Modeling and Solving Nontraditional Optimization Problems Session 4b: Solver Selection

Robert Fourer

Industrial Engineering & Management Sciences Northwestern University

AMPL Optimization LLC

4er@northwestern.edu — 4er@ampl.com

Chiang Mai University International Conference *Workshop* Chiang Mai, Thailand — 4-5 January 2011

Session 4b: Detection & Transformation

Focus

 Analyzing optimization problems for purposes of choosing a solver

Topics

- DrAMPL
- Convexity detection

DrAMPL: Outline

Example 1: Nonlinear output from AMPL

Problem analysis

- Information included with problem instance
- Characteristics readily determined by analyzer
- * Convexity (with C. Maheshwari, A. Neumaier, H. Schichl)

Example 2: Analysis of a nonlinear problem

Solver choice

- Relational database
- Database queries

Example 2 (continued): Choice of a solver

Context . . .

Example 1 Nonlinear Output from AMPL

Transportation with nonlinear costs

```
set ORIG; # origins
set DEST; # destinations
param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST} >= 0; # amounts required at destinations
param rate {ORIG,DEST} >= 0; # base shipment costs per unit
param limit {ORIG,DEST} > 0; # limit on units shipped
var Trans {i in ORIG, j in DEST}
   >= 1e-10, <= .9999 * limit[i,j], := limit[i,j]/2;
minimize Total Cost:
   sum {i in ORIG, j in DEST}
      rate[i,j] * Trans[i,j]^0.8 / (1 - Trans[i,j]/limit[i,j]);
subject to Supply {i in ORIG}:
   sum {j in DEST} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
   sum {i in ORIG} Trans[i,j] = demand[j];
```

Example 1 Nonlinear Output (cont'd)

Transportation data

param	: ORIG: GARY CLEV PITT	supp: 1400 2600 2900	Ly :=))) ;							
param	DEST	demai	nd :=							
param	FRA	900) (STT.	1700	n				
	DET	1200) I	FRE	1100					
	T.AN	600	נ ק ו (.AF	1000	5 D				
	WIN	400	י ג י ר		TOOL	0				
	W ± H		,							
param	rate :	FRA	DET	LAN	WIN	STL	FRE	LAF	:=	
-	GARY	39	14	11	14	16	82	8		
	CLEV	27	9	12	9	26	95	17		
	PITT	24	14	17	13	28	99	20	;	
					_	-		-	,	
param	limit :	FRA	DET	LAN	WIN	STL	FRE	LAF	:=	
-	GARY	500	1000	1000	1000	800	500	1000		
	CLEV	500	800	800	800	500	500	1000		
	PITT	800	600	600	600	500	500	900	;	
									•	

Example 1 Nonlinear Output (cont'd)

AMPL's .nl file: Summary information in header

0 1	<pre># nonlinear constraints, objectives</pre>
0 0	<pre># network constraints: nonlinear, linear</pre>
0 21 0	<pre># nonlinear vars in constraints, objectives, both</pre>
0 0 0 1	<pre># linear network vars; functions; arith, flags</pre>
0 0 0 0 0	<pre># discrete vars: binary, integer, nonlinear (b,c,o)</pre>
42 21	# nonzeros in Jacobian, gradients
0 0	<pre># max name lengths: constraints, variables</pre>
0 0 0 0 0	# common exprs: b,c,o,c1,o1

... AMPL does all the work here

Example 1 Nonlinear Output (cont'd)

AMPL's .nl file: Nonlinear expressions

00 0	# Total_Cost						
054	#sumlist						
21							
03	#/						
02	#*						
n39							
05	#^						
v 0	#Trans['GARY','FRA']						
n0.8							
01	# -						
n1							
03	#/						
v 0	<pre>#Trans['GARY','FRA']</pre>						
n500							
03	#/						
02	#*						
n14							
05	#^						
	• • •						

Problem Analysis

Information included in .nl file header

- * Size
- Differentiability
- ✤ Linearity
- Sparsity

Features readily deduced from expression trees

- Quadraticity
- Smoothness

Convexity . . .

Problem analysis Convexity

Significance

 $\boldsymbol{\ast}$ For an optimization problem of the form

Minimize $f(x_1,...,x_n)$ Subject to $g_i(x_1,...,x_n) \ge 0$, i = 1,...,r $h_i(x_1,...,x_n) = 0$, i = 1,...,s

- a local minimum is global provided
 - \star *f* is convex
 - * each g_i is convex
 - * each h_i is linear
- Many physical problems are naturally convex if formulated properly

Analyses . . .

- Disproof of convexity
- Proof of convexity

Problem analysis **Disproof of Convexity**

Find any counterexample

- Sample in feasible region
- Test any characterization of convex functions

Sampling along lines

- Look for $f(\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2) > \lambda f(\mathbf{x}_1) + (1-\lambda)f(\mathbf{x}_2)$
- See implementation in John Chinneck's MProbe (www.sce.carleton.ca/faculty/chinneck/mprobe.html)

Sampling at points

- ★ Look for $\nabla^2 f(\mathbf{x})$ not positive semi-definite
- Implemented in DrAMPL . . .

Problem analysis **Disproof of Convexity** (cont'd)

Sampling

• Choose points \mathbf{x}_0 such that x_{01}, \ldots, x_{0n} are within inferred bounds

Testing

Apply GLTR (galahad.rl.ac.uk/galahad-www/doc/gltr.pdf) to

 $\min_{\mathbf{d}} \nabla f(\mathbf{x}_0) \mathbf{d} + \frac{1}{2} \mathbf{d} \nabla^2 f(\mathbf{x}_0) \mathbf{d}$ s.t. $\|\mathbf{d}\|_2 \le \max\{10, \|\nabla f(\mathbf{x}_0)\|/10\}$

- Declare *nonconvex* if GLTR's Lanczos method finds a direction of negative curvature
- Declare *inconclusive* if GLTR reaches the trust region boundary without finding a direction of negative curvature

Problem analysis Proof of Convexity

Recursively assess each expression tree node for

- Bounds
- Monotonicity
- Convexity / Concavity

Apply properties of functions

- ♦ $||\mathbf{x}||_p$ is convex, ≥ 0 everywhere
- *x*^α is convex for $\alpha ≤ 0$, $\alpha ≥ 1$; x^{α} is convex for $0 ≤ \alpha ≤ 1$
- *x^p* for even *p* > 0 is convex everywhere, decreasing on *x* ≤ 0, increasing on *x* ≥ 0, *etc*.
- ✤ $-\log x$ and $x \log x$ are convex and increasing on x > 0
- ★ sin *x* is concave on $0 \le x \le \pi$, convex on $\pi \le x \le 2\pi$, increasing on $0 \le x \le \pi/2$ and $3\pi/2 \le x \le 2\pi$, decreasing . . . ≥ -1 and ≤ 1 everywhere
- ✤ x^TMx is convex if M is positive semidefinite
- ★ $e^{\alpha x}$ is convex, increasing everywhere for $\alpha > 0$, *etc*.
- → (Π_i x_i)^{1/n} is convex where all x_i > 0
- ... etc., etc.

Problem analysis **Proof of Convexity** (cont'd)

Apply properties of convexity

- Certain expressions are convex:
 - ★ $-f(\mathbf{x})$ for any concave f
 - * $\alpha f(\mathbf{x})$ for any convex f and $\alpha > 0$
 - * $f(\mathbf{x}) + g(\mathbf{x})$ for any convex f and g
 - * $f(\mathbf{Ax} + \mathbf{b})$ for any convex f
 - * $f(g(\mathbf{x}))$ for any convex nondecreasing f and convex g
 - * $f(g(\mathbf{x}))$ for any convex nonincreasing f and concave g
- Use these with preceding to assess whether node expressions are convex on their domains

Apply properties of concavity, similarly

Deduce status of each nonlinear expression

- Convex, concave, or indeterminate
- Lower and upper bounds

Problem analysis **Testing Convexity Analyzers**

Principles

- Disprovers can establish nonconvexity, suggest convexity
- Provers can establish convexity, suggest nonconvexity

Test problems

- Stablished test sets:
 - COPS (17), CUTE (734), Hock & Schittkowski (119), Netlib (40), Schittkowski (195), Vanderbei (29 groups)
- Submissions to NEOS Server

Design of experiments

- Run a prover and a disprover on each test problem
- Check results for consistency
- Collect and characterize problems found to be convex
- Inspect functions not proved or disproved convex, to suggest possible enhancements to analyzers

Problem analysis Issues and Enhancements

Convex quadratic

• Symbolic proof: $x^2 + y^2 - xy$ is $\frac{1}{2}(x^2 + y^2 + (x - y)^2)$

* *Numerical* proof: $x^{T}Qx$ where Q is positive semi-definite

Convex polynomial

* $x^4 - 4x^3 + 6x^2 - 4x + 1$ is $(x - 1)^4$

Convex after change of variables

* *xy* where x > 0, y > 0 is e^{v+w} where $x = e^{v}$ and $y = e^{w}$

Convex constraint regions

♦ $C(x) \le d$ is convex

★ Second-order cones: $x^2 + y^2 \le z^2$, $z \ge 0$ is convex

Nonconvex cases

* Choice of starting point can be crucial

Example 2 Analysis of a Nonlinear Problem

Torsion model (parameters and variables)

```
param nx > 0, integer;
                         # grid points in 1st direction
param ny > 0, integer;
                         # grid points in 2nd direction
                         # constant
param c;
param hx := 1/(nx+1);  # grid spacing
param hy := 1/(ny+1);  # grid spacing
param area := 0.5*hx*hy; # area of triangle
param D {i in 0..nx+1, j in 0..ny+1} =
 min( min(i,nx-i+1)*hx, min(j,ny-j+1)*hy );
                         # distance to the boundary
var v {i in 0..nx+1, j in 0..ny+1};
                         # definition of the
                         # finite element approximation
```

Example 2 **Problem Analysis** (cont'd)

Torsion model (objective and constraints)

```
var linLower = sum {i in 0..nx, j in 0..ny}
  (v[i+1,j] + v[i,j] + v[i,j+1]);
var linUpper = sum {i in 1..nx+1, j in 1..ny+1}
  (v[i,j] + v[i-1,j] + v[i,j-1]);
var quadLower = sum {i in 0..nx,j in 0..ny} (
       ((v[i+1,j] - v[i,j])/hx)**2 + ((v[i,j+1] - v[i,j])/hy)**2);
var quadUpper = sum {i in 1..nx+1, j in 1..ny+1} (
       ((v[i,j] - v[i-1,j])/hx)**2 + ((v[i,j] - v[i,j-1])/hy)**2);
minimize Stress:
    area * ((quadLower+quadUpper)/2 - c*(linLower+linUpper)/3);
subject to distanceBound {i in 0..nx+1, j in 0..ny+1}:
    -D[i,j] <= v[i,j] <= D[i,j];</pre>
```

Example 2 **Problem Analysis** (cont'd)

Output from AMPL's presolver

```
Presolve eliminates 2704 constraints and 204 variables.
Substitution eliminates 4 variables.
Adjusted problem:
2500 variables, all nonlinear
0 constraints
1 nonlinear objective; 2500 nonzeros.
```

Choice of a Solver

Relational database

- * Table of identifiable *problem* categories
- ✤ Table of *solvers* and general information about them
- Table of all valid problem-solver pairs

Database queries

- Most specialized solvers
- Moderately specialized solvers:
 - "hard" criteria such as convexity not used
- General-purpose solvers

Room for enhancement

- Add data from NEOS Server runs
- Automatically apply "best" solver (or solvers)

Choice of a Solver

Problem type categories

Example 2 Choice of a Solver

Output from DrAMPL (analysis)

```
Problem type
 -Problem has bounded variables
 -Problem has no constraints
Analyzing problem using only objective
 -This objective is quadratic
 -Problem is a QP with bounds
 -0.833013 <= objective <= 0.8359
Problem convexity
Nonlinear objective looks convex on its domain.
Detected 0/0 nonlinear convex constraints,
          0/0 nonlinear concave constraints.
```

Example 2 Solver Choice

Output from DrAMPL (solver recommendations)

```
### Specialized solvers, based on all properties ###
        MOSEK
        OOOP
### Specialized solvers, excluding "hard" properties ###
        BT.MVM
        FortMP
        L-BFGS-B
        MINLP
        MOSEK
        OOQP
        PathNLP
        SBB
        TRON
### General-purpose solvers ###
        KNITRO
        LANCELOT
        LOQO
```

Example 2 **Solver Choice** (cont'd)

Output from MOSEK solver run

```
ampl: model torsion.mod;
ampl: data torsion.dat;
ampl: option solver kestrel;
ampl: option kestrel options 'solver=mosek';
ampl: solve;
Job has been submitted to Kestrel
Kestrel/NEOS Job number : 280313
Kestrel/NEOS Job password : ExPXrRcP
MOSEK finished.
(interior-point iterations - 11, simplex iterations - 0)
Problem status : PRIMAL AND DUAL FEASIBLE
Solution status : OPTIMAL
Primal objective : -0.4180876313
Dual objective : -0.4180876333
```

Example 2 **Solver Choice** (cont'd)

Output from TRON solver run

```
ampl: option solver kestrel;
ampl: option kestrel options 'solver=tron';
ampl: solve;
Job has been submitted to Kestrel
Kestrel/NEOS Job number : 280036
Kestrel/NEOS Job password : xXbXViVa
Executing algorithm...
TRON: ----- SOLUTION ----- Finished call
Number of function evaluations
                                                           9
Number of gradient evaluations
                                                           9
Number of Hessian evaluations
                                                           9
                                                          18
Number of conjugate gradient iterations
                                                   6.21e-07
Projected gradient at final iterate
Function value at final iterate
                                                -0.41808763
                                                   0.87 sec
Total execution time
Percentage in function evaluations
                                                        24%
Percentage in gradient evaluations
                                                        15%
Percentage in Hessian evaluations
                                                        33%
```

Context . . .

Stand-alone

- * A solver-like tool for AMPL
- An independent analysis tool like (or within) Mprobe
 * Invokes AMPL to get .nl file

Centralized optimization server

A solver-like service at the NEOS Server
* Compare the current "benchmark solver"

Decentralized optimization services

An independent Optimization Service
* Listed on a central "registry"
* Contacted directly by modeling systems

Optimization Services(OS)

A web-service framework for optimization tools

- XML-based
- Service-oriented
- Distributed
- Decentralized

A project for implementing such a framework

- Straightforward and ubiquitous access
- Powerful solvers

A robust architecture for the implementation

- Linking modeling languages, solvers, schedulers, data repositories
- Residing on different machines, in different locations, using different operating systems

OS Standards

Optimization instance representation

- problems (OSiL)
- solver directives (OSoL)
- solutions (OSrL)

Optimization communication

- accessing
- interfacing
- orchestration

Optimization service registration and discovery

- solver abilities (OSeL)
- problem analyses (OSaL)

Choosing Solvers Revisited

Ad hoc design and implementation

- DrAMPL
- ✤ OS as planned . . .

Systematic design . . .

Choosing Solvers Organization

For any problem to be solved

- ✤ list of *facts*
 - * properties (like "linear") of its objective & constraints
- determined by analyzer

For each solver in the registry

- list of *predicates*
 - * statements (like "is linear") about problems it accepts
- determined by the solver's developer

General rules

- list of recognized properties
- list of valid inferences about properties
 - * relations (like "quadratic implies nonlinear") between them
- maintained by the registry's managers

Choosing Solvers Procedure

Given a problem . . .

- run an analyzer (like DrAMPL) to generate facts
- then for each solver . . .
 - * evaluate its predicate given the facts & rules
 - * if true, it can be used on the problem

Issues

- $\boldsymbol{\ast}$ several predicate lists for one solver
 - ***** reflecting different levels of appropriateness
- choice between appropriate solvers
- standard forms for facts, predicates, rules
 preferably defined by XML schemas
- compatibility with existing inference engines
- maintenance of recognized properties

References . . .

Convexity detection

- R. Fourer, C. Maheshwari, A. Neumaier,
 D. Orban, H. Schichl,
 Convexity and Concavity Detection in Computational
 Graphs: Tree Walks for Convexity Assessment
- *inFORMS Journal on Computing* 22 (2010) 26–43, dx.doi.org/10.1287/ijoc.1090.0321

DrAMPL

- R. Fourer, D. Orban, DrAMPL: A Meta-Solver for Optimization Problem Analysis
- Computational Management Science 7 (2010) 437–463, dx.doi.org/10.1007/s10287-009-0101-z