Modeling and Solving Nontraditional Optimization Problems Session 1b: Current Features

Robert Fourer

Industrial Engineering \& Management Sciences
Northwestern University
AMPL Optimization LLC
4er@northwestern.edu — 4er@ampl.com

Chiang Mai University International Conference Workshop
Chiang Mai, Thailand - 4-5 January 2011

Session 1b: Current Features

Focus

* Simple nontraditional features already implemented
* Incorporation in the AMPL language
* Handling by solvers

Topics

* Networks
* Separable piecewise-linear terms
* Disconnected variable domains
* union of points
* union of points \& intervals
* zero or interval
* Implications
* indicator constraints
* piecewise-nonlinear terms

Network Flows

Definition

* Minimize total cost of flows

* Subject to
* Flow balance at nodes
* Flow limits on arcs

Representations

* Algebraic variable-constraint
* define arc variables
* define node flow balances using variables
* Network node-arc
* define network nodes
* define arcs connecting the nodes
. . . arguably more natural

Generic Model

Variable-constraint formulation

```
set CITIES;
set LINKS within (CITIES cross CITIES);
param supply {CITIES} >= 0; # amounts available at cities
param demand {CITIES} >= 0; # amounts required at cities
    check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];
param cost {LINKS} >= 0; # shipment costs/1000 packages
param capacity {LINKS} >= 0; # max packages that can be shipped
var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j];
        # packages to be shipped
minimize Total_Cost:
    sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];
subject to Balance {k in CITIES}:
    supply[k] + sum {(i,k) in LINKS} Ship[i,k]
        = demand[k] + sum {(k,j) in LINKS} Ship[k,j];
    # supply plus total flow in equals
    # demand plus total flow out
```

Network Flows

Generic Model

Node-arc formulation

```
set CITIES;
set LINKS within (CITIES cross CITIES);
param supply {CITIES} >= 0; # amounts available at cities
param demand {CITIES} >= 0; # amounts required at cities
    check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];
param cost {LINKS} >= 0; # shipment costs/1000 packages
param capacity {LINKS} >= 0; # max packages that can be shipped
minimize Total_Cost;
node Balance {k in CITIES}: net_in = demand[k] - supply[k];
arc Ship {(i,j) in LINKS} >= 0, <= capacity[i,j],
    from Balance[i], to Balance[j], obj Total_Cost cost[i,j];
```


AMPL Applications (1)

Product distribution (nodes)

```
minimize cost;
node RT: rtmin <= net_out <= rtmax;
                            # Source of all regular-time crews
node OT: otmin <= net_out <= otmax;
    # Source of all overtime hours
node P_RT {fact}; # Sources of regular-time crews at factories
node P_OT {fact}; # Sources of overtime hours at factories
node M {prd,fact}; # Sources of manufacturing
node D {prd,dctr}; # Sources of distribution:
node W {p in prd, w in whse}: net_in = dem[p,w];
    # Locations of warehousing
```


AMPL Applications (1)

Product distribution (arcs)

```
arc Work_RT {f in fact}
    from RT to P_RT[f] >= rmin[f], <= rmax[f];
                            # Regular-time crews allocated to each factory
arc Work_OT {f in fact}
    from OT to P_OT[f] >= omin[f], <= omax[f];
                            # Overtime hours allocated to each factory
arc Manu_RT {p in prd, f in fact: rpc[p,f] <> 0} >= 0
    from P_RT[f] to M[p,f] (dp[f] * hd[f] / pt[p,f])
    obj cost (rpc[p,f] * dp[f] * hd[f] / pt[p,f]);
                            # Regular-time crews allocated to
                            # manufacture of each product at each factory
arc Manu_OT {p in prd, f in fact: opc[p,f] <> 0} >= 0
    from P_OT[f] to M[p,f] (1 / pt[p,f]) obj cost (opc[p,f] / pt[p,f]);
                            # Overtime hours allocated to
                            # manufacture of each product at each factory
```


AMPL Applications (1)

Product distribution (arcs)

```
arc Prod_L {p in prd, f in fact} >= 0
    from M[p,f] to W[p,f];
                            # Manufacture of each product at each factory
                            # to satisfy local demand, in 1000s of units
arc Prod_D {p in prd, f in fact} >= 0
    from M[p,f] to D[p,f]; \\[\Sa]
                            # Manufacture of each product at each factory,
                            # for distribution elsewhere, in 1000s of units
arc Ship {p in prd, (d,w) in rt} >= 0
    from D[p,d] to W[p,w] obj cost (sc[d,w] * wt[p]);
                            # Shipments of each product on each allowed route
arc Trans {p in prd, d in dctr} >= 0
    from W[p,d] to D[p,d] obj cost (tc[p]);
                                    # Transshipments of each product at each
                                    # distribution center
```


AMPL Applications (2)

Train car allocation (nodes)

```
minimize cars;
minimize miles;
node N {cities,times}; # For every city and time:
    # unused cars in present interval will equal
    # unused cars in previous interval,
    # plus cars just arriving in trains,
    # minus cars just leaving in trains
```


AMPL Applications (2)

Train car allocation (arcs)

```
arc U {c in cities, t in times} >= 0
    from N[c,t] to N[c,next(t)]
    obj {if t = last} cars 1;
        # U[c,t] is the number of unused cars stored
        # at city c in the interval beginning at time t
arc X {(c1,t1,c2,t2) in schedule}
    >= low[c1,t1,c2,t2] <= high[c1,t1,c2,t2]
    from N[c1,t1] to N[c2,t2]
    obj {if t2 < t1} cars 1
    obj miles distance[c1,c2];
                                    # X[c1,t1,c2,t2] is the number of cars assigned
                                    # to the scheduled train that leaves c1 at t1
                                    # and arrives in c2 at t2
```


Conversion for Solver

Equivalent linear program

* Generate variables \& constraints
* Mark as network
* facilitate solution by specialied network simplex method

Extensions

* Multipliers
* gains or losses
* change of units
* Network embedded in larger model
* side constraints
* side variables

Conversion for Solver (cont'd)

Train car allocation (simplex solve)

```
ampl: model train2.mod;
ampl: data train2.dat;
ampl: option solver cplexamp;
ampl: solve;
Presolve eliminates 219 constraints and 1 variable.
Adjusted problem:
410 variables, all linear
192 constraints, all linear; }820\mathrm{ nonzeros
2 objectives, all linear; 235 nonzeros.
CPLEX 12.2.0.0: LP Presolve eliminated 0 rows and 50 columns.
Reduced LP has }85\mathrm{ rows, }253\mathrm{ columns, and }506\mathrm{ nonzeros.
optimal solution; objective }12
57 dual simplex iterations (0 in phase I)
```


Conversion for Solver (cont'd)

Train car allocation (network simplex solve)

```
ampl: model train2.mod;
ampl: data train2.dat;
ampl: option solver cplexamp:
ampl: option cplex_options 'netopt 2';
ampl: solve;
Presolve eliminates 219 constraints and 1 variable.
Adjusted problem:
410 variables, all linear
192 constraints, all linear; 820 nonzeros
2 objectives, all linear; 235 nonzeros.
CPLEX 12.2.0.0: netopt 2
CPLEX 12.2.0.0: optimal solution; objective }12
Network extractor found 192 nodes and 410 arcs.
333 network simplex iterations.
```


Piecewise-Linear

Definition

* Function of one variable
* Linear on intervals
* Continuous

Issues

* Describing the function
* choice of specification
* syntax in the modeling language
$*$ Communicating the function to a solver
* direction description
* transformation to linear or linear-integer

Specification

Possibilities

* List of breakpoints and either:
* change in slope at each breakpoint
* value of the function at each breakpoint
* List of slopes and either:
* distance between breakpoints bounding each slope
* value of intercept associated with each slope
* Lists of breakpoints and slopes

Also needed in some cases

* One particular breakpoint
* One particular slope
$\%$ Value at one particular point

Piecewise-Linear

AMPL Specification: Examples

<<0; -1,1>> x[j]

$$
\ll-1,1,3,5 ;-5,-1,0,1.5,3 \gg x[j]
$$

<<3,5; 0.25,1.00,0.50>> x[j]

AMPL Specification: Syntax

General forms

* <breakpoint-list; slope-list> variable
* Zero at zero
* Bounds on variable specified independently
* <breakpoint-list; slope-list> (variable, zero-point)
* Zero at zero-point
* <breakpoint-list; slope-list> variable + constant
* Has value constant at zero

Breakpoint \& slope list forms

* Simple list

```
* <<lim1[i,j],lim2[i,j]; r1[i,j],r2[i,j],r3[i,j]>>
```

* Indexed list

```
* << {k in 1..nlim[i,j]} lim[i,j,k];
    {k in 1..nlim[i,j]+1} r[i,j,k]>>
```


AMPL Applications (1)

Design of a planar structure

```
var Force {bars}; # Forces on bars:
    # positive in tension, negative in compression
minimize TotalWeight: (density / yield_stress) *
    sum {(i,j) in bars} length[i,j] * <<0; -1,+1>> Force[i,j];
    # Weight is proportional to length
    # times absolute value of force
subject to Xbal {k in joints: k <> fixed}:
    sum {(i,k) in bars} xcos[i,k] * Force[i,k]
    - sum {(k,j) in bars} xcos[k,j] * Force[k,j] = xload[k];
subject to Ybal {k in joints: k <> fixed and k <> rolling}:
    sum {(i,k) in bars} ycos[i,k] * Force[i,k]
    - sum {(k,j) in bars} ycos[k,j] * Force[k,j] = yload[k];
    # Forces balance in
    # horizontal and vertical directions
```


AMPL Applications (2)

Data fitting for credit scoring

```
var Wt_const; # Constant term in computing all scores
var Wt {j in factors} >= if wttyp[j] = 'pos' then 0 else -Infinity
    <= if wttyp[j] = 'neg' then O else +Infinity;
    # Weights on the factors
var Sc {i in people}; # Scores for the individuals
minimize Penalty: # Sum of penalties for all individuals
    Gratio * sum {i in Good} << {k in 1..Gpce-1} if Gbktyp[k] = 'A'
        then Gbkfac[k]*app_amt
                            else Gbkfac[k]*bal_amt[i];
                            {k in 1..Gpce} Gslope[k] >> Sc[i] +
    Bratio * sum {i in Bad} << {k in 1..Bpce-1} if Bbktyp[k] = 'A'
                                then Bbkfac[k]*app_amt
                        else Bbkfac[k]*bal_amt[i];
{k in 1..Bpce} Bslope[k] >> Sc[i];
```


Conversion for Solver: Example

Transportation costs

```
param rate1 {i in ORIG, j in DEST} >= 0;
param rate2 {i in ORIG, j in DEST} >= rate1[i,j];
param rate3 {i in ORIG, j in DEST} >= rate2[i,j];
param limit1 {i in ORIG, j in DEST} >= 0;
param limit2 {i in ORIG, j in DEST} >= limit1[i,j];
var Trans {ORIG,DEST} >= 0;
minimize Total_Cost:
    sum {i in ORIG, j in DEST}
    <<limit1[i,j], limit2[i,j];
        rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];
```

Piecewise-Linear

Minimizing Convex Costs

Equivalent linear program

```
ampl: model trpl2.mod; data trpl.dat; solve;
Substitution eliminates 15 variables.
21 piecewise-linear terms replaced by 35 variables and 15 constraints.
Adjusted problem:
41 variables, all linear
10 constraints, all linear; }82\mathrm{ nonzeros
1 linear objective; 41 nonzeros.
CPLEX 10.1.0: optimal solution; objective }19910
12 dual simplex iterations (O in phase I)
ampl: display Trans;
\begin{tabular}{lrrrrrrrr} 
: & DET & FRA & FRE & LAF & LAN & STL & WIN & \(:=\) \\
CLEV & 500 & 0 & 200 & 500 & 500 & 500 & 400 & \\
GARY & 0 & 0 & 900 & 300 & 0 & 200 & 0 & \\
PITT & 700 & 900 & 0 & 200 & 100 & 1000 & 0 & ;
\end{tabular}
```

Piecewise-Linear

Minimizing Non-Convex Costs

Equivalent mixed-integer program

```
model trpl3.mod; data trpl.dat; solve;
Substitution eliminates 18 variables.
21 piecewise-linear terms replaced by }87\mathrm{ variables and }87\mathrm{ constraints.
Adjusted problem:
90 variables:
    4 1 \text { binary variables}
    49 linear variables
79 constraints, all linear; 251 nonzeros
1 linear objective; 49 nonzeros.
CPLEX 10.1.0: optimal integer solution; objective 256100
189 MIP simplex iterations
144 branch-and-bound nodes
ampl: display Trans;
\begin{tabular}{llrrlrrrr}
\(:\) & DET & FRA & FRE & LAF & LAN & STL & WIN & \(:=\) \\
CLEV & 1200 & 0 & 0 & 1000 & 0 & 0 & 400 & \\
GARY & 0 & 0 & 1100 & 0 & 300 & 0 & 0 & \\
PITT & 0 & 900 & 0 & 0 & 300 & 1700 & 0 &
\end{tabular}
```

Piecewise-Linear

Minimizing Non-Convex Costs (cont'd)

. . . with SOS type 2 markers in output file

```
S0 87 sos
    316
4918
    416
5018
S1 64 sos
10 19
11 18
1218
14 35
S4 46 sosref
3-501
4751
5 -501
6 500
```


Conversion for Solver: Principles

Equivalent linear program if . . .

* Objective
* minimizes convex (increasing slopes) or
* maximizes concave (decreasing slopes)

* Constraints expressions
* convex and on the left-hand side of $\mathrm{a} \leq$ constraint
* convex and on the right-hand side of $a \geq$ constraint
* concave and on the left-hand side of a \geq constraint
$*$ concave and on the right-hand side of $\mathrm{a} \leq$ constraint
Equivalent mixed-integer program otherwise
* At least one binary variable per piece
* Enhanced branching in solver
* "special ordered sets of type 2"

Discrete Variable Domains

Continuous domain

```
var Buy {j in FOOD} >= 0;
```

Semi-continuous domain

```
var Buy {j in FOOD} in {0} union interval[30,40];
```


Discrete domain

```
var Buy {j in FOOD} in {1,2,5,10,20,50};
```

. . . many generalizations possible

Semi-Continuous Domain

Continuous

```
CPLEX 10.1.0: optimal solution; objective 88.2
1 dual simplex iterations (O in phase I)
ampl: display Buy;
\begin{tabular}{rlrlllll} 
BEEF & 0 & FISH & 0 & MCH 46.6667 & SPG & 0 \\
CHK & 0 & HAM & 0 & MTL & 0 & TUR & 0
\end{tabular}
```


Semi-Continuous

```
CPLEX 10.1.0: optimal integer solution; objective 116.4
6 5 ~ M I P ~ s i m p l e x ~ i t e r a t i o n s
27 branch-and-bound nodes
ampl: display Buy;
\begin{tabular}{rlrlllll} 
BEEF & 0 & FISH & 0 & MCH 30 & SPG & 0 \\
CHK & 0 & HAM & 0 & MTL & 30 & TUR & 0
\end{tabular}
```


Semi-Continuous Domain (cont'd)

Converted to MIP with extra variables . . .

```
minimize Total_Cost:
95.7*(Buy[BEEF]+lambdaL) + 127.6*(Buy[BEEF]+lambdaU) +
77.7*(Buy[CHK]+lambdaL) + 103.6*(Buy[CHK]+lambdaU) +
68.7*(Buy[FISH]+lambdaL) + 91.6*(Buy[FISH]+lambdaU) +
86.7*(Buy [HAM] +lambdaL) + 115.6*(Buy[HAM] +lambdaU) +
56.7*(Buy [MCH]+lambdaL) + 75.6*(Buy [MCH]+lambdaU) +
59.7*(Buy[MTL]+lambdaL) + 79.6*(Buy[MTL]+lambdaU) +
59.7*(Buy [SPG] +lambdaL) + 79.6*(Buy [SPG]+lambdaU) +
74.7*(Buy[TUR]+lambdaL) + 99.6*(Buy[TUR]+lambdaU);
subject to Diet['A']:
700 <= 1800*(Buy[BEEF]+lambdaL) + 2400*(Buy [BEEF]+lambdaU) +
240*(Buy [CHK]+lambdaL) + 320*(Buy [CHK]+lambdaU) +
240*(Buy[FISH]+lambdaL) + 320*(Buy[FISH]+lambdaU) +
1200*(Buy [HAM] +lambdaL) + 1600*(Buy [HAM] +lambdaU) +
450*(Buy [MCH]+lambdaL) + 600*(Buy [MCH]+lambdaU) +
2100*(Buy[MTL] lambdaL) + 2800*(Buy[MTL]+lambdaU) +
750*(Buy [SPG]+lambdaL) + 1000*(Buy[SPG]+lambdaU) +
1800*(Buy[TUR]+lambdaL) + 2400*(Buy[TUR]+lambdaU) <= 10000;
```


Semi-Continuous Domain (cont'd)

and extra constraints

```
subject to (Buy [BEEF]+ldef):
-(Buy[BEEF]+b) + (Buy[BEEF]+lambdaL) + (Buy[BEEF]+lambdaU) = 0;
subject to (Buy[CHK]+ldef):
-(Buy[CHK]+b) + (Buy [CHK]+lambdaL) + (Buy[CHK]+lambdaU) = 0;
subject to (Buy[FISH]+ldef):
-(Buy[FISH]+b) + (Buy [FISH]+lambdaL) + (Buy[FISH]+lambdaU) = 0;
```

. . . with extra binary variables

Discrete Domain

Continuous

```
CPLEX 10.1.0: optimal solution; objective 88.2
1 dual simplex iterations (O in phase I)
ampl: display Buy;
\begin{tabular}{rlrlllll} 
BEEF & 0 & FISH & 0 & MCH 46.6667 & SPG & 0 \\
CHK & 0 & HAM & 0 & MTL & 0 & TUR & 0
\end{tabular}
```


Discrete

```
CPLEX 10.1.0: optimal integer solution; objective 95.49
4 7 \text { MIP simplex iterations}
8 branch-and-bound nodes
ampl: display Buy;
BEEF 1 FISH 1 MCH 10 SPG 5
    CHK 20 HAM 1 MTL 2 TUR 1
```


Discrete Domain (cont'd)

Converted to MIP with extra binary variables . . .

```
minimize Total_Cost:
3.19*(Buy[BEEF]+b)[0] + 6.38*(Buy[BEEF]+b)[1] +
15.95*(Buy[BEEF]+b) [2] + 31.9*(Buy[BEEF]+b)[3] +
63.8*(Buy[BEEF]+b)[4] + 159.5*(Buy[BEEF]+b)[5] +
2.59*(Buy[CHK]+b)[0] + 5.18*(Buy[CHK]+b)[1] +
12.95*(Buy[CHK]+b)[2] + 25.9*(Buy[CHK]+b)[3] +
51.8*(Buy[CHK]+b)[4] + 129.5*(Buy[CHK]+b)[5] + ...
subject to Diet['A']:
700<= 60*(Buy[BEEF]+b)[0] + 120*(Buy[BEEF]+b)[1] +
300*(Buy[BEEF]+b)[2] + 600*(Buy[BEEF]+b)[3] +
1200*(Buy[BEEF]+b) [4] + 3000*(Buy[BEEF]+b) [5] +
8*(Buy[CHK]+b)[0] + 16*(Buy[CHK]+b)[1] + 40*(Buy[CHK]+b)[2] +
80*(Buy[CHK]+b)[3] + 160*(Buy[CHK]+b)[4] + 400*(Buy[CHK]+b)[5] + ...
```


Discrete Domain (cont'd)

and SOS type 1 constraints . . .

```
subject to (Buy[BEEF]+sos1):
(Buy[BEEF]+b)[0] + (Buy[BEEF]+b)[1] + (Buy[BEEF]+b)[2] +
(Buy[BEEF]+b)[3] + (Buy[BEEF]+b)[4] + (Buy[BEEF]+b)[5] = 1;
subject to (Buy[CHK]+sos1):
(Buy[CHK]+b)[0] + (Buy[CHK]+b)[1] + (Buy[CHK]+b)[2] +
(Buy[CHK]+b)[3] + (Buy[CHK]+b)[4] + (Buy[CHK]+b)[5] = 1; ...
```


Discrete Domain (cont'd)

with SOS type 1 markers in output file

```
S0 48 sos
O 20
120
2 20
3 20
420
5 20
636
76
S4 48 sosref
O 1
12
25
310
420
5 50
6 1
7 2
```

Discrete Domain

Conversion for Solver: Principles

General case
$\%$ Arbitrary union of points and intervals

* Auxiliary binary variable for each point or interval
* 3 auxiliary constraints for each variable

Union of points

* Auxiliary binary variable for each point
* Auxiliary constraint for each variable
* Enhanced branching in solver
* "special ordered sets of type 1"

Zero union interval (semi-continuous)

* Auxiliary binary variable for each variable
* 2 auxiliary constraints for each variable
* Enhanced branching in solver

Implications

General possibilities

* Conditional expression
* Conditional constraint
* Conditional command

AMPL syntax choices

* if condition then expr1 else expr2
* condition $==>$ constraint 1 else constraint 2
* also <== and <==>
* if condition then \{commands\} else \{commands\}

Currently supported forms

* Nonlinear if-then-else
* CPLEX indicator constraints

Nonlinear if-then-else

More stable expression near zero

```
subject to logRel {j in 1..N}:
    (if X[j] < -delta || X[j] > delta
    then log(1+X[j]) / X[j] else 1 - X[j] / 2) <= logLim;
```


CPLEX Indicator Constraints

Indicator constraints

* (binary variable $=0)$ implies constraint
* (binary variable $=1)$ implies constraint
. . . handled directly by solver
AMPL "implies" operator
* Use ==> for "implies"
* Also recognize an else clause
* Similarly define <== and <==>
* if-then-else expressions \& statements as before

Example 1

Multicommodity flow with fixed costs

```
set ORIG; # origins
set DEST; # destinations
set PROD; # products
param supply {ORIG,PROD} >= 0; # amounts available at origins
param demand {DEST,PROD} >= 0; # amounts required at destinations
param limit {ORIG,DEST} >= 0;
param vcost {ORIG,DEST,PROD} >= 0; # variable shipment cost on routes
param fcost {ORIG,DEST} > 0; # fixed cost on routes
var Trans {ORIG,DEST,PROD} >= 0; # actual units to be shipped
var Use {ORIG, DEST} binary; # = 1 iff link is used
minimize total_cost:
    sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p]
    + sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];
```


Example 1 (cont'd)

Conventional constraints

```
subject to Supply {i in ORIG, p in PROD}:
    sum {j in DEST} Trans[i,j,p] = supply[i,p];
subject to Demand {j in DEST, p in PROD}:
    sum {i in ORIG} Trans[i,j,p] = demand[j,p];
subject to Multi {i in ORIG, j in DEST}:
    sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];
```

subject to Supply \{i in ORIG, p in PROD\}:
sum \{j in DEST\} Trans[i,j,p] = supply[i,p];
subject to Demand \{j in DEST, p in PROD\}:
sum \{i in ORIG\} Trans[i,j,p] = demand[j,p];
subject to UseDefinition $\{i$ in ORIG, j in DEST, p in PROD\}:
Trans[i,j,p] <= min(supply[i,p], demand[j,p]) * Use[i,j];

Example 1 (cont'd)

User cuts

```
subject to Multi {i in ORIG, j in DEST}:
    sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];
subject to UseDefinition {i in ORIG, j in DEST, p in PROD}:
    Trans[i,j,p] <= min(supply[i,p], demand[j,p]) * Use[i,j];
```


Example 1 (cont'd)

Indicator constraint formulations

```
subject to DefineUsedA {i in ORIG, j in DEST}:
    Use[i,j] = 0 ==> sum {p in PROD} Trans[i,j,p] = 0;
```

```
subject to DefineUsedB {i in ORIG, j in DEST, p in PROD}:
    Use[i,j] = 0 ==> Trans[i,j,p] = 0;
```

```
subject to DefineUsedC {i in ORIG, j in DEST}:
    Use[i,j] = 0 ==> sum {p in PROD} Trans[i,j,p] = 0
    else sum {p in PROD} Trans[i,j,p] <= limit[i,j];
```


Example 1 (cont'd)

Results for 3 origins, 7 destinations, 3 products

			cuts
	iters	nodes	used
no cuts	374	79	
all cuts	317	39	
user cuts	295	42	18
indic A	355	77	
indic B	406	56	
indic C	277	57	

Example 2

Assignment to groups with "no one isolated"

```
var Lone {(i1,i2) in ISO, j in REST} binary;
param give {ISO} default 2;
param giveTitle {TITLE} default 2;
param giveLoc {LOC} default 2;
param upperbnd {(i1,i2) in ISO, j in REST} :=
    min (ceil((number2[i1,i2]/card {PEOPLE}) * hiDine[j]) + give[i1,i2],
        hiTargetTitle[i1,j] + giveTitle[i1],
        hiTargetLoc[i2,j] + giveLoc[i2], number2[i1,i2]);
subj to Isolation1 {(i1,i2) in ISO, j in REST}:
    Assign2[i1,i2,j] <= upperbnd[i1,i2,j] * Lone[i1,i2,j];
subj to Isolation2a {(i1,i2) in ISO, j in REST}:
    Assign2[i1,i2,j] >= Lone[i1,i2,j];
subj to Isolation2b {(i1,i2) in ISO, j in REST}:
    Assign2[i1,i2,j] +
        sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j]
        >= 2 * Lone[i1,i2,j];
```


Example 2

Same using indicator constraints

```
var Lone {(i1,i2) in ISO, j in REST} binary;
subj to Isolation1 {(i1,i2) in ISO, j in REST}:
    Lone[i1,i2,j] = 0 ==> Assign2[i1,i2,j] = 0;
subj to Isolation2b {(i1,i2) in ISO, j in REST}:
    Lone[i1,i2,j] = 1 ==> Assign2[i1,i2,j] +
        sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j] >= 2;
```


Example 3

Workforce planning

```
var LayoffCost {m in MONTHS} >=0;
subj to LayoffCostDefn1 {m in MONTHS}:
    LayoffCost[m]
        <= snrLayOffWages * 31 * maxNbrSnrEmpl * (1 - NoShut[m]);
subj to LayoffCostDefn2a {m in MONTHS}:
    LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl
        <= maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];
subj to LayoffCostDefn2b {m in MONTHS}:
    LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl
            >= -maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];
```


Example 3

Same using indicator constraints

```
var LayoffCost {m in MONTHS} >=0;
subj to LayoffCostDefn1 {m in MONTHS}:
    NoShut[m] = 1 ==> LayoffCost[m] = 0;
subj to LayoffCostDefn2 {m in MONTHS}:
    NoShut[m] = 0 ==> LayoffCost [m] =
        snrLayoffWages * ShutdownDays [m] * maxNumberSnrEmpl;
```


Example 4

Standard mixed-integer formulation

```
param least_assign >= 0;
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
subject to Least_Use1 {j in SCHEDS}:
    Work[j] >= least_assign * Use[j];
subject to Least_Use2 {j in SCHEDS}:
    Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
```


Example 4 (cont'd)

Formulation using variable-domain specification

```
param least_assign >= 0;
var Work {j in SCHEDS} integer, in {0} union
    interval [least_assign, (max {i in SHIFT_LIST[j]} required[i])];
```


Example 4 (cont'd)

Formulation using "implies" operator

```
param least_assign >= 0;
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
subject to Least_Use1_logical {j in SCHEDS}:
    Use[j] = 1 ==> Work[j] >= least_assign;
subject to Least_Use2_logical {j in SCHEDS}:
    Use[j] = 0 ==> Work[j] = 0;
```

```
param least_assign >= 0;
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
subject to Least_Use_logical {j in SCHEDS}:
    Use[j] = 1 ==> least_assign <= Work[j] else Work[j] = 0;
```

