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Focus
 Simple nontraditional features already implemented
 Incorporation in the AMPL language
 Handling by solvers

Topics
 Networks
 Separable piecewise-linear terms
 Disconnected variable domains

 union of points
 union of points & intervals
 zero or interval

 Implications 
 indicator constraints
 piecewise-nonlinear terms
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Definition
 Minimize total cost of flows
 Subject to

 Flow balance at nodes
 Flow limits on arcs

Representations
 Algebraic variable-constraint

 define arc variables
 define node flow balances using variables

 Network node-arc
 define network nodes
 define arcs connecting the nodes

. . . arguably more natural
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Generic Model
Variable-constraint formulation

set CITIES;
set LINKS within (CITIES cross CITIES);

param supply {CITIES} >= 0;   # amounts available at cities
param demand {CITIES} >= 0;   # amounts required at cities

check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];

param cost {LINKS} >= 0;      # shipment costs/1000 packages
param capacity {LINKS} >= 0;  # max packages that can be shipped

var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j];
# packages to be shipped

minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];

subject to Balance {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k]

= demand[k] + sum {(k,j) in LINKS} Ship[k,j];

# supply plus total flow in equals
# demand plus total flow out

Network Flows
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Generic Model
Node-arc formulation

set CITIES;
set LINKS within (CITIES cross CITIES);

param supply {CITIES} >= 0;   # amounts available at cities
param demand {CITIES} >= 0;   # amounts required at cities

check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];

param cost {LINKS} >= 0;      # shipment costs/1000 packages
param capacity {LINKS} >= 0;  # max packages that can be shipped

minimize Total_Cost;

node Balance {k in CITIES}: net_in = demand[k] - supply[k];

arc Ship {(i,j) in LINKS} >= 0, <= capacity[i,j],
from Balance[i], to Balance[j], obj Total_Cost cost[i,j];

Network Flows
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AMPL Applications (1)
Product distribution (nodes)

minimize cost; 

node RT:  rtmin <= net_out <= rtmax;

# Source of all regular-time crews

node OT:  otmin <= net_out <= otmax; 

# Source of all overtime hours

node P_RT {fact};       # Sources of regular-time crews at factories
node P_OT {fact};       # Sources of overtime hours at factories

node M {prd,fact};      # Sources of manufacturing

node D {prd,dctr};      # Sources of distribution:

node W {p in prd, w in whse}:  net_in = dem[p,w]; 

# Locations of warehousing

Network Flows
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AMPL Applications (1)
Product distribution (arcs)

arc Work_RT {f in fact}
from RT  to P_RT[f]  >= rmin[f],  <= rmax[f]; 

# Regular-time crews allocated to each factory

arc Work_OT {f in fact}
from OT  to P_OT[f]  >= omin[f],  <= omax[f];

# Overtime hours allocated to each factory

arc Manu_RT {p in prd, f in fact: rpc[p,f] <> 0} >= 0
from P_RT[f]  to M[p,f] (dp[f] * hd[f] / pt[p,f])
obj cost (rpc[p,f] * dp[f] * hd[f] / pt[p,f]);

# Regular-time crews allocated to 
# manufacture of each product at each factory

arc Manu_OT {p in prd, f in fact: opc[p,f] <> 0} >= 0
from P_OT[f]  to M[p,f] (1 / pt[p,f])  obj cost (opc[p,f] / pt[p,f]);

# Overtime hours allocated to
# manufacture of each product at each factory

Network Flows
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AMPL Applications (1)
Product distribution (arcs)

arc Prod_L {p in prd, f in fact} >= 0
from M[p,f]  to W[p,f];

# Manufacture of each product at each factory
# to satisfy local demand, in 1000s of units

arc Prod_D {p in prd, f in fact} >= 0
from M[p,f]  to D[p,f]; \\[\Sa]

# Manufacture of each product at each factory,
# for distribution elsewhere, in 1000s of units

arc Ship {p in prd, (d,w) in rt} >= 0
from D[p,d]  to W[p,w]  obj cost (sc[d,w] * wt[p]);

# Shipments of each product on each allowed route

arc Trans {p in prd, d in dctr} >= 0
from W[p,d]  to D[p,d]  obj cost (tc[p]);

# Transshipments of each product at each
# distribution center

Network Flows
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AMPL Applications (2)
Train car allocation (nodes)

minimize cars;          # Number of cars in the system:
# sum of unused cars and cars in trains during
# the last time interval of the day

minimize miles;         # Total car-miles run by 
# all scheduled trains in a day

node N {cities,times};  # For every city and time:
# unused cars in present interval will equal
# unused cars in previous interval,
# plus cars just arriving in trains,
# minus cars just leaving in trains

Network Flows
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AMPL Applications (2)
Train car allocation (arcs)

arc U {c in cities, t in times} >= 0

from N[c,t]  to N[c,next(t)]

obj {if t = last} cars 1;

# U[c,t] is the number of unused cars stored
# at city c in the interval beginning at time t

arc X {(c1,t1,c2,t2) in schedule}

>= low[c1,t1,c2,t2]  <= high[c1,t1,c2,t2]

from N[c1,t1]  to N[c2,t2]

obj {if t2 < t1} cars 1
obj miles distance[c1,c2];

# X[c1,t1,c2,t2] is the number of cars assigned
# to the scheduled train that leaves c1 at t1
# and arrives in c2 at t2

Network Flows
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Equivalent linear program
 Generate variables & constraints
 Mark as network

 facilitate solution by specialied network simplex method

Extensions
 Multipliers

 gains or losses
 change of units

 Network embedded in larger model
 side constraints
 side variables

12

Conversion for Solver
Network Flows
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Conversion for Solver (cont’d)
Train car allocation (simplex solve)

ampl: model train2.mod;
ampl: data train2.dat;

ampl: option solver cplexamp;
ampl: solve;

Presolve eliminates 219 constraints and 1 variable.
Adjusted problem:
410 variables, all linear
192 constraints, all linear; 820 nonzeros
2 objectives, all linear; 235 nonzeros.

CPLEX 12.2.0.0: LP Presolve eliminated 0 rows and 50 columns.
Reduced LP has 85 rows, 253 columns, and 506 nonzeros.

optimal solution; objective 129
57 dual simplex iterations (0 in phase I)

Network Flows
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Conversion for Solver (cont’d)
Train car allocation (network simplex solve)

ampl: model train2.mod;
ampl: data train2.dat;

ampl: option solver cplexamp:
ampl: option cplex_options 'netopt 2';

ampl: solve;

Presolve eliminates 219 constraints and 1 variable.
Adjusted problem:
410 variables, all linear
192 constraints, all linear; 820 nonzeros
2 objectives, all linear; 235 nonzeros.

CPLEX 12.2.0.0: netopt 2
CPLEX 12.2.0.0: optimal solution; objective 129

Network extractor found 192 nodes and 410 arcs.
333 network simplex iterations.

Network Flows
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Definition
 Function of one variable
 Linear on intervals
 Continuous

Issues
 Describing the function

 choice of specification
 syntax in the modeling language

 Communicating the function to a solver
 direction description
 transformation to linear or linear-integer

15

Piecewise-Linear
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Possibilities
 List of breakpoints and either:

 change in slope at each breakpoint
 value of the function at each breakpoint

 List of slopes and either:
 distance between breakpoints bounding each slope
 value of intercept associated with each slope

 Lists of breakpoints and slopes

Also needed in some cases
 One particular breakpoint
 One particular slope
 Value at one particular point

16

Specification
Piecewise-Linear
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AMPL Specification: Examples
Piecewise-Linear

<<0; -1,1>> x[j]

<<-1,1,3,5; -5,-1,0,1.5,3>> x[j]

<<3,5; 0.25,1.00,0.50>> x[j]
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General forms
 <breakpoint-list; slope-list> variable

 Zero at zero
 Bounds on variable specified independently

 <breakpoint-list; slope-list> (variable, zero-point)
 Zero at zero-point

 <breakpoint-list; slope-list> variable + constant
 Has value constant at zero

Breakpoint & slope list forms
 Simple list

 <<lim1[i,j],lim2[i,j]; r1[i,j],r2[i,j],r3[i,j]>>

 Indexed list
 << {k in 1..nlim[i,j]} lim[i,j,k]; 

{k in 1..nlim[i,j]+1} r[i,j,k]>>

18

AMPL Specification: Syntax
Piecewise-Linear
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AMPL Applications (1)
Design of a planar structure

var Force {bars};   # Forces on bars:
# positive in tension, negative in compression

minimize TotalWeight:  (density / yield_stress) *

sum {(i,j) in bars} length[i,j] * <<0; -1,+1>> Force[i,j];

# Weight is proportional to length
# times absolute value of force

subject to Xbal {k in joints: k <> fixed}:

sum {(i,k) in bars} xcos[i,k] * Force[i,k]
- sum {(k,j) in bars} xcos[k,j] * Force[k,j] = xload[k];

subject to Ybal {k in joints: k <> fixed and k <> rolling}:

sum {(i,k) in bars} ycos[i,k] * Force[i,k]
- sum {(k,j) in bars} ycos[k,j] * Force[k,j] = yload[k];

# Forces balance in
# horizontal and vertical directions

Piecewise-Linear
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AMPL Applications (2)
Data fitting for credit scoring

var Wt_const;             # Constant term in computing all scores

var Wt {j in factors} >= if wttyp[j] = 'pos' then 0 else -Infinity
<= if wttyp[j] = 'neg' then 0 else +Infinity;

# Weights on the factors

var Sc {i in people};     # Scores for the individuals

minimize Penalty:         # Sum of penalties for all individuals

Gratio * sum {i in Good} << {k in 1..Gpce-1} if Gbktyp[k] = 'A' 

then Gbkfac[k]*app_amt 

else Gbkfac[k]*bal_amt[i];

{k in 1..Gpce} Gslope[k] >> Sc[i] +

Bratio * sum {i in Bad}  << {k in 1..Bpce-1} if Bbktyp[k] = 'A'

then Bbkfac[k]*app_amt

else Bbkfac[k]*bal_amt[i];

{k in 1..Bpce} Bslope[k] >> Sc[i];

Piecewise-Linear
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Conversion for Solver: Example

Transportation costs

param rate1 {i in ORIG, j in DEST} >= 0;
param rate2 {i in ORIG, j in DEST} >= rate1[i,j];
param rate3 {i in ORIG, j in DEST} >= rate2[i,j];

param limit1 {i in ORIG, j in DEST} >= 0;
param limit2 {i in ORIG, j in DEST} >= limit1[i,j];

var Trans {ORIG,DEST} >= 0;

minimize Total_Cost:

sum {i in ORIG, j in DEST} 
<<limit1[i,j], limit2[i,j]; 

rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];

Piecewise-Linear
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Minimizing Convex Costs
Equivalent linear program

ampl: model trpl2.mod; data trpl.dat; solve;

Substitution eliminates 15 variables.
21 piecewise-linear terms replaced by 35 variables and 15 constraints.

Adjusted problem:
41 variables, all linear
10 constraints, all linear; 82 nonzeros
1 linear objective; 41 nonzeros.

CPLEX 10.1.0: optimal solution; objective 199100
12 dual simplex iterations (0 in phase I)

ampl: display Trans;

:      DET   FRA   FRE   LAF   LAN   STL   WIN  :=

CLEV   500     0   200   500   500    500   400
GARY     0     0   900   300     0    200     0
PITT   700   900     0   200   100   1000     0 ;

Piecewise-Linear
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Minimizing Non-Convex Costs
Equivalent mixed-integer program

model trpl3.mod; data trpl.dat; solve;

Substitution eliminates 18 variables.
21 piecewise-linear terms replaced by 87 variables and 87 constraints.

Adjusted problem:
90 variables:

41 binary variables
49 linear variables

79 constraints, all linear; 251 nonzeros
1 linear objective; 49 nonzeros.

CPLEX 10.1.0: optimal integer solution; objective 256100
189 MIP simplex iterations
144 branch-and-bound nodes

ampl: display Trans;

:      DET    FRA   FRE    LAF    LAN   STL    WIN  :=

CLEV   1200     0      0   1000     0      0   400
GARY      0     0   1100      0   300      0     0
PITT      0   900      0      0   300   1700     0

Piecewise-Linear
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Minimizing Non-Convex Costs (cont’d)
. . . with SOS type 2 markers in output file

S0 87 sos
3 16
49 18
4 16
50 18  ...

S1 64 sos
10 19
11 18
12 18
14 35  ...

S4 46 sosref
3 -501
4  751
5 -501
6  500  ...

Piecewise-Linear
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Equivalent linear program if . . .
 Objective

 minimizes convex (increasing slopes) or
 maximizes concave (decreasing slopes)

 Constraints expressions
 convex and on the left-hand side of a ≤ constraint
 convex and on the right-hand side of a ≥ constraint
 concave and on the left-hand side of a ≥ constraint
 concave and on the right-hand side of a ≤ constraint

Equivalent mixed-integer program otherwise
 At least one binary variable per piece
 Enhanced branching in solver

 “special ordered sets of type 2”

25

Conversion for Solver: Principles
Piecewise-Linear
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Discrete Variable Domains
Continuous domain

var Buy {j in FOOD} >= 0;

Semi-continuous domain

var Buy {j in FOOD} in {0} union interval[30,40];

Discrete domain

var Buy {j in FOOD} in {1,2,5,10,20,50};

. . . many generalizations possible



Robert Fourer, Modeling & Solving Nontraditional Optimization Problems
Session 1b: Current Features— Chiang Mai, 4-5 January 2011 27

Semi-Continuous Domain
Continuous

CPLEX 10.1.0: optimal solution; objective 88.2
1 dual simplex iterations (0 in phase I)

ampl: display Buy;

BEEF  0        FISH  0         MCH 46.6667    SPG  0
CHK  0         HAM  0         MTL  0         TUR  0

Semi-Continuous

CPLEX 10.1.0: optimal integer solution; objective 116.4

65 MIP simplex iterations
27 branch-and-bound nodes

ampl: display Buy;

BEEF  0        FISH  0         MCH 30         SPG  0
CHK  0         HAM  0         MTL 30         TUR  0
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Semi-Continuous Domain (cont’d)
Converted to MIP with extra variables . . .

minimize Total_Cost:
95.7*(Buy[BEEF]+lambdaL) + 127.6*(Buy[BEEF]+lambdaU) + 
77.7*(Buy[CHK]+lambdaL) + 103.6*(Buy[CHK]+lambdaU) + 
68.7*(Buy[FISH]+lambdaL) + 91.6*(Buy[FISH]+lambdaU) + 
86.7*(Buy[HAM]+lambdaL) + 115.6*(Buy[HAM]+lambdaU) + 
56.7*(Buy[MCH]+lambdaL) + 75.6*(Buy[MCH]+lambdaU) + 
59.7*(Buy[MTL]+lambdaL) + 79.6*(Buy[MTL]+lambdaU) + 
59.7*(Buy[SPG]+lambdaL) + 79.6*(Buy[SPG]+lambdaU) + 
74.7*(Buy[TUR]+lambdaL) + 99.6*(Buy[TUR]+lambdaU);

subject to Diet['A']:
700 <= 1800*(Buy[BEEF]+lambdaL) + 2400*(Buy[BEEF]+lambdaU) + 
240*(Buy[CHK]+lambdaL) + 320*(Buy[CHK]+lambdaU) + 
240*(Buy[FISH]+lambdaL) + 320*(Buy[FISH]+lambdaU) + 
1200*(Buy[HAM]+lambdaL) + 1600*(Buy[HAM]+lambdaU) + 
450*(Buy[MCH]+lambdaL) + 600*(Buy[MCH]+lambdaU) + 
2100*(Buy[MTL]+lambdaL) + 2800*(Buy[MTL]+lambdaU) + 
750*(Buy[SPG]+lambdaL) + 1000*(Buy[SPG]+lambdaU) + 
1800*(Buy[TUR]+lambdaL) + 2400*(Buy[TUR]+lambdaU) <= 10000;  ...
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Semi-Continuous Domain (cont’d)
and extra constraints

subject to (Buy[BEEF]+ldef):
-(Buy[BEEF]+b) + (Buy[BEEF]+lambdaL) + (Buy[BEEF]+lambdaU) = 0;

subject to (Buy[CHK]+ldef):
-(Buy[CHK]+b) + (Buy[CHK]+lambdaL) + (Buy[CHK]+lambdaU) = 0;

subject to (Buy[FISH]+ldef):
-(Buy[FISH]+b) + (Buy[FISH]+lambdaL) + (Buy[FISH]+lambdaU) = 0;  ...

. . . with extra binary variables
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Discrete Domain
Continuous
CPLEX 10.1.0: optimal solution; objective 88.2
1 dual simplex iterations (0 in phase I)

ampl: display Buy;

BEEF  0        FISH  0         MCH 46.6667    SPG  0
CHK  0         HAM  0         MTL  0         TUR  0

Discrete

CPLEX 10.1.0: optimal integer solution; objective 95.49

47 MIP simplex iterations
8 branch-and-bound nodes

ampl: display Buy;

BEEF  1   FISH  1    MCH 10    SPG  5
CHK 20    HAM  1    MTL  2    TUR  1
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Discrete Domain (cont’d)
Converted to MIP with extra binary variables . . .

minimize Total_Cost:

3.19*(Buy[BEEF]+b)[0] + 6.38*(Buy[BEEF]+b)[1] + 
15.95*(Buy[BEEF]+b)[2] + 31.9*(Buy[BEEF]+b)[3] + 
63.8*(Buy[BEEF]+b)[4] + 159.5*(Buy[BEEF]+b)[5] + 
2.59*(Buy[CHK]+b)[0] + 5.18*(Buy[CHK]+b)[1] + 
12.95*(Buy[CHK]+b)[2] + 25.9*(Buy[CHK]+b)[3] + 
51.8*(Buy[CHK]+b)[4] + 129.5*(Buy[CHK]+b)[5] + ...

subject to Diet['A']:

700 <= 60*(Buy[BEEF]+b)[0] + 120*(Buy[BEEF]+b)[1] + 
300*(Buy[BEEF]+b)[2] + 600*(Buy[BEEF]+b)[3] + 
1200*(Buy[BEEF]+b)[4] + 3000*(Buy[BEEF]+b)[5] + 
8*(Buy[CHK]+b)[0] + 16*(Buy[CHK]+b)[1] + 40*(Buy[CHK]+b)[2] + 
80*(Buy[CHK]+b)[3] + 160*(Buy[CHK]+b)[4] + 400*(Buy[CHK]+b)[5] + ...
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Discrete Domain (cont’d)
and SOS type 1 constraints . . .

subject to (Buy[BEEF]+sos1):

(Buy[BEEF]+b)[0] + (Buy[BEEF]+b)[1] + (Buy[BEEF]+b)[2] + 
(Buy[BEEF]+b)[3] + (Buy[BEEF]+b)[4] + (Buy[BEEF]+b)[5] = 1;

subject to (Buy[CHK]+sos1):

(Buy[CHK]+b)[0] + (Buy[CHK]+b)[1] + (Buy[CHK]+b)[2] + 
(Buy[CHK]+b)[3] + (Buy[CHK]+b)[4] + (Buy[CHK]+b)[5] = 1;  ...
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Discrete Domain (cont’d)
with SOS type 1 markers in output file

S0 48 sos
0 20
1 20
2 20
3 20
4 20
5 20
6 36
7 36 ...

S4 48 sosref
0 1
1 2
2 5
3 10
4 20
5 50
6 1
7 2  ...
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General case
 Arbitrary union of points and intervals
 Auxiliary binary variable for each point or interval
 3 auxiliary constraints for each variable

Union of points
 Auxiliary binary variable for each point
 Auxiliary constraint for each variable
 Enhanced branching in solver

 “special ordered sets of type 1”

Zero union interval (semi-continuous)
 Auxiliary binary variable for each variable
 2 auxiliary constraints for each variable
 Enhanced branching in solver

34

Conversion for Solver: Principles
Discrete Domain
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General possibilities
 Conditional expression
 Conditional constraint
 Conditional command

AMPL syntax choices
 if condition then expr1 else expr2
 condition ==> constraint1 else constraint2

 also <== and <==>

 if condition then {commands} else {commands}

Currently supported forms
 Nonlinear if-then-else
 CPLEX indicator constraints

35

Implications
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Nonlinear if-then-else
More stable expression near zero

subject to logRel {j in 1..N}:

(if X[j] < -delta || X[j] > delta

then log(1+X[j]) / X[j] else 1 - X[j] / 2) <= logLim;

Implications
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CPLEX Indicator Constraints
Indicator constraints

 (binary variable = 0) implies constraint
 (binary variable = 1) implies constraint

. . . handled directly by solver

AMPL “implies” operator
 Use ==> for “implies”
 Also recognize an else clause
 Similarly define <== and <==>

 if-then-else expressions & statements as before

Implications
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Example 1
Multicommodity flow with fixed costs

set ORIG;   # origins
set DEST;   # destinations
set PROD;   # products

param supply {ORIG,PROD} >= 0;  # amounts available at origins
param demand {DEST,PROD} >= 0;  # amounts required at destinations
param limit {ORIG,DEST} >= 0;

param vcost {ORIG,DEST,PROD} >= 0; # variable shipment cost on routes
param fcost {ORIG,DEST} > 0;       # fixed cost on routes

var Trans {ORIG,DEST,PROD} >= 0;   # actual units to be shipped
var Use {ORIG, DEST} binary;       # = 1 iff link is used

minimize total_cost:
sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p]

+ sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];
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Example 1 (cont’d )
Conventional constraints

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = supply[i,p];

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p]; 

subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = supply[i,p];

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p]; 

subject to UseDefinition {i in ORIG, j in DEST, p in PROD}:
Trans[i,j,p] <= min(supply[i,p], demand[j,p]) * Use[i,j];
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Example 1 (cont’d )
User cuts

subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];

subject to UseDefinition {i in ORIG, j in DEST, p in PROD}:
Trans[i,j,p] <= min(supply[i,p], demand[j,p]) * Use[i,j];
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Example 1 (cont’d )
Indicator constraint formulations

subject to DefineUsedB {i in ORIG, j in DEST, p in PROD}:

Use[i,j] = 0 ==> Trans[i,j,p] = 0;

subject to DefineUsedC {i in ORIG, j in DEST}:

Use[i,j] = 0 ==> sum {p in PROD} Trans[i,j,p] = 0

else sum {p in PROD} Trans[i,j,p] <= limit[i,j];

subject to DefineUsedA {i in ORIG, j in DEST}:

Use[i,j] = 0 ==> sum {p in PROD} Trans[i,j,p] = 0;
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Example 1 (cont’d )
Results for 3 origins, 7 destinations, 3 products

cuts
iters  nodes   used

no cuts      374    79

all cuts 317    39

user cuts    295    42     18

indic A 355    77

indic B      406    56

indic C      277    57
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Example 2
Assignment to groups with “no one isolated”

var Lone {(i1,i2) in ISO, j in REST} binary;

param give {ISO} default 2;
param giveTitle {TITLE} default 2;
param giveLoc {LOC} default 2;

param upperbnd {(i1,i2) in ISO, j in REST} :=
min (ceil((number2[i1,i2]/card {PEOPLE}) * hiDine[j]) + give[i1,i2],

hiTargetTitle[i1,j] + giveTitle[i1],
hiTargetLoc[i2,j] + giveLoc[i2], number2[i1,i2]);

subj to Isolation1 {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] <= upperbnd[i1,i2,j] * Lone[i1,i2,j];

subj to Isolation2a {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] >= Lone[i1,i2,j];

subj to Isolation2b {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] +

sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j]
>= 2 * Lone[i1,i2,j];



Robert Fourer, Modeling & Solving Nontraditional Optimization Problems
Session 1b: Current Features— Chiang Mai, 4-5 January 2011

Example 2
Same using indicator constraints

var Lone {(i1,i2) in ISO, j in REST} binary;

subj to Isolation1 {(i1,i2) in ISO, j in REST}:
Lone[i1,i2,j] = 0 ==> Assign2[i1,i2,j] = 0;

subj to Isolation2b {(i1,i2) in ISO, j in REST}:
Lone[i1,i2,j] = 1 ==> Assign2[i1,i2,j] +

sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j] >= 2;
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Example 3
Workforce planning

var LayoffCost {m in MONTHS} >=0;

subj to LayoffCostDefn1 {m in MONTHS}:
LayoffCost[m]

<= snrLayOffWages * 31 * maxNbrSnrEmpl * (1 - NoShut[m]);

subj to LayoffCostDefn2a {m in MONTHS}:
LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl

<= maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];

subj to LayoffCostDefn2b {m in MONTHS}:
LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl 

>= -maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];
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Example 3
Same using indicator constraints

var LayoffCost {m in MONTHS} >=0;

subj to LayoffCostDefn1 {m in MONTHS}:
NoShut[m] = 1 ==> LayoffCost[m] = 0;

subj to LayoffCostDefn2 {m in MONTHS}:
NoShut[m] = 0 ==> LayoffCost[m] = 

snrLayoffWages * ShutdownDays[m] * maxNumberSnrEmpl;
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Example 4
Standard mixed-integer formulation

param least_assign >= 0;

var Work {SCHEDS} >= 0 integer;
var Use  {SCHEDS} >= 0 binary;

subject to Least_Use1 {j in SCHEDS}:
Work[j] >= least_assign * Use[j];

subject to Least_Use2 {j in SCHEDS}:
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
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Example 4 (cont’d )
Formulation using variable-domain specification

param least_assign >= 0;

var Work {j in SCHEDS} integer, in {0} union 
interval [least_assign, (max {i in SHIFT_LIST[j]} required[i])];
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Example 4 (cont’d )
Formulation using “implies” operator

param least_assign >= 0;

var Work {SCHEDS} >= 0 integer;
var Use  {SCHEDS} >= 0 binary;

subject to Least_Use1_logical {j in SCHEDS}:
Use[j] = 1 ==> Work[j] >= least_assign;

subject to Least_Use2_logical {j in SCHEDS}:
Use[j] = 0 ==> Work[j] = 0;

param least_assign >= 0;

var Work {SCHEDS} >= 0 integer;
var Use  {SCHEDS} >= 0 binary;

subject to Least_Use_logical {j in SCHEDS}:
Use[j] = 1 ==> least_assign <= Work[j] else Work[j] = 0;
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