Modeling and Solving Nontraditional Optimization Problems Session 2b: Complementarity Conditions

Robert Fourer

Industrial Engineering \& Management Sciences
Northwestern University
AMPL Optimization LLC 4er@northwestern.edu — 4er@ampl.com

Chiang Mai University International Conference

 WorkshopChiang Mai, Thailand - 4-5 January 2011

Session 2b: Complementarity

Focus

* A condition closely associated with optimization that says two quantities cannot both be positive

Topics

* Motivating examples
* AMPL syntax
* More examples
* Solver strategies

Complementarity

Classical Linear Program

Minimum-cost production

```
set PROD; # products
set ACT; # activities
param cost {ACT} > 0; # cost per unit of each activity
param demand {PROD} >= 0; # units of demand for each product
param io {PROD,ACT} >= 0; # units of each product from
                                # 1 unit of each activity
var Level {ACT} >= 0;
minimize TotalCost:
    sum {j in ACT} cost[j] * Level[j];
subject to Demands {i in PROD}:
    sum {j in ACT} io[i,j] * Level[j] >= demand[i];
```


Classical Linear Complementarity

Economic equilibrium

```
set PROD; # products
set ACT; # activities
param cost {ACT} > 0; # cost per unit of each activity
param demand {PROD} >= 0; # units of demand for each product
param io {PROD,ACT} >= 0; # units of each product from
    # 1 unit of each activity
var Price {PROD};
var Level {ACT};
subject to Pri_Compl {i in PROD}:
    Price[i] >= 0 complements
    sum {j in ACT} io[i,j] * Level[j] >= demand[i];
subject to Lev_Compl {j in ACT}:
    Level[j] >= 0 complements
    sum {i in PROD} Price[i] * io[i,j] <= cost[j];
```

. . . complementary slackness conditions for the classical linear program

Bounded-Variable Linear Program

Minimum-cost production

```
set PROD; # products
set ACT; # activities
param cost {ACT} > 0; # cost per unit of each activity
param demand {PROD} >= 0; # units of demand for each product
param io {PROD,ACT} >= 0; # units of each product from
    # 1 unit of each activity
param level_min {ACT} > 0; # min allowed level for each activity
param level_max {ACT} > 0; # max allowed level for each activity
var Level {ACT};
minimize TotalCost:
    sum {j in ACT} cost[j] * Level[j];
subject to LevelLimits {j in ACT}:
    level_min[j] <= Level[j] <= level_max[j]
subject to Demands {i in PROD}:
    sum {j in ACT} io[i,j] * Level[j] >= demand[i];
```


Mixed Linear Complementarity

Economic equilibrium with bounded variables

```
set PROD; # products
set ACT; # activities
param cost {ACT} > 0; # cost per unit
param demand {PROD} >= 0; # units of demand
param io {PROD,ACT} >= 0; # units of product per unit of activity
param level_min {ACT} > 0; # min allowed level for each activity
param level_max {ACT} > 0; # max allowed level for each activity
var Price {PROD};
var Level {ACT};
subject to Pri_Compl {i in PROD}:
    Price[i] >= 0 complements
        sum {j in ACT} io[i,j] * Level[j] >= demand[i];
subject to Lev_Compl {j in ACT}:
    level_min[j] <= Level[j] <= level_max[j] complements
        cost[j] - sum {i in PROD} Price[i] * io[i,j];
```

. . . generalized complementary slackness conditions

Complementarity

Nonlinear Complementarity

Equilibrium with price-dependent demands

```
set PROD; # products
set ACT; # activities
param cost {ACT} > 0; # cost per unit
param demand {PROD} >= 0; # units of demand
param io {PROD,ACT} >= 0; # units of product per unit of activity
param demzero {PROD} > 0; # intercept and slope of the demand
param demrate {PROD} >= 0; # as a function of price
var Price {PROD};
var Level {ACT};
subject to Pri_Compl {i in PROD}:
    Price[i] >= 0 complements
        sum {j in ACT} io[i,j] * Level[j]
        >= demzero[i] + demrate[i] * Price[i];
subject to Lev_Compl {j in ACT}:
    Level[j] >= 0 complements
        sum {i in PROD} Price[i] * io[i,j] <= cost[j];
```

Complementarity

AMPL's complements operator

Two single inequalities

single-ineq1 complements single-ineq 2
Both inequalities must hold, at least one at equality
One double inequality
double-ineq complements expr
expr complements double-ineq
The double-inequality must hold, and
if at lower limit then expr ≥ 0, if at upper limit then expr ≤ 0, if between limits then expr $=0$

One equality

equality complements expr
expr complements equality
The equality must hold (included for completeness)

Complementarity

Logic vs. New Operator

Using complements operator

```
subject to delct {cr in creg, u in users}:
    0 <= ct[cr,u] complements
    ctcost[cr,u] + cv[cr] >= p["C",u];
```


Using logic operators

```
subject to delct {cr in creg, u in users}:
    0 <= ct[cr,u] and
    ctcost[cr,u] + cv[cr] >= p["C",u] and
    (0 = ct[cr,u] or ctcost[cr,u] + cv[cr] = p["C",u]);
```

Complementarity

Examples (cont'd)

Prices of coal shipments

```
subject to delct {cr in creg, u in users}:
    0 <= ct[cr,u] complements
    ctcost[cr,u] + cv[cr] >= p["C",u];
```


Height of membrane

```
subject to dv {i in 1..M, j in 1..N}:
    lb[i,j] <= v[i,j] <= ub[i,j] complements
    (dy/dx) * (2*v[i,j] - v[i+1,j] - v[i-1,j])
    +(dx/dy) * (2*v[i,j] - v[i,j+1] - v[i,j-1])
    - c * dx * dy ;
```

. . . more at Complementarity Problem Net http://www.cs.wisc.edu/cpnet/

Optimization Examples (MPECs)

Cournot Nash equilibrium (gnash1m)

```
g1: 0 <= y[1] <= L complements l[1];
g3: 0 <= y[2] <= L complements l[2];
g5: 0 <= y[3] <= L complements l[3];
g7: 0 <= y[4] <= L complements l[4];
```

Min area packaging membrane (pac-comp1)

```
obst {i in int_nodes}:
    0<= s1[i]
        complements
            u[i] - xi[i] - c*(l[i] - Au[i]) >= 0;
```

. . . more at Mac MPEC WWW-unix.mcs.anl.gov/~leyffer/MacMPEC/

Solving

"Square" systems

* \# of variables =
\# of complementarity constraints +
\# of equality constraints
* Transformation to a simpler canonical form required

MPECs (or MPCCs)

* Mathematical programs with equilibrium constraints (or . . . with complementarity constraints)
* No restriction on numbers of variables \& constraints
* Objective functions permitted
. . . solvers continuing to emerge

Solving

MPECs

Square systems: well understood

* PATH is a well-known solver

Theory of MPECs: terrible

* Easily convert to smooth functions, but . . .
* Constraint qualifications are violated at every feasible point

Practice with MPECs: promising

* Convert to an equivalent smooth problem
* Apply a standard method for nonlinearly constrained nonlinear optimization
. . . choice of conversion depends on type of solver

Solving

Representative MPEC Conversions

$$
0 \leq z_{1} \perp z_{2} \geq 0
$$

$$
\begin{aligned}
& z_{1} \geq 0 \\
& z_{2} \geq 0 \\
& z_{1}^{T} z_{2} \leq 0
\end{aligned}
$$

$$
\sqrt{\left(z_{1 i}-z_{2 i}\right)^{2}+4 \mu}-z_{1 i}-z_{2 i}=0
$$

$$
\sqrt{z_{1 i}^{2}+z_{2 i}^{2}+\mu}-z_{1 i}-z_{2 i}=0
$$

Solving

Representative MPEC Conversions

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & c_{i}(x)=0, \quad i \in \mathcal{E} \\
& c_{i}(x) \geq 0, \quad i \in \mathcal{I} \\
& 0 \leq x_{1} \perp x_{2} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & c_{i}(x)=0, \quad i \in \mathcal{E} \\
& c_{i}(x) \geq 0, \quad i \in \mathcal{I} \\
& x_{1} \geq 0, \quad x_{2} \geq 0 \\
& x_{1 i} x_{2 i} \leq 0 \quad i=1, \ldots, p
\end{aligned}
$$

Alternative penalty formulation

$$
\begin{array}{ll}
\text { minimize } & f(x)+\pi x_{1}^{T} x_{2} \\
\text { subject to } & c_{i}(x)=0, \quad i \in \mathcal{E} \\
& c_{i}(x) \geq 0, \quad i \in \mathcal{I} \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

Solving

Carrying Out the MPEC Conversions

Same theme as before

* Detection: Look for complements operators in constraints
* Transformation: Convert each such constraint
* different for each solver
* Implementation: Recursive tree walks . . .

