# New and Forthcoming Developments in the AMPL Modeling Language \& System 

## Robert Fourer*, David M. Gay**

AMPL Optimization LLC
www.ampl.com - 773-336-AMPL

* Industrial Eng \& Management Sciences, Northwestern Univ
** Computer Science, University of New Mexico

INFORMS Conference on
Business Analytics \& Operations Research
Chicago - April 10-12, 2011 - Track 19, Software Tutorials

## Motivation

## Optimization modeling cycle

* Communicate with client
* Build model
* Build datasets
* Generate optimization problems
* Feed problems to solvers
* Run solvers
* Process results for analysis \& reporting to client

Goals
$\star$ Do this quickly and reliably

* Get results before client loses interest
* Deploy for application


## Example: Scheduling Optimization

Cover demands for workers

* Each "shift" requires a certain number of employees
* Each employee works a certain "schedule" of shifts

Satisfy scheduling rules

* Only "valid" schedules from given list may be used
* Each schedule that is used at all must be used for at least __ employees
Minimize total workers needed
* Which schedules should be used?
* How many employees should work each schedule?


## AMPL

## Algebraic modeling language: symbolic data

```
set SHIFTS; # shifts
param Nsched; # number of schedules;
set SCHEDS = 1..Nsched; # set of schedules
set SHIFT_LIST {SCHEDS} within SHIFTS;
param rate {SCHEDS} >= 0; # pay rates
param required {SHIFTS} >= 0; # staffing requirements
param least_assign >= 0; # min workers on any schedule used
```


## AMPL

## Algebraic modeling language: symbolic model

```
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
minimize Total_Cost:
    sum {j in SCHEDS} rate[j] * Work[j];
subject to Shift_Needs {i in SHIFTS}:
    sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];
subject to Least_Use1 {j in SCHEDS}:
    least_assign * Use[j] <= Work[j];
subject to Least_Use2 {j in SCHEDS}:
    Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
```


## AMPL

## Explicit data independent of symbolic model

```
set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
    Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
    Mon3 Tue3 Wed3 Thu3 Fri3 ;
param Nsched := 126 ;
set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ;
param required := Mon1 100 Mon2 78 Mon3 52
    Tue1 }100\mathrm{ Tue2 }78\mathrm{ Tue3 52
    Wed1 }100\mathrm{ Wed2 }78\mathrm{ Wed3 52
    Thu1 }100\mathrm{ Thu2 78 Thu3 52
    Fri1 100 Fri2 78 Fri3 52
    Sat1 100 Sat2 78 ;
```


## AMPL

## Solver independent of model \& data

```
ampl: model sched1.mod;
ampl: data sched.dat;
ampl: let least_assign := 7;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.2.0.2: optimal integer solution; objective 266
1119 MIP simplex iterations
139 branch-and-bound nodes
ampl: option omit_zero_rows 1, display_1col 0;
ampl: display Work;
Work [*] :=
    6 28 20 9 0
```



```
;
```


## AMPL

## Language independent of solver

```
ampl: option solver gurobi;
ampl: solve;
Gurobi 4.0.1: optimal solution; objective 266
8 5 7 \text { simplex iterations}
29 branch-and-cut nodes
ampl: display Work;
Work [*] :=
\begin{tabular}{rrrrrrrrrrrlrl}
1 & 21 & 21 & 36 & 52 & 7 & 89 & 29 & 94 & 7 & 109 & 16 & 124 & 36 \\
3 & 7 & 37 & 29 & 71 & 13 & 91 & 16 & 95 & 13 & 116 & \(36 ;\) & &
\end{tabular}
```


## AMPL Scripts

## Multiple solutions

```
param nSols default 0;
param maxSols = 20;
set D {1..nSols} within SCHEDS;
subject to exclude {k in 1..nSols}:
    sum {j in D[k]} (1-Use[j]) +
    sum {j in SCHEDS diff D[k]} Use[j] >= 1;
repeat {
    solve;
    display Work;
    let nSols := nSols + 1;
    let D[nSols] := {j in SCHEDS: Use[j] > .5};
} until nSols = maxSols;
```


## AMPL Scripts

## Multiple solutions run

```
ampl: include scheds.run
Gurobi 4.0.1: optimal solution; objective 266
857 simplex iterations
29 branch-and-cut nodes
Work [*] :=
\begin{tabular}{rrrrrrrllrllll}
1 & 21 & 21 & 36 & 52 & 7 & 89 & 29 & 94 & 7 & 109 & 16 & 124 & 36 \\
3 & 7 & 37 & 29 & 71 & 13 & 91 & 16 & 95 & 13 & 116 & 36 & \(;\) &
\end{tabular}
Gurobi 4.0.1: optimal solution; objective 266
1368 simplex iterations
59 branch-and-cut nodes
\(\left.\begin{array}{cccccccccccccc}\text { Work [*] }:= \\ 1 & 9 & 17 & 9 & 38 & 7 & 59 & 21 & 75 & 36 & 94 & 7 & 114 & 8 \\ 4 & 124 & 35 \\ 4 & 20 & 33 & 27 & 56 & 7 & 71 & 27 & 86 & 8 & 107 & 9 & 116 & 36\end{array}\right)\)
```


## AMPL Scripts

## Multiple solutions run (cont'd)

```
Gurobi 4.0.1: optimal solution; objective 266
982 simplex iterations
57 branch-and-cut nodes
Work [*] :=
\begin{tabular}{lllrlllllrlrlllll}
2 & 28 & 16 & 8 & 38 & 18 & 75 & 34 & 86 & 8 & 108 & 8 & 115 & 16 & 121 & 36 \\
7 & 18 & 28 & 10 & 70 & 18 & 85 & 18 & 97 & 18 & 109 & 10 & 116 & 18 & \(;\) & &
\end{tabular}
Gurobi 4.0.1: optimal solution; objective 266
144 simplex iterations
Work [*] :=
\begin{tabular}{rrrrrrrrrrrrrr}
2 & 29 & 16 & 7 & 76 & 36 & 88 & 29 & 106 & 16 & 116 & 7 & 123 & 7 \\
7 & 36 & 70 & 28 & 85 & 7 & 97 & 7 & 109 & 29 & 121 & 21 & 126 & 7
\end{tabular} ;
Gurobi 4.0.1: optimal solution; objective 266
122 simplex iterations
Work [*] :=
    2 15 1.16 20 
```


## AMPL Solver Control

## Multiple solutions

```
option solver cplex;
option cplex_options "poolstub=sched poolcapacity=20 \
    populate=1 poolintensity=4 poolgap=0";
solve;
for {i in 1..Current.npool} {
    solution ("sched" & i & ".sol");
    display Work;
}
```


## AMPL Solver Control

## Multiple solutions run

```
ampl: include schedsPool.run;
CPLEX 12.2.0.2: poolstub=sched
poolcapacity=20
populate=1
poolintensity=4
poolgap=0
CPLEX 12.2.0.2: optimal integer solution; objective 266
464 MIP simplex iterations
26 branch-and-bound nodes
Wrote 20 solutions in solution pool
to files sched1.sol ... sched20.sol.
Solution pool member 1 (of 20); objective 266
Work [*] :=
```



```
    5 21 1rlllllllllllllllll
```


## AMPL Solver Control

## Multiple solutions run (cont'd)

Solution pool member 2 (of 20); objective 266
Work [*] :=
$\left.\begin{array}{rrrrrrrrrrrrrr}1 & 7 & 5 & 8 & 18 & 7 & 70 & 29 & 78 & 36 & 87 & 14 & 115 & 14 \\ 2 & 28 & 7 & 14 & 65 & 7 & 72 & 7 & 83 & 21 & 106 & 31 & 116 & 7\end{array}\right)$

Solution pool member 3 (of 20); objective 266
Work [*] :=

| 5 | 21 | 29 | 13 | 51 | 7 | 71 | 34 | 98 | 7 | 115 | 13 |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| 7 | 15 | 35 | 8 | 64 | 8 | 78 | 16 | 101 | 13 | 116 | 15 |
| 21 | 7 | 40 | 13 | 70 | 8 | 83 | 8 | 106 | 24 | 121 | 36 |$;$

Solution pool member 4 (of 20); objective 266
Work [*] :=

| 2 | 7 | 11 | 7 | 40 | 7 | 71 | 29 | 87 | 15 | 106 | 31 | 121 | 28 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5 | 22 | 23 | 8 | 64 | 7 | 78 | 13 | 101 | 8 | 115 | 14 | 126 | 7 |
| 7 | 14 | 29 | 14 | 70 | 14 | 83 | 7 | 102 | 7 | 116 | 7 | $;$ |  |

## AMPL Algorithmic Scheme

Difficult case: least_assign $=19$

```
ampl: model sched1.mod;
ampl: data sched.dat;
ampl: let least_assign := 19;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.2.0.2: optimal integer solution; objective 269
635574195 MIP simplex iterations
86400919 branch-and-bound nodes
ampl: option omit_zero_rows 1, display_1col 0;
ampl: display Work;
Work [*] :=
    4 22 16 39 55 39 7
;
```

. . . 94.8 minutes

## AMPL Algorithmic Scheme

Alternative, indirect approach

* Step 1: Relax integrality of Work variables Solve for zero-one Use variables
* Step 2: Fix Use variables

Solve for integer Work variables
. . . not necessarily optimal, but . . .

## AMPL Algorithmic Scheme

## Indirect approach (script)

```
model sched1.mod;
data sched.dat;
let least_assign := 19;
let {j in SCHEDS} Work[j].relax := 1;
solve;
fix {j in SCHEDS} Use[j];
let {j in SCHEDS} Work[j].relax := 0;
solve;
```


## AMPL Algorithmic Scheme

## Indirect approach (run)

```
ampl: include sched1-fix.run;
CPLEX 12.2.0.2: optimal integer solution; objective 268.5
32630436 MIP simplex iterations
2199508 branch-and-bound nodes
Work [*] :=
    124 32 19 洤 19.5 107 33 126 19.5
    319 66 19 90 19.5 109 19
    1019 72 19.5 105 19.5 121 19 ;
CPLEX 12.2.0.2: optimal integer solution; objective 269
2 MIP simplex iterations
O branch-and-bound nodes
Work [*] :=
    1 24 10 19 66 19 80 19 105 20 105 109 19 126 20
    3 19 32 19 72 19 90 20 107 33 121 19 ;
```


## AMPL Modeling Alternatives

## Linear constraints

```
subject to Least_Use1 {j in SCHEDS}:
    least_assign * Use[j] <= Work[j];
subject to Least_Use2 {j in SCHEDS}:
    Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
```


## Logic constraints

```
subject to Least_Use {j in SCHEDS}:
    Use[j] = 1 ==> Work[j] >= least_assign else Work[j] = 0;
```


## Variable domains

```
var Work {j in SCHEDS} integer, in {0} union
    interval [least_assign, (max {i in SHIFT_LIST[j]} required[i])];
```


## Topics

The company

* People
* Business developments

The language

* Varied prospective enhancements
* More natural formulations

The solvers

* Conic programming
* Nontraditional alternatives

The system

* APIs \& IDEs
$*$ AMPL as a service (in the cloud)


## The Company

## Background

* AMPL at Bell Labs (1986)
* Bob Fourer, David Gay, Brian Kernighan
* AMPL commercialization (1993)
* AMPL Optimization LLC (2002)


## Developments

* People
* Business


## Current Principals

## Bob Fourer

* Founder \& . . .

Dave Gay

* Founder \& . . .

Bill Wells

* Director of business development


## Business Developments

AMPL intellectual property

* Full rights acquired from Alcatel-Lucent USA
* corporate parent of Bell Laboratories
* More flexible licensing terms available


## CPLEX with AMPL

* Sales transferred from IBM to AMPL Optimization
* Full lineup of licensing arrangements available


## AMPL distributors

$*$ New for Japan: October Sky Co., Ltd. $\rightarrow$

* Others continue active
* Gurobi, Ziena/Artelys
* MOSEK, TOMLAB
* OptiRisk



## The Language

## Versatility

* Power \& convenience
* Linear and nonlinear modeling
* Extensive indexing and set expressions
* Prototyping \& deployment
* Integrated scripting language
* Business \& research
* Major installations worldwide
* Hundreds of citations in scientific \& engineering literature


## Plans...

## The Language

## Plans

* Further set operations
* arg min/arg max
* sort set by parameter values
* arbitrary selection from an unordered set
* Random parameters/variables
* send as input to stochastic solvers
* Enhanced scripting
* faster loops
* functions defined by scripts
* More natural formulations . . .


## Common Areas of Confusion

## Examples from my e-mail . . .

* I have been trying to write a stepwise function in AMPL but I have not been able to do so:

```
fc[wh] = 100 if x[wh] <=5
    300 if 6 <= x[wh] <=10
    400 if 11 <= x[wh]
```

where fc and x are variables.

* I have a set of nonlinear equations to be solved, and variables are binary. Even I have an xor operator in the equations. How can I implement it and which solver is suitable for it?
* I'm a recent IE grad with just one grad level IE course under my belt. . . .

```
minimize Moves: sum\{emp in GROUPA\}
    (if Sqrt ( \(\mathrm{XEmpA}[\mathrm{emp}]\) - XGrpA) \()^{\wedge} 2+\)
    (YEmpA [emp] - YGrpA) \({ }^{2}\) ) > Ra then 1 else 0 )
```

Is there some documentation on when you can and cannot use the if-then statements in AMPL (looked through the related forum posts but still a bit confused on this)?

## Common Areas of Confusion

## Examples from my e-mail (cont'd)

* I have a problem need to add a such kind of constraint:
$\operatorname{Max}[\operatorname{sum}(\mathrm{Pi} * \mathrm{Hi})]$; i is from 1 to 24 ;
in which Pi are constant and Hi need to be optimized.
Bound is $-180<=\mathrm{Hi}<=270$. One of the constraints is
$\operatorname{sum}(\mathrm{Ci})=0$; here $\mathrm{Ci}=\mathrm{Hi}$ if $\mathrm{Hi}>0$ and $\mathrm{Ci}=\mathrm{Hi} / 1.38$ if $\mathrm{Hi}<0$
Is it possiable to solve this kind of problem with lp_solve? and how to setup the constraint?
* . . . is there a way to write a simple "or" statement in AMPL like in Java or $C++$ ?
* I need to solve the following optimization problem:

Minimize - |x1|-|x2|
subject to

$$
x 1-x 2=3
$$

Do you know how to transform it to standard linear program?

## Currently Implemented

Extension to mixed-integer solver

* CPLEX indicator constraints
* Use[j] = 1 ==> Work[j] >= least_assign;

Translation to mixed-integer programs

* General variable domains
* var Work \{j in SCHEDS\} integer, in \{0\} union interval[lo_assign, hi_assign];
* Separable piecewise-linear terms

```
* <<avail_min[t]; 0,time_penalty[t]>> Use[t]
```

Translation to general nonlinear programs

* Complementarity conditions

$$
\begin{aligned}
* 0<= & \mathrm{ct}[\mathrm{cr}, \mathrm{u}] \text { complements } \\
& \quad \mathrm{ctcost}[\mathrm{cr}, \mathrm{u}]+\mathrm{cv}[\mathrm{cr}]>=\mathrm{p}[" \mathrm{C"}, \mathrm{u}] ;
\end{aligned}
$$

## Prospective Extensions

Existing operators allowed on variables

* Nonsmooth terms
* Conditional expressions

New forms

* Operators on constraints
* New aggregate operators
* Generalized indexing: variables in subscripts
* New types of variables: object-valued, set-valued

Solution strategies

* Transform to standard MIPs
* Send to alternative solvers (will return to this)


## Extensions

## Logical Operators

Flow shop scheduling

```
subj to NoConflict {i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:
    Start[i2] >= Start[i1] + setTime[i1,i2] or
    Start[i1] >= Start[i2] + setTime[i2,i1];
```


## Balanced assignment

```
subj to NoIso {(i1,i2) in TYPE, j in ROOM}:
    not (Assign[i1,i2,j] = 1 and
        sum {ii1 in ADJ[i1]: (ii1,i2) in TYPE} Assign[ii1,i2,j] = 0);
```


## Extensions

## Counting Operators

## Transportation

```
subj to MaxServe {i in ORIG}:
    card {j in DEST: sum {p in PRD} Trans[i,j,p] > 0} <= mxsrv;
```

subj to MaxServe \{i in ORIG\}:
count \{j in DEST\} (sum \{p in PRD\} Trans[i,j,p] > 0) <= mxsrv;
subj to MaxServe \{i in ORIG\}:
atmost mxsrv \{j in DEST\} (sum \{p in PRD\} Trans[i,j,p] > 0);

## "Structure" Operators

## Assignment

```
subj to OneJobPerMachine:
```

    alldiff \(\{j\) in JOBS \(\}\) (MachineForJob[j]);
    subj to CapacityOfMachine $\{\mathrm{k}$ in MACHINES $\}$ :
numberof $k$ \{j in JOBS\} (MachineForJob[j]) <= cap[k];
. . . argument in () may be a more general list

## Extensions

## Variables in Subscripts

## Assignment

```
minimize TotalCost:
    sum {j in JOBS} cost[j,MachineForJob[j]];
```

Sequencing

```
minimize CostPlusPenalty:
    sum {k in 1..nSlots} setupCost[JobForSlot[k-1],JobForSlot[k]]
    sum {j in 1..nJobs} duePen[j] * (dueTime[j] - ComplTime[j]);
subj to TimeNeeded {k in O..nSlots-1}:
    ComplTime[JobForSlot[k]] =
        min( dueTime[JobForSlot[k]],
            ComplTime[JobForSlot[k+1]]
                            - setupTime[JobForSlot[k],JobForSlot[k+1]]
            - procTime[JobForSlot[k+1]] );
```


## The Solvers

Communication while solver is active

* Speed up multiple solves
* Support callbacks

Conic programming

* Barrier solvers available
* Stronger modeling support needed

Nontraditional alternatives

* Global optimization
* Constraint programming
* Varied hybrids


## Conic Programming

## Standard cone




$$
x^{2} \leq y^{2}, \quad y \geq 0
$$



# . . . convex region, nonsmooth boundary 

## Rotated cone

$$
x^{2} \leq y z, \quad y \geq 0, \quad z \geq 0
$$

## Conic vs. Ordinary Quadratic

Convex quadratic constraint regions

* Ball: $x_{1}^{2}+\ldots+x_{n}^{2} \leq b$
$*$ Cone: $x_{1}^{2}+\ldots+x_{n}^{2} \leq y^{2}, y \geq 0$
* Cone: $x_{1}^{2}+\ldots+x_{n}^{2} \leq y z, y \geq 0, z \geq 0$
. . . second-order cone programs (SOCPs)


## Similarities

* Describe by lists of coefficients
* Solve by extensions of LP barrier methods; extend to MIP

Differences

* Quadratic part not positive semi-definite
* Nonnegativity is essential
* Many convex problems can be reduced to these . . .

Conic Quadratic

## Equivalent Problems: Minimize

## Sums of . . .

* norms or squared norms

$$
\begin{aligned}
& * \sum_{i}\left\|F_{i} x+g_{i}\right\| \\
& * \sum_{i}\left(F_{i} x+g_{i}\right)^{2}
\end{aligned}
$$

* quadratic-linear fractions

$$
* \sum_{i} \frac{\left(F_{i} x+g_{i}\right)^{2}}{a_{i} x+b_{i}}
$$

Max of . . .

* norms

$$
* \max _{i}\left\|F_{i} x+g_{i}\right\|
$$

$*$ logarithmic Chebychev terms

* $\max _{i} \mid \log \left(F_{i} x\right)-\log \left(g_{i}\right)$

Conic Quadratic

## Equivalent Problems: Objective

## Products of . . .

* negative powers
$* \min \prod_{i}\left(F_{i} x+g_{i}\right)^{-\alpha_{i}}$ for rational $\alpha_{i}>0$
$\star$ positive powers
$* \max \prod_{i}\left(F_{i} x+g_{i}\right)^{\alpha_{i}}$ for rational $\alpha_{i}>0$
Combinations by .. .
* sum, max, positive multiple
* except log Chebychev and some positive powers

$$
\operatorname{minimize} \max \left\{\sum_{i=1}^{p}\left(a_{i} x+b_{i}\right)^{2}, \sum_{j=1}^{q} \frac{\left\|F_{j} x+g_{j}\right\|^{2}}{y_{j}}\right\}+\prod_{k=1}^{r}\left(c_{k} x\right)^{-\pi_{k}}
$$

Conic Quadratic

## Equivalent Problems: Constraints

## Sums of...

* norms or squared norms

$$
\begin{aligned}
& * \sum_{i}\left\|F_{i} x+g_{i}\right\| \leq F_{0} x+g_{0} \\
& * \sum_{i}\left(F_{i} x+g_{i}\right)^{2} \leq\left(F_{0} x+g_{0}\right)^{2}
\end{aligned}
$$

$\star$ quadratic-linear fractions

$$
* \sum_{i} \frac{\left(F_{i} x+g_{i}\right)^{2}}{a_{i} x+b_{i}} \leq F_{0} x+g_{0}
$$

Max of...

* norms

$$
* \max _{i} \mid F_{i} x+g_{i} \| \leq F_{0} x+g_{0}
$$

Conic Quadratic

## Equivalent Problems: Constraints

## Products of . . .

* negative powers

$$
* \sum_{j} \prod_{i}\left(F_{j i} x+g_{j i}\right)^{-\alpha_{j i}} \leq F_{0} x+g_{0} \text { for rational } \alpha_{j i}>0
$$

* positive powers

$$
* \sum_{j}-\prod_{i}\left(F_{j i} x+g_{j i}\right)^{\alpha_{j i}} \leq F_{0} x+g_{0} \text { for rational } \alpha_{j i}>0, \sum_{i} \alpha_{j i} \leq 1
$$

Combinations by . . .

* sum, max, positive multiple

Conic Quadratic

## Applications

Portfolio optimization with loss risk constraints
Traffic flow optimization
Engineering design of many kinds

* Lobo, Vandenberghe, Boyd, Lebret, Applications of Second-Order Cone Programming. Linear Algebra and Its Applications 284 (1998) 193-228.

Conic Quadratic

## Example: Sum of Norms

```
param p integer > 0;
param m {1..p} integer > 0;
param n integer > 0;
param F {i in 1..p, 1..m[i], 1..n};
param g {i in 1..p, 1..m[i]};
```

```
param p := 2 ;
paramm m:= 1 5 2 4;
param n := 3 ;
param g(tr): 1 2 :=
    1 12 2
    2 7 11
    3 7 1
    4 0
    5 4 . ;
```

param F := ...

Conic Quadratic

## Example: Original Formulation

```
var x {1..n};
minimize SumOfNorms:
    sum {i in 1..p} sqrt(
    sum {k in 1..m[i]} (sum {j in 1..n} F[i,k,j] * x[j] + g[i,k])^2 );
```

```
3 variables, all nonlinear
O constraints
1 nonlinear objective; 3 nonzeros.
CPLEX 12.2.0.0: at12228.nl contains a nonlinear objective.
```


## Conic Quadratic

## Example: Converted to Quadratic

```
var x {1..n};
var Max {1..p} >= 0;
minimize SumOfNorms: sum {i in 1..p} Max[i];
subj to MaxDefinition {i in 1..p}:
    sum {k in 1..m[i]} (sum {j in 1..n} F[i,k,j] * x[j] + g[i,k])^2
        <= Max[i] 2;
```

5 variables, all nonlinear
2 constraints, all nonlinear; 8 nonzeros
1 linear objective; 2 nonzeros.
CPLEX 12.2.0.0: QP Hessian is not positive semi-definite.

## Conic Quadratic

## Example: Simpler Quadratic

```
var x {1..n};
var Max {1..p} >= 0;
var Fxplusg {i in 1..p, 1..m[i]};
minimize SumOfNorms: sum {i in 1..p} Max[i];
subj to MaxDefinition {i in 1..p}:
    sum {k in 1..m[i]} Fxplusg[i,k]^2 <= Max[i]~2;
subj to FxplusgDefinition {i in 1..p, k in 1..m[i]}:
    Fxplusg[i,k] = sum {j in 1..n} F[i,k,j] * x[j] + g[i,k];
```

14 variables:
11 nonlinear variables
3 linear variables
11 constraints; 41 nonzeros
2 nonlinear constraints
9 linear constraints
1 linear objective; 2 nonzeros.
CPLEX 12.2.0.0: primal optimal; objective 11.03323293
11 barrier iterations

Conic Quadratic

## Example: Integer Quadratic

```
var xint {1..n} integer;
var x {j in 1..n} = xint[j] / 10;
```

Substitution eliminates 3 variables.
14 variables:
11 nonlinear variables
3 integer variables
11 constraints; 41 nonzeros
2 nonlinear constraints
9 linear constraints
1 linear objective; 2 nonzeros.
CPLEX 12.2.0.0: optimal integer solution; objective 11.12932573
88 MIP simplex iterations
19 branch-and-bound nodes

Conic Quadratic

## Example: Traffic Network

## Nonlinear objective due to congestion effects

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
    (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
    Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


## AMPL Design for SOCPs

Current situation

* Each solver recognizes some elementary forms
* Modeler must convert to these forms

Goal

* Recognize many equivalent forms
* Automatically convert to a canonical form
* Further convert as necessary for each solver


## Nontraditional Solvers

Global nonlinear<br>* BARON *<br>* LINDO Global *<br>* LGO

Constraint programming

* IBM ILOG CP
* ECLiPSe
* SCIP *
* combined with mixed-integer

Nontraditional Solvers

## Implementation Challenges

Requirements

* Full description of functions
* Hints to algorithm
* convexity, search strategy

Variability

* Range of expressions recognized
* hence range of conversions needed
* Design of interface


## The System

## APIs \& IDEs

* Current options
* Alternatives under consideration

AMPL in the cloud

* AMPL \& solver software as a service
* Issues to be resolved


## APIs (Programming Interfaces)

Current options

* AMPL scripting language
* put/get C interface
* OptiRisk Systems COM objects

Alternatives under consideration

* multiplatform C interface
* object-oriented interfaces in C++, Java, Python, . . .


## Scripting Language

## Programming extensions of AMPL syntax

```
for {i in WIDTHS} {
    let nPAT := nPAT + 1;
    let nbr[i,nPAT] := floor (roll_width/i);
    let {i2 in WIDTHS: i2 <> i} nbr[i2,nPAT] := 0;
};
repeat {
    solve Cutting_Opt;
    let {i in WIDTHS} price[i] := Fill[i].dual;
    solve Pattern_Gen;
    printf "\n%7.2f%11.2e ", Number, Reduced_Cost;
    if Reduced_Cost < -0.00001 then {
        let nPAT := nPAT + 1;
        let {i in WIDTHS} nbr[i,nPAT] := Use[i];
    }
    else break;
    for {i in WIDTHS} printf "%3i", Use[i];
};
```


## put/get C Interface

Send AMPL commands \& receive output

* Ulong put(GetputInfo *g, char *s)
* int get(GetputInfo *g, char **kind, char **msg, Ulong *len)

Limitations

* Low-level unstructured interface
* Communication via strings


## OptiRisk COM Objects

Object-oriented API

* Model management
* Data handling
* Solving


## Limitations

* Windows only
* Older technology
* Built on put/get interface


## API Development Directions

Multiplatform C interface

* Native to AMPL code
* Similar scope to COM objects

Object-oriented interfaces

* Built on C interface


## IDEs (Development Environments)

Previous \& current options

* AMPL Plus
* AMPL Studio

Alternatives under consideration

* Multiplatform graphical interface
* Spreadsheet interface


## AMPL Plus

Menu-based GUI (1990s)

* Created by Compass Modeling Solutions
* Discontinued by ILOG


## AMPL Studio

## Menu-based GUI (2000s)

## * Created by OptiRisk Systems

* Windows-based



## IDE Development Directions

Multiplatform graphical interface

* Focused on command-line window
* Same rationale as MATLAB
* Implemented using new API
* Tools for debugging, scripting, option selection . . .


## Spreadsheet interface

* Data in spreadsheet tables (like Excel solver)
* AMPL model in embedded application


## AMPL in the Cloud

AMPL as a service

* Solvers included
* optional automated solver choice
* Charges per elapsed minute
* Latest versions available

Issues to be resolved
$\star$ Licensing arrangements with solvers

* Uploading \& security of data
* Limitations of cloud services

