Modeling and Solving Nontraditional Optimization Problems Session 1b: Current Features

Robert Fourer

Industrial Engineering & Management Sciences Northwestern University

AMPL Optimization LLC

4er@northwestern.edu — 4er@ampl.com

Chiang Mai University International Conference *Workshop* Chiang Mai, Thailand — 4-5 January 2011

Session 1b: Current Features

Focus

- Simple nontraditional features already implemented
- Incorporation in the AMPL language
- Handling by solvers

Topics

- Networks
- Separable piecewise-linear terms
- Disconnected variable domains
 - * union of points
 - * union of points & intervals
 - * zero or interval
- Implications
 - * indicator constraints
 - * piecewise-nonlinear terms

Network Flows

Definition

- Minimize total cost of flows
- Subject to
 - * Flow balance at nodes
 - * Flow limits on arcs

Representations

- Algebraic variable-constraint
 - * define arc variables
 - * define node flow balances using variables
- Network node-arc
 - * define network nodes
 - * define arcs connecting the nodes

... arguably more natural

Network Flows Generic Model

Variable-constraint formulation

```
set CITIES:
set LINKS within (CITIES cross CITIES):
param supply {CITIES} >= 0; # amounts available at cities
param demand {CITIES} >= 0; # amounts required at cities
   check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];
param cost {LINKS} >= 0;  # shipment costs/1000 packages
param capacity {LINKS} >= 0; # max packages that can be shipped
var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j];</pre>
                              # packages to be shipped
minimize Total_Cost:
   sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];
subject to Balance {k in CITIES}:
   supply[k] + sum {(i,k) in LINKS} Ship[i,k]
      = demand[k] + sum {(k,j) in LINKS} Ship[k,j];
                              # supply plus total flow in equals
                              # demand plus total flow out
```

Network Flows Generic Model

Node-arc formulation

```
set CITIES;
set LINKS within (CITIES cross CITIES);
param supply {CITIES} >= 0;  # amounts available at cities
param demand {CITIES} >= 0;  # amounts required at cities
    check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];
param cost {LINKS} >= 0;  # shipment costs/1000 packages
param capacity {LINKS} >= 0;  # max packages that can be shipped
minimize Total_Cost;
node Balance {k in CITIES}: net_in = demand[k] - supply[k];
arc Ship {(i,j) in LINKS} >= 0, <= capacity[i,j],
    from Balance[i], to Balance[j], obj Total_Cost cost[i,j];
```

Network Flows **AMPL Applications (1)**

Product distribution (nodes)

```
minimize cost;
node RT: rtmin <= net_out <= rtmax;</pre>
                       # Source of all regular-time crews
node OT: otmin <= net_out <= otmax;</pre>
                       # Source of all overtime hours
node P_RT {fact};
                       # Sources of regular-time crews at factories
node P_OT {fact};
                       # Sources of overtime hours at factories
node M {prd,fact}; # Sources of manufacturing
node D {prd,dctr}; # Sources of distribution:
node W {p in prd, w in whse}: net_in = dem[p,w];
                       # Locations of warehousing
```

Network Flows **AMPL Applications (1)**

Product distribution (arcs)

```
arc Work_RT {f in fact}
   from RT to P_RT[f] >= rmin[f], <= rmax[f];</pre>
                       # Regular-time crews allocated to each factory
arc Work OT {f in fact}
   from OT to P_OT[f] >= omin[f], <= omax[f];</pre>
                       # Overtime hours allocated to each factory
arc Manu_RT {p in prd, f in fact: rpc[p,f] <> 0} >= 0
   from P_RT[f] to M[p,f] (dp[f] * hd[f] / pt[p,f])
   obj cost (rpc[p,f] * dp[f] * hd[f] / pt[p,f]);
                       # Regular-time crews allocated to
                       # manufacture of each product at each factory
arc Manu_OT {p in prd, f in fact: opc[p,f] <> 0} >= 0
   from P_OT[f] to M[p,f] (1 / pt[p,f]) obj cost (opc[p,f] / pt[p,f]);
                        # Overtime hours allocated to
                        # manufacture of each product at each factory
```

Network Flows **AMPL Applications (1)**

Product distribution (arcs)

```
arc Prod_L {p in prd, f in fact} >= 0
   from M[p,f] to W[p,f];
                       # Manufacture of each product at each factory
                       # to satisfy local demand, in 1000s of units
arc Prod_D {p in prd, f in fact} >= 0
   from M[p,f] to D[p,f]; \\[\Sa]
                       # Manufacture of each product at each factory,
                       # for distribution elsewhere, in 1000s of units
arc Ship {p in prd, (d,w) in rt} >= 0
   from D[p,d] to W[p,w] obj cost (sc[d,w] * wt[p]);
                       # Shipments of each product on each allowed route
arc Trans {p in prd, d in dctr} >= 0
   from W[p,d] to D[p,d] obj cost (tc[p]);
                        # Transshipments of each product at each
                        # distribution center
```

Network Flows **AMPL Applications (2)**

Train car allocation (nodes)

minimize cars;	<pre># Number of cars in the system: # sum of unused cars and cars in trains during # the last time interval of the day</pre>
minimize miles;	# Total car-miles run by # all scheduled trains in a day
<pre>node N {cities,times};</pre>	<pre># For every city and time: # unused cars in present interval will equal # unused cars in previous interval, # plus cars just arriving in trains, # minus cars just leaving in trains</pre>

Network Flows **AMPL Applications (2)**

Train car allocation (arcs)

```
arc U {c in cities, t in times} >= 0
     from N[c,t] to N[c,next(t)]
      obj {if t = last} cars 1;
                        # U[c,t] is the number of unused cars stored
                        # at city c in the interval beginning at time t
arc X {(c1,t1,c2,t2) in schedule}
     >= low[c1,t1,c2,t2] <= high[c1,t1,c2,t2]
     from N[c1,t1] to N[c2,t2]
      obj {if t2 < t1} cars 1
      obj miles distance[c1,c2];
                        # X[c1,t1,c2,t2] is the number of cars assigned
                        # to the scheduled train that leaves c1 at t1
                        # and arrives in c2 at t2
```

Network Flows Conversion for Solver

Equivalent linear program

- Generate variables & constraints
- Mark as network
 - * facilitate solution by specialied network simplex method

Extensions

- Multipliers
 - * gains or losses
 - * change of units
- Network embedded in larger model
 - * side constraints
 - * side variables

Network Flows **Conversion for Solver** (cont'd)

Train car allocation (simplex solve)

```
ampl: model train2.mod;
ampl: data train2.dat;
ampl: option solver cplexamp;
ampl: solve;
Presolve eliminates 219 constraints and 1 variable.
Adjusted problem:
410 variables, all linear
192 constraints, all linear; 820 nonzeros
2 objectives, all linear; 235 nonzeros.
CPLEX 12.2.0.0: LP Presolve eliminated 0 rows and 50 columns.
Reduced LP has 85 rows, 253 columns, and 506 nonzeros.
optimal solution; objective 129
57 dual simplex iterations (0 in phase I)
```

Network Flows **Conversion for Solver** (cont'd)

Train car allocation (network simplex solve)

```
ampl: model train2.mod;
ampl: data train2.dat;
ampl: option solver cplexamp:
ampl: option cplex_options 'netopt 2';
ampl: solve;
Presolve eliminates 219 constraints and 1 variable.
Adjusted problem:
410 variables, all linear
192 constraints, all linear; 820 nonzeros
2 objectives, all linear; 235 nonzeros.
CPLEX 12.2.0.0: netopt 2
CPLEX 12.2.0.0: optimal solution; objective 129
Network extractor found 192 nodes and 410 arcs.
333 network simplex iterations.
```

Piecewise-Linear

Definition

- Function of one variable
- Linear on intervals
- Continuous

Issues

- Describing the function
 - * choice of specification
 - ***** syntax in the modeling language
- Communicating the function to a solver
 - * direction description
 - * transformation to linear or linear-integer

Piecewise-Linear Specification

Possibilities

List of breakpoints and either:

- * change in slope at each breakpoint
- ***** value of the function at each breakpoint
- List of slopes and either:
 - * distance between breakpoints bounding each slope
 - ***** value of intercept associated with each slope
- * Lists of breakpoints and slopes

Also needed in some cases

- One particular breakpoint
- One particular slope
- Value at one particular point

Piecewise-Linear **AMPL Specification: Examples**

<<0; -1,1>> x[j]

<<3,5; 0.25,1.00,0.50>> x[j]

Piecewise-Linear AMPL Specification: Syntax

General forms

- <br eakpoint-list; slope-list> variable
 - * Zero at zero
 - * Bounds on variable specified independently
-

-

Breakpoint & slope list forms

Simple list

* <<lim1[i,j],lim2[i,j]; r1[i,j],r2[i,j],r3[i,j]>>

Indexed list

Piecewise-Linear **AMPL Applications (1)**

Design of a planar structure

```
var Force {bars}: # Forces on bars:
                    # positive in tension, negative in compression
minimize TotalWeight: (density / yield_stress) *
   sum {(i,j) in bars} length[i,j] * <<0; -1,+1>> Force[i,j];
                    # Weight is proportional to length
                    # times absolute value of force
subject to Xbal {k in joints: k <> fixed}:
     sum {(i,k) in bars} xcos[i,k] * Force[i,k]
   - sum {(k,j) in bars} xcos[k,j] * Force[k,j] = xload[k];
subject to Ybal {k in joints: k <> fixed and k <> rolling}:
     sum {(i,k) in bars} ycos[i,k] * Force[i,k]
   - sum {(k,j) in bars} ycos[k,j] * Force[k,j] = yload[k];
                    # Forces balance in
                    # horizontal and vertical directions
```

Piecewise-Linear AMPL Applications (2)

Data fitting for credit scoring

<pre>var Wt_const; #</pre>	Constant term in computing all scores
<pre>var Wt {j in factors} >= if <= if</pre>	<pre>wttyp[j] = 'pos' then 0 else -Infinity wttyp[j] = 'neg' then 0 else +Infinity;</pre>
#	Weights on the factors
<pre>var Sc {i in people}; #</pre>	Scores for the individuals
minimize Penalty: #	Sum of penalties for all individuals
Gratio * sum {i in Good}	<< {k in 1Gpce-1} if Gbktyp[k] = 'A'
	then Gbkfac[k]*app_amt
	<pre>else Gbkfac[k]*bal_amt[i];</pre>
	{k in 1Gpce} Gslope[k] >> <pre>Sc[i] +</pre>
Bratio * sum {i in Bad}	<< {k in 1Bpce-1} if Bbktyp[k] = 'A'
	then Bbkfac[k]*app_amt
	<pre>else Bbkfac[k]*bal_amt[i];</pre>
	<pre>{k in 1Bpce} Bslope[k] >> Sc[i];</pre>

Piecewise-Linear

Conversion for Solver: Example

Transportation costs

```
param rate1 {i in ORIG, j in DEST} >= 0;
param rate2 {i in ORIG, j in DEST} >= rate1[i,j];
param rate3 {i in ORIG, j in DEST} >= rate2[i,j];
param limit1 {i in ORIG, j in DEST} >= 0;
param limit2 {i in ORIG, j in DEST} >= limit1[i,j];
var Trans {ORIG,DEST} >= 0;
minimize Total_Cost:
    sum {i in ORIG, j in DEST}
        <<li>{limit1[i,j], limit2[i,j];
        rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];
```

Piecewise-Linear Minimizing Convex Costs

Equivalent linear program

```
ampl: model trpl2.mod; data trpl.dat; solve;
Substitution eliminates 15 variables.
21 piecewise-linear terms replaced by 35 variables and 15 constraints.
Adjusted problem:
41 variables, all linear
10 constraints, all linear; 82 nonzeros
1 linear objective; 41 nonzeros.
CPLEX 10.1.0: optimal solution; objective 199100
12 dual simplex iterations (0 in phase I)
ampl: display Trans;
      DET
                                   STL.
            FRA
                  FRE
                        LAF
                             LAN
                                         WIN :=
CLEV
      500
                  200
                        500
                             500
                                    500 400
              0
GARY
                  900
                        300
                                    200
        0
              0
                             0
                                            0
PITT
      700
                        200
                                   1000
            900
                              100
                                            0:
                    0
```

Piecewise-Linear Minimizing Non-Convex Costs

Equivalent mixed-integer program

```
model trpl3.mod; data trpl.dat; solve;
Substitution eliminates 18 variables.
21 piecewise-linear terms replaced by 87 variables and 87 constraints.
Adjusted problem:
90 variables:
       41 binary variables
       49 linear variables
79 constraints, all linear; 251 nonzeros
1 linear objective; 49 nonzeros.
CPLEX 10.1.0: optimal integer solution; objective 256100
189 MIP simplex iterations
144 branch-and-bound nodes
ampl: display Trans;
      DET
             FRA
                   FRE LAF LAN
                                       STL
                                              WTN :=
CLEV
      1200
                          1000
                                   0
                                              400
               0
                      0
                                          0
GARY
               0 1100
                             0 300
                                          0
         0
                                                0
PITT
         0
             900
                      0
                             0
                                 300
                                       1700
                                                0
```

Piecewise-Linear

Minimizing Non-Convex Costs (cont'd)

... with SOS type 2 markers in output file

S0 87 sos 3 16 49 18 4 16 50 18 . . . S1 64 sos 10 19 11 18 12 18 14 35 . . . S4 46 sosref 3 -501 751 4 5 -501 500 6 . . .

Piecewise-Linear

Conversion for Solver: Principles

Equivalent linear program if . . .

Objective

* minimizes convex (increasing slopes) or

* maximizes concave (decreasing slopes)

- Constraints expressions
 - * convex and on the left-hand side of a \leq constraint
 - * convex and on the right-hand side of $a \ge constraint$
 - * concave and on the left-hand side of $a \ge constraint$
 - * concave and on the right-hand side of a \leq constraint

Equivalent mixed-integer program otherwise

- * At least one binary variable per piece
- Enhanced branching in solver
 - * "special ordered sets of type 2"

Discrete Variable Domains

Continuous domain

var Buy {j in FOOD} >= 0;

Semi-continuous domain

var Buy {j in FOOD} in {0} union interval[30,40];

Discrete domain

var Buy {j in FOOD} in {1,2,5,10,20,50};

... many generalizations possible

Semi-Continuous Domain

Continuous

CPLEX	10.1.0:	optima	l solution	n; objective 88.	2	
1 dua	l simplex	: itera	tions (0 :	in phase I)		
ampl:	display	Buy;				
BEEF	0	FISH	0	MCH 46.6667	SPG	0
CHK	0	HAM	0	MTL O	TUR	0

Semi-Continuous

CPLEX 10).1.0: d	optimal	integer	solut	tion;	objective	116.	4
65 MIP a	simplex	iterat	ions					
27 brand	ch-and-l	bound no	odes					
ampl: di	isplay I	Buy;						
BEEF 0		FISH	0	MCH	30	SPO	0	
СНК О		HAM	0	MTL	30	TUF	. 0	

Semi-Continuous Domain (cont'd)

Converted to MIP with extra variables . . .

```
minimize Total_Cost:
95.7*(Buy[BEEF]+lambdaL) + 127.6*(Buy[BEEF]+lambdaU) +
77.7*(Buy[CHK]+lambdaL) + 103.6*(Buy[CHK]+lambdaU) +
68.7*(Buy[FISH]+lambdaL) + 91.6*(Buy[FISH]+lambdaU) +
86.7*(Buy[HAM]+lambdaL) + 115.6*(Buy[HAM]+lambdaU) +
56.7*(Buy[MCH]+lambdaL) + 75.6*(Buy[MCH]+lambdaU) +
59.7*(Buy[MTL]+lambdaL) + 79.6*(Buy[MTL]+lambdaU) +
59.7*(Buy[SPG]+lambdaL) + 79.6*(Buy[SPG]+lambdaU) +
74.7*(Buy[TUR]+lambdaL) + 99.6*(Buy[TUR]+lambdaU);
subject to Diet['A']:
700 <= 1800*(Buy[BEEF]+lambdaL) + 2400*(Buy[BEEF]+lambdaU) +
240*(Buy[CHK]+lambdaL) + 320*(Buy[CHK]+lambdaU) +
240*(Buy[FISH]+lambdaL) + 320*(Buy[FISH]+lambdaU) +
1200*(Buy[HAM]+lambdaL) + 1600*(Buy[HAM]+lambdaU) +
450*(Buy[MCH]+lambdaL) + 600*(Buy[MCH]+lambdaU) +
2100*(Buy[MTL]+lambdaL) + 2800*(Buy[MTL]+lambdaU) +
750*(Buy[SPG]+lambdaL) + 1000*(Buy[SPG]+lambdaU) +
1800*(Buy[TUR]+lambdaL) + 2400*(Buy[TUR]+lambdaU) <= 10000;
```

Semi-Continuous Domain (cont'd)

and extra constraints

```
subject to (Buy[BEEF]+ldef):
-(Buy[BEEF]+b) + (Buy[BEEF]+lambdaL) + (Buy[BEEF]+lambdaU) = 0;
subject to (Buy[CHK]+ldef):
-(Buy[CHK]+b) + (Buy[CHK]+lambdaL) + (Buy[CHK]+lambdaU) = 0;
subject to (Buy[FISH]+ldef):
-(Buy[FISH]+b) + (Buy[FISH]+lambdaL) + (Buy[FISH]+lambdaU) = 0;
```

... with extra binary variables

Discrete Domain

Continuous

```
CPLEX 10.1.0: optimal solution; objective 88.2

1 dual simplex iterations (0 in phase I)

ampl: display Buy;

BEEF 0 FISH 0 MCH 46.6667 SPG 0

CHK 0 HAM 0 MTL 0 TUR 0
```

Discrete

```
CPLEX 10.1.0: optimal integer solution; objective 95.49
47 MIP simplex iterations
8 branch-and-bound nodes
ampl: display Buy;
BEEF 1 FISH 1 MCH 10 SPG 5
CHK 20 HAM 1 MTL 2 TUR 1
```

Discrete Domain (cont'd)

Converted to MIP with extra binary variables . . .

```
minimize Total_Cost:
3.19*(Buy[BEEF]+b)[0] + 6.38*(Buy[BEEF]+b)[1] +
15.95*(Buy[BEEF]+b)[2] + 31.9*(Buy[BEEF]+b)[3] +
63.8*(Buy[BEEF]+b)[4] + 159.5*(Buy[BEEF]+b)[5] +
2.59*(Buy[CHK]+b)[0] + 5.18*(Buy[CHK]+b)[1] +
12.95*(Buy[CHK]+b)[2] + 25.9*(Buy[CHK]+b)[3] +
51.8*(Buy[CHK]+b)[4] + 129.5*(Buy[CHK]+b)[5] + ...
subject to Diet['A']:
700 <= 60*(Buy[BEEF]+b)[0] + 120*(Buy[BEEF]+b)[1] +
300*(Buy[BEEF]+b)[2] + 600*(Buy[BEEF]+b)[3] +
1200*(Buy[BEEF]+b)[4] + 3000*(Buy[BEEF]+b)[5] +
8*(Buy[CHK]+b)[0] + 16*(Buy[CHK]+b)[1] + 40*(Buy[CHK]+b)[2] +
80*(Buy[CHK]+b)[3] + 160*(Buy[CHK]+b)[4] + 400*(Buy[CHK]+b)[5] + ...
```

Discrete Domain (cont'd)

and SOS type 1 constraints . . .

```
subject to (Buy[BEEF]+sos1):
(Buy[BEEF]+b)[0] + (Buy[BEEF]+b)[1] + (Buy[BEEF]+b)[2] +
(Buy[BEEF]+b)[3] + (Buy[BEEF]+b)[4] + (Buy[BEEF]+b)[5] = 1;
subject to (Buy[CHK]+sos1):
(Buy[CHK]+b)[0] + (Buy[CHK]+b)[1] + (Buy[CHK]+b)[2] +
(Buy[CHK]+b)[3] + (Buy[CHK]+b)[4] + (Buy[CHK]+b)[5] = 1; ...
```

Discrete Domain (cont'd)

with SOS type 1 markers in output file

S0 48 sos 0 20 1 20 2 20 3 20 4 20 5 20 6 36 7 36	
S4 48 sosref 0 1 1 2 2 5 3 10	
4 20 5 50 6 1 7 2	

Discrete Domain

Conversion for Solver: Principles

General case

- Arbitrary union of points and intervals
- Auxiliary binary variable for each point or interval
- ✤ 3 auxiliary constraints for each variable

Union of points

- Auxiliary binary variable for each point
- Auxiliary constraint for each variable
- Enhanced branching in solver
 * "special ordered sets of type 1"

Zero union interval (semi-continuous)

- Auxiliary binary variable for each variable
- ✤ 2 auxiliary constraints for each variable
- Enhanced branching in solver

Implications

General possibilities

- Conditional expression
- Conditional constraint
- Conditional command

AMPL syntax choices

- ✤ if condition then expr1 else expr2
- * condition ==> constraint1 else constraint2
 * also <== and <==>
- if condition then {commands} else {commands}

Currently supported forms

- Nonlinear if-then-else
- CPLEX indicator constraints

Implications Nonlinear if-then-else

More stable expression near zero

```
subject to logRel {j in 1..N}:
   (if X[j] < -delta || X[j] > delta
     then log(1+X[j]) / X[j] else 1 - X[j] / 2) <= logLim;</pre>
```

Implications CPLEX Indicator Constraints

Indicator constraints

- (binary variable = 0) implies constraint
- (binary variable = 1) implies constraint

... handled directly by solver

AMPL "implies" operator

- Use ==> for "implies"
- * Also recognize an else clause
- Similarly define <== and <==>
 - * if-then-else expressions & statements as before

Multicommodity flow with fixed costs

```
set ORIG; # origins
set DEST; # destinations
set PROD; # products
param supply {ORIG,PROD} >= 0; # amounts available at origins
param demand {DEST,PROD} >= 0; # amounts required at destinations
param limit {ORIG,DEST} >= 0;
param vcost {ORIG,DEST,PROD} >= 0; # variable shipment cost on routes
param fcost {ORIG,DEST} > 0;  # fixed cost on routes
var Trans {ORIG,DEST,PROD} >= 0; # actual units to be shipped
var Use {ORIG, DEST} binary; # = 1 iff link is used
minimize total cost:
   sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p]
 + sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];
```

Conventional constraints

```
subject to Supply {i in ORIG, p in PROD}:
    sum {j in DEST} Trans[i,j,p] = supply[i,p];
subject to Demand {j in DEST, p in PROD}:
    sum {i in ORIG} Trans[i,j,p] = demand[j,p];
subject to Multi {i in ORIG, j in DEST}:
    sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];</pre>
```

```
subject to Supply {i in ORIG, p in PROD}:
    sum {j in DEST} Trans[i,j,p] = supply[i,p];
subject to Demand {j in DEST, p in PROD}:
    sum {i in ORIG} Trans[i,j,p] = demand[j,p];
subject to UseDefinition {i in ORIG, j in DEST, p in PROD}:
    Trans[i,j,p] <= min(supply[i,p], demand[j,p]) * Use[i,j];</pre>
```

User cuts

subject to Multi {i in ORIG, j in DEST}: sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j]; subject to UseDefinition {i in ORIG, j in DEST, p in PROD}: Trans[i,j,p] <= min(supply[i,p], demand[j,p]) * Use[i,j];</pre>

Indicator constraint formulations

subject to DefineUsedA {i in ORIG, j in DEST}:
 Use[i,j] = 0 ==> sum {p in PROD} Trans[i,j,p] = 0;

subject to DefineUsedB {i in ORIG, j in DEST, p in PROD}:
 Use[i,j] = 0 ==> Trans[i,j,p] = 0;

subject to DefineUsedC {i in ORIG, j in DEST}:
 Use[i,j] = 0 ==> sum {p in PROD} Trans[i,j,p] = 0
 else sum {p in PROD} Trans[i,j,p] <= limit[i,j];</pre>

Results for 3 origins, 7 destinations, 3 products

iters	nodes	cuts used
374	79	
317	39	
295	42	18
355	77	
406	56	
277	57	
	iters 374 317 295 355 406 277	iters nodes 374 79 317 39 295 42 355 77 406 56 277 57

Assignment to groups with "no one isolated"

```
var Lone {(i1,i2) in ISO, j in REST} binary;
param give {ISO} default 2;
param giveTitle {TITLE} default 2;
param giveLoc {LOC} default 2;
param upperbnd {(i1,i2) in ISO, j in REST} :=
   min (ceil((number2[i1,i2]/card {PEOPLE}) * hiDine[j]) + give[i1,i2],
        hiTargetTitle[i1, j] + giveTitle[i1],
        hiTargetLoc[i2,j] + giveLoc[i2], number2[i1,i2]);
subj to Isolation1 {(i1,i2) in ISO, j in REST}:
   Assign2[i1,i2,j] <= upperbnd[i1,i2,j] * Lone[i1,i2,j];</pre>
subj to Isolation2a {(i1,i2) in ISO, j in REST}:
   Assign2[i1,i2,j] >= Lone[i1,i2,j];
subj to Isolation2b {(i1,i2) in ISO, j in REST}:
   Assign2[i1,i2,j] +
      sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j]
         >= 2 * Lone[i1,i2,j];
```

Same using indicator constraints

```
var Lone {(i1,i2) in ISO, j in REST} binary;
subj to Isolation1 {(i1,i2) in ISO, j in REST}:
   Lone[i1,i2,j] = 0 ==> Assign2[i1,i2,j] = 0;
subj to Isolation2b {(i1,i2) in ISO, j in REST}:
   Lone[i1,i2,j] = 1 ==> Assign2[i1,i2,j] +
      sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j] >= 2;
```

Workforce planning

```
var LayoffCost {m in MONTHS} >=0;
subj to LayoffCostDefn1 {m in MONTHS}:
   LayoffCost[m]
      <= snrLayOffWages * 31 * maxNbrSnrEmpl * (1 - NoShut[m]);
subj to LayoffCostDefn2a {m in MONTHS}:
   LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl
      <= maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];
subj to LayoffCostDefn2b {m in MONTHS}:
   LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl
      >= -maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];
```

Same using indicator constraints

```
var LayoffCost {m in MONTHS} >=0;
subj to LayoffCostDefn1 {m in MONTHS}:
   NoShut[m] = 1 ==> LayoffCost[m] = 0;
subj to LayoffCostDefn2 {m in MONTHS}:
   NoShut[m] = 0 ==> LayoffCost[m] =
        snrLayoffWages * ShutdownDays[m] * maxNumberSnrEmpl;
```

Standard mixed-integer formulation

```
param least_assign >= 0;
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
subject to Least_Use1 {j in SCHEDS}:
   Work[j] >= least_assign * Use[j];
subject to Least_Use2 {j in SCHEDS}:
   Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];</pre>
```

Formulation using variable-domain specification

```
param least_assign >= 0;
var Work {j in SCHEDS} integer, in {0} union
    interval [least_assign, (max {i in SHIFT_LIST[j]} required[i])];
```

Formulation using "implies" operator

```
param least_assign >= 0;
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
subject to Least_Use1_logical {j in SCHEDS}:
    Use[j] = 1 ==> Work[j] >= least_assign;
subject to Least_Use2_logical {j in SCHEDS}:
    Use[j] = 0 ==> Work[j] = 0;
```

```
param least_assign >= 0;
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
subject to Least_Use_logical {j in SCHEDS}:
    Use[j] = 1 ==> least_assign <= Work[j] else Work[j] = 0;</pre>
```