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Focus
 Analyzing optimization problems

for purposes of choosing a solver

Topics
 DrAMPL
 Convexity detection

3

Session 4b: Detection & Transformation
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DrAMPL: Outline

Example 1: Nonlinear output from AMPL 

Problem analysis
 Information included with problem instance
 Characteristics readily determined by analyzer
 Convexity (with C. Maheshwari, A. Neumaier, H. Schichl)

Example 2: Analysis of a nonlinear problem

Solver choice
 Relational database
 Database queries

Example 2 (continued): Choice of a solver

Context . . .
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Nonlinear Output from AMPL

Transportation with nonlinear costs
set ORIG;   # origins
set DEST;   # destinations

param supply {ORIG} >= 0;   # amounts available at origins
param demand {DEST} >= 0;   # amounts required at destinations

param rate {ORIG,DEST} >= 0;   # base shipment costs per unit
param limit {ORIG,DEST} > 0;   # limit on units shipped

var Trans {i in ORIG, j in DEST}
>= 1e-10, <= .9999 * limit[i,j], := limit[i,j]/2;

minimize Total_Cost:
sum {i in ORIG, j in DEST}

rate[i,j] * Trans[i,j]^0.8 / (1 - Trans[i,j]/limit[i,j]);

subject to Supply {i in ORIG}:  
sum {j in DEST} Trans[i,j] = supply[i];

subject to Demand {j in DEST}:  
sum {i in ORIG} Trans[i,j] = demand[j];

Example 1
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Nonlinear Output (cont’d)

Transportation data
param: ORIG:  supply :=

GARY   1400
CLEV   2600
PITT   2900 ;

param: DEST:  demand :=
FRA     900    STL    1700
DET    1200    FRE    1100 
LAN     600    LAF    1000 
WIN     400 ;

param rate :  FRA  DET  LAN  WIN  STL  FRE  LAF :=
GARY   39   14   11   14   16   82    8
CLEV   27    9   12    9   26   95   17
PITT   24   14   17   13   28   99   20 ;

param limit :  FRA  DET  LAN  WIN  STL  FRE  LAF :=
GARY   500 1000 1000 1000  800  500 1000
CLEV   500  800  800  800  500  500 1000
PITT   800  600  600  600  500  500  900 ;

Example 1
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Nonlinear Output (cont’d)

AMPL’s .nl file: Summary information in header
0 1        # nonlinear constraints, objectives
0 0        # network constraints: nonlinear, linear
0 21 0     # nonlinear vars in constraints, objectives, both
0 0 0 1    # linear network vars; functions; arith, flags
0 0 0 0 0  # discrete vars: binary, integer, nonlinear (b,c,o)
42 21      # nonzeros in Jacobian, gradients
0 0        # max name lengths: constraints, variables
0 0 0 0 0  # common exprs: b,c,o,c1,o1

. . . AMPL does all the work here

Example 1
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Nonlinear Output (cont’d)

AMPL’s .nl file: Nonlinear expressions
O0 0  #Total_Cost
o54   #sumlist
21
o3    #/
o2    #*
n39
o5    #^
v0    #Trans['GARY','FRA']
n0.8
o1    # -
n1
o3    #/
v0    #Trans['GARY','FRA']
n500
o3    #/
o2    #*
n14
o5    #^
........

Example 1
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Problem Analysis

Information included in .nl file header
 Size
 Differentiability
 Linearity
 Sparsity

Features readily deduced from expression trees
 Quadraticity
 Smoothness

Convexity . . .
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Convexity

Significance
 For an optimization problem of the form

a local minimum is global provided

 f is convex
 each gi is convex
 each hi is linear

 Many physical problems are naturally convex 
if formulated properly

Analyses . . .
 Disproof of convexity
 Proof of convexity

Problem analysis
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Disproof of Convexity

Find any counterexample
 Sample in feasible region
 Test any characterization of convex functions

Sampling along lines
 Look for

 See implementation in John Chinneck’s MProbe
(www.sce.carleton.ca/faculty/chinneck/mprobe.html)

Sampling at points
 Look for ∇2 f(x) not positive semi-definite
 Implemented in DrAMPL . . .

Problem analysis
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Disproof of Convexity (cont’d)

Sampling
 Choose points x0

such that x01, . . . , x0n are within inferred bounds

Testing
 Apply GLTR (galahad.rl.ac.uk/galahad-www/doc/gltr.pdf) to

 Declare nonconvex if GLTR’s Lanczos method 
finds a direction of negative curvature

 Declare inconclusive if GLTR 
reaches the trust region boundary
without finding a direction of negative curvature

Problem analysis
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Proof of Convexity

Recursively assess each expression tree node for
 Bounds
 Monotonicity
 Convexity / Concavity

Apply properties of functions
 ||x||p is convex,  ≥ 0 everywhere

 xα is convex for α ≤ 0, α ≥ 1; – xα is convex for 0 ≤ α ≤ 1

 xp for even p > 0 is convex everywhere, 
decreasing on x ≤ 0, increasing on x ≥ 0, etc.

 – log x and x log x are convex and increasing on x > 0

 sin x is concave on 0 ≤ x ≤  π, convex on π ≤ x ≤ 2π,
increasing on 0 ≤ x ≤ π/2 and 3π/2 ≤ x ≤ 2π, decreasing . . . 
≥ –1 and ≤ 1 everywhere

 xTMx is convex if M is positive semidefinite

 eαx is convex, increasing everywhere for α > 0, etc.

 – (Πi xi)1/n is convex where all xi > 0   . . . etc., etc.

Problem analysis
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Proof of Convexity (cont’d)

Apply properties of convexity
 Certain expressions are convex:

 – f(x) for any concave f
 α f(x) for any convex f and α > 0
 f(x) + g(x) for any convex f and g
 f(Ax + b) for any convex f
 f(g(x)) for any convex nondecreasing f and convex g
 f(g(x)) for any convex nonincreasing f and concave g

 Use these with preceding to assess whether
node expressions are convex on their domains

Apply properties of concavity, similarly

Deduce status of each nonlinear expression
 Convex, concave, or indeterminate
 Lower and upper bounds

Problem analysis
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Testing Convexity Analyzers

Principles
 Disprovers can establish nonconvexity, suggest convexity
 Provers can establish convexity, suggest nonconvexity

Test problems
 Established test sets:

COPS (17), CUTE (734), Hock & Schittkowski (119),
Netlib (40), Schittkowski (195), Vanderbei (29 groups)

 Submissions to NEOS Server

Design of experiments
 Run a prover and a disprover on each test problem
 Check results for consistency
 Collect and characterize problems found to be convex
 Inspect functions not proved or disproved convex,

to suggest possible enhancements to analyzers

Problem analysis
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Issues and Enhancements

Convex quadratic
 Symbolic proof:  x2 + y2 – xy is  ½ (x2 + y2 + (x – y)2) 
 Numerical proof:  xTQx where Q is positive semi-definite

Convex polynomial
 x4 – 4x3 + 6x2 – 4x + 1  is  (x – 1)4

Convex after change of variables
 xy where x > 0, y > 0  is  ev+w where x = ev and y = ew

Convex constraint regions
 C(x) ≤ d is convex
 Second-order cones: x2 + y2 ≤ z2,  z ≥ 0  is convex

Nonconvex cases
 Choice of starting point can be crucial

Problem analysis
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Analysis of a Nonlinear Problem

Torsion model (parameters and variables)
param nx > 0, integer;    # grid points in 1st direction
param ny > 0, integer;    # grid points in 2nd direction

param c;                  # constant

param hx := 1/(nx+1);     # grid spacing
param hy := 1/(ny+1);     # grid spacing

param area := 0.5*hx*hy;  # area of triangle

param D {i in 0..nx+1,j in 0..ny+1} =

min( min(i,nx-i+1)*hx, min(j,ny-j+1)*hy );

# distance to the boundary

var v {i in 0..nx+1, j in 0..ny+1};

# definition of the 
# finite element approximation

Example 2
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Problem Analysis (cont’d)

Torsion model (objective and constraints)
var linLower = sum {i in 0..nx, j in 0..ny} 

(v[i+1,j] + v[i,j] + v[i,j+1]);

var linUpper = sum {i in 1..nx+1, j in 1..ny+1} 
(v[i,j] + v[i-1,j] + v[i,j-1]);

var quadLower = sum {i in 0..nx,j in 0..ny} (
((v[i+1,j] - v[i,j])/hx)**2 + ((v[i,j+1] - v[i,j])/hy)**2 );

var quadUpper = sum {i in 1..nx+1, j in 1..ny+1} (
((v[i,j] - v[i-1,j])/hx)**2 + ((v[i,j] - v[i,j-1])/hy)**2 );

minimize Stress:
area * ((quadLower+quadUpper)/2 - c*(linLower+linUpper)/3);

subject to distanceBound {i in 0..nx+1, j in 0..ny+1}:
-D[i,j] <= v[i,j] <= D[i,j];

Example 2
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Problem Analysis (cont’d)

Output from AMPL’s presolver
Presolve eliminates 2704 constraints and 204 variables.
Substitution eliminates 4 variables.

Adjusted problem:
2500 variables, all nonlinear
0 constraints
1 nonlinear objective; 2500 nonzeros.

Example 2
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Choice of a Solver
Relational database

 Table of identifiable problem categories
 Table of solvers and general information about them
 Table of all valid problem-solver pairs

Database queries
 Most specialized solvers
 Moderately specialized solvers:

“hard” criteria such as convexity not used
 General-purpose solvers

Room for enhancement
 Add data from NEOS Server runs
 Automatically apply “best” solver (or solvers)
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Choice of a Solver
Problem type categories
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Choice of a Solver

Output from DrAMPL (analysis)
Problem type 
-------------
-Problem has bounded variables
-Problem has no constraints

Analyzing problem using only objective
--------------------------------------
-This objective is quadratic
-Problem is a QP with bounds

-0.833013 <= objective <= 0.8359

Problem convexity
------------------
Nonlinear objective looks convex on its domain.

Detected 0/0 nonlinear convex  constraints,
0/0 nonlinear concave constraints.

Example 2
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Solver Choice

Output from DrAMPL (solver recommendations)
### Specialized solvers, based on all properties ###

MOSEK               
OOQP                

### Specialized solvers, excluding "hard" properties ###

BLMVM               
FortMP              
L-BFGS-B            
MINLP               
MOSEK               
OOQP                
PathNLP             
SBB                 
TRON                

### General-purpose solvers ###

KNITRO
LANCELOT
LOQO

Example 2
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Solver Choice (cont’d)

Output from MOSEK solver run
ampl: model torsion.mod;
ampl: data torsion.dat;

ampl: option solver kestrel;
ampl: option kestrel_options 'solver=mosek';

ampl: solve;

Job has been submitted to Kestrel
Kestrel/NEOS Job number    : 280313
Kestrel/NEOS Job password  : ExPXrRcP

MOSEK finished. 
(interior-point iterations - 11, simplex iterations - 0)

Problem status    : PRIMAL_AND_DUAL_FEASIBLE
Solution status   : OPTIMAL

Primal objective  : -0.4180876313
Dual objective    : -0.4180876333

Example 2
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Solver Choice (cont’d)

Output from TRON solver run
ampl: option solver kestrel;
ampl: option kestrel_options 'solver=tron';
ampl: solve;

Job has been submitted to Kestrel
Kestrel/NEOS Job number    : 280036
Kestrel/NEOS Job password  : xXbXViVa
Executing algorithm...

TRON: ------- SOLUTION ------- Finished call                         

Number of function evaluations                            9
Number of gradient evaluations                            9
Number of Hessian evaluations                             9
Number of conjugate gradient iterations                  18 

Projected gradient at final iterate                6.21e-07
Function value at final iterate                 -0.41808763

Total execution time                               0.87 sec
Percentage in function evaluations                      24%
Percentage in gradient evaluations                      15%
Percentage in Hessian evaluations                       33%

Example 2
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Context . . .

Stand-alone
 A solver-like tool for AMPL
 An independent analysis tool like (or within) Mprobe

 Invokes AMPL to get .nl file

Centralized optimization server
 A solver-like service at the NEOS Server

 Compare the current “benchmark solver”

Decentralized optimization services
 An independent Optimization Service

 Listed on a central “registry”
 Contacted directly by modeling systems
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Optimization Services

A web-service framework for optimization tools
 XML-based
 Service-oriented
 Distributed
 Decentralized

A project for implementing such a framework
 Straightforward and ubiquitous access
 Powerful solvers

A robust architecture for the implementation
 Linking modeling languages, 

solvers, schedulers, data repositories
 Residing on different machines, in different locations, 

using different operating systems

(OS)
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OS Standards

Optimization instance representation
 problems (OSiL)
 solver directives (OSoL)
 solutions (OSrL)

Optimization communication
 accessing
 interfacing
 orchestration

Optimization service registration and discovery
 solver abilities (OSeL)
 problem analyses (OSaL)
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Choosing Solvers Revisited

Ad hoc design and implementation
 DrAMPL
 OS as planned . . .

Systematic design . . .



Robert Fourer, Modeling & Solving Nontraditional Optimization Problems
Session 4b: Solver Selection — Chiang Mai, 4-5 January 2011 31

Organization

For any problem to be solved
 list of facts

 properties (like “linear”) of its objective & constraints

 determined by analyzer

For each solver in the registry
 list of predicates

 statements (like “is linear”) about problems it accepts

 determined by the solver’s developer

General rules
 list of recognized properties
 list of valid inferences about properties

 relations (like “quadratic implies nonlinear”) between them

 maintained by the registry’s managers

Choosing Solvers
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Procedure

Given a problem . . .
 run an analyzer (like DrAMPL) to generate facts
 then for each solver . . .

 evaluate its predicate given the facts & rules
 if true, it can be used on the problem

Issues
 several predicate lists for one solver

 reflecting different levels of appropriateness

 choice between appropriate solvers
 standard forms for facts, predicates, rules

 preferably defined by XML schemas

 compatibility with existing inference engines
 maintenance of recognized properties

Choosing Solvers
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