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Outline

Breaking up
 Work scheduling
 Balanced dinner assignment
 Progressive party assignment

Cutting off
 Paint chip cutting
 Balanced team assignment

Throwing out
 Roll cutting
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Work Scheduling

Cover demands for workers
 Each “shift” requires a certain number of employees
 Each employee works a certain “schedule” of shifts
 Each schedule that is worked by anyone

must be worked by a fixed minimum number

Minimize total workers needed
 Which schedules are used?
 How many work each of schedule?

Breaking Up 1
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Work Scheduling

Model using zero-one variables

var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

minimize Total_Cost:

sum {j in SCHEDS} Work[j];

subject to Shift_Needs {i in SHIFTS}: 

sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use1 {j in SCHEDS}:

Work[j] >= least_assign * Use[j];

subject to Least_Use2 {j in SCHEDS}:

Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];

Breaking Up 1
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Work Scheduling

Test data

set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
Mon3 Tue3 Wed3 Thu3 Fri3 ;

param Nsched := 126 ;

set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ;
set SHIFT_LIST[6] := Mon1 Tue1 Wed1 Thu2 Fri2 ;
set SHIFT_LIST[7] := Mon1 Tue1 Wed1 Thu2 Fri3 ;

.......

param required :=  Mon1 100  Mon2 78  Mon3 52 
Tue1 100  Tue2 78  Tue3 52
Wed1 100  Wed2 78  Wed3 52

Breaking Up 1
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Work Scheduling

Branch & bound

Optimum of relaxation is always 265.6
<= 16:  optimum of MIP is 266

>= 20:  optimum is integral with Work variables relaxed

least_assign nodes iterations seconds

16 1345687 10113022 115
17 > 30000
18 15870199 125799234 1566
19 206355833 1619459036 11747
20 232603 1105751 19
21 273837 1262181 21
22 96277 533727 10
23 129899 632361 10
24 99489 483954 8

Breaking Up 1
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Work Scheduling

Two-step approach
 Step 1: Relax integrality of Work variables

Solve for zero-one Use variables

 Step 2: Fix Use variables
Solve for integer Work variables

. . . not necessarily optimal, but . . .

Breaking Up 1
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Work Scheduling

Typical run of indirect approach

ampl: model sched1.mod; 
ampl: data sched.dat;

ampl: let least_assign := 17;
ampl: option solver gurobi;

ampl: let {j in SCHEDS} Work[j].relax := 1;

ampl: solve;

Gurobi 1.1.3: optimal solution; objective 266.5
7898786 simplex iterations; 
1556653 branch-and-cut nodes

ampl: fix {j in SCHEDS} Use[j];
ampl: let {j in SCHEDS} Work[j].relax := 0;

ampl: solve;

Gurobi 1.1.3: optimal solution; objective 267
4 simplex iterations; 
0 branch-and-cut nodes

Breaking Up 1
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Work Scheduling

Two-step approach

In this example . . .
 step 2 always trivially easy
 step 2 objective always rounds up step 1 objective

. . . hence optimal

least_assign nodes iterations seconds

16 71924 285172 5
17 1556653 7898786 120
18 5538287 33278060 305
19 6866450 47120495 388
20 117970 440182 9
21 76873 299338 7
22 61727 259012 5
23 111721 392251 8
24 82152 292187 6

Breaking Up 1
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Work Scheduling: More on Case “17”

CPLEX 12.1 
 Direct: 465,596,558 nodes, 112013 seconds
 Indirect: 6,886,122 nodes, _617 seconds

Gurobi 3.0 beta 
 Direct: 1,330,555,419 nodes, _69945 seconds
 Indirect: 6,354,683 nodes, 299 seconds

Breaking Up 1
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Balanced Dinner Assignment

Setting
 meeting of employees from around the world

at New York offices of a Wall Street firm 

Given
 title, location, department, sex,

for each of about 1000 people

Assign
 these people to around 25 dinner groups

So that
 the groups are as “diverse” as possible

Breaking Up 2
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Minimum “Variation” Model

set PEOPLE;  # individuals to be assigned

set CATEG;
param type {PEOPLE,CATEG} symbolic default "";

set TYPES {k in CATEG} = setof {i in PEOPLE} type[i,k];

# categories by which people are classified;
# type of each person in each category

param numberGrps integer > 0;
param minInGrp integer > 0;
param maxInGrp integer >= minInGrp;

# number of groups; bounds on size of groups

A similar approach: “Market Sharing: Assigning Retailers to Company Divisions,” in:
H.P. Williams, Model Building in Mathematical Programming,

3rd edition, Wiley (1990), pp. 259–260.

Thanks also to Collette Coullard.

Breaking Up 2
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(variables and objective)

var Assign {i in PEOPLE, j in 1..numberGrps} binary;

# assignments of people to groups

var MinType {k in CATEG, t in TYPES[k]}
<= floor (card {i in PEOPLE: type[i,k] = t} / numberGrps);

var MaxType {k in CATEG, t in TYPES[k]}
>= ceil (card {i in PEOPLE: type[i,k] = t} / numberGrps);

# min/max of each type over all groups

minimize TotalVariation:
sum {k in CATEG, t in TYPES[k]} 

(MaxType[k,t] - MinType[k,t]);

# Sum of variation over all types

Breaking Up 2
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(constraints)

subj to AssignAll {i in PEOPLE}:
sum {j in 1..numberGrps} Assign[i,j] = 1;

subj to GroupSize {j in 1..numberGrps}:
minInGrp <= sum {i in PEOPLE} Assign[i,j] <= maxInGrp;

subj to MinTypeDefn
{j in 1..numberGrps, k in CATEG, t in TYPES[k]}:

MinType[k,t] <= sum {i in PEOPLE: type[i,k] = t} Assign[i,j];

subj to MaxTypeDefn
{j in 1..numberGrps, k in CATEG, t in TYPES[k]}:

MaxType[k,t] >= sum {i in PEOPLE: type[i,k] = t} Assign[i,j];

# Defining constraints for 
# min and max type variables

Breaking Up 2
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Solving for Minimum Variation

1054 variables:
1000 binary variables
54 linear variables

560 constraints, all linear; 12200 nonzeros
1 linear objective; 54 nonzeros.

CPLEX 3.0: 

Nodes                                         Cuts/ 
Node  Left     Objective  IInf  Best Integer     Best Node

0     0       17.0000   299                     17.0000
10    10       17.0000   322                     17.0000
20    20       17.0000   332                     17.0000
30    30       17.0000   328                     17.0000
40    40       17.0000   329                     17.0000
50    50       17.0000   329                     17.0000
60    60       17.0000   339                     17.0000
70    70       17.0000   344                     17.0000
80    80       17.0000   342                     17.0000

.......

16

Breaking Up 2
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(continued)

Nodes                                         Cuts/ 
Node  Left     Objective  IInf  Best Integer     Best Node

250   250       43.6818    74                     17.0000
260   260       46.5000    58                     17.0000

*   265   263       47.0000     0       47.0000       17.0000
270   266       17.0000   314       47.0000       17.0000
280   276       17.0000   351       47.0000       17.0000
290   286       17.0000   340       47.0000       17.0000
300   296       17.0000   337       47.0000       17.0000
310   306       17.0000   341       47.0000       17.0000

.....

630   609       21.5208   243       47.0000       17.0000
640   618       23.3028   244       47.0000       17.0000
650   626       17.3796   269       47.0000       17.0000
660   636       17.7981   271       47.0000       17.0000

*   666   440       19.0000     0       19.0000       17.0000
670   440       17.0000   147       19.0000       17.0000
680   446       17.0714   213       19.0000       17.0000
690   454       17.5000   186       19.0000       17.0000

Breaking Up 2



Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

(concluded)

Nodes                                         Cuts/ 
Node  Left     Objective  IInf  Best Integer     Best Node

700   461       17.1364   268       19.0000       17.0000
710   468       17.3117   267       19.0000       17.0000
720   475       17.0000   211       19.0000       17.0000
730   484       17.2652   226       19.0000       17.0000
740   490       17.0000   106       19.0000       17.0000
750   497       17.0000    24       19.0000       17.0000

*   752     0       17.0000     0       17.0000

Times (seconds):
Input =  0.266667
Solve =  864.733
Output = 0.166667

CPLEX 3.0: optimal integer solution; objective 17
45621 simplex iterations
752 branch-and-bound nodes

Breaking Up 2
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Scaling Up

Real model was more complicated
 Rooms hold from 20–25 to 50–55 people
 Must avoid isolating assignments:

 a person is “isolated” in a group that contains 
no one from the same location 
with the same or “adjacent” title

Problem was too big
 Aggregate people who match in all categories

(986 people, but only 287 different kinds)
 Solve first for title and location only,

then for refinement to department and sex
 Stop at first feasible solution to 

title-location problem

Breaking Up 2
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Full “Title-Location” Model

set PEOPLE ordered;

param title {PEOPLE} symbolic;
param loc   {PEOPLE} symbolic;

set TITLE ordered;
check {i in PEOPLE}: title[i] in TITLE;

set LOC = setof {i in PEOPLE} loc[i];

set TYPE2 = setof {i in PEOPLE} (title[i],loc[i]);
param number2 {(i1,i2) in TYPE2} =

card {i in PEOPLE: title[i]=i1 and loc[i]=i2};

set REST ordered;

param loDine {REST} integer > 10;
param hiDine {j in REST} integer >= loDine[j];

param loCap := sum {j in REST} loDine[j];
param hiCap := sum {j in REST} hiDine[j];

param loFudge := ceil ((loCap less card {PEOPLE}) / card {REST});
param hiFudge := ceil ((card {PEOPLE} less hiCap) / card {REST});

Breaking Up 2
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(variables)

param frac2title {i1 in TITLE} 
= sum {(i1,i2) in TYPE2} number2[i1,i2] / card {PEOPLE};

param frac2loc {i2 in LOC} 
= sum {(i1,i2) in TYPE2} number2[i1,i2] / card {PEOPLE};

param expDine {j in REST} 
= if loFudge > 0 then loDine[j] else 

if hiFudge > 0 then hiDine[j] else (loDine[j] + hiDine[j]) / 2;

param loTargetTitle {i1 in TITLE, j in REST} := 
floor (round (frac2title[i1] * expDine[j], 6));

param hiTargetTitle {i1 in TITLE, j in REST} := 
ceil (round (frac2title[i1] * expDine[j], 6));

param loTargetLoc {i2 in LOC, j in REST} := 
floor (round (frac2loc[i2] * expDine[j], 6));

param hiTargetLoc {i2 in LOC, j in REST} := 
ceil (round (frac2loc[i2] * expDine[j], 6));

Breaking Up 2
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(variables, objective, assign constraints)

var Assign2 {TYPE2,REST} integer >= 0;

var Dev2Title {TITLE} >= 0;
var Dev2Loc {LOC} >= 0;

minimize Deviation:
sum {i1 in TITLE} Dev2Title[i1] + sum {i2 in LOC} Dev2Loc[i2];

subject to Assign2Type {(i1,i2) in TYPE2}:
sum {j in REST} Assign2[i1,i2,j] = number2[i1,i2];

subject to Assign2Rest {j in REST}:
loDine[j] - loFudge 

<= sum {(i1,i2) in TYPE2} Assign2[i1,i2,j] 
<= hiDine[j] + hiFudge;

22

Breaking Up 2
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(constraints to define “variation”)

subject to Lo2TitleDefn {i1 in TITLE, j in REST}:
Dev2Title[i1] >= 

loTargetTitle[i1,j] - sum {(i1,i2) in TYPE2} Assign2[i1,i2,j];

subject to Hi2TitleDefn {i1 in TITLE, j in REST}:
Dev2Title[i1] >= 

sum {(i1,i2) in TYPE2} Assign2[i1,i2,j] - hiTargetTitle[i1,j];

subject to Lo2LocDefn {i2 in LOC, j in REST}:
Dev2Loc[i2] >= 

loTargetLoc[i2,j] - sum {(i1,i2) in TYPE2} Assign2[i1,i2,j];

subject to Hi2LocDefn {i2 in LOC, j in REST}:
Dev2Loc[i2] >= 

sum {(i1,i2) in TYPE2} Assign2[i1,i2,j] - hiTargetLoc[i2,j];

23

Breaking Up 2
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(parameters for ruling out “isolation”)

set ADJACENT {i1 in TITLE} = 
(if i1 <> first(TITLE) then {prev(i1)} else {}) union
(if i1 <> last(TITLE) then {next(i1)} else {});

set ISO = {(i1,i2) in TYPE2: (i2 <> "Unknown") and
((number2[i1,i2] >= 2) or 
(number2[i1,i2] = 1 and

sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} 
number2[ii1,i2] > 0)) };

param give {ISO} default 2;
param giveTitle {TITLE} default 2;
param giveLoc {LOC} default 2;

param upperbnd {(i1,i2) in ISO, j in REST} =
min (ceil((number2[i1,i2]/card {PEOPLE}) * hiDine[j]) + give[i1,i2],

hiTargetTitle[i1,j] + giveTitle[i1],
hiTargetLoc[i2,j] + giveLoc[i2],
number2[i1,i2]);

24

Breaking Up 2
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(constraints to rule out “isolation”)

var Lone {(i1,i2) in ISO, j in REST} binary;

subj to Isolation1 {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] <= upperbnd[i1,i2,j] * Lone[i1,i2,j];

subj to Isolation2a {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] +

sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j] 
>= 2 * Lone[i1,i2,j];

subj to Isolation2b {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] >= Lone[i1,i2,j];

25

Breaking Up 2
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Success

First problem
 using OSL: 128 “supernodes”, 6.7 hours
 using CPLEX 2.1: took too long

Second problem
 using CPLEX 2.1: 864 nodes, 3.6 hours
 using OSL: 853 nodes, 4.3 hours

Finish
 Refine to individual assignments: a trivial LP
 Make table of assignments using AMPL printf command
 Ship table to client, who imports to database

Breaking Up 2
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Solver Improvements

CPLEX 3.0
 First problem: 1200 nodes, 1.1 hours
 Second problem: 1021 nodes, 1.3 hours

CPLEX 4.0
 First problem: 517 nodes, 5.4 minutes
 Second problem: 1021 nodes, 21.8 minutes

CPLEX 9.0
 First problem: 560 nodes, 83.1 seconds
 Second problem: 0 nodes, 17.9 seconds

Breaking Up 2
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Solver Improvements

CPLEX 12.1
 First problem: 0 nodes, 9.5 seconds
 Second problem: 0 nodes, 1.5 seconds

Gurobi 2.0
 First problem: 0 nodes, 13.5 seconds
 Second problem: 0 nodes, 1.6 seconds

Breaking Up 2
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Progressive Party Assignment

Setting
 yacht club holding a party
 each boat has a certain crew size & guest capacity 

Decisions
 choose a minimal number yachts as “hosts”
 assign each non-host crew to visit a host yacht
 . . . in each of 6 periods

Requirements
 no yacht’s capacity is exceeded
 no crew visits the same yacht more than once
 no two crews meet more than once

Breaking Up 3
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Progressive Party Problem

Parameters & variables

param B > 0, integer;
set BOATS := 1 .. B;

param capacity {BOATS} integer >= 0;
param crew {BOATS} integer > 0;
param guest_cap {i in BOATS} := capacity[i] less crew[i];

param T > 0, integer;
set TIMES := 1..T;

var Host {i in BOATS} binary;       # i is a host boat

var Visit {i in BOATS, j in BOATS, t in TIMES: i <> j} binary;   

# crew of j visits party on i at t

var Meet {i in BOATS, j in BOATS, t in TIMES: i < j} >= 0, <= 1;       

# crews of i and j meet at t

Breaking Up 3

Erwin Kalvelagen, On Solving the Progressive Party Problem as a MIP. 
Computers & Operations Research 30 (2003) 1713-1726.
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Progressive Party Problem

Host objective and constraints

minimize TotalHosts: sum {i in BOATS} Host[i];

# minimize total host boats

set MUST_BE_HOST within BOATS;

subj to MustBeHost {i in MUST_BE_HOST}: Host[i] = 1;

# some boats are designated host boats

set MUST_BE_GUEST within BOATS;

subj to MustBeGuest {i in MUST_BE_GUEST}: Host[i] = 0;

# some boats (the virtual boats) are designated guest boats

param mincrew := min {j in BOATS} crew[j];

subj to NeverHost {i in BOATS: guest_cap[i] < mincrew}: Host[i] = 0;

# boats with very limited guest capacity can never be hosts

Breaking Up 3
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Progressive Party Problem

Visit constraints

subj to PartyHost {i in BOATS, j in BOATS, t in TIMES: i <> j}:

Visit[i,j,t] <= Host[i];       

# parties must occur on host boats 

subj to Cap {i in BOATS, t in TIMES}:

sum {j in BOATS: j <> i} crew[j] * Visit[i,j,t] <= guest_cap[i] * Host[i];

# boats may not have more visitors than they can handle

subj to CrewHost {j in BOATS, t in TIMES}:

Host[j] + sum {i in BOATS: i <> j} Visit[i,j,t] = 1;

# every crew is either hosting or visiting a party

subj to VisitOnce {i in BOATS, j in BOATS: i <> j}:

sum {t in TIMES} Visit[i,j,t] <= Host[i];

# a crew may visit a host at most once

Breaking Up 3
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Progressive Party Problem

Meeting constraints

subj to Link {i in BOATS, 

j in BOATS, jj in BOATS, t in TIMES: i <> j and i <> jj and j < jj}:

Meet[j,jj,t] >= Visit[i,j,t] + Visit[i,jj,t] - 1;

# meetings occur when two crews are on same host at same time

subj to MeetOnce {j in BOATS, jj in BOATS: j < jj}:

sum {t in TIMES} Meet[j,jj,t] <= 1;

# two crews may meet at most once

Breaking Up 3
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Progressive Party Problem

Data

param B := 42;
param T := 6;

param:  capacity  crew :=
1        6      2
2        8      2
3       12      2
4       12      2
5       12      4
6       12      4
7       12      4

……..

37        6      4
38        6      5
39        9      7
40        0      2
41        0      3
42        0      4 ;

set MUST_BE_HOST := 1  2  3 ;
set MUST_BE_GUEST := 40  41  42 ;

Breaking Up 3
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ampl: solve;

Presolve eliminates 88078 constraints and 2892 variables.
Adjusted problem:
12648 variables:

7482 binary variables
5166 linear variables

131990 constraints, all linear; 410546 nonzeros
1 linear objective; 36 no

MIP Presolve eliminated 14317 rows and 721 columns.
MIP Presolve modified 6762 coefficients.
Reduced MIP has 117674 rows, 11928 columns, and 374126 nonzeros.
Reduced MIP has 7482 binaries, 0 generals, 0 SOSs, and 0 indicators.
Probing time =    0.03 sec.

MIP Presolve eliminated 978 rows and 0 columns.
MIP Presolve modified 1956 coefficients.
Reduced MIP has 116696 rows, 11928 columns, and 371192 nonzeros.
Reduced MIP has 7482 binaries, 0 generals, 0 SOSs, and 0 indicators.
Probing time =    0.03 sec.

Clique table members: 7283.
MIP emphasis: integer feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 8 threads.
Root relaxation solution time =    6.47 sec. nzeros.

Direct Approach
Breaking Up 3
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Nodes                                         Cuts/
Node  Left     Objective  IInf  Best Integer     Best Node    ItCnt     Gap

0     0       12.2000   484                     12.2000     6212         
0     0       12.2000   312                   Cuts: 279     9730         
0     0       12.2000   332                   Cuts: 643    13688         
0     0       12.2000   256                   Cuts: 107    16645         
0     2       12.2000   150                     12.2000    16645         

40    42       12.2222   280                     12.2000   173207         
80    82       12.3333   253                     12.2000   221027         
120   122       13.0000   285                     12.2000   256891         
160   162       13.0000   216                     12.2000   295682         

*   192+  192                           14.0000       12.2000   334618   12.86%
200   202       13.0000   167       14.0000       12.2000   343192   12.86%
240   242       13.0000   165       14.0000       12.2000   366033   12.86%
280   282       13.0000   274       14.0000       12.2000   379204   12.86%
320   322       13.0000    69       14.0000       12.2000   393411   12.86%
360   362       13.0000    65       14.0000       12.2000   404419   12.86%

*   367+  316                           13.0000       12.2000   406283    6.15%
380   330       13.0000   147       13.0000       12.2000   410635    6.15%
400   350       13.0000     8       13.0000       12.2000   415294    6.15%

. . . . . . .

Direct Approach(branching)
Breaking Up 3
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Clique cuts applied:  9
Cover cuts applied:  263
Implied bound cuts applied:  56
Zero-half cuts applied:  15

Root node processing (before b&c):
Real time             =  234.06

Parallel b&c, 8 threads:
Real time             =  377.09
Sync time (average)   =   38.18
Wait time (average)   =  168.18

-------
Total (root+branch&cut) =  611.15 sec.

Times (seconds):
Input =  0.156
Solve =  611.963
Output = 0.125

CPLEX 12.2.0.0: optimal integer solution; objective 13
418678 MIP simplex iterations
420 branch-and-bound nodes

Direct Approach(results)
Breaking Up 3

. . . results highly variable across settings and solvers
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Multi-Step Approach

Determine hosts
 solve 1-period problem
 fix hosts
 fix 1st-period visits

Determine visits: for t = 2, 3, . . .
 solve tth-period problem
 fix tth period visits

. . . hosts & previous t−1 periods already fixed

Breaking Up 3
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model partyKA.mod;
data partyKA.dat;

option solver cplexamp;
option cplex_options 'branch 1 startalg 1 subalg 1 mipemphasis 1 timing 1';

option show_stats 1;

# -------

let T := 1;

repeat {

solve;

if T = 1 then fix Host;

if solve_result = "solved" then {
let T := T + 1;
fix {i in BOATS, j in BOATS: i <> j} Visit[i,j,T-1];

}
else break;

};

Multi-Step Script
Breaking Up 3
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ampl: include partyKB.run 

Reduced MIP has 983 rows, 1272 columns, and 4364 nonzeros.
Reduced MIP has 1272 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve =  0.249

CPLEX 12.2.0.0: optimal integer solution; objective 13
189 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 169 rows, 342 columns, and 997 nonzeros.
Reduced MIP has 342 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve =  0.063

CPLEX 12.2.0.0: optimal integer solution; objective 13
76 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 258 rows, 313 columns, and 1162 nonzeros.
Reduced MIP has 313 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve =  0.062

CPLEX 12.2.0.0: optimal integer solution; objective 13
77 MIP simplex iterations
0 branch-and-bound nodes

Multi-Step Run (periods 1 to 3)
Breaking Up 3
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Reduced MIP has 319 rows, 284 columns, and 1284 nonzeros.
Reduced MIP has 284 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve =  0.093

CPLEX 12.2.0.0: optimal integer solution; objective 13
64 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 328 rows, 255 columns, and 1289 nonzeros.
Reduced MIP has 255 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve =  0.047

CPLEX 12.2.0.0: optimal integer solution; objective 13
65 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 327 rows, 226 columns, and 1264 nonzeros.
Reduced MIP has 226 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve =  0.031

CPLEX 12.2.0.0: optimal integer solution; objective 13
58 MIP simplex iterations
0 branch-and-bound nodes

Multi-Step Run (periods 4 to 6)
Breaking Up 3



Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010

Reduced MIP has 281 rows, 197 columns, and 1103 nonzeros.
Reduced MIP has 197 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve =  0.094

CPLEX 12.2.0.0: optimal integer solution; objective 13
69 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 232 rows, 168 columns, and 914 nonzeros.
Reduced MIP has 168 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve =  0.094

CPLEX 12.2.0.0: optimal integer solution; objective 13
126 MIP simplex iterations
0 branch-and-bound nodes

Reduced MIP has 174 rows, 133 columns, and 672 nonzeros.
Reduced MIP has 133 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve =  0.187

CPLEX 12.2.0.0: optimal integer solution; objective 13
2009 MIP simplex iterations
50 branch-and-bound nodes

Multi-Step Run (periods 7 to 9)
Breaking Up 3
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Reduced MIP has 120 rows, 102 columns, and 469 nonzeros.
Reduced MIP has 102 binaries, 0 generals, 0 SOSs, and 0 indicators.

Solve =  0.062

CPLEX 12.2.0.0: integer infeasible.
75 MIP simplex iterations
0 branch-and-bound nodes

Multi-Step Run (no period 10)
Breaking Up 3
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Paint Chip Cutting

Produce paint chips from rolls of material
 Several “groups” (types) of chips
 Various numbers of “colors” per group
 Numerous “patterns” of groups on rolls

Costs proportional to numbers of
 Patterns cut
 Pattern changes
 Width changes

Cutting Off 1
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Chip Cutting

Model (variables & objective)

var Cut {1..nPats} > = 0, integer;     # number of each pattern cut

var PatternChange {1..nPats} binary;   # 1 iff a pattern is used

var WebChange {WIDTHS} binary;         # 1 iff a width is used 

minimize Total_Cost: 

sum {j in 1..nPats} cut_cost[j] * Cut[j] +

pattern_changeover_factor *

sum {j in 1..nPats} change_cost[j] * PatternChange[j] +

web_change_factor *

sum {w in WIDTHS} (coat_change_cost + slit_change_cost) WebChange[w];

Cutting Off 1
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Chip Cutting

Model (constraints)

subject to SatisfyDemand {g in GROUPS}: 

sum {j in 1..nPats} number_of[g,j] * Cut[j] >= ncolors[g];

subject to DefinePatternChange {j in 1..nPats}:

Cut[j] <= maxuse[j] * PatternChange[j];

subject to DefineWebChange {j in 1..nPats}:

PatternChange[j] <= WebChange[width[j]];

Cutting Off 1

param maxuse {j in 1..nPats} := 

max {g in GROUPS: number_of[g,j] > 0} ncolors[g] / number_of[g,j]; 

# upper limit on Cut[j]

. . . very long solve times
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Chip Cutting

Model (restricted)

subject to DefinePatternChange {j in 1..nPats}:

Cut[j] <= maxuse[j] * PatternChange[j];

subject to MinPatternUse {j in 1..nPats}:

Cut[j] >= ceil(minuse[j]) * PatternChange[j];

Cutting Off 1

param minuse {j in 1..nPats} := 

min {g in GROUPS: number_of[g,j] > 0} ncolors[g] / number_of[g,j]; 

# if you use a pattern at all,
# use it to cut all colors of at least one group

. . . not necessarily optimal, but . . .
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Chip Cutting

Sample data

param: GROUPS: ncolors slitwidth cutoff  paint    finish     substrate :=

grp1    8       3.8125    1.75    latex    flat       P40
grp2    3       3.9375    1.75    latex    flat       P40
grp3    32      1.6875    1.00    latex    flat       P40
grp4    4       1.8125    1.00    latex    flat       P40
grp5    3       1.75      1.00    latex    flat       P40
grp6    2       1.75      1.00    latex    semi_gloss P40
grp7    3       1.875     1.00    latex    flat       P40
grp8    1       1.875     1.00    latex    gloss      P40  ;

param orderqty := 588500;

param spoilage_factor := .15;

Cutting Off 1
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Results

Without restriction
 1812 rows, 1807 columns, 5976 nonzeros
 7,115,951 simplex iterations
 221,368 branch-and-bound nodes
 14,620.4 seconds

With restriction
 2402 rows, 1656 columns, 7091 nonzeros
 230,667 simplex iterations
 9,892 branch-and-bound nodes
 501.55 seconds

Objective value
 Same in both cases

Cutting Off 1
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Results (today)

Without restriction
 1724 rows, 1719 columns, 5800 nonzeros
 49,831 simplex iterations
 3,157 branch-and-bound nodes
 4.867 seconds

With restriction
 2344 rows, 1598 columns, 6982 nonzeros
 21,598 simplex iterations
 568 branch-and-bound nodes
 2.872 seconds

(Gurobi 1.1.3, 8 processors)

Cutting Off 1
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Results (today, harder case)

Without restriction
 4019 rows, 4009 columns, 15198 nonzeros
 60,122 simplex iterations
 1,955 branch-and-bound nodes
 20.626 seconds

With restriction
 5667 rows, 4394 columns, 18464 nonzeros
 14,468 simplex iterations
 150 branch-and-bound nodes
 5.464 seconds

(Gurobi 1.1.3, 8 processors)

Cutting Off 1
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Balanced Team Assignment

Same idea, different formulation
 Class example of where branch-and-bound fails

 steadily growing tree
 terrible initial lower bound
 gap scarcely grows

Partition people into groups
 diversity measured by several characteristics
 each characteristic has several values

Make groups as diverse as possible
 count “overlaps” for each person in their assigned group

 for each other in group, count # of matching characteristics
 sum over all others in group

 minimize sum of overlaps

Cutting Off 2
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Balanced Assignment

Test data
 26 people
 4 characteristics (4, 4, 4, 2 values)
 5 groups

Cutting Off 2

CPLEX 11.2.0: 

Reduced MIP has 161 rows, 265 columns, and 3725 nonzeros.
Reduced MIP has 130 binaries, 0 generals, 0 SOSs, and 0 indicators.

Clique table members: 26.

MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.

Parallel mode: none, using 1 thread.

Root relaxation solution time =   -0.00 sec.
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Balanced Assignment

Active start . . .

Nodes                                         Cuts/
Node  Left     Objective  IInf  Best Integer     Best Node    ItCnt     Gap

0     0        0.0000    61                      0.0000       99         
*     0+    0                          232.0000        0.0000       99  100.00%

0     0        0.0000    60      232.0000      Cuts: 55      174  100.00%
0     0        0.0000    66      232.0000  Flowcuts: 17      250  100.00%
0     0        0.0000    58      232.0000   Flowcuts: 9      300  100.00%
0     0        0.0000    57      232.0000  Flowcuts: 13      326  100.00%

*     0+    0                          230.0000        0.0000      326  100.00%
*     0+    0                          216.0000        0.0000      326  100.00%

0     2        0.0000    57      216.0000        0.0000      326  100.00%
*   440+  403                          214.0000        0.0000     7938  100.00%
*   552+  339                          212.0000        0.0000    10797  100.00%

1000   556       69.9315    50      212.0000        0.0000    16491  100.00%
2000  1332       42.8547    47      212.0000        0.0000    25669  100.00%
3000  2276       81.6541    49      212.0000        5.0928    37332   97.60%
4000  3214       77.9166    49      212.0000        5.1140    47933   97.59%
5000  4160       71.0567    52      212.0000        6.4918    57582   96.94%
6000  5089       97.3040    47      212.0000        7.8042    66662   96.32%
7000  6021      158.4869    37      212.0000        9.3981    75348   95.57%
8000  6942      157.5392    36      212.0000       11.2257    84237   94.70%
.................

Cutting Off 2
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Balanced Assignment

. . . bogs down completely

Nodes                                     Cuts/
Node    Left  Objective  IInf  Best Integer    Best Node    ItCnt     Gap

.................

6244000 5769420    91.8882    46      212.0000      55.4261  37227229   73.86%
6245000 5770348   123.4752    34      212.0000      55.4272  37233744   73.86%
6246000 5771270    63.5603    48      212.0000      55.4289  37239584   73.85%
6247000 5772192   106.5663    43      212.0000      55.4294  37245120   73.85%
6248000 5773112    64.0217    47      212.0000      55.4308  37251128   73.85%
6249000 5774034   181.2576    31      212.0000      55.4310  37257940   73.85%
6250000 5774954   119.4546    35      212.0000      55.4320  37263877   73.85%

Elapsed time = 9116.25 sec. (tree size = 1616.65 MB)
Nodefile size = 1488.81 MB (685.88 MB after compression)

6251000 5775885   182.0327    29      212.0000      55.4328  37270210   73.85%
6252000 5776807   140.1960    39      212.0000      55.4330  37275647   73.85%
6253000 5777720    91.9423    43      212.0000      55.4346  37281516   73.85%
6254000 5778648   127.8185    35      212.0000      55.4355  37286884   73.85%

8 flow-cover cuts
2 Gomory cuts
1 zero-half cut
9 mixed-integer rounding cuts

CPLEX 11.2.0: ran out of memory.

Cutting Off 2



Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 56

Definition of overlap for person i

 maxOverlap[i] must be ≥ greatest overlap possible
 Smaller values give stronger b&b lower bounds

 theoretically correct:  4 * (maxInGrp-1) → 0.0

 empirically justified:  1 * (maxInGrp-1) → 156.8

Balanced Assignment

minimize TotalOverlap:

sum {i in PEOPLE} Overlap[i];

subj to OverlapDefn {i in PEOPLE, j in 1..numberGrps}:

Overlap[i] >= 

sum {i2 in PEOPLE diff {i}: title[i2] = title[i]} Assign[i2,j] +

sum {i2 in PEOPLE diff {i}: loc[i2] = loc[i]} Assign[i2,j] +

sum {i2 in PEOPLE diff {i}: dept[i2] = dept[i]} Assign[i2,j] +

sum {i2 in PEOPLE diff {i}: sex[i2] = sex[i]} Assign[i2,j]

- maxOverlap[i] * (1 - Assign[i,j]);

Cutting Off 2
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Group size limits

 minInGrp must be smaller than group size average
 maxInGrp must be larger than group size average

 Tighter limits give stronger b&b lower bounds
 floor(card(PEOPLE)/numberGrps) - 1 

ceil (card(PEOPLE)/numberGrps) + 1 → 156.8

 floor(card(PEOPLE)/numberGrps) 
ceil (card(PEOPLE)/numberGrps)     → 177.6

Balanced Assignment

subj to GroupSize {j in 1..numberGrps}:

minInGrp <= sum {i in PEOPLE} Assign[i,j] <= maxInGrp;

Cutting Off 2
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Group sizes

 Specify exact sizes of all groups
 Exact sizes give stronger b&b lower bounds

 min & max sizes for every g → 177.6

 exact sizes → 183.36

Balanced Assignment

param minInGrp := floor (card(PEOPLE)/numberGrps);

param nMinInGrp := numberGrps - card{PEOPLE} mod numberGrps;

subj to GroupSizeMin {j in 1..nMinInGrp}:

sum {i in PEOPLE} Assign[i,j] = minInGrp;

subj to GroupSizeMax {j in nMinInGrp+1..numberGrps}:

sum {i in PEOPLE} Assign[i,j] = minInGrp + 1;

Cutting Off 2
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Balanced Assignment

Incorporating enhancements . . .

ampl: model gs1f.mod;
ampl: data gs1b.dat;

ampl: option solver cplex;
ampl: option cplex_options ‘symmetry 5 mipdisplay 2 mipinterval 1000’;

ampl: solve;

MIP Presolve eliminated 54 rows and 0 columns.
MIP Presolve modified 2636 coefficients.
Reduced MIP has 197 rows, 156 columns, and 2585 nonzeros.
Reduced MIP has 130 binaries, 0 generals, 0 SOSs, and 0 indicators.
Clique table members: 62.

MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time =    0.03 sec.

Nodes                                         Cuts/
Node  Left     Objective  IInf  Best Integer     Best Node    ItCnt     Gap

*     0+    0                          252.0000                      0     ---
0     0      183.3626   134      252.0000      183.3626      262   27.24%

.......

Cutting Off 2
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Balanced Assignment

Much more promising start . . .

Nodes                                         Cuts/
Node  Left     Objective  IInf  Best Integer     Best Node    ItCnt     Gap

0     0      189.1865   100      252.0000      Cuts: 49      445   24.93%
0     0      189.7246    96      252.0000      Cuts: 12      558   24.71%

*     0+    0                          240.0000      189.7246      558   20.95%
0     0      189.7964    96      240.0000   ZeroHalf: 5      664   20.92%
0     0      189.8864    97      240.0000   ZeroHalf: 8      782   20.88%
0     0      189.9590    96      240.0000   ZeroHalf: 6     1002   20.85%
0     0      189.9768   100      240.0000   ZeroHalf: 7     1166   20.84%
0     0      189.9769    99      240.0000   ZeroHalf: 4     1184   20.84%

*     0+    0                          220.0000      189.9769     1203   13.65%
*     0+    0                          216.0000      189.9769     1203   12.05%

0     2      192.8299    78      216.0000      192.8299     1203   10.73%
*   100+   80                          212.0000      193.0563     6092    8.94%

1000   479      200.3732    83      212.0000      195.6130    36233    7.73%
2000  1242      205.1626    64      212.0000      195.9832    65307    7.56%
3000  2103      205.8520    59      212.0000      196.4174    93546    7.35%
4000  2946      205.5224    57      212.0000      196.8495   120479    7.15%
5000  3790      201.5651    53      212.0000      197.1664   145209    7.00%
6000  4624      210.5546    34      212.0000      197.4648   169658    6.86%
7000  5468      201.2841    60      212.0000      197.6005   195286    6.79%

.......

Cutting Off 2
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Balanced Assignment

. . . leads to successful conclusion

Nodes                                    Cuts/
Node    Left    Objective  IInf  Best Integer   Best Node     ItCnt    Gap

30287000   8802       cutoff            212.0000    211.0000 416705257   0.47%
30288000   7927       cutoff            212.0000    211.0000 416709767   0.47%
30289000   7021   infeasible            212.0000    211.0000 416714199   0.47%
30290000   6101   infeasible            212.0000    211.0000 416718973   0.47%

Elapsed time = 46415.00 sec. (tree size = 12.94 MB)

30291000   5249       cutoff            212.0000    211.0000 416724639   0.47%
30292000   4407   infeasible            212.0000    211.0000 416730198   0.47%
30293000   3519   infeasible            212.0000    211.0000 416735118   0.47%
30294000   2636       cutoff            212.0000    211.0000 416740781   0.47%
30295000   1758   infeasible            212.0000    211.0000 416746255   0.47%
30296000    863   infeasible            212.0000    211.0000 416748900   0.47%

3 cover cuts
8 implied bound cuts
23 mixed-integer rounding cuts
35 zero-half cuts
12 Gomory fractional cuts

CPLEX 11.2.0: optimal integer solution; objective 212
416751729 MIP simplex iterations
30296965 branch-and-bound nodes

Cutting Off 2
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Roll Cutting

Cut large “raw” rolls into smaller ones
 All raw rolls the same width
 Various smaller widths ordered
 Varying numbers of widths ordered

Minimize total raw rolls cut
 Solve the pattern-choice MIP using either of . . .

 patterns generated by the Gilmore-Gomory method 
(for solving the relaxation)

 all nondominated patterns

Throwing Out
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Roll Cutting

Cutting model

set WIDTHS;                               # set of widths to be cut
param orders {WIDTHS} > 0;                # number of each width to be cut

param nPAT integer >= 0;                  # number of patterns
param nbr {WIDTHS,1..nPAT} integer >= 0;  # rolls of width i in pattern j

var Cut {1..nPAT} integer >= 0;           # rolls cut using each pattern

minimize Number:

sum {j in 1..nPAT} Cut[j];             # total raw rolls cut

subject to Fill {i in WIDTHS}:

sum {j in 1..nPAT} nbr[i,j] * Cut[j] >= orders[i];

# for each width,
# rolls cut meet orders

Throwing Out
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Roll Cutting

Pattern generation model

param roll_width > 0; 
param price {WIDTHS} default 0.0;

var Use {WIDTHS} integer >= 0;

minimize Reduced_Cost:  

1 - sum {i in WIDTHS} price[i] * Use[i];

subj to Width_Limit:  

sum {i in WIDTHS} i * Use[i] <= roll_width;

Throwing Out



Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 65

Roll Cutting

Pattern generation script

repeat {

solve Cutting_Opt;

let {i in WIDTHS} price[i] := Fill[i].dual;

solve Pattern_Gen;

if Reduced_Cost < -0.00001 then {
let nPAT := nPAT + 1;
let {i in WIDTHS} nbr[i,nPAT] := Use[i];
}

else break;

};

Throwing Out



Robert Fourer, Approaches to Near-Optimally Solving Mixed-Integer Programs
Bixby Workshop, Erlangen, Germany— 26-28 September 2010 66

Roll Cutting

Pattern enumeration script

repeat {

if curr_sum + curr_width <= roll_width then {
let pattern[curr_width] := floor((roll_width-curr_sum)/curr_width);
let curr_sum := curr_sum + pattern[curr_width] * curr_width;
}

if curr_width != last(WIDTHS) then
let curr_width := next(curr_width,WIDTHS);

else {
let nPAT := nPAT + 1;
let {w in WIDTHS} nbr[w,nPAT] := pattern[w];
let curr_sum := curr_sum - pattern[last(WIDTHS)] * last(WIDTHS);
let pattern[last(WIDTHS)] := 0;
let curr_width := min {w in WIDTHS: pattern[w] > 0} w;
if curr_width < Infinity then {

let curr_sum := curr_sum - curr_width;
let pattern[curr_width] := pattern[curr_width] - 1;
let curr_width := next(curr_width,WIDTHS);
}

else break;
}

}

Throwing Out
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Roll Cutting

Sample data

param roll_width := 172 ;

param: WIDTHS: orders :=

25.000     5
24.750    73
18.000    14
17.500     4
15.500    23
15.375     5
13.875    29
12.500    87
12.250     9
12.000    31
10.250     6
10.125    14
10.000    43
8.750    15
8.500    21
7.750     5 ;

Throwing Out
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Roll Cutting

Patterns generated during optimization 
(Gilmore-Gomory procedure)

 32.80 rolls in continuous relaxation
 40 rolls rounded up to integer
 34 rolls solving IP using generated patterns

All patterns enumerated in advance
 27,338,021 non-dominated patterns — too big

Every 100th pattern saved
 273,380 patterns
 33 rolls solving IP using enumerated patterns
 50 seconds: b&b heuristic solves at root (no cuts)

. . . takes much longer to generate than solve

Throwing Out
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