
Recent & ForthcomingRecent & Forthcoming
Developments in AMPL

Robert Fourer*, David M. Gay**

AMPL Optimization LLC
www.ampl.com — +1 773-336-AMPL

* Industrial Eng & Management Sciences North estern Uni* Industrial Eng & Management Sciences, Northwestern Univ
** Computer Science, University of New Mexico

Modeling Languages in Mathematical Optimization
85th GOR working group, “Real World Mathematical Optimization”
B d H f G 18 19 N b 2010

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 1

Bad Honnef, Germany — 18-19 November 2010

Recent Developments in Model and Solver p
Support in the AMPL Modeling Language

We describe extensions that enable the AMPL modeling language to g g g
more naturally express certain discrete and stochastic optimization
problems. Only a modest number of straight- forward changes to the
language are necessitated by these extensions. However we have also
faced a range of challenges in conveying these extensions from
models to problem instances to varied solvers, in such a way that each
solver can take best advantage of the problem structure. To explain
h h ll d ib l AMPL l li k h hthese challenges we describe several AMPL-solver links that have

been implemented in the past year.

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 2

AMPL

Algebraic modeling language: symbolic data

set SHIFTS; # shifts

param Nsched; # number of schedules;
set SCHEDS = 1..Nsched; # set of schedules

t SHIFT LIST {SCHEDS} ithi SHIFTSset SHIFT_LIST {SCHEDS} within SHIFTS;

param rate {SCHEDS} >= 0; # pay rates
param required {SHIFTS} >= 0; # staffing requirements

param least assign >= 0; # min workers on any schedule usedparam least_assign >= 0; # min workers on any schedule used

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 3

AMPL

Algebraic modeling language: symbolic model

var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

minimize Total_Cost:
sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}:
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use1 {j in SCHEDS}:
least_assign * Use[j] <= Work[j];

subject to Least Use2 {j in SCHEDS}:j _ {j }
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 4

AMPL

Explicit data independent of symbolic model

set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
Mon3 Tue3 Wed3 Thu3 Fri3 ;

param Nsched := 126 ;

set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;set SHIFT_LIST[3] : Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ;

param required := Mon1 100 Mon2 78 Mon3 52 p q
Tue1 100 Tue2 78 Tue3 52
Wed1 100 Wed2 78 Wed3 52
Thu1 100 Thu2 78 Thu3 52
Fri1 100 Fri2 78 Fri3 52

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 5

Sat1 100 Sat2 78 ;

AMPL

Solver independent of model & data

ampl: model sched1.mod;
ampl: data sched.dat;

ampl: let least_assign := 7;

l ti l lampl: option solver cplex;
ampl: solve;

CPLEX 12.2.0.0: optimal integer solution; objective 266
419 MIP simplex iterations
39 branch-and-bound nodes

ampl: option omit_zero_rows 1, display_1col 0;
ampl: display Work;

Work [*] :=
3 7 18 9 37 7 66 7 82 16 112 23 124 15
6 21 20 7 41 9 72 13 91 20 118 29

16 13 29 7 53 13 78 20 94 9 122 21

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 6

;

AMPL

Language independent of solver

ampl: option solver gurobi;
ampl: solve;

Gurobi 4.0.0: optimal solution; objective 266
857 simplex iterations857 simplex iterations
29 branch-and-cut nodes

ampl: display Work;

Work [*] :=
1 21 21 36 52 7 89 29 94 7 109 16 124 36
3 7 37 29 71 13 91 16 95 13 116 36

;

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 7

Topics

The company
 People

p

p

 Business developments

The language
 Varied prospective enhancements

 More natural formulations

The solversThe solvers
 Conic programming

 Nontraditional alternatives

The system
 APIs & IDEs

AMPL i (i h l d)

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

 AMPL as a service (in the cloud)

8

The Company

Background
 AMPL at Bell Labs (1986)

p y

()

 AMPL commercialization (1993)

 AMPL Optimization LLC (2002)

lDevelopments
 People

 Business

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 9

People

Bob Fourer
 Founder & . . .

p

Dave Gay
 Founder & . . .

Bill Wells
 Director of business development

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 10

Business Developments

AMPL intellectual property
 Full rights acquired from Alcatel-Lucent USA

p

g q
 corporate parent of Bell Laboratories

 More flexible licensing terms available

CPLEX ith AMPLCPLEX with AMPL
 Sales transferred from IBM to AMPL Optimization

 Full lineup of licensing arrangements available

AMPL distributors
 New for Japan: October Sky Co., Ltd. →

h Others continue active
 Gurobi, Ziena
 MOSEK, TOMLAB
 OptiRisk

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

 OptiRisk

11

The Language

Background
 Power & convenience

g g

 Linear and nonlinear modeling
 Extensive indexing and set expressions

 Prototyping & deploymentyp g p y
 Integrated scripting language

 Business & research
 Major installations worldwide
 Hundreds of citations in scientific & engineering literature

Plans . . .

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 12

Plans
The Language

Further set operations
 Extract elements from a set

 arg min/arg max
 arbitrary selection from an unordered set

 Sort a set by parameter valuesy p

 Define “tuples” more generally

Enhanced scripting
 Faster loops

 Arguments to script functions

 Local definitions

More natural formulations . . .

Modeling of uncertainty . . .

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

Modeling of uncertainty . . .

13

More Natural Formulations

Motivation
 Common formulation confusions

Extensions already implemented

Extensions in progressExtensions in progress

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 14

Common Areas of Confusion
More Natural Formulations

Examples from my e-mail . . .
 I have been trying to write a stepwise function in AMPL but I

h b bl dhave not been able to do so:
fc[wh] = 100 if x[wh] <=5

300 if 6 <= x[wh] <=10

400 if 11 <= x[wh]

where fc and x are variables.

 I have a set of nonlinear equations to be solved, and variables
are binary. Even I have an xor operator in the equations. How

I i l t it d hi h l i it bl f it?can I implement it and which solver is suitable for it?

 I’m a recent IE grad with just one grad level IE course under
my belt. . . .

minimize Moves: sum{emp in GROUPA} p
(if Sqrt((XEmpA[emp] - XGrpA)^2 +

(YEmpA[emp] - YGrpA)^2) > Ra then 1 else 0)

Is there some documentation on when you can and cannot
use the if-then statements in AMPL (looked through the

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

g
related forum posts but still a bit confused on this)?

15

Common Areas of Confusion
More Natural Formulations

Examples from my e-mail (cont’d)
 I have a problem need to add a such kind of constraint:

Max[sum(Pi * Hi)]; i is from 1 to 24;

in which Pi are constant and Hi need to be optimized.
Bound is −180 <= Hi <= 270. One of the constraints is

sum(Ci) = 0: Ci = Hi if Hi > 0 and Ci = Hi/1 38 if Hi < 0sum(Ci) = 0: Ci = Hi if Hi > 0 and Ci = Hi/1.38 if Hi < 0

Is it possible to solve this kind of problem with lp_solve?
and how to setup the constraint?

 . . . is there a way to write a simple “or” statement in AMPL like y p
in Java or C++?

 I need to solve the following optimization problem:

Minimize − |x1| − |x2|
subject to

x1 − x2 = 3
Do you know how to transform it to standard linear program?

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 16

Currently Implemented
More Natural Formulations

Extension to mixed-integer solver
 CPLEX indicator constraints

y p

 Use[j] = 1 ==> Work[j] >= least_assign;

Translation to mixed-integer programs
 General variable domains

 var Work {j in SCHEDS} integer,
in {0} union interval[lo_assign, hi_assign];

 Separable piecewise-linear terms
 <<avail_min[t]; 0,time_penalty[t]>> Use[t]

Translation to general nonlinear programsTranslation to general nonlinear programs
 Complementarity conditions

 0 <= ct[cr,u] complements
ctcost[cr u] + cv[cr] >= p["C" u];

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

ctcost[cr,u] + cv[cr] >= p[C ,u];

17

Prospective Extensions
More Natural Formulations

Existing operators allowed on variables
 Nonsmooth terms

p

 Conditional expressions

New forms
 Operators on constraints

 Aggregate (“global”) operators

 Generalized indexing: variables in subscriptsg p

 New types of variables: object-valued, set-valued

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 18

Prospective Solution Strategies
More Natural Formulations

Recognize special cases
 Semi-continuous variables

p g

 Second-order cone constraints

Transform to standard problem types
 Mixed-integer linear

 Smooth nonlinear

Send to alternative solversSend to alternative solvers
 Constraint programming

 Global optimization

. . . more on all this in discussion of solvers

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 19

Logical Operators
More Natural Formulations

subj to NoConflict {i1 in JOBS i2 in JOBS: ord(i1) < ord(i2)}:

Flow shop scheduling

g p

subj to NoConflict {i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:

Start[i2] >= Start[i1] + setTime[i1,i2] or
Start[i1] >= Start[i2] + setTime[i2,i1];

subj to NoIso {(i1,i2) in TYPE, j in ROOM}:

not (Assign[i1,i2,j] = 1 and

Balanced assignment

ot (ss g [, ,j] a d
sum {ii1 in ADJ[i1]: (ii1,i2) in TYPE} Assign[ii1,i2,j] = 0);

Location-transportation

subj to Capacity {i in WHSE}:

if Build[i] = 1
then sum {j in CUST} Ship[i,j] <= cap[i]
else forall {j in CUST} Ship[i j] = 0;

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

else forall {j in CUST} Ship[i,j] = 0;

Counting Operators
More Natural Formulations

Transportation

g p

subj to MaxServe {i in ORIG}:

card {j in DEST: sum {p in PRD} Trans[i,j,p] > 0} <= mxsrv;

subj to MaxServe {i in ORIG}:

count {j in DEST} (sum {p in PRD} Trans[i,j,p] > 0) <= mxsrv;

subj to MaxServe {i in ORIG}:

atmost mxsrv {j in DEST} (sum {p in PRD} Trans[i,j,p] > 0);

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

“Structure” Operators
More Natural Formulations

bj O J bP M hi

Assignment

p

subj to OneJobPerMachine:

alldiff {j in JOBS} (MachineForJob[j]);

subj to CapacityOfMachine {k in MACHINES}:

numberof k {j in JOBS} (MachineForJob[j]) <= cap[k];

. . . argument in () may be a more general list

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

Variables in Subscripts
More Natural Formulations

i i i T t lC t

Assignment

p

minimize TotalCost:

sum {j in JOBS} cost[j,MachineForJob[j]];

Sequencing

minimize CostPlusPenalty:

sum {k in 1..nSlots} setupCost[JobForSlot[k-1],JobForSlot[k]] +

{j i 1 J b } d P [j] (d Ti [j] C lTi [j])

Sequencing

sum {j in 1..nJobs} duePen[j] * (dueTime[j] - ComplTime[j]);

subj to TimeNeeded {k in 0..nSlots-1}:

ComplTime[JobForSlot[k]] =p [[]]

min(dueTime[JobForSlot[k]],

ComplTime[JobForSlot[k+1]]
- setupTime[JobForSlot[k],JobForSlot[k+1]]

Ti [J bF Sl [k 1]])

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

- procTime[JobForSlot[k+1]]);

Object-Valued Variables
More Natural Formulations

Location

j

set CLIENTS;
set WHSES;

param srvCost {CLIENTS, WHSES} > 0;
param bdgCost > 0;param bdgCost > 0;

var Serve {CLIENTS} in WHSES;
var Open {WHSES} binary;

minimize TotalCost:minimize TotalCost:
sum {i in CLIENTS} srvCost[i,Serve[i]] +
bdgcost * sum {j in WHSES} Open[j];

subject to OpenDefn {i in CLIENTS}:
[[]]Open[Serve[i]] = 1;

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

Set-Valued Variables
More Natural Formulations

Crew scheduling

set SKILLset {SKILLS} within STAFF;

var CREWset {FLIGHTS} within STAFF;

.

subject to CrewSize {j in FLIGHTS}:

card (CREWset[j]) = nbCrew[j];

subject to SkillReq {i in SKILLS, j in FLIGHTS}:

card (SKILLset[i] inter CREWset[j]) >= nbSkills[i,j];

{ }subject to NonConsecutive {j in FLIGHTS}:

CREWset[j] inter CREWset[next(j)] = { };

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

Modeling of Uncertainty

Let distributions replace known values in models
 param demand {DEST} random ?

g y

p
 like data, except value is uncertain

 var demand {DEST} random ?
 handled internally like variablesy
 known as “random variables”

Handle algorithmically
C d i i i i l Convert to deterministic equivalent

 Send distributions to solvers

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 26

Definitions of Distributions
Modeling of Uncertainty

Assigned in the model

param avail mean >= 0;param avail_mean > 0;
param avail_var >= 0;

param supply {1..T} random
:= Normal (avail_mean, avail_var);

Assigned as data (with dependencies)

param mktbas {PROD} >= 0;p { } ;
param grow_min {PROD} >= 0;
param grow_max {PROD} >= 0;

var demand {PROD,1..T} random;

.......

let {p in PROD} demand[p,1] := mktbas[p];

let {p in PROD, t in 2..T} demand[p,t] :=

l d d[t 1] U if (i [] [])

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 27

else demand[p,t-1] + Uniform (grow_min[p], grow_max[p]);

New Functions
Modeling of Uncertainty

Of random variable rv
 Expected(rv)p

 Moment(rv,n), n = 1, 2, 3, . . .

 Percentile(rv,p), 0 ≤ p ≤ 100
 StdDev(rv) StdDev(rv)

 Variance(rv)

 Sample(rv)
 l l f ’ di ib i samples a value from rv’s distribution

Of a logical condition
 Probability(<condition>) Probability(<condition>)

 where <condition> is an equality or inequality

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 28

Use in Models
Modeling of Uncertainty

Objectives

param cost {ORIG DEST} random;param cost {ORIG,DEST} random;

var Ship {ORIG,DEST} >= 0;

minimize TotalCost:
Expected (sum {i in ORIG, j in DEST} cost[i,j] * Ship[i,j]);

Constraints

var demand {DEST} random;

var Ship {ORIG,DEST} >= 0;

subject to MeetDemand {j in DEST}:
Probability (sum {i in ORIG} Ship[i j] >= demand[j]) >= meetProb;Probability (sum {i in ORIG} Ship[i,j] >= demand[j]) >= meetProb;

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 29

Stages: What Happens When
Modeling of Uncertainty

Each decision variable is assigned to a stage
 Stage = event followed by decision

g pp

g y
 perhaps with first stage “event” known.

 Variable is split into separate copies,
one for each realization of its stageg
 but not of subsequent stages
 see SMPS format, myweb.dal.ca/gassmann/smps2.htm

Suffix stage indicates stage numberSuffix.stage indicates stage number
 In variable definition

 var Market {PROD, t in 1..T} suffix stage t;

I i t ft i bl d fi iti In assignment after variable definition
 var Market {PROD, 1..T};

...
let {p in PROD t in 1 T} Market[p t] stage := t;

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

let {p in PROD, t in 1..T} Market[p,t].stage := t;

30

Example
Modeling of Uncertainty

Stochastic diet model
 Buy in two stages

p

y g
 constrain budget in first stage
 suffer random price changes in second stage

 What to buy in first stage?y g

set T = 1 .. 2; # times (stages)

var Buy {FOOD, t in T} integer >= 0 suffix stage t;

subj to FoodBounds {j in FOOD}:
f_min[j] <= sum {t in T} Buy[j,t] <= f_max[j];

subj to InitialBudget:
{ } []sum {j in FOOD} Buy[j,1] <= init_budget;

subj to NutrientNeeds {i in NUTR}:
sum {j in FOOD, t in T} amt[i,j] * Buy[j,t] >= nutr_min[i];

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 31

Example (cont’d)
Modeling of Uncertainty

Random elements

p ()

param fall >= 0 <= 1;param fall > 0, < 1;
param rise >= 1;

var CostAdj {FOOD} random = Uniform(fall,rise);

minimize TotalCost:

sum {j in FOOD} cost[j] * Buy[j,1] +

Expected (sum {j in FOOD} cost[j] * CostAdj[j] * Buy[j,2]);

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 32

Implemented in Prototype
Modeling of Uncertainty

Most details of random-variable handling
 Declarations

p yp

 Assignments of distributions

 Assignments of constants

 Printing and sampling (in AMPL sessions) Printing and sampling (in AMPL sessions)

 Determining what the solver will see as linear

Writing problem (.nl) files with random distributionsg p () f

Suffix .stage and functions of distributions
 Implicit handling of nonanticipativity

 .nl file indicates which vars appear in which stage

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 33

Work in Progress
Modeling of Uncertainty

Program to write .nl file for deterministic equivalent

Sampling updates to solver interface library

g

Sampling updates to solver-interface library

Conversion routines
 Pose deterministic equivalents Pose deterministic equivalents

 for example, stratified sampling such as Latin hypercube
 options set in AMPL would control sampling & discretization

 Write SMPS format Write SMPS format

Solver drivers
 MSLiP (Gassmann)

Bound computations to support importance sampling

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 34

The Solvers

Communication while solver is active
 Speed up multiple solvesp p p

 Support callbacks

Conic programming
 Barrier solvers available

 Stronger modeling support needed

Nontraditional alternativesNontraditional alternatives
 Global optimization

 Constraint programming

 Varied hybrids

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 35

Conic Programming

Simple convex quadratic constraints
 Ball:

g g

bxx n ≤++ 22
1 a :

 Cone:

 Cone:

n1

0,222
1 ≥≤++ yyxx n

0,0,22
1 ≥≥≤++ zyyzxx n

. . . variables can be generalized to linear terms

Similarities
 Describe by lists of coefficients Describe by lists of coefficients

 Solve by extensions of LP barrier methods; extend to MIP

DifferencesDifferences
 Quadratic part not positive semi-definite

 Nonnegativity is essential

bl b d d h

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

 Many convex problems can be reduced to these . . .

36

Equivalent Problems: Minimize
Conic Programming

Sums of . . .
 norms & squared norms

q

norms & squared norms

 norms / linear terms

Max of . . .
 norms

 logarithmic Chebychev terms

)log()log(max bxa

Product of . . .
 negative powers

)log()log(max iii bxa −

egat e po e s



 minus positive powers
d t i bi ti

0 rationalfor)(>+∏ − αα
i ii

ibxa

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010

. . . and certain sum-max combinations

37

Equivalent Problems: Subject to
Conic Programming

Similar expressions involving
 norms & squared norms

q j

norms & squared norms

 norms / linear terms

 negative & minus positive powers

 minus positive powers

. . . thesis project with Jared Erickson

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 38

Modeling SOCPs
Conic Programming

Current situation
 each solver recognizes some elementary forms

g

each solver recognizes some elementary forms

 modeler must convert to these forms

Goal
 recognize many equivalent forms

 automatically convert to a canonical form

 f th t f h l further convert as necessary for each solver

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 39

Example: Sum of Norms
Conic Programming

p

param p integer > 0;
param m {1..p} integer > 0;
param n integer > 0;

param F {i in 1..p, 1..m[i], 1..n};
param g {i in 1..p, 1..m[i]};

param p := 2 ;
param m := 1 5 2 4 ;
param n := 3 ;

param g (tr): 1 2 :=
1 12 2
2 7 11
3 7 1
4 8 0
5 4 . ;

param F :=

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 40

param F := ...

Example: Original Formulation
Conic Programming

p g

var x {1..n};

minimize SumOfNorms:minimize SumOfNorms:
sum {i in 1..p} sqrt(

sum {k in 1..m[i]} (sum {j in 1..n} F[i,k,j] * x[j] + g[i,k])^2);

3 variables, all nonlinear
0 constraints
1 nonlinear objective; 3 nonzeros.

CPLEX 12.2.0.0: at12228.nl contains a nonlinear objective.

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 41

Example: Converted to Quadratic
Conic Programming

p Q

var x {1..n};
var Max {1..p};

minimize SumOfNorms: sum {i in 1..p} Max[i];

subj to MaxDefinition {i in 1..p}:
Max[i]^2 >=

{ []} ({ } [] [] [])sum {k in 1..m[i]} (sum {j in 1..n} F[i,k,j] * x[j] + g[i,k])^2;

5 variables, all nonlinear5 variables, all nonlinear
2 constraints, all nonlinear; 8 nonzeros
1 linear objective; 2 nonzeros.

CPLEX 12.2.0.0: QP Hessian is not positive semi-definite.

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 42

Example: Simpler Quadratic
Conic Programming

p p Q

var x {1..n};
var Max {1..p} >= 0;
var Fxplusg {i in 1..p, 1..m[i]};

minimize SumOfNorms: sum {i in 1..p} Max[i];

subj to MaxDefinition {i in 1..p}:
[] { []} []Max[i]^2 >= sum {k in 1..m[i]} Fxplusg[i,k]^2;

subj to FxplusgDefinition {i in 1..p, k in 1..m[i]}:
Fxplusg[i,k] = sum {j in 1..n} F[i,k,j] * x[j] + g[i,k];

14 variables:
11 nonlinear variables
3 linear variables3 linear variables

11 constraints; 41 nonzeros
2 nonlinear constraints
9 linear constraints

1 linear objective; 2 nonzeros.

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 43

j ;

CPLEX 12.2.0.0: primal optimal; objective 11.03323293; 11 barrier iters

Nontraditional Solvers

Global nonlinear
 BARON *

 LINDO Global *

 LGO

i iConstraint programming
 IBM ILOG CP

 ECLiPSe

 SCIP *

* combined with mixed integer combined with mixed-integer

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 44

Implementation Challenges
Nontraditional Solvers

Requirements
 Full description of functions

p g

p

 Hints to algorithm
 convexity, search strategy

V i bilitVariability
 Range of expressions recognized

 hence range of conversions needed

 Design of interface

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 45

The System

APIs & IDEs
 Current options

y

p

 Alternatives under consideration

AMPL in the cloud
 AMPL & solver software as a service

 Issues to be resolved

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 46

APIs (Programming Interfaces)

Current options
 AMPL scripting language

(g g)

p g g g

 put/get C interface

 OptiRisk Systems COM objects

l i d id iAlternatives under consideration
 multiplatform C interface

 object-oriented interfaces in C++, Java, Python, . . .j , , y ,

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 47

Scripting Languagep g g g

Programming extensions of AMPL syntax

for {i in WIDTHS} {for {i in WIDTHS} {
let nPAT := nPAT + 1;
let nbr[i,nPAT] := floor (roll_width/i);
let {i2 in WIDTHS: i2 <> i} nbr[i2,nPAT] := 0;

};

repeat {

solve Cutting_Opt;
let {i in WIDTHS} price[i] := Fill[i].dual;

solve Pattern_Gen;
printf "\n%7.2f%11.2e ", Number, Reduced_Cost;

if Reduced_Cost < -0.00001 then {
let nPAT := nPAT + 1;

{ } [] []let {i in WIDTHS} nbr[i,nPAT] := Use[i];
}
else break;

for {i in WIDTHS} printf "%3i", Use[i];
}

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 48

};

put/get C Interface

Send AMPL commands & receive output
 Ulong put(GetputInfo *g, char *s)

p g

 int get(GetputInfo *g, char **kind, char **msg, Ulong *len)

Limitations
L l l d i f Low-level unstructured interface

 Communication via strings

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 49

OptiRisk COM Objects

Object-oriented API
 Model management

p j

g

 Data handling

 Solving

i i iLimitations
 Windows only

 Older technologygy

 Built on put/get interface

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 50

API Development Directions

Multiplatform C interface
 Native to AMPL code

p

 Similar scope to COM objects

Object-oriented interfaces
 Built on C interface

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 51

IDEs (Development Environments)

Previous & current options
 AMPL Plus

(p)

 AMPL Studio

Alternatives under consideration
 Multiplatform graphical interface

 Spreadsheet interface

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 52

AMPL Plus

Menu-based GUI (1990s)
 Created by Compass Modeling Solutionsy p g

 Discontinued by ILOG

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 53

AMPL Studio

Menu-based GUI (2000s)
 Created by OptiRisk Systemsy p y

 Windows-based

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 54

IDE Development Directions

Multiplatform graphical interface
 Focused on command-line window

p

 Same rationale as MATLAB

 Implemented using new API

 Tools for debugging, scripting, option selection, . . . Tools for debugging, scripting, option selection, . . .

Spreadsheet interface
 Data in spreadsheet tables (like Excel solver)

 AMPL model in embedded application

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 55

AMPL in the Cloud

AMPL as a service
 Solvers included

 optional automated solver choice

 Charges per elapsed minute

 Latest versions available Latest versions available

Issues to be resolved
 Licensing arrangements with solvers

 Uploading & security of data

 Limitations of cloud services

Robert Fourer, David M. Gay, Recent & Forthcoming Developments in AMPL
85th GOR Working Group — Bad Honnef, 18-19 November 2010 56

