacent” title

Problem was too big
 Aggregate people who match in all categories

(986 people, but only 287 different kinds)
 Solve first for title and location only,

then for refinement to department and sex
 Stop at first feasible solution to

title-location problem

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Full “Title-Location” Model

set PEOPLE ordered;

param title {PEOPLE} symbolic;
param loc {PEOPLE} symbolic;

set TITLE ordered;
check {i in PEOPLE}: title[i] in TITLE;

set LOC = setof {i in PEOPLE} loc[i];

set TYPE2 = setof {i in PEOPLE} (title[i],loc[i]);
param number2 {(i1,i2) in TYPE2} =

card {i in PEOPLE: title[i]=i1 and loc[i]=i2};

set REST ordered;

param loDine {REST} integer > 10;
param hiDine {j in REST} integer >= loDine[j];

param loCap := sum {j in REST} loDine[j];
param hiCap := sum {j in REST} hiDine[j];

param loFudge := ceil ((loCap less card {PEOPLE}) / card {REST});
param hiFudge := ceil ((card {PEOPLE} less hiCap) / card {REST});

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

(variables)

param frac2title {i1 in TITLE}
= sum {(i1,i2) in TYPE2} number2[i1,i2] / card {PEOPLE};

param frac2loc {i2 in LOC}
= sum {(i1,i2) in TYPE2} number2[i1,i2] / card {PEOPLE};

param expDine {j in REST}
= if loFudge > 0 then loDine[j] else

if hiFudge > 0 then hiDine[j] else (loDine[j] + hiDine[j]) / 2;

param loTargetTitle {i1 in TITLE, j in REST} :=
floor (round (frac2title[i1] * expDine[j], 6));

param hiTargetTitle {i1 in TITLE, j in REST} :=
ceil (round (frac2title[i1] * expDine[j], 6));

param loTargetLoc {i2 in LOC, j in REST} :=
floor (round (frac2loc[i2] * expDine[j], 6));

param hiTargetLoc {i2 in LOC, j in REST} :=
ceil (round (frac2loc[i2] * expDine[j], 6));

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

(variables, objective, assign constraints)

var Assign2 {TYPE2,REST} integer >= 0;

var Dev2Title {TITLE} >= 0;
var Dev2Loc {LOC} >= 0;

minimize Deviation:
sum {i1 in TITLE} Dev2Title[i1] + sum {i2 in LOC} Dev2Loc[i2];

subject to Assign2Type {(i1,i2) in TYPE2}:
sum {j in REST} Assign2[i1,i2,j] = number2[i1,i2];

subject to Assign2Rest {j in REST}:
loDine[j] - loFudge

<= sum {(i1,i2) in TYPE2} Assign2[i1,i2,j]
<= hiDine[j] + hiFudge;

22

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

(constraints to define “variation”)

subject to Lo2TitleDefn {i1 in TITLE, j in REST}:
Dev2Title[i1] >=

loTargetTitle[i1,j] - sum {(i1,i2) in TYPE2} Assign2[i1,i2,j];

subject to Hi2TitleDefn {i1 in TITLE, j in REST}:
Dev2Title[i1] >=

sum {(i1,i2) in TYPE2} Assign2[i1,i2,j] - hiTargetTitle[i1,j];

subject to Lo2LocDefn {i2 in LOC, j in REST}:
Dev2Loc[i2] >=

loTargetLoc[i2,j] - sum {(i1,i2) in TYPE2} Assign2[i1,i2,j];

subject to Hi2LocDefn {i2 in LOC, j in REST}:
Dev2Loc[i2] >=

sum {(i1,i2) in TYPE2} Assign2[i1,i2,j] - hiTargetLoc[i2,j];

23

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

(parameters for ruling out “isolation”)

set ADJACENT {i1 in TITLE} =
(if i1 <> first(TITLE) then {prev(i1)} else {}) union
(if i1 <> last(TITLE) then {next(i1)} else {});

set ISO = {(i1,i2) in TYPE2: (i2 <> "Unknown") and
((number2[i1,i2] >= 2) or
(number2[i1,i2] = 1 and

sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2}
number2[ii1,i2] > 0)) };

param give {ISO} default 2;
param giveTitle {TITLE} default 2;
param giveLoc {LOC} default 2;

param upperbnd {(i1,i2) in ISO, j in REST} =
min (ceil((number2[i1,i2]/card {PEOPLE}) * hiDine[j]) + give[i1,i2],

hiTargetTitle[i1,j] + giveTitle[i1],
hiTargetLoc[i2,j] + giveLoc[i2],
number2[i1,i2]);

24

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

(constraints to rule out “isolation”)

var Lone {(i1,i2) in ISO, j in REST} binary;

subj to Isolation1 {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] <= upperbnd[i1,i2,j] * Lone[i1,i2,j];

subj to Isolation2a {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] +

sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j]
>= 2 * Lone[i1,i2,j];

subj to Isolation2b {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] >= Lone[i1,i2,j];

25

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Success

First problem
 using OSL: 128 “supernodes”, 6.7 hours
 using CPLEX 2.1: took too long

Second problem
 using CPLEX 2.1: 864 nodes, 3.6 hours
 using OSL: 853 nodes, 4.3 hours

Finish
 Refine to individual assignments: a trivial LP
 Make table of assignments using AMPL printf command
 Ship table to client, who imports to database

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Solver Improvements

CPLEX 3.0
 First problem: 1200 nodes, 1.1 hours
 Second problem: 1021 nodes, 1.3 hours

CPLEX 4.0
 First problem: 517 nodes, 5.4 minutes
 Second problem: 1021 nodes, 21.8 minutes

CPLEX 9.0
 First problem: 560 nodes, 83.1 seconds
 Second problem: 0 nodes, 17.9 seconds

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Solver Improvements

CPLEX 12.1
 First problem: 0 nodes, 9.5 seconds
 Second problem: 0 nodes, 1.5 seconds

Gurobi 2.0
 First problem: 0 nodes, 13.5 seconds
 Second problem: 0 nodes, 1.6 seconds

Breaking Up 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Progressive Party Assignment

Setting
 yacht club holding a party
 each boat has a certain crew size & guest capacity

Decisions
 choose a minimal number yachts as “hosts”
 assign each non-host crew to visit a host yacht
 . . . in each of 6 periods

Requirements
 no yacht’s capacity is exceeded
 no crew visits the same yacht more than once
 no two crews meet more than once

Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 30

Progressive Party Problem

Parameters & variables

param B > 0, integer;
set BOATS := 1 .. B;

param capacity {BOATS} integer >= 0;
param crew {BOATS} integer > 0;
param guest_cap {i in BOATS} := capacity[i] less crew[i];

param T > 0, integer;
set TIMES := 1..T;

var Host {i in BOATS} binary; # i is a host boat

var Visit {i in BOATS, j in BOATS, t in TIMES: i <> j} binary;

crew of j visits party on i at t

var Meet {i in BOATS, j in BOATS, t in TIMES: i < j} >= 0, <= 1;

crews of i and j meet at t

Breaking Up 3

Erwin Kalvelagen, On Solving the Progressive Party Problem as a MIP.
Computers & Operations Research 30 (2003) 1713-1726.

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 31

Progressive Party Problem

Host objective and constraints

minimize TotalHosts: sum {i in BOATS} Host[i];

minimize total host boats

set MUST_BE_HOST within BOATS;

subj to MustBeHost {i in MUST_BE_HOST}: Host[i] = 1;

some boats are designated host boats

set MUST_BE_GUEST within BOATS;

subj to MustBeGuest {i in MUST_BE_GUEST}: Host[i] = 0;

some boats (the virtual boats) are designated guest boats

param mincrew := min {j in BOATS} crew[j];

subj to NeverHost {i in BOATS: guest_cap[i] < mincrew}: Host[i] = 0;

boats with very limited guest capacity can never be hosts

Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 32

Progressive Party Problem

Visit constraints

subj to PartyHost {i in BOATS, j in BOATS, t in TIMES: i <> j}:

Visit[i,j,t] <= Host[i];

parties must occur on host boats

subj to Cap {i in BOATS, t in TIMES}:

sum {j in BOATS: j <> i} crew[j] * Visit[i,j,t] <= guest_cap[i] * Host[i];

boats may not have more visitors than they can handle

subj to CrewHost {j in BOATS, t in TIMES}:

Host[j] + sum {i in BOATS: i <> j} Visit[i,j,t] = 1;

every crew is either hosting or visiting a party

subj to VisitOnce {i in BOATS, j in BOATS: i <> j}:

sum {t in TIMES} Visit[i,j,t] <= Host[i];

a crew may visit a host at most once

Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 33

Progressive Party Problem

Meeting constraints

subj to Link {i in BOATS,

j in BOATS, jj in BOATS, t in TIMES: i <> j and i <> jj and j < jj}:

Meet[j,jj,t] >= Visit[i,j,t] + Visit[i,jj,t] - 1;

meetings occur when two crews are on same host at same time

subj to MeetOnce {j in BOATS, jj in BOATS: j < jj}:

sum {t in TIMES} Meet[j,jj,t] <= 1;

two crews may meet at most once

Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 34

Progressive Party Problem

Data

param B := 42;
param T := 6;

param: capacity crew :=
1 6 2
2 8 2
3 12 2
4 12 2
5 12 4
6 12 4
7 12 4

……..

37 6 4
38 6 5
39 9 7
40 0 2
41 0 3
42 0 4 ;

set MUST_BE_HOST := 1 2 3 ;
set MUST_BE_GUEST := 40 41 42 ;

Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

ampl: solve;

Presolve eliminates 88078 constraints and 2892 variables.
Adjusted problem:
12648 variables:

7482 binary variables
5166 linear variables

131990 constraints, all linear; 410546 nonzeros
1 linear objective; 36 no

MIP Presolve eliminated 14317 rows and 721 columns.
MIP Presolve modified 6762 coefficients.
Reduced MIP has 117674 rows, 11928 columns, and 374126 nonzeros.
Reduced MIP has 7482 binaries, 0 generals, 0 SOSs, and 0 indicators.
Probing time = 0.03 sec.

MIP Presolve eliminated 978 rows and 0 columns.
MIP Presolve modified 1956 coefficients.
Reduced MIP has 116696 rows, 11928 columns, and 371192 nonzeros.
Reduced MIP has 7482 binaries, 0 generals, 0 SOSs, and 0 indicators.
Probing time = 0.03 sec.

Clique table members: 7283.
MIP emphasis: integer feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 8 threads.
Root relaxation solution time = 6.47 sec. nzeros.

Direct Approach
Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 12.2000 484 12.2000 6212
0 0 12.2000 312 Cuts: 279 9730
0 0 12.2000 332 Cuts: 643 13688
0 0 12.2000 256 Cuts: 107 16645
0 2 12.2000 150 12.2000 16645

40 42 12.2222 280 12.2000 173207
80 82 12.3333 253 12.2000 221027
120 122 13.0000 285 12.2000 256891
160 162 13.0000 216 12.2000 295682

* 192+ 192 14.0000 12.2000 334618 12.86%
200 202 13.0000 167 14.0000 12.2000 343192 12.86%
240 242 13.0000 165 14.0000 12.2000 366033 12.86%
280 282 13.0000 274 14.0000 12.2000 379204 12.86%
320 322 13.0000 69 14.0000 12.2000 393411 12.86%
360 362 13.0000 65 14.0000 12.2000 404419 12.86%

* 367+ 316 13.0000 12.2000 406283 6.15%
380 330 13.0000 147 13.0000 12.2000 410635 6.15%
400 350 13.0000 8 13.0000 12.2000 415294 6.15%

.

Direct Approach(branching)
Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Clique cuts applied: 9
Cover cuts applied: 263
Implied bound cuts applied: 56
Zero-half cuts applied: 15

Root node processing (before b&c):
Real time = 234.06

Parallel b&c, 8 threads:
Real time = 377.09
Sync time (average) = 38.18
Wait time (average) = 168.18

Total (root+branch&cut) = 611.15 sec.

Times (seconds):
Input = 0.156
Solve = 611.963
Output = 0.125

CPLEX 12.2.0.0: optimal integer solution; objective 13
418678 MIP simplex iterations
420 branch-and-bound nodes

Direct Approach(results)
Breaking Up 3

. . . results highly variable across settings and solvers

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Multi-Step Approach

Determine hosts
 solve 1-period problem
 fix hosts
 fix 1st-period visits

Determine visits: for t = 2, 3, . . .
 solve tth-period problem
 fix tth period visits

. . . hosts & previous t−1 periods already fixed

Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

model partyKA.mod;
data partyKA.dat;

option solver cplexamp;
option cplex_options 'branch 1 startalg 1 subalg 1 mipemphasis 1 timing 1';

option show_stats 1;

let T := 1;

repeat {

solve;

if T = 1 then fix Host;

if solve_result = "solved" then {
let T := T + 1;
fix {i in BOATS, j in BOATS: i <> j} Visit[i,j,T-1];

}
else break;

};

Multi-Step Script
Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

ampl: include partyKB.run

Reduced MIP has 983 rows, 1272 columns, and 4364 nonzeros.
Reduced MIP has 1272 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve = 0.249

CPLEX 12.2.0.0: optimal integer solution; objective 13
189 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 169 rows, 342 columns, and 997 nonzeros.
Reduced MIP has 342 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve = 0.063

CPLEX 12.2.0.0: optimal integer solution; objective 13
76 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 258 rows, 313 columns, and 1162 nonzeros.
Reduced MIP has 313 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve = 0.062

CPLEX 12.2.0.0: optimal integer solution; objective 13
77 MIP simplex iterations
0 branch-and-bound nodes

Multi-Step Run (periods 1 to 3)
Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Reduced MIP has 319 rows, 284 columns, and 1284 nonzeros.
Reduced MIP has 284 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve = 0.093

CPLEX 12.2.0.0: optimal integer solution; objective 13
64 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 328 rows, 255 columns, and 1289 nonzeros.
Reduced MIP has 255 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve = 0.047

CPLEX 12.2.0.0: optimal integer solution; objective 13
65 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 327 rows, 226 columns, and 1264 nonzeros.
Reduced MIP has 226 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve = 0.031

CPLEX 12.2.0.0: optimal integer solution; objective 13
58 MIP simplex iterations
0 branch-and-bound nodes

Multi-Step Run (periods 4 to 6)
Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Reduced MIP has 281 rows, 197 columns, and 1103 nonzeros.
Reduced MIP has 197 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve = 0.094

CPLEX 12.2.0.0: optimal integer solution; objective 13
69 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 232 rows, 168 columns, and 914 nonzeros.
Reduced MIP has 168 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve = 0.094

CPLEX 12.2.0.0: optimal integer solution; objective 13
126 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 174 rows, 133 columns, and 672 nonzeros.
Reduced MIP has 133 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve = 0.187

CPLEX 12.2.0.0: optimal integer solution; objective 13
2009 MIP simplex iterations
50 branch-and-bound nodes

Multi-Step Run (periods 7 to 9)
Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Reduced MIP has 120 rows, 102 columns, and 469 nonzeros.
Reduced MIP has 102 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve = 0.062

CPLEX 12.2.0.0: integer infeasible.
75 MIP simplex iterations
0 branch-and-bound nodes

Multi-Step Run (no period 10)
Breaking Up 3

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 44

Paint Chip Cutting

Produce paint chips from rolls of material
 Several “groups” (types) of chips
 Various numbers of “colors” per group
 Numerous “patterns” of groups on rolls

Costs proportional to numbers of
 Patterns cut
 Pattern changes
 Width changes

Cutting Off 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 45

Chip Cutting

Model (variables & objective)

var Cut {1..nPats} > = 0, integer; # number of each pattern cut

var PatternChange {1..nPats} binary; # 1 iff a pattern is used

var WebChange {WIDTHS} binary; # 1 iff a width is used

minimize Total_Cost:

sum {j in 1..nPats} cut_cost[j] * Cut[j] +

pattern_changeover_factor *

sum {j in 1..nPats} change_cost[j] * PatternChange[j] +

web_change_factor *

sum {w in WIDTHS} (coat_change_cost + slit_change_cost) WebChange[w];

Cutting Off 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 46

Chip Cutting

Model (constraints)

subject to SatisfyDemand {g in GROUPS}:

sum {j in 1..nPats} number_of[g,j] * Cut[j] >= ncolors[g];

subject to DefinePatternChange {j in 1..nPats}:

Cut[j] <= maxuse[j] * PatternChange[j];

subject to DefineWebChange {j in 1..nPats}:

PatternChange[j] <= WebChange[width[j]];

Cutting Off 1

param maxuse {j in 1..nPats} :=

max {g in GROUPS: number_of[g,j] > 0} ncolors[g] / number_of[g,j];

upper limit on Cut[j]

. . . very long solve times

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 47

Chip Cutting

Model (restricted)

subject to DefinePatternChange {j in 1..nPats}:

Cut[j] <= maxuse[j] * PatternChange[j];

subject to MinPatternUse {j in 1..nPats}:

Cut[j] >= ceil(minuse[j]) * PatternChange[j];

Cutting Off 1

param minuse {j in 1..nPats} :=

min {g in GROUPS: number_of[g,j] > 0} ncolors[g] / number_of[g,j];

if you use a pattern at all,
use it to cut all colors of at least one group

. . . not necessarily optimal, but . . .

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 48

Chip Cutting

Sample data

param: GROUPS: ncolors slitwidth cutoff paint finish substrate :=

grp1 8 3.8125 1.75 latex flat P40
grp2 3 3.9375 1.75 latex flat P40
grp3 32 1.6875 1.00 latex flat P40
grp4 4 1.8125 1.00 latex flat P40
grp5 3 1.75 1.00 latex flat P40
grp6 2 1.75 1.00 latex semi_gloss P40
grp7 3 1.875 1.00 latex flat P40
grp8 1 1.875 1.00 latex gloss P40 ;

param orderqty := 588500;

param spoilage_factor := .15;

Cutting Off 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 49

Results

Without restriction
 1812 rows, 1807 columns, 5976 nonzeros
 7,115,951 simplex iterations
 221,368 branch-and-bound nodes
 14,620.4 seconds

With restriction
 2402 rows, 1656 columns, 7091 nonzeros
 230,667 simplex iterations
 9,892 branch-and-bound nodes
 501.55 seconds

Objective value
 Same in both cases

Cutting Off 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 50

Results (today)

Without restriction
 1724 rows, 1719 columns, 5800 nonzeros
 49,831 simplex iterations
 3,157 branch-and-bound nodes
 4.867 seconds

With restriction
 2344 rows, 1598 columns, 6982 nonzeros
 21,598 simplex iterations
 568 branch-and-bound nodes
 2.872 seconds

(Gurobi 1.1.3, 8 processors)

Cutting Off 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 51

Results (today, harder case)

Without restriction
 4019 rows, 4009 columns, 15198 nonzeros
 60,122 simplex iterations
 1,955 branch-and-bound nodes
 20.626 seconds

With restriction
 5667 rows, 4394 columns, 18464 nonzeros
 14,468 simplex iterations
 150 branch-and-bound nodes
 5.464 seconds

(Gurobi 1.1.3, 8 processors)

Cutting Off 1

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 52

Balanced Team Assignment

Same idea, different formulation
 Class example of where branch-and-bound fails

 steadily growing tree
 terrible initial lower bound
 gap scarcely grows

Partition people into groups
 diversity measured by several characteristics
 each characteristic has several values

Make groups as diverse as possible
 count “overlaps” for each person in their assigned group

 for each other in group, count # of matching characteristics
 sum over all others in group

 minimize sum of overlaps

Cutting Off 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 53

Balanced Assignment

Test data
 26 people
 4 characteristics (4, 4, 4, 2 values)
 5 groups

Cutting Off 2

CPLEX 11.2.0:

Reduced MIP has 161 rows, 265 columns, and 3725 nonzeros.
Reduced MIP has 130 binaries, 0 generals, 0 SOSs, and 0 indicators.

Clique table members: 26.

MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.

Parallel mode: none, using 1 thread.

Root relaxation solution time = -0.00 sec.

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 54

Balanced Assignment

Active start . . .

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 0.0000 61 0.0000 99
* 0+ 0 232.0000 0.0000 99 100.00%

0 0 0.0000 60 232.0000 Cuts: 55 174 100.00%
0 0 0.0000 66 232.0000 Flowcuts: 17 250 100.00%
0 0 0.0000 58 232.0000 Flowcuts: 9 300 100.00%
0 0 0.0000 57 232.0000 Flowcuts: 13 326 100.00%

* 0+ 0 230.0000 0.0000 326 100.00%
* 0+ 0 216.0000 0.0000 326 100.00%

0 2 0.0000 57 216.0000 0.0000 326 100.00%
* 440+ 403 214.0000 0.0000 7938 100.00%
* 552+ 339 212.0000 0.0000 10797 100.00%

1000 556 69.9315 50 212.0000 0.0000 16491 100.00%
2000 1332 42.8547 47 212.0000 0.0000 25669 100.00%
3000 2276 81.6541 49 212.0000 5.0928 37332 97.60%
4000 3214 77.9166 49 212.0000 5.1140 47933 97.59%
5000 4160 71.0567 52 212.0000 6.4918 57582 96.94%
6000 5089 97.3040 47 212.0000 7.8042 66662 96.32%
7000 6021 158.4869 37 212.0000 9.3981 75348 95.57%
8000 6942 157.5392 36 212.0000 11.2257 84237 94.70%
.................

Cutting Off 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 55

Balanced Assignment

. . . bogs down completely

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

.................

6244000 5769420 91.8882 46 212.0000 55.4261 37227229 73.86%
6245000 5770348 123.4752 34 212.0000 55.4272 37233744 73.86%
6246000 5771270 63.5603 48 212.0000 55.4289 37239584 73.85%
6247000 5772192 106.5663 43 212.0000 55.4294 37245120 73.85%
6248000 5773112 64.0217 47 212.0000 55.4308 37251128 73.85%
6249000 5774034 181.2576 31 212.0000 55.4310 37257940 73.85%
6250000 5774954 119.4546 35 212.0000 55.4320 37263877 73.85%

Elapsed time = 9116.25 sec. (tree size = 1616.65 MB)
Nodefile size = 1488.81 MB (685.88 MB after compression)

6251000 5775885 182.0327 29 212.0000 55.4328 37270210 73.85%
6252000 5776807 140.1960 39 212.0000 55.4330 37275647 73.85%
6253000 5777720 91.9423 43 212.0000 55.4346 37281516 73.85%
6254000 5778648 127.8185 35 212.0000 55.4355 37286884 73.85%

8 flow-cover cuts
2 Gomory cuts
1 zero-half cut
9 mixed-integer rounding cuts

CPLEX 11.2.0: ran out of memory.

Cutting Off 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 56

Definition of overlap for person i

 maxOverlap[i] must be ≥ greatest overlap possible
 Smaller values give stronger b&b lower bounds

 theoretically correct: 4 * (maxInGrp-1) → 0.0

 empirically justified: 1 * (maxInGrp-1) → 156.8

Balanced Assignment

minimize TotalOverlap:

sum {i in PEOPLE} Overlap[i];

subj to OverlapDefn {i in PEOPLE, j in 1..numberGrps}:

Overlap[i] >=

sum {i2 in PEOPLE diff {i}: title[i2] = title[i]} Assign[i2,j] +

sum {i2 in PEOPLE diff {i}: loc[i2] = loc[i]} Assign[i2,j] +

sum {i2 in PEOPLE diff {i}: dept[i2] = dept[i]} Assign[i2,j] +

sum {i2 in PEOPLE diff {i}: sex[i2] = sex[i]} Assign[i2,j]

- maxOverlap[i] * (1 - Assign[i,j]);

Cutting Off 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 57

Group size limits

 minInGrp must be smaller than group size average
 maxInGrp must be larger than group size average

 Tighter limits give stronger b&b lower bounds
 floor(card(PEOPLE)/numberGrps) - 1

ceil (card(PEOPLE)/numberGrps) + 1 → 156.8

 floor(card(PEOPLE)/numberGrps)
ceil (card(PEOPLE)/numberGrps) → 177.6

Balanced Assignment

subj to GroupSize {j in 1..numberGrps}:

minInGrp <= sum {i in PEOPLE} Assign[i,j] <= maxInGrp;

Cutting Off 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 58

Group sizes

 Specify exact sizes of all groups
 Exact sizes give stronger b&b lower bounds

 min & max sizes for every g → 177.6

 exact sizes → 183.36

Balanced Assignment

param minInGrp := floor (card(PEOPLE)/numberGrps);

param nMinInGrp := numberGrps - card{PEOPLE} mod numberGrps;

subj to GroupSizeMin {j in 1..nMinInGrp}:

sum {i in PEOPLE} Assign[i,j] = minInGrp;

subj to GroupSizeMax {j in nMinInGrp+1..numberGrps}:

sum {i in PEOPLE} Assign[i,j] = minInGrp + 1;

Cutting Off 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 59

Balanced Assignment

Incorporating enhancements . . .

ampl: model gs1f.mod;
ampl: data gs1b.dat;

ampl: option solver cplex;
ampl: option cplex_options ‘symmetry 5 mipdisplay 2 mipinterval 1000’;

ampl: solve;

MIP Presolve eliminated 54 rows and 0 columns.
MIP Presolve modified 2636 coefficients.
Reduced MIP has 197 rows, 156 columns, and 2585 nonzeros.
Reduced MIP has 130 binaries, 0 generals, 0 SOSs, and 0 indicators.
Clique table members: 62.

MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time = 0.03 sec.

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

* 0+ 0 252.0000 0 ---
0 0 183.3626 134 252.0000 183.3626 262 27.24%

.......

Cutting Off 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 60

Balanced Assignment

Much more promising start . . .

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 189.1865 100 252.0000 Cuts: 49 445 24.93%
0 0 189.7246 96 252.0000 Cuts: 12 558 24.71%

* 0+ 0 240.0000 189.7246 558 20.95%
0 0 189.7964 96 240.0000 ZeroHalf: 5 664 20.92%
0 0 189.8864 97 240.0000 ZeroHalf: 8 782 20.88%
0 0 189.9590 96 240.0000 ZeroHalf: 6 1002 20.85%
0 0 189.9768 100 240.0000 ZeroHalf: 7 1166 20.84%
0 0 189.9769 99 240.0000 ZeroHalf: 4 1184 20.84%

* 0+ 0 220.0000 189.9769 1203 13.65%
* 0+ 0 216.0000 189.9769 1203 12.05%

0 2 192.8299 78 216.0000 192.8299 1203 10.73%
* 100+ 80 212.0000 193.0563 6092 8.94%

1000 479 200.3732 83 212.0000 195.6130 36233 7.73%
2000 1242 205.1626 64 212.0000 195.9832 65307 7.56%
3000 2103 205.8520 59 212.0000 196.4174 93546 7.35%
4000 2946 205.5224 57 212.0000 196.8495 120479 7.15%
5000 3790 201.5651 53 212.0000 197.1664 145209 7.00%
6000 4624 210.5546 34 212.0000 197.4648 169658 6.86%
7000 5468 201.2841 60 212.0000 197.6005 195286 6.79%

.......

Cutting Off 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 61

Balanced Assignment

. . . leads to successful conclusion

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

30287000 8802 cutoff 212.0000 211.0000 416705257 0.47%
30288000 7927 cutoff 212.0000 211.0000 416709767 0.47%
30289000 7021 infeasible 212.0000 211.0000 416714199 0.47%
30290000 6101 infeasible 212.0000 211.0000 416718973 0.47%

Elapsed time = 46415.00 sec. (tree size = 12.94 MB)

30291000 5249 cutoff 212.0000 211.0000 416724639 0.47%
30292000 4407 infeasible 212.0000 211.0000 416730198 0.47%
30293000 3519 infeasible 212.0000 211.0000 416735118 0.47%
30294000 2636 cutoff 212.0000 211.0000 416740781 0.47%
30295000 1758 infeasible 212.0000 211.0000 416746255 0.47%
30296000 863 infeasible 212.0000 211.0000 416748900 0.47%

3 cover cuts
8 implied bound cuts
23 mixed-integer rounding cuts
35 zero-half cuts
12 Gomory fractional cuts

CPLEX 11.2.0: optimal integer solution; objective 212
416751729 MIP simplex iterations
30296965 branch-and-bound nodes

Cutting Off 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 62

Roll Cutting

Cut large “raw” rolls into smaller ones
 All raw rolls the same width
 Various smaller widths ordered
 Varying numbers of widths ordered

Minimize total raw rolls cut
 Solve the pattern-choice MIP using either of . . .

 patterns generated by the Gilmore-Gomory method
(for solving the relaxation)

 all nondominated patterns

Throwing Out

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 63

Roll Cutting

Cutting model

set WIDTHS; # set of widths to be cut
param orders {WIDTHS} > 0; # number of each width to be cut

param nPAT integer >= 0; # number of patterns
param nbr {WIDTHS,1..nPAT} integer >= 0; # rolls of width i in pattern j

var Cut {1..nPAT} integer >= 0; # rolls cut using each pattern

minimize Number:

sum {j in 1..nPAT} Cut[j]; # total raw rolls cut

subject to Fill {i in WIDTHS}:

sum {j in 1..nPAT} nbr[i,j] * Cut[j] >= orders[i];

for each width,
rolls cut meet orders

Throwing Out

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 64

Roll Cutting

Pattern generation model

param roll_width > 0;
param price {WIDTHS} default 0.0;

var Use {WIDTHS} integer >= 0;

minimize Reduced_Cost:

1 - sum {i in WIDTHS} price[i] * Use[i];

subj to Width_Limit:

sum {i in WIDTHS} i * Use[i] <= roll_width;

Throwing Out

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 65

Roll Cutting

Pattern generation script

repeat {

solve Cutting_Opt;

let {i in WIDTHS} price[i] := Fill[i].dual;

solve Pattern_Gen;

if Reduced_Cost < -0.00001 then {
let nPAT := nPAT + 1;
let {i in WIDTHS} nbr[i,nPAT] := Use[i];
}

else break;

};

Throwing Out

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 66

Roll Cutting

Pattern enumeration script

repeat {

if curr_sum + curr_width <= roll_width then {
let pattern[curr_width] := floor((roll_width-curr_sum)/curr_width);
let curr_sum := curr_sum + pattern[curr_width] * curr_width;
}

if curr_width != last(WIDTHS) then
let curr_width := next(curr_width,WIDTHS);

else {
let nPAT := nPAT + 1;
let {w in WIDTHS} nbr[w,nPAT] := pattern[w];
let curr_sum := curr_sum - pattern[last(WIDTHS)] * last(WIDTHS);
let pattern[last(WIDTHS)] := 0;
let curr_width := min {w in WIDTHS: pattern[w] > 0} w;
if curr_width < Infinity then {

let curr_sum := curr_sum - curr_width;
let pattern[curr_width] := pattern[curr_width] - 1;
let curr_width := next(curr_width,WIDTHS);
}

else break;
}

}

Throwing Out

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 67

Roll Cutting

Sample data

param roll_width := 172 ;

param: WIDTHS: orders :=

25.000 5
24.750 73
18.000 14
17.500 4
15.500 23
15.375 5
13.875 29
12.500 87
12.250 9
12.000 31
10.250 6
10.125 14
10.000 43
8.750 15
8.500 21
7.750 5 ;

Throwing Out

. . . Robert W. Haessler, “Selection
and Design of Heuristic Procedures

for Solving Roll Trim Problems”
Management Science 34 (1988)

1460–1471, Table 2

Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 68

Roll Cutting

Patterns generated during optimization
(Gilmore-Gomory procedure)

 32.80 rolls in continuous relaxation
 40 rolls rounded up to integer
 34 rolls solving IP using generated patterns

All patterns enumerated in advance
 27,338,021 non-dominated patterns — too big

Every 100th pattern saved
 273,380 patterns
 33 rolls solving IP using enumerated patterns
 50 seconds: b&b heuristic solves at root (no cuts)

. . . takes much longer to generate than solve

Throwing Out

	Slide Number 1
	Outline
	Work Scheduling
	Work Scheduling
	Work Scheduling
	Work Scheduling
	Work Scheduling
	Work Scheduling
	Work Scheduling
	Work Scheduling: More on Case “17”
	Balanced Dinner Assignment
	Minimum “Variation” Model
	(variables and objective)
	(constraints)
	Solving for Minimum Variation
	(continued)
	(concluded)
	Scaling Up
	Full “Title-Location” Model
	(variables)
	(variables, objective, assign constraints)
	(constraints to define “variation”)
	(parameters for ruling out “isolation”)
	(constraints to rule out “isolation”)
	Success
	Solver Improvements
	Solver Improvements
	Progressive Party Assignment
	Progressive Party Problem
	Progressive Party Problem
	Progressive Party Problem
	Progressive Party Problem
	Progressive Party Problem
	Direct Approach
	Direct Approach(branching)
	Direct Approach(results)
	Multi-Step Approach
	Multi-Step Script
	Multi-Step Run (periods 1 to 3)
	Multi-Step Run (periods 4 to 6)
	Multi-Step Run (periods 7 to 9)
	Multi-Step Run (no period 10)
	Paint Chip Cutting
	Chip Cutting
	Chip Cutting
	Chip Cutting
	Chip Cutting
	Results
	Results (today)
	Results (today, harder case)
	Balanced Team Assignment
	Balanced Assignment
	Balanced Assignment
	Balanced Assignment
	Balanced Assignment
	Balanced Assignment
	Balanced Assignment
	Balanced Assignment
	Balanced Assignment
	Balanced Assignment
	Roll Cutting
	Roll Cutting
	Roll Cutting
	Roll Cutting
	Roll Cutting
	Roll Cutting
	Roll Cutting

