Modeling and Solving Nontraditional Optimization Problems Session 4b: Solver Selection

Robert Fourer
Industrial Engineering \& Management Sciences
Northwestern University
AMPL Optimization LLC
4er@northwestern.edu — 4er@ampl.com

Chiang Mai University International Conference Workshop
Chiang Mai, Thailand - 4-5 January 2011

Session 4b: Detection \& Transformation

Focus

* Analyzing optimization problems for purposes of choosing a solver

Topics

* DrAMPL
* Convexity detection

DrAMPL: Outline

Example 1: Nonlinear output from AMPL

Problem analysis

* Information included with problem instance
* Characteristics readily determined by analyzer
* Convexity (with C. Maheshwari, A. Neumaier, H. Schichl)

Example 2: Analysis of a nonlinear problem
Solver choice

* Relational database
* Database queries

Example 2 (continued): Choice of a solver
Context...

Nonlinear Output from AMPL

Transportation with nonlinear costs

```
set ORIG; # origins
set DEST; # destinations
param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST} >= 0; # amounts required at destinations
param rate {ORIG,DEST} >= 0; # base shipment costs per unit
param limit {ORIG,DEST} > 0; # limit on units shipped
var Trans {i in ORIG, j in DEST}
    >= 1e-10, <= .9999 * limit[i,j], := limit[i,j]/2;
minimize Total Cost:
    sum {i in ORIG, j in DEST}
        rate[i,j] * Trans[i,j]^0.8 / (1 - Trans[i,j]/limit[i,j]);
subject to Supply {i in ORIG}:
    sum {j in DEST} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
    sum {i in ORIG} Trans[i,j] = demand[j];
```

Example 1

Nonlinear Output (cont'd)

Transportation data

param: ORIG: GARY CLEV PITT	$\begin{aligned} & \text { supply }:= \\ & 1400 \\ & 2600 \\ & 2900 \text {; } \end{aligned}$					
param: DEST: FRA DET LAN WIN	$\begin{array}{rl} \text { demand } & := \\ 900 & S \\ 1200 & \mathrm{E} \\ 600 & \mathrm{I} \\ 400 & \end{array}$	STL FRE LAF	$\begin{aligned} & 1700 \\ & 1100 \\ & 1000 \end{aligned}$			
param rate : GARY CLEV PITT	FRA DET 39 14 27 9 24 14	LAN 11 12 17	$\begin{array}{r} \text { WIN } \\ 14 \\ 9 \\ 13 \end{array}$	$\begin{array}{r} S T L \\ 16 \\ 26 \\ 28 \end{array}$	$\begin{array}{r} \text { FRE } \\ 82 \\ 95 \\ 99 \end{array}$	$\begin{aligned} & \text { LAF }:= \\ & 8 \\ & 17 \\ & 20 ; \end{aligned}$
param limit : GARY CLEV PITT	FRA DET 500 1000 500 800 800 600	$\begin{array}{r} \text { LAN } \\ 1000 \\ 800 \\ 600 \end{array}$	$\begin{array}{r} \text { WIN } \\ 1000 \\ 800 \\ 600 \end{array}$	$\begin{aligned} & \text { STL } \\ & 800 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & \text { FRE } \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{array}{r} \text { LAF }:= \\ 1000 \\ 1000 \\ 900 \text {; } \end{array}$

Example 1

Nonlinear Output (cont'd)

AMPL's .nl file: Summary information in header

```
0 1 # nonlinear constraints, objectives
0 0 # network constraints: nonlinear, linear
0 21 0 # nonlinear vars in constraints, objectives, both
0 0 0 1 # linear network vars; functions; arith, flags
0 0 0 0 0 # discrete vars: binary, integer, nonlinear (b,c,o)
42 21 # nonzeros in Jacobian, gradients
0 0 # max name lengths: constraints, variables
0 0 0 0 0 # common exprs: b,c,o,c1,o1
```

. . . AMPL does all the work here

Example 1

Nonlinear Output (cont'd)

AMPL's .nl file: Nonlinear expressions

```
OO 0 #Total_Cost
o54 #sumlist
21
03 #/
02 #*
n39
05 #^
v0 #Trans['GARY','FRA']
n0.8
01 # -
n1
03 #/
v0 #Trans['GARY','FRA']
n500
03 #/
02 #*
n14
05 #^
```


Problem Analysis

Information included in .nl file header

* Size
* Differentiability
* Linearity
* Sparsity

Features readily deduced from expression trees

* Quadraticity
$*$ Smoothness
Convexity...

Problem analysis

Convexity

Significance

* For an optimization problem of the form

Minimize	$f\left(x_{1}, \ldots, x_{n}\right)$
Subject to	$g_{i}\left(x_{1}, \ldots, x_{n}\right) \geq 0, \quad i=1, \ldots, r$
	$h_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, s$

a local minimum is global provided

* f is convex
* each g_{i} is convex
* each h_{i} is linear
* Many physical problems are naturally convex if formulated properly
Analyses . . .
* Disproof of convexity
* Proof of convexity

Disproof of Convexity

Find any counterexample

* Sample in feasible region
* Test any characterization of convex functions

Sampling along lines

$*$ Look for $f\left(\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}\right)>\lambda f\left(\mathbf{x}_{1}\right)+(1-\lambda) f\left(\mathbf{x}_{2}\right)$

* See implementation in John Chinneck's MProbe (www.sce.carleton.ca/faculty/chinneck/mprobe.html)

Sampling at points
$*$ Look for $\nabla^{2} f(\mathbf{x})$ not positive semi-definite
$\%$ Implemented in DrAMPL . . .

Disproof of Convexity (cont'd)

Sampling

* Choose points \mathbf{x}_{0}

$$
\text { such that } x_{01}, \ldots, x_{0 n} \text { are within inferred bounds }
$$

Testing

* Apply GLTR (galahad.rl.ac.uk/galahad-www/doc/gltr.pdf) to

$$
\min _{\mathbf{d}} \nabla f\left(\mathbf{x}_{0}\right) \mathbf{d}+\frac{1}{2} \mathbf{d} \nabla^{2} f\left(\mathbf{x}_{0}\right) \mathbf{d}
$$

$$
\text { s.t. } \quad\|\mathbf{d}\|_{2} \leq \max \left\{10,\left\|\nabla f\left(x_{0}\right)\right\| / 10\right\}
$$

* Declare nonconvex if GLTR's Lanczos method finds a direction of negative curvature
* Declare inconclusive if GLTR
reaches the trust region boundary
without finding a direction of negative curvature

Problem analysis

Proof of Convexity

Recursively assess each expression tree node for

* Bounds
* Monotonicity
* Convexity / Concavity

Apply properties of functions

* $\|\mathbf{x}\|_{p}$ is convex, ≥ 0 everywhere
* x^{α} is convex for $\alpha \leq 0, \alpha \geq 1 ;-x^{\alpha}$ is convex for $0 \leq \alpha \leq 1$
$* x^{p}$ for even $p>0$ is convex everywhere, decreasing on $x \leq 0$, increasing on $x \geq 0$, etc.
$\%-\log x$ and $x \log x$ are convex and increasing on $x>0$
* $\sin x$ is concave on $0 \leq x \leq \pi$, convex on $\pi \leq x \leq 2 \pi$, increasing on $0 \leq x \leq \pi / 2$ and $3 \pi / 2 \leq x \leq 2 \pi$, decreasing . . ≥-1 and ≤ 1 everywhere
$\star \mathbf{x}^{T} \mathbf{M x}$ is convex if \mathbf{M} is positive semidefinite
* $e^{\alpha x}$ is convex, increasing everywhere for $\alpha>0$, etc.
* - $\left(\Pi_{i} x_{i}\right)^{1 / n}$ is convex where all $x_{i}>0$

Problem analysis

Proof of Convexity (cont'd)

Apply properties of convexity

* Certain expressions are convex:
* $-f(\mathbf{x})$ for any concave f
* $\alpha f(\mathbf{x})$ for any convex f and $\alpha>0$
* $f(\mathbf{x})+g(\mathbf{x})$ for any convex f and g
* $f(\mathbf{A x}+\mathbf{b})$ for any convex f
* $f(g(\mathbf{x}))$ for any convex nondecreasing f and convex g
* $f(g(\mathbf{x}))$ for any convex nonincreasing f and concave g
* Use these with preceding to assess whether node expressions are convex on their domains

Apply properties of concavity, similarly

Deduce status of each nonlinear expression

* Convex, concave, or indeterminate
* Lower and upper bounds

Problem analysis

Testing Convexity Analyzers

Principles

* Disprovers can establish nonconvexity, suggest convexity
* Provers can establish convexity, suggest nonconvexity

Test problems

* Established test sets:

COPS (17), CUTE (734), Hock \& Schittkowski (119),
Netlib (40), Schittkowski (195), Vanderbei (29 groups)

* Submissions to NEOS Server

Design of experiments

* Run a prover and a disprover on each test problem
* Check results for consistency
* Collect and characterize problems found to be convex
* Inspect functions not proved or disproved convex, to suggest possible enhancements to analyzers

Problem analysis

Issues and Enhancements

Convex quadratic

* Symbolic proof: $x^{2}+y^{2}-x y$ is $1 / 2\left(x^{2}+y^{2}+(x-y)^{2}\right)$
* Numerical proof: $x^{\mathrm{T}} Q x$ where Q is positive semi-definite

Convex polynomial

* $x^{4}-4 x^{3}+6 x^{2}-4 x+1$ is $(x-1)^{4}$

Convex after change of variables

* xy where $x>0, y>0$ is e^{v+w} where $x=\mathrm{e}^{v}$ and $y=e^{w}$

Convex constraint regions
$* C(x) \leq d$ is convex

* Second-order cones: $x^{2}+y^{2} \leq z^{2}, z \geq 0$ is convex

Nonconvex cases

* Choice of starting point can be crucial

Example 2

Analysis of a Nonlinear Problem

Torsion model (parameters and variables)

```
param nx > 0, integer; # grid points in 1st direction
param ny > 0, integer; # grid points in 2nd direction
param c;
    # constant
param hx := 1/(nx+1); # grid spacing
param hy := 1/(ny+1); # grid spacing
param area :=0.5*hx*hy; # area of triangle
param D {i in 0..nx+1,j in 0..ny+1} =
    min( min(i,nx-i+1)*hx, min(j,ny-j+1)*hy );
    # distance to the boundary
var v {i in 0..nx+1, j in 0..ny+1};
    # definition of the
    # finite element approximation
```


Example 2

Problem Analysis (cont'd)

Torsion model (objective and constraints)

```
var linLower = sum {i in 0..nx, j in 0..ny}
    (v[i+1,j] + v[i,j] + v[i,j+1]);
var linUpper = sum {i in 1..nx+1, j in 1..ny+1}
    (v[i,j] + v[i-1,j] + v[i,j-1]);
var quadLower = sum {i in 0..nx,j in O..ny} (
    ((v[i+1,j] - v[i,j])/hx)**2 + ((v[i,j+1] - v[i,j])/hy)**2 );
var quadUpper = sum {i in 1..nx+1, j in 1..ny+1} (
    ((v[i,j] - v[i-1,j])/hx)**2 + ((v[i,j] - v[i,j-1])/hy)**2 );
minimize Stress:
    area * ((quadLower+quadUpper)/2 - c*(linLower+linUpper)/3);
subject to distanceBound {i in 0..nx+1, j in 0..ny+1}:
    -D[i,j] <= v[i,j] <= D[i,j];
```


Example 2

Problem Analysis (cont'd)

Output from AMPL's presolver

```
Presolve eliminates 2704 constraints and 204 variables.
Substitution eliminates 4 variables.
Adjusted problem:
2500 variables, all nonlinear
O constraints
1 nonlinear objective; 2500 nonzeros.
```


Choice of a Solver

Relational database

* Table of identifiable problem categories
* Table of solvers and general information about them
* Table of all valid problem-solver pairs

Database queries

* Most specialized solvers
* Moderately specialized solvers:
"hard" criteria such as convexity not used
* General-purpose solvers

Room for enhancement

* Add data from NEOS Server runs
* Automatically apply "best" solver (or solvers)

Choice of a Solver

Problem type categories

Example 2

Choice of a Solver

Output from DrAMPL (analysis)

```
Problem type
-------------
    -Problem has bounded variables
    -Problem has no constraints
Analyzing problem using only objective
-This objective is quadratic
    -Problem is a QP with bounds
    -0.833013 <= objective <= 0.8359
Problem convexity
    Nonlinear objective looks convex on its domain.
    Detected 0/0 nonlinear convex constraints,
    0/O nonlinear concave constraints.
```


Example 2

Solver Choice

Output from DrAMPL (solver recommendations)

```
### Specialized solvers, based on all properties ###
    MOSEK
    OOQP
### Specialized solvers, excluding "hard" properties ###
    BLMVM
    FortMP
    L-BFGS-B
    MINLP
    MOSEK
    00QP
    PathNLP
    SBB
    TRON
    ### General-purpose solvers ###
    KNITRO
    LANCELOT
    LOQO
```


Example 2

Solver Choice (cont'd)

Output from MOSEK solver run

```
ampl: model torsion.mod;
ampl: data torsion.dat;
ampl: option solver kestrel;
ampl: option kestrel_options 'solver=mosek';
ampl: solve;
Job has been submitted to Kestrel
Kestrel/NEOS Job number : 280313
Kestrel/NEOS Job password : ExPXrRcP
MOSEK finished.
(interior-point iterations - 11, simplex iterations - 0)
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMA\overline{L}
Primal objective : -0.4180876313
Dual objective : -0.4180876333
```


Example 2

Solver Choice (cont'd)

Output from TRON solver run

```
ampl: option solver kestrel;
ampl: option kestrel_options 'solver=tron';
ampl: solve;
Job has been submitted to Kestrel
Kestrel/NEOS Job number : 280036
Kestrel/NEOS Job password : xXbXViVa
Executing algorithm...
TRON: ------- SOLUTION ------- Finished call
Number of function evaluations 9
Number of gradient evaluations 9
Number of Hessian evaluations 9
Number of conjugate gradient iterations 18
Projected gradient at final iterate 6.21e-07
Function value at final iterate -0.41808763
Total execution time
0.87 sec
Percentage in function evaluations 24%
Percentage in gradient evaluations 15%
Percentage in Hessian evaluations 33%
```


Context . . .

Stand-alone

* A solver-like tool for AMPL
* An independent analysis tool like (or within) Mprobe * Invokes AMPL to get .nl file

Centralized optimization server

* A solver-like service at the NEOS Server
* Compare the current "benchmark solver"

Decentralized optimization services
\star An independent Optimization Service

* Listed on a central "registry"
* Contacted directly by modeling systems

Optimization Services (OS)

A web-service framework for optimization tools

* XML-based
* Service-oriented
* Distributed
* Decentralized

A project for implementing such a framework

* Straightforward and ubiquitous access
* Powerful solvers

A robust architecture for the implementation

* Linking modeling languages, solvers, schedulers, data repositories
* Residing on different machines, in different locations, using different operating systems

OS Standards

Optimization instance representation

* problems (OSiL)
* solver directives (OSoL)
* solutions (OSrL)

Optimization communication

* accessing
* interfacing
* orchestration

Optimization service registration and discovery

* solver abilities (OSeL)
* problem analyses (OSaL)

Choosing Solvers Revisited

Ad hoc design and implementation

* DrAMPL
* OS as planned . . .

Systematic design . . .

Choosing Solvers

Organization

For any problem to be solved

* list of facts
* properties (like "linear") of its objective \& constraints
* determined by analyzer

For each solver in the registry

* list of predicates
* statements (like "is linear") about problems it accepts
\star determined by the solver's developer

General rules

$*$ list of recognized properties
$*$ list of valid inferences about properties

* relations (like "quadratic implies nonlinear") between them
* maintained by the registry's managers

Choosing Solvers

Procedure

Given a problem . . .

* run an analyzer (like DrAMPL) to generate facts
* then for each solver . . .
* evaluate its predicate given the facts \& rules
* if true, it can be used on the problem

Issues

* several predicate lists for one solver
* reflecting different levels of appropriateness
* choice between appropriate solvers
* standard forms for facts, predicates, rules
* preferably defined by XML schemas
* compatibility with existing inference engines
* maintenance of recognized properties

References . . .

Convexity detection

* R. Fourer, C. Maheshwari, A. Neumaier, D. Orban, H. Schichl,

Convexity and Concavity Detection in Computational Graphs: Tree Walks for Convexity Assessment

* INFORMS Journal on Computing 22 (2010) 26-43, dx.doi.org/10.1287/ijoc.1090.0321

DrAMPL

* R. Fourer, D. Orban, DrAMPL: A Meta-Solver for Optimization Problem Analysis
* Computational Management Science 7 (2010) 437-463, dx.doi.org/10.1007/s10287-009-0101-z

