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Does it have nice properties?
 Is it convex?

 Is it equivalent to a convex quadratic?

Does knowing that help to solve the problem?
 Are the results more believable?

 Are the computations more reliable? 

 Are the computations more efficient?
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Given an Optimization Model . . .
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Thought
 Theorems

 Equivalent formulations

Computation
 Detection algorithms

 Transformation algorithms

 Faster and more reliable

 Intractable in general

 Challenging in concept

 Challenging to implement

4

Ways to Answer These Questions
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Example: Traffic Network

Nonlinear objective due to congestion effects

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;
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Example: AC Power Network

Sines & cosines due to Kirchhoff’s laws for AC

var G{(k,m) in YBUS} =

if(k == m) then ...

else if(k != m) then
sum {(l,k,m) in BRANCH}
(- branch_g[l,k,m] * cos(branch_def[l,k,m])
- branch_b[l,k,m] * sin(branch_def[l,k,m])) * branch_tap[l,k,m] +

sum {(l,m,k) in BRANCH} 
(- branch_g[l,m,k] * cos(branch_def[l,m,k])
+ branch_b[l,m,k] * sin(branch_def[l,m,k])) * branch_tap[l,m,k];

minimize active_power :

sum {k in BUS : bus_type[k] == 2 || bus_type[k] == 3} 
(bus_p_load[k]
+ sum {(k,m) in YBUS}

bus_voltage[k] * bus_voltage[m]
* (  G[k,m] * cos(bus_angle[k] - bus_angle[m])

+ B[k,m] * sin(bus_angle[k] - bus_angle[m])) )^2;
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Recursive tree-walking algorithms
 Expression trees

 Detection algorithms

 Transformation algorithms

Convexity of general expressions
 Proof of convexity

 Disproof of convexity

Convexity of quadratic problems
 Conic constraints

 Detection of equivalent problems

 Transformation of equivalent problems

7

Outline
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Expression
base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j])

Expression tree
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Recursive Tree-Walking Algorithms
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Detection: isLinear()

boolean isLinear (Node);

case of Node {

PLUS:  
MINUS: return( isLinear(Node.left) and isLinear(Node.right) );

TIMES: return( isConst(Node.left) and isLinear(Node.right) or
isLinear(Node.left) and isConst(Node.right) );

DIV: return( isLinear(Node.left) and isConst(Node.right) );

VAR: return( TRUE );

CONST: return( TRUE );

}

. . . to detect, test isLinear(root)



Robert Fourer, Convexity Detection in Large-Scale Optimization
Conference in Honor of Etienne Loute — Brussels, 6 September 2011 10

Detection: isQuadr()

boolean isQuadr (Node);

case of Node {

PLUS:  
MINUS: return( isQuadr(Node.left) and isQuadr(Node.right) );

TIMES: return( isLinear(Node.left) and isLinear(Node.right) or
isQuadr(Node.left) and isConst(Node.right)   or
isConst(Node.left) and isQuadr(Node.right) );

POWER: return( isLinear(Node.left) and 
isConst(Node.right) and value(Node.right) == 2 );

VAR: return( TRUE );

CONST: return( TRUE );

}



Robert Fourer, Convexity Detection in Large-Scale Optimization
Conference in Honor of Etienne Loute — Brussels, 6 September 2011 11

Transformation: buildLinear()

(coeff,const) = buildLinear (Node);

if Node.L then (coefL,consL) = buildLinear(Node.L);
if Node.R then (coefR,consR) = buildLinear(Node.R);

case of Node {

PLUS:  coeff = mergeLists( coefL, coefR );
const = consL + consR;

TIMES: ...

DIV: coeff = coefL / consR;
const = consL / consR;

VAR: coeff = makeList( 1, Node.index );
const = 0;

CONST: coeff = makeList( );
const = Node.value;

}

. . . to transform, call buildLinear(root)
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Analysis
 Proof of convexity

 Disproof of convexity

Larger context (“DrAMPL”)
 Classify problems based on AMPL output

 Recommend solvers

. . . joint project with Dominique Orban,
École Polytechnique de Montréal
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Convexity of General Expressions
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Significance of Convexity

Properties
 For an optimization problem of the form

a local minimum is global provided

 f is convex
 each gi is convex
 each hi is linear

 Many physical problems are naturally convex 
if formulated properly

Analyses . . .
 Proof of convexity

 Disproof of convexity
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Earlier approaches
 D.R. Stoutmeyer, “Automatic categorization of optimization problems: 

An application of computer symbolic mathematics.”  Operations Research
26 (1978) 773–788.

 I.P. Nenov, D.H. Fylstra and L.V. Kolev, “Convexity determination in the 
Microsoft Excel solver using automatic differentiation techniques.” 
Fourth International Workshop on Automatic Differentiation (2004).

 M.C. Grant, S. Boyd and Y. Ye “Disciplined convex programming.”  
In L. Liberti, N. Maculan, eds. Global Optimization: From Theory to 
Implementation. Springer, Nonconvex Optimization and Its Applications 
Series (2006) 155–210.

This work
 R. Fourer, C. Maheshwari, A. Neumaier, D. Orban and H. Schichl, 

“Convexity and Concavity Detection in Computational Graphs: Tree 
Walks for Convexity Assessment.”  dx.doi.org/10.1287/ijoc.1090.0321: 
INFORMS Journal on Computing 22 (2010) 26–43.

14

Interest in Convexity Detection
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Proof of Convexity

Apply properties of functions
 ||x||p is convex,  ≥ 0 everywhere

 xα is convex for α ≤ 0, α ≥ 1; –xα is convex for 0 ≤ α ≤ 1

 xp for even p > 0 is convex everywhere, 
decreasing on x ≤ 0, increasing on x ≥ 0, etc.

 – log x and x log x are convex and increasing on x > 0

 sin x is concave on 0 ≤ x ≤  π, convex on π ≤ x ≤ 2π,
increasing on 0 ≤ x ≤ π/2 and 3π/2 ≤ x ≤ 2π, decreasing . . . 
≥ –1 and ≤ 1 everywhere

 eαx is convex, increasing everywhere for α > 0, etc.

 – (Πi xi)1/n is convex where all xi > 0
. . . etc., etc.
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Proof of Convexity (cont’d)

Apply properties of convexity
 Certain expressions are convex:

 – f(x) for any concave f
 α f(x) for any convex f and α > 0
 f(x) + g(x) for any convex f and g
 f(Ax + b) for any convex f
 f(g(x)) for any convex nondecreasing f and convex g
 f(g(x)) for any convex nonincreasing f and concave g

 Use these with function properties to assess 
convexity of node expressions on their domains

Apply properties of concavity, similarly
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Proof of Convexity (cont’d)

Recursively apply isConvex (lb,ub)
 Return values

 +1: convex

 0: can’t tell

 -1: concave

 Bounds
 lb: lower bound

 ub: upper bound

Deduce status of each nonlinear expression
 Convex, concave, or indeterminate

 Lower and upper bounds
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Disproof of Convexity

Find any counterexample
 Sample in feasible region

 Test any characterization of convex functions

Sampling along lines
 Look for

 See implementation in John Chinneck’s MProbe
(www.sce.carleton.ca/faculty/chinneck/mprobe.html)

Sampling at points
 Look for ∇2 f(x) not positive semi-definite
 Implemented in DrAMPL . . .

)()1()())1(( 2121 xxxx fff λλλλ −+>−+
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Disproof of Convexity (cont’d)

Sampling
 Choose points x0

such that x01, . . . , x0n are within inferred bounds

Testing
 Apply GLTR (galahad.rl.ac.uk/galahad-www/doc/gltr.pdf) to

 Declare nonconvex if GLTR’s Lanczos method 
finds a direction of negative curvature

 Declare inconclusive if GLTR 
reaches the trust region boundary
without finding a direction of negative curvature
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Testing Convexity Analyzers

Principles
 Disprovers can establish nonconvexity, suggest convexity

 Provers can establish convexity, suggest nonconvexity

Test problems
 Established test sets:

COPS (17), CUTE (734), Hock & Schittkowski (119),
Netlib (40), Schittkowski (195), Vanderbei (29 groups)

 Submissions to NEOS Server

Design of experiments
 Run a prover and a disprover on each test problem

 Check results for consistency

 Collect and characterize problems found to be convex

 Inspect functions not proved or disproved convex,
to suggest possible enhancements to analyzers
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Example

Torsion model (parameters and variables)
param nx > 0, integer;    # grid points in 1st direction
param ny > 0, integer;    # grid points in 2nd direction

param c;                  # constant

param hx := 1/(nx+1);     # grid spacing
param hy := 1/(ny+1);     # grid spacing

param area := 0.5*hx*hy;  # area of triangle

param D {i in 0..nx+1,j in 0..ny+1} =

min( min(i,nx-i+1)*hx, min(j,ny-j+1)*hy );

# distance to the boundary

var v {i in 0..nx+1, j in 0..ny+1};

# definition of the 
# finite element approximation
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Example (cont’d)

Torsion model (objective and constraints)
var linLower = sum {i in 0..nx, j in 0..ny} 

(v[i+1,j] + v[i,j] + v[i,j+1]);

var linUpper = sum {i in 1..nx+1, j in 1..ny+1} 
(v[i,j] + v[i-1,j] + v[i,j-1]);

var quadLower = sum {i in 0..nx,j in 0..ny} (
((v[i+1,j] - v[i,j])/hx)**2 + ((v[i,j+1] - v[i,j])/hy)**2 );

var quadUpper = sum {i in 1..nx+1, j in 1..ny+1} (
((v[i,j] - v[i-1,j])/hx)**2 + ((v[i,j] - v[i,j-1])/hy)**2 );

minimize Stress:
area * ((quadLower+quadUpper)/2 - c*(linLower+linUpper)/3);

subject to distanceBound {i in 0..nx+1, j in 0..ny+1}:
-D[i,j] <= v[i,j] <= D[i,j];
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Example (cont’d)

Output from AMPL’s presolver
Presolve eliminates 2704 constraints and 204 variables.
Substitution eliminates 4 variables.

Adjusted problem:
2500 variables, all nonlinear
0 constraints
1 nonlinear objective; 2500 nonzeros.
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Example (cont’d)

Output from DrAMPL (analysis)
Problem type 
-------------
-Problem has bounded variables
-Problem has no constraints

Analyzing problem using only objective
--------------------------------------
-This objective is quadratic
-Problem is a QP with bounds

-0.833013 <= objective <= 0.8359

Problem convexity
------------------
Nonlinear objective looks convex on its domain.

Detected 0/0 nonlinear convex  constraints,
0/0 nonlinear concave constraints.
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Issues

Algorithmic requirements
 Convexity outside feasible region

Nonconvex cases missed
 Choice of starting point can be crucial

Convex cases missed
 Polynomials

 − 4 + 6 − 4 + 1 is  − 1
 − 4 + 7 − 2 + 2 is  − 1 + + 1

 Quadratics . . .

Convexity Analysis
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“Elliptic” quadratic programming
 Detection

 Solving

“Conic” quadratic programming
 Detection

 Solving

 Conversion

. . . Ph.D. project of Jared Erickson,
Northwestern University

26

Convexity of Quadratic Expressions
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Symbolic detection
 Objectives

 Minimize  	+	. . .	+	
 Minimize 	∑ ( + ) ,  ≥ 0

 Constraints
 	+	. . . 	+	 	≤
 ∑ ( + ) ≤ ,  ≥ 0

Numerical detection
 Objectives

 Minimize  +
 Constraints

 + ≤
 . . . where Q is positive semidefinite

27

“Elliptic” Quadratic Programming
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Representation
 Much like LP

 Coefficient lists for linear terms
 Coefficient lists for quadratic terms

 No expression trees

Optimization
 Much like LP

 Generalizations of barrier methods
 Generalizations of simplex methods
 Extensions of mixed-integer branch-and-bound schemes

 Simple derivative computations

 Less overhead than general-purpose nonlinear solvers
. . . your speedup may vary

28

Solving
Elliptic QP
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Example
Portfolio optimization

set A; # asset categories
set T := {1973..1994};   # years

param R {T,A};           # returns on asset categories
param mu default 2;      # weight on variance

param mean {j in A} = (sum {i in T} R[i,j]) / card(T);

param Rtilde {i in T, j in A} = R[i,j] - mean[j];

var Frac {A} >=0; 

var Mean = sum {j in A} mean[j] * Frac[j];

var Variance = 
sum {i in T} (sum {j in A} Rtilde[i,j]*Frac[j])^2 / card{T};

minimize RiskReward:  mu * Variance - Mean;

subject to TotalOne:  sum {j in A} Frac[j] = 1;

Elliptic QP
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Example (cont’d)

Portfolio data

set A := 
US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000
NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD;   

param R:
US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000 
NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD :=

1973  1.075  0.942  0.852  0.815  0.698  1.023  0.851  1.677 
1974  1.084  1.020  0.735  0.716  0.662  1.002  0.768  1.722 
1975  1.061  1.056  1.371  1.385  1.318  1.123  1.354  0.760 
1976  1.052  1.175  1.236  1.266  1.280  1.156  1.025  0.960 
1977  1.055  1.002  0.926  0.974  1.093  1.030  1.181  1.200 
1978  1.077  0.982  1.064  1.093  1.146  1.012  1.326  1.295 
1979  1.109  0.978  1.184  1.256  1.307  1.023  1.048  2.212 
1980  1.127  0.947  1.323  1.337  1.367  1.031  1.226  1.296 
1981  1.156  1.003  0.949  0.963  0.990  1.073  0.977  0.688 
1982  1.117  1.465  1.215  1.187  1.213  1.311  0.981  1.084 
1983  1.092  0.985  1.224  1.235  1.217  1.080  1.237  0.872 
1984  1.103  1.159  1.061  1.030  0.903  1.150  1.074  0.825 ...

Elliptic QP



Robert Fourer, Convexity Detection in Large-Scale Optimization
Conference in Honor of Etienne Loute — Brussels, 6 September 2011 31

Example (cont’d)

Solving with CPLEX

ampl: model markowitz.mod;
ampl: data markowitz.dat;

ampl: option solver cplexamp;

ampl: solve;

8 variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.

CPLEX 12.2.0.0: optimal solution; objective -1.098362471
12 QP barrier iterations

ampl:

Elliptic QP
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Example (cont’d)

Solving with CPLEX (simplex)

ampl: model markowitz.mod;
ampl: data markowitz.dat;

ampl: option solver cplexamp;
ampl: option cplex_options 'primalopt';

ampl: solve;

8 variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.

CPLEX 12.2.0.0: primalopt
No QP presolve or aggregator reductions.

CPLEX 12.2.0.0: optimal solution; objective -1.098362476
5 QP simplex iterations (0 in phase I)

ampl: 

Elliptic QP
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Example (cont’d)

Optimal portfolio

ampl: option omit_zero_rows 1;

ampl: display Frac;

EAFE  0.216083
GOLD  0.185066

LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX  0.397056
WILSHIRE_5000  0.201795 ;

ampl: display Mean, Variance;

Mean = 1.11577
Variance = 0.00870377

ampl: 

Elliptic QP
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Example (cont’d)

Optimal portfolio (discrete)

var Share {A} integer >= 0, <= 100;

var Frac {j in A} = Share[j] / 100; 

Elliptic QP

ampl: solve;

CPLEX 12.2.0.0: optimal integer solution within mipgap or absmipgap; 
objective -1.098353751

10 MIP simplex iterations
0 branch-and-bound nodes

absmipgap = 8.72492e-06, relmipgap = 7.94364e-06

ampl: display Frac;

EAFE  0.22
GOLD  0.18

LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX  0.4
WILSHIRE_5000  0.2 ;
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Standard cone

35

Second-Order Cone Constraints

. . . boundary not smooth

Rotated cone
 ≤ , ≥ 0, ≥ 0, . . .

y

z

+ ≤ ≥ 0 + ≤ , ≥ 0
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Symbolic detection
 Constraints (standard)

 	+	. . . 	+	 	≤ , ≥ 0
 ∑ ( + ) ≤ ( + ) ,, . . . 	 , ≥ 0, + ≥ 0

 Constraints (rotated)
 	+	. . . 	+	 	≤	 , ≥ 0, ≥ 0
 ∑ + ≤ + + ,, . . . 	 , ≥ 0, 		 + ≥ 0, 	 + ≥ 0

Numerical detection
 + ≤ 	
 . . . where Q has one negative eigenvalue

 see Ashutosh Mahajan and Todd Munson, “Exploiting 
Second-Order Cone Structure for Global Optimization”

36

“Conic” Quadratic Programming
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Similarities
 Describe by lists of coefficients

 Solve by extensions of LP barrier methods

 Extend to mixed-integer branch-and-bound

Differences
 Quadratic part not positive semi-definite

 Nonnegativity is essential

 Boundary of feasible region is not differentiable

 Many convex problems can be reduced to these . . .

Terminology
 Second-order cone programs, SOCPs

 Allow also elliptical quadratic & linear constraints

37

Solving
Conic QP
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Example 1: Sum of Norms

param p integer > 0;
param m {1..p} integer > 0;
param n integer > 0;

param F {i in 1..p, 1..m[i], 1..n};
param g {i in 1..p, 1..m[i]};

param p := 2 ;
param m := 1 5  2 4 ;
param n := 3 ;

param g (tr): 1   2 :=
1  12   2
2   7  11
3   7   1
4   8   0
5   4   . ;

param F := ...

Conic QP
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Example 1: Original Formulation

var x {1..n};

minimize SumOfNorms: 
sum {i in 1..p} sqrt(

sum {k in 1..m[i]} (sum {j in 1..n} F[i,k,j] * x[j] + g[i,k])^2 );

3 variables, all nonlinear
0 constraints
1 nonlinear objective; 3 nonzeros.

CPLEX 12.2.0.0: at12228.nl contains a nonlinear objective.

Conic QP
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Example 1: Converted to Quadratic

var x {1..n};
var Max {1..p} >= 0;

minimize SumOfNorms: sum {i in 1..p} Max[i];

subj to MaxDefinition {i in 1..p}:
sum {k in 1..m[i]} (sum {j in 1..n} F[i,k,j] * x[j] + g[i,k])^2

<= Max[i]^2;

5 variables, all nonlinear
2 constraints, all nonlinear; 8 nonzeros
1 linear objective; 2 nonzeros.

CPLEX 12.2.0.0: QP Hessian is not positive semi-definite.

Conic QP
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Example 1: Simpler Quadratic

var x {1..n};
var Max {1..p} >= 0;
var Fxplusg {i in 1..p, 1..m[i]};

minimize SumOfNorms: sum {i in 1..p} Max[i];

subj to MaxDefinition {i in 1..p}:
sum {k in 1..m[i]} Fxplusg[i,k]^2 <= Max[i]^2;

subj to FxplusgDefinition {i in 1..p, k in 1..m[i]}:
Fxplusg[i,k] = sum {j in 1..n} F[i,k,j] * x[j] + g[i,k];

14 variables:
11 nonlinear variables
3 linear variables

11 constraints; 41 nonzeros
2 nonlinear constraints
9 linear constraints

1 linear objective; 2 nonzeros.

CPLEX 12.2.0.0: primal optimal; objective 11.03323293
11 barrier iterations

Conic QP
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Example 1: Integer Quadratic

var xint {1..n} integer;

var x {j in 1..n} = xint[j] / 10;

.......

Substitution eliminates 3 variables. 

14 variables:
11 nonlinear variables
3 integer variables

11 constraints; 41 nonzeros
2 nonlinear constraints
9 linear constraints

1 linear objective; 2 nonzeros.

CPLEX 12.2.0.0: optimal integer solution; objective 11.12932573
88 MIP simplex iterations
19 branch-and-bound nodes

Conic QP
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Example 2: Traffic Network

set INTERS := b c ;

param EN := a;
param EX := d;

param: ROADS: base cap sens :=

a b    5   10   .1
a c    1   30   .9
c b    2   10   .9
b d    1   30   .9
c d    5   10   .1 ;

param through := 4;

Conic QP
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Example 2: Original Formulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic QP
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Example 2: Rotated Cone Formulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
1 - Flow[i,j]/cap[i,j] = Slack[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic QP
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Example 2: Solution

ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: solve;

CPLEX 12.3.0.0: primal optimal; objective 8.178571451
8 barrier iterations

Conic QP

ampl: model traffic.mod; 
ampl: data traffic.dat;

ampl: solve;

CPLEX 12.3.0.0: Constraint _scon[1] is not convex quadratic 
since it is an equality constraint.
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Quadratic
 Constraints (already seen)

 Objectives

SOC-representable
 Quadratic-linear ratios

 Generalized geometric means

 Generalized p-norms

Other objective functions
 Generalized product-of-powers

 Logarithmic Chebychev

47
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Standard cone constraints
 ∑ ( + ) ≤ ( + ) ,, . . . , ≥ 0, + ≥ 0

Rotated cone constraints
 ∑ + ≤ + + ,, . . . , ≥ 0, 		 + ≥ 0, 	 + ≥ 0

Sum-of-squares objectives
 Minimize  ∑ +

 Minimize
Subject to ∑ + ≤ ,  ≥ 0

Quadratic
SOCP-solvable
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Definition
 Function is SOC-representable iff . . .

 ≤ ( + )	is equivalent to some 
combination of linear and quadratic cone constraints

Minimization property
 Minimize is SOC-solvable

 Minimize
Subject to ( ) ≤

Combination properties
 ∙ is SOC-representable for any ≥ 0
 ∑ is SOC-representable

 	 is SOC-representable
. . . requires a recursive detection algorithm!

49

SOC-Representable
SOCP-solvable



Robert Fourer, Convexity Detection in Large-Scale Optimization
Conference in Honor of Etienne Loute — Brussels, 6 September 2011

SOC-Representable (1)
Vector norm

 ∙ + = ∑ + ≤ +
 Square both sides to get standard SOC∑ + ≤ +

Quadratic-linear ratio


∑ 	 		 	 ≤ +
 Multiply by denominator to get rotated SOC∑ 	 + ≤ 	 + +

50
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SOC-Representable (2)
Negative geometric mean

 −∏ + ⁄ ≤ + ,  ∈ ℤ
 − / / / / ≤ − becomes rotated SOCs:≤ , ≤ , ≤
 apply recursively log times

Generalizations
 −∏ + ≤ + :		∑ ≤ 1, ∈ ℚ
 ∏ + ≤  + , 	 ∈ ℚ
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SOCP-solvable
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SOC-Representable (3)
p-norm

 ∑ + ⁄ ≤ + ,  ∈ ℚ ,  ≥ 1
 + ⁄ ≤ can be written⁄ + ⁄ 	≤ which becomes+ ≤ with  − ⁄ ⁄ ≤ ± , − ⁄ ⁄ ≤ ±
 reduces to product of powers

Generalizations
 ∑ + ⁄ ≤ + ,  α ∈ ℚ ,  ≥	 ≥ 1
 ∑ + ≤ +
 Minimize  ∑ +

. . . standard SOCP has ≡
52

SOCP-solvable
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Other Objective Forms
Unrestricted product of powers

 Minimize  −∏ + for any ∈ ℚ
Logarithmic Chebychev approximation

 Minimize  max log − log	( ) 	
Why no constraint versions?

 Not SOC-representable

 Transformation changes objective value (but not solution)

53
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Example: Sum-of-Norms Objective
Given

 Minimize  ∑ 	 ∑ + +
Transform to

 Minimize  ∑
 ∑ + ≤ ,  ≥ 0, = 1, . . . ,
 + = 	, = 1, . . . ,

54
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Detection

boolean isSumNorms (Node);

case of Node {

PLUS: return( isSumNorms(Node.left) and isSumNorms(Node.right) );

TIMES: return( isSumNorms(Node.right) and
isConst(Node.left) and value(Node.left) > 0 );

SQRT: return( isNormSquared(Node.child) );

}

boolean isSumSquares (Node);

case of Node {

PLUS: return( isSumSquares(Node.left) and isSumSquares(Node.right) );

POWER: return( isLinear(Node.left) and 
isConst(Node.right) and value(Node.right) == 2 );

CONST: return( value(Node) > 0 );

}

Sum of Norms
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Transformation: Preliminaries
Functions

 objective

 linear inequality standard cone

 linear equality rotated cone

Terminology
 most recently used constraint of type c

 most recently used variable index

 vector of original variables

 vector of all variables

Example
 ≔ 3 − 2,		 ≔ + , 	 ≤ 0

create  3 + ≤ 2
56

Sum of Norms
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Transformation: Utilities

newVar ( );

++;
add variable 	;
if ( ) then add ≥ ;

newFunc ( );

++;
add constraint of type 	;≔ 	;

Sum of Norms
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Transformation: Sum of Norms

newFunc( );≔ 	;
tranSumNorms( Root, , 1 );

Sum of Norms
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Transformation: Sum of Norms

tranSumNorms ( Node, ( ), );

case of Node {

PLUS: tranSumNorms( Node.left, ( ), );
tranSumNorms( Node.right, , );

MULT: tranSumNorms( Node.right, ( ), ∙	value(Node.left) );
SQRT: newVar( 0 );( ) ∶= 	 ( ) 	+	 ;

newFunc( );≔ − ;

tranSumSquares( Node.child, , );

}

Sum of Norms
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Transformation: Sum of Squares

tranSumSquares ( Node, ( ), );

case of Node {

PLUS: tranSumSquares( Node.left, ( ), );
tranSumSquares( Node.right, ( ), );

POWER: newvar(  );( ) ∶= ( ) 	+ 	 ;

newfunc( );≔ − ;

tranLinear( Node.left, , );

CONST: ≔ + ∙	value(Node);
}

Sum of Norms



Robert Fourer, Convexity Detection in Large-Scale Optimization
Conference in Honor of Etienne Loute — Brussels, 6 September 2011

Issues
Which SOCP-solvable forms . . .

 are of practical use?

 are worth transforming?
 for continuous problems?
 for integer problems?
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