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Does it have nice properties?
 Is it convex?

 Is it equivalent to a convex quadratic?

Does knowing that help to solve the problem?
 Are the results more believable?

 Are the computations more reliable? 

 Are the computations more efficient?
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Given an Optimization Model . . .
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Thought
 Theorems

 Equivalent formulations

Computation
 Detection algorithms

 Transformation algorithms

 Faster and more reliable

 Intractable in general

 Challenging in concept

 Challenging to implement

4

Ways to Answer These Questions
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Example: Traffic Network

Nonlinear objective due to congestion effects

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;
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Example: AC Power Network

Sines & cosines due to Kirchhoff’s laws for AC

var G{(k,m) in YBUS} =

if(k == m) then ...

else if(k != m) then
sum {(l,k,m) in BRANCH}
(- branch_g[l,k,m] * cos(branch_def[l,k,m])
- branch_b[l,k,m] * sin(branch_def[l,k,m])) * branch_tap[l,k,m] +

sum {(l,m,k) in BRANCH} 
(- branch_g[l,m,k] * cos(branch_def[l,m,k])
+ branch_b[l,m,k] * sin(branch_def[l,m,k])) * branch_tap[l,m,k];

minimize active_power :

sum {k in BUS : bus_type[k] == 2 || bus_type[k] == 3} 
(bus_p_load[k]
+ sum {(k,m) in YBUS}

bus_voltage[k] * bus_voltage[m]
* (  G[k,m] * cos(bus_angle[k] - bus_angle[m])

+ B[k,m] * sin(bus_angle[k] - bus_angle[m])) )^2;
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Recursive tree-walking algorithms
 Expression trees

 Detection algorithms

 Transformation algorithms

Convexity of general expressions
 Proof of convexity

 Disproof of convexity

Convexity of quadratic problems
 Conic constraints

 Detection of equivalent problems

 Transformation of equivalent problems
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Outline
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Expression
base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j])

Expression tree
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Recursive Tree-Walking Algorithms
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Detection: isLinear()

boolean isLinear (Node);

case of Node {

PLUS:  
MINUS: return( isLinear(Node.left) and isLinear(Node.right) );

TIMES: return( isConst(Node.left) and isLinear(Node.right) or
isLinear(Node.left) and isConst(Node.right) );

DIV: return( isLinear(Node.left) and isConst(Node.right) );

VAR: return( TRUE );

CONST: return( TRUE );

}

. . . to detect, test isLinear(root)
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Detection: isQuadr()

boolean isQuadr (Node);

case of Node {

PLUS:  
MINUS: return( isQuadr(Node.left) and isQuadr(Node.right) );

TIMES: return( isLinear(Node.left) and isLinear(Node.right) or
isQuadr(Node.left) and isConst(Node.right)   or
isConst(Node.left) and isQuadr(Node.right) );

POWER: return( isLinear(Node.left) and 
isConst(Node.right) and value(Node.right) == 2 );

VAR: return( TRUE );

CONST: return( TRUE );

}
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Transformation: buildLinear()

(coeff,const) = buildLinear (Node);

if Node.L then (coefL,consL) = buildLinear(Node.L);
if Node.R then (coefR,consR) = buildLinear(Node.R);

case of Node {

PLUS:  coeff = mergeLists( coefL, coefR );
const = consL + consR;

TIMES: ...

DIV: coeff = coefL / consR;
const = consL / consR;

VAR: coeff = makeList( 1, Node.index );
const = 0;

CONST: coeff = makeList( );
const = Node.value;

}

. . . to transform, call buildLinear(root)
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Analysis
 Proof of convexity

 Disproof of convexity

Larger context (“DrAMPL”)
 Classify problems based on AMPL output

 Recommend solvers

. . . joint project with Dominique Orban,
École Polytechnique de Montréal
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Convexity of General Expressions
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Significance of Convexity

Properties
 For an optimization problem of the form

a local minimum is global provided

 f is convex
 each gi is convex
 each hi is linear

 Many physical problems are naturally convex 
if formulated properly

Analyses . . .
 Proof of convexity

 Disproof of convexity
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Earlier approaches
 D.R. Stoutmeyer, “Automatic categorization of optimization problems: 

An application of computer symbolic mathematics.”  Operations Research
26 (1978) 773–788.

 I.P. Nenov, D.H. Fylstra and L.V. Kolev, “Convexity determination in the 
Microsoft Excel solver using automatic differentiation techniques.” 
Fourth International Workshop on Automatic Differentiation (2004).

 M.C. Grant, S. Boyd and Y. Ye “Disciplined convex programming.”  
In L. Liberti, N. Maculan, eds. Global Optimization: From Theory to 
Implementation. Springer, Nonconvex Optimization and Its Applications 
Series (2006) 155–210.

This work
 R. Fourer, C. Maheshwari, A. Neumaier, D. Orban and H. Schichl, 

“Convexity and Concavity Detection in Computational Graphs: Tree 
Walks for Convexity Assessment.”  dx.doi.org/10.1287/ijoc.1090.0321: 
INFORMS Journal on Computing 22 (2010) 26–43.
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Interest in Convexity Detection
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Proof of Convexity

Apply properties of functions
 ||x||p is convex,  ≥ 0 everywhere

 xα is convex for α ≤ 0, α ≥ 1; –xα is convex for 0 ≤ α ≤ 1

 xp for even p > 0 is convex everywhere, 
decreasing on x ≤ 0, increasing on x ≥ 0, etc.

 – log x and x log x are convex and increasing on x > 0

 sin x is concave on 0 ≤ x ≤  π, convex on π ≤ x ≤ 2π,
increasing on 0 ≤ x ≤ π/2 and 3π/2 ≤ x ≤ 2π, decreasing . . . 
≥ –1 and ≤ 1 everywhere

 eαx is convex, increasing everywhere for α > 0, etc.

 – (Πi xi)1/n is convex where all xi > 0
. . . etc., etc.
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Proof of Convexity (cont’d)

Apply properties of convexity
 Certain expressions are convex:

 – f(x) for any concave f
 α f(x) for any convex f and α > 0
 f(x) + g(x) for any convex f and g
 f(Ax + b) for any convex f
 f(g(x)) for any convex nondecreasing f and convex g
 f(g(x)) for any convex nonincreasing f and concave g

 Use these with function properties to assess 
convexity of node expressions on their domains

Apply properties of concavity, similarly
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Proof of Convexity (cont’d)

Recursively apply isConvex (lb,ub)
 Return values

 +1: convex

 0: can’t tell

 -1: concave

 Bounds
 lb: lower bound

 ub: upper bound

Deduce status of each nonlinear expression
 Convex, concave, or indeterminate

 Lower and upper bounds
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Disproof of Convexity

Find any counterexample
 Sample in feasible region

 Test any characterization of convex functions

Sampling along lines
 Look for

 See implementation in John Chinneck’s MProbe
(www.sce.carleton.ca/faculty/chinneck/mprobe.html)

Sampling at points
 Look for ∇2 f(x) not positive semi-definite
 Implemented in DrAMPL . . .

)()1()())1(( 2121 xxxx fff λλλλ −+>−+



Robert Fourer and Dominique Orban, DrAMPL: A Meta-Solver for Optimization
NICTA, University of Melbourne, 3 March 201019

Disproof of Convexity (cont’d)

Sampling
 Choose points x0

such that x01, . . . , x0n are within inferred bounds

Testing
 Apply GLTR (galahad.rl.ac.uk/galahad-www/doc/gltr.pdf) to

 Declare nonconvex if GLTR’s Lanczos method 
finds a direction of negative curvature

 Declare inconclusive if GLTR 
reaches the trust region boundary
without finding a direction of negative curvature
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Testing Convexity Analyzers

Principles
 Disprovers can establish nonconvexity, suggest convexity

 Provers can establish convexity, suggest nonconvexity

Test problems
 Established test sets:

COPS (17), CUTE (734), Hock & Schittkowski (119),
Netlib (40), Schittkowski (195), Vanderbei (29 groups)

 Submissions to NEOS Server

Design of experiments
 Run a prover and a disprover on each test problem

 Check results for consistency

 Collect and characterize problems found to be convex

 Inspect functions not proved or disproved convex,
to suggest possible enhancements to analyzers
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Example

Torsion model (parameters and variables)
param nx > 0, integer;    # grid points in 1st direction
param ny > 0, integer;    # grid points in 2nd direction

param c;                  # constant

param hx := 1/(nx+1);     # grid spacing
param hy := 1/(ny+1);     # grid spacing

param area := 0.5*hx*hy;  # area of triangle

param D {i in 0..nx+1,j in 0..ny+1} =

min( min(i,nx-i+1)*hx, min(j,ny-j+1)*hy );

# distance to the boundary

var v {i in 0..nx+1, j in 0..ny+1};

# definition of the 
# finite element approximation
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Example (cont’d)

Torsion model (objective and constraints)
var linLower = sum {i in 0..nx, j in 0..ny} 

(v[i+1,j] + v[i,j] + v[i,j+1]);

var linUpper = sum {i in 1..nx+1, j in 1..ny+1} 
(v[i,j] + v[i-1,j] + v[i,j-1]);

var quadLower = sum {i in 0..nx,j in 0..ny} (
((v[i+1,j] - v[i,j])/hx)**2 + ((v[i,j+1] - v[i,j])/hy)**2 );

var quadUpper = sum {i in 1..nx+1, j in 1..ny+1} (
((v[i,j] - v[i-1,j])/hx)**2 + ((v[i,j] - v[i,j-1])/hy)**2 );

minimize Stress:
area * ((quadLower+quadUpper)/2 - c*(linLower+linUpper)/3);

subject to distanceBound {i in 0..nx+1, j in 0..ny+1}:
-D[i,j] <= v[i,j] <= D[i,j];
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Example (cont’d)

Output from AMPL’s presolver
Presolve eliminates 2704 constraints and 204 variables.
Substitution eliminates 4 variables.

Adjusted problem:
2500 variables, all nonlinear
0 constraints
1 nonlinear objective; 2500 nonzeros.
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Example (cont’d)

Output from DrAMPL (analysis)
Problem type 
-------------
-Problem has bounded variables
-Problem has no constraints

Analyzing problem using only objective
--------------------------------------
-This objective is quadratic
-Problem is a QP with bounds

-0.833013 <= objective <= 0.8359

Problem convexity
------------------
Nonlinear objective looks convex on its domain.

Detected 0/0 nonlinear convex  constraints,
0/0 nonlinear concave constraints.
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Issues

Algorithmic requirements
 Convexity outside feasible region

Nonconvex cases missed
 Choice of starting point can be crucial

Convex cases missed
 Polynomials

 ସݔ − ଷݔ4 + ଶݔ6 − ݔ4 + 1 is  ݔ − 1 ସ
 ସݔ − ଷݔ4 + ଶݔ7 − ݔ2 + 2 is  ݔ − 1 ସ + ݔ + 1 ଶ

 Quadratics . . .

Convexity Analysis
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“Elliptic” quadratic programming
 Detection

 Solving

“Conic” quadratic programming
 Detection

 Solving

 Conversion

. . . Ph.D. project of Jared Erickson,
Northwestern University

26

Convexity of Quadratic Expressions
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Symbolic detection
 Objectives

 Minimize  ݔଵଶ	+	. . ௡ଶݔ	+	.
 Minimize 	∑ ܽ௜(܎௜ܠ + ݃௜)ଶ௡௜ୀଵ ,  ܽ௜ ≥ 0

 Constraints
 .	+	ଵଶݔ . . ≥	௡ଶݔ	+	 ݎ
 ∑ ܽ௜(܎௜ܠ + ݃௜)ଶ௡௜ୀଵ ≤ ௜ܽ  ,ݎ ≥ 0

Numerical detection
 Objectives

 Minimize  ܠۿ்ܠ + ܠܙ
 Constraints

 ܠۿ்ܠ + ܠܙ ≤ ݎ
 . . . where Q is positive semidefinite

27

“Elliptic” Quadratic Programming
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Representation
 Much like LP

 Coefficient lists for linear terms
 Coefficient lists for quadratic terms

 No expression trees

Optimization
 Much like LP

 Generalizations of barrier methods
 Generalizations of simplex methods
 Extensions of mixed-integer branch-and-bound schemes

 Simple derivative computations

 Less overhead than general-purpose nonlinear solvers
. . . your speedup may vary

28

Solving
Elliptic QP



Robert Fourer, Convexity Detection in Large-Scale Optimization
Conference in Honor of Etienne Loute — Brussels, 6 September 2011 29

Example
Portfolio optimization

set A; # asset categories
set T := {1973..1994};   # years

param R {T,A};           # returns on asset categories
param mu default 2;      # weight on variance

param mean {j in A} = (sum {i in T} R[i,j]) / card(T);

param Rtilde {i in T, j in A} = R[i,j] - mean[j];

var Frac {A} >=0; 

var Mean = sum {j in A} mean[j] * Frac[j];

var Variance = 
sum {i in T} (sum {j in A} Rtilde[i,j]*Frac[j])^2 / card{T};

minimize RiskReward:  mu * Variance - Mean;

subject to TotalOne:  sum {j in A} Frac[j] = 1;

Elliptic QP
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Example (cont’d)

Portfolio data

set A := 
US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000
NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD;   

param R:
US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000 
NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD :=

1973  1.075  0.942  0.852  0.815  0.698  1.023  0.851  1.677 
1974  1.084  1.020  0.735  0.716  0.662  1.002  0.768  1.722 
1975  1.061  1.056  1.371  1.385  1.318  1.123  1.354  0.760 
1976  1.052  1.175  1.236  1.266  1.280  1.156  1.025  0.960 
1977  1.055  1.002  0.926  0.974  1.093  1.030  1.181  1.200 
1978  1.077  0.982  1.064  1.093  1.146  1.012  1.326  1.295 
1979  1.109  0.978  1.184  1.256  1.307  1.023  1.048  2.212 
1980  1.127  0.947  1.323  1.337  1.367  1.031  1.226  1.296 
1981  1.156  1.003  0.949  0.963  0.990  1.073  0.977  0.688 
1982  1.117  1.465  1.215  1.187  1.213  1.311  0.981  1.084 
1983  1.092  0.985  1.224  1.235  1.217  1.080  1.237  0.872 
1984  1.103  1.159  1.061  1.030  0.903  1.150  1.074  0.825 ...

Elliptic QP



Robert Fourer, Convexity Detection in Large-Scale Optimization
Conference in Honor of Etienne Loute — Brussels, 6 September 2011 31

Example (cont’d)

Solving with CPLEX

ampl: model markowitz.mod;
ampl: data markowitz.dat;

ampl: option solver cplexamp;

ampl: solve;

8 variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.

CPLEX 12.2.0.0: optimal solution; objective -1.098362471
12 QP barrier iterations

ampl:

Elliptic QP
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Example (cont’d)

Solving with CPLEX (simplex)

ampl: model markowitz.mod;
ampl: data markowitz.dat;

ampl: option solver cplexamp;
ampl: option cplex_options 'primalopt';

ampl: solve;

8 variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.

CPLEX 12.2.0.0: primalopt
No QP presolve or aggregator reductions.

CPLEX 12.2.0.0: optimal solution; objective -1.098362476
5 QP simplex iterations (0 in phase I)

ampl: 

Elliptic QP
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Example (cont’d)

Optimal portfolio

ampl: option omit_zero_rows 1;

ampl: display Frac;

EAFE  0.216083
GOLD  0.185066

LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX  0.397056
WILSHIRE_5000  0.201795 ;

ampl: display Mean, Variance;

Mean = 1.11577
Variance = 0.00870377

ampl: 

Elliptic QP
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Example (cont’d)

Optimal portfolio (discrete)

var Share {A} integer >= 0, <= 100;

var Frac {j in A} = Share[j] / 100; 

Elliptic QP

ampl: solve;

CPLEX 12.2.0.0: optimal integer solution within mipgap or absmipgap; 
objective -1.098353751

10 MIP simplex iterations
0 branch-and-bound nodes

absmipgap = 8.72492e-06, relmipgap = 7.94364e-06

ampl: display Frac;

EAFE  0.22
GOLD  0.18

LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX  0.4
WILSHIRE_5000  0.2 ;
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Standard cone

35

Second-Order Cone Constraints

. . . boundary not smooth

Rotated cone
 ଶݔ ≤ ,ݖݕ ݕ ≥ 0, ݖ ≥ 0, . . .

y

z

ଶݔ + ଶݕ ≤ ଶݖ ݖ ≥ 0 ଶݔ + ଶݕ ≤ ,ଶݖ ݖ ≥ 0
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Symbolic detection
 Constraints (standard)

 .	+	ଵଶݔ . . ≥	௡ଶݔ	+	 ௡ାଵଶݔ , ௡ାଵݔ ≥ 0
 ∑ ܽ௜(܎௜ܠ + ݃௜)ଶ௡௜ୀଵ ≤ ܽ௡ାଵ(܎௡ାଵܠ + ݃௡ାଵ)ଶ,ܽଵ, . . . 	 , ܽ௡ାଵ ≥ 0, ܠ௡ାଵ܎ + ݃௡ାଵ ≥ 0

 Constraints (rotated)
 .	+	ଵଶݔ . . ௡ାଵݔ	≥	௡ଶݔ	+	 ௡ାଵݔ ,௡ାଶݔ ≥ ௡ାଶݔ ,0 ≥ 0
 ∑ ܽ௜ ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ ≤ ܽ௡ାଵ ܠ௡ାଵ܎ + ݃௡ାଵ ܠ௡ାଶ܎ + ݃௡ାଶ ,ܽଵ, . . . 	 , ܽ௡ାଵ ≥ 0, ܠ௡ାଵ܎		 + ݃௡ାଵ ≥ ܠ௡ାଶ܎	 ,0 + ݃௡ାଶ ≥ 0

Numerical detection
 ܠۿ்ܠ + ܠܙ ≤ 	ݎ
 . . . where Q has one negative eigenvalue

 see Ashutosh Mahajan and Todd Munson, “Exploiting 
Second-Order Cone Structure for Global Optimization”

36

“Conic” Quadratic Programming
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Similarities
 Describe by lists of coefficients

 Solve by extensions of LP barrier methods

 Extend to mixed-integer branch-and-bound

Differences
 Quadratic part not positive semi-definite

 Nonnegativity is essential

 Boundary of feasible region is not differentiable

 Many convex problems can be reduced to these . . .

Terminology
 Second-order cone programs, SOCPs

 Allow also elliptical quadratic & linear constraints

37

Solving
Conic QP
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Example 1: Sum of Norms

param p integer > 0;
param m {1..p} integer > 0;
param n integer > 0;

param F {i in 1..p, 1..m[i], 1..n};
param g {i in 1..p, 1..m[i]};

param p := 2 ;
param m := 1 5  2 4 ;
param n := 3 ;

param g (tr): 1   2 :=
1  12   2
2   7  11
3   7   1
4   8   0
5   4   . ;

param F := ...

Conic QP
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Example 1: Original Formulation

var x {1..n};

minimize SumOfNorms: 
sum {i in 1..p} sqrt(

sum {k in 1..m[i]} (sum {j in 1..n} F[i,k,j] * x[j] + g[i,k])^2 );

3 variables, all nonlinear
0 constraints
1 nonlinear objective; 3 nonzeros.

CPLEX 12.2.0.0: at12228.nl contains a nonlinear objective.

Conic QP
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Example 1: Converted to Quadratic

var x {1..n};
var Max {1..p} >= 0;

minimize SumOfNorms: sum {i in 1..p} Max[i];

subj to MaxDefinition {i in 1..p}:
sum {k in 1..m[i]} (sum {j in 1..n} F[i,k,j] * x[j] + g[i,k])^2

<= Max[i]^2;

5 variables, all nonlinear
2 constraints, all nonlinear; 8 nonzeros
1 linear objective; 2 nonzeros.

CPLEX 12.2.0.0: QP Hessian is not positive semi-definite.

Conic QP
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Example 1: Simpler Quadratic

var x {1..n};
var Max {1..p} >= 0;
var Fxplusg {i in 1..p, 1..m[i]};

minimize SumOfNorms: sum {i in 1..p} Max[i];

subj to MaxDefinition {i in 1..p}:
sum {k in 1..m[i]} Fxplusg[i,k]^2 <= Max[i]^2;

subj to FxplusgDefinition {i in 1..p, k in 1..m[i]}:
Fxplusg[i,k] = sum {j in 1..n} F[i,k,j] * x[j] + g[i,k];

14 variables:
11 nonlinear variables
3 linear variables

11 constraints; 41 nonzeros
2 nonlinear constraints
9 linear constraints

1 linear objective; 2 nonzeros.

CPLEX 12.2.0.0: primal optimal; objective 11.03323293
11 barrier iterations

Conic QP
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Example 1: Integer Quadratic

var xint {1..n} integer;

var x {j in 1..n} = xint[j] / 10;

.......

Substitution eliminates 3 variables. 

14 variables:
11 nonlinear variables
3 integer variables

11 constraints; 41 nonzeros
2 nonlinear constraints
9 linear constraints

1 linear objective; 2 nonzeros.

CPLEX 12.2.0.0: optimal integer solution; objective 11.12932573
88 MIP simplex iterations
19 branch-and-bound nodes

Conic QP



Robert Fourer, Convexity Detection in Large-Scale Optimization
Conference in Honor of Etienne Loute — Brussels, 6 September 2011 43

Example 2: Traffic Network

set INTERS := b c ;

param EN := a;
param EX := d;

param: ROADS: base cap sens :=

a b    5   10   .1
a c    1   30   .9
c b    2   10   .9
b d    1   30   .9
c d    5   10   .1 ;

param through := 4;

Conic QP
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Example 2: Original Formulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic QP
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Example 2: Rotated Cone Formulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
1 - Flow[i,j]/cap[i,j] = Slack[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic QP
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Example 2: Solution

ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: solve;

CPLEX 12.3.0.0: primal optimal; objective 8.178571451
8 barrier iterations

Conic QP

ampl: model traffic.mod; 
ampl: data traffic.dat;

ampl: solve;

CPLEX 12.3.0.0: Constraint _scon[1] is not convex quadratic 
since it is an equality constraint.
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Quadratic
 Constraints (already seen)

 Objectives

SOC-representable
 Quadratic-linear ratios

 Generalized geometric means

 Generalized p-norms

Other objective functions
 Generalized product-of-powers

 Logarithmic Chebychev

47
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Standard cone constraints
 ∑ ܽ௜(܎௜ܠ + ݃௜)ଶ௡௜ୀଵ ≤ ܽ௡ାଵ(܎௡ାଵܠ + ݃௡ାଵ)ଶ,ܽଵ, . . . , ܽ௡ାଵ ≥ 0, ܠ௡ାଵ܎ + ݃௡ାଵ ≥ 0

Rotated cone constraints
 ∑ ܽ௜ ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ ≤ ܽ௡ାଵ ܠ௡ାଵ܎ + ݃௡ାଵ ܠ௡ାଶ܎ + ݃௡ାଶ ,ܽଵ, . . . , ܽ௡ାଵ ≥ 0, ܠ௡ାଵ܎		 + ݃௡ାଵ ≥ ܠ௡ାଶ܎	 ,0 + ݃௡ାଶ ≥ 0

Sum-of-squares objectives
 Minimize  ∑ ܽ௜ ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ

 Minimize ݒ
Subject to ∑ ܽ௜ ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ ≤ ݒ  ,ଶݒ ≥ 0

Quadratic
SOCP-solvable
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Definition
 Function ݏ ݔ is SOC-representable iff . . .

 ݏ ݔ ≤ ܽ௡(܎௡ାଵܠ + ݃௡ାଵ)	is equivalent to some 
combination of linear and quadratic cone constraints

Minimization property
 Minimize ݏ ݔ is SOC-solvable

 Minimize ௡ାଵݒ
Subject to (ݔ)ݏ ≤ ௡ାଵݒ

Combination properties
 ܽ ∙ ݏ ݔ is SOC-representable for any ܽ ≥ 0
 ∑ ௜ݏ ௡௜ୀଵݔ is SOC-representable

 ௜ୀଵ௡ݔܽ݉ ௜ݏ	 ݔ is SOC-representable
. . . requires a recursive detection algorithm!
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SOC-Representable (1)
Vector norm

 ܉ ∙ ܠ۴ + ܏ = ∑ ܽ௜ଶ ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ ≤ ܽ௡ାଵ ܠ௡ାଵ܎ + ݃௡ାଵ
 Square both sides to get standard SOC∑ ܽ௜ଶ ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ ≤ ܽ௡ାଵଶ ܠ௡ାଵ܎ + ݃௡ାଵ ଶ

Quadratic-linear ratio


∑ ௔೔ ௚೔	ା	ܠ೔܎ మ೙೔సభ܎೙శమܠ	ା	௚೙శమ ≤ ܽ௡ାଵ ܠ௡ାଵ܎ + ݃௡ାଵ
 Multiply by denominator to get rotated SOC∑ ܽ௜	 ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ ≤ ܽ௡ାଵ	 ܠ௡ାଵ܎ + ݃௡ାଵ ܠ௡ାଶ܎ + ݃௡ାଶ

50
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SOC-Representable (2)
Negative geometric mean

 −∏ ܠ௜܎ + ݃௜ ଵ ௣⁄௣௜ୀଵ ≤ ܠ௡ାଵ܎ + ݃௡ାଵ,  ݌ ∈ ℤା
 ସଵ/ସݔଷଵ/ସݔଶଵ/ସݔଵଵ/ସݔ− ≤ ହݔ− becomes rotated SOCs:ݔହଶ ≤ ଵଶݒ ,ଶݒଵݒ ≤ ଶଶݒ ,ଶݔଵݔ ≤ ସݔଷݔ
 apply recursively logଶ ݌ times

Generalizations
 −∏ ܠ௜܎ + ݃௜ ఈ೔௡௜ୀଵ ≤ ܽ௡ାଵ ܠ௡ାଵ܎ + ݃௡ାଵ :		∑ ௜ߙ ≤ 1௡௜ୀଵ ௜ߙ , ∈ ℚା
 ∏ ܠ௜܎ + ݃௜ ିఈ೔௡௜ୀଵ ≤  ܽ௡ାଵ ܠ௡ାଵ܎ + ݃௡ାଵ ௜ߙ	 , ∈ ℚା
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SOC-Representable (3)
p-norm

 ∑ ܠ௜܎ + ݃௜ ௣௡௜ୀଵ ଵ ௣⁄ ≤ ܠ௡ାଵ܎ + ݃௡ାଵ,  ݌ ∈ ℚା,  ݌ ≥ 1
 ଵݔ ହ + ଶݔ ହ ଵ ହ⁄ ≤ ଷݔ can be writtenݔଵ ହ ⁄ଷସݔ + ଶݔ ହ ⁄ଷସݔ 	≤ ଷݔ which becomesݒଵ + ଶݒ ≤ ଷݔ with  −ݒଵଵ ହ⁄ ଷସݔ ହ⁄ ≤ ଵଵݒ− ,ଵݔ± ହ⁄ ଷସݔ ହ⁄ ≤ ଶݔ±
 reduces to product of powers

Generalizations
 ∑ ܠ௜܎ + ݃௜ ఈ೔௡௜ୀଵ ଵ ఈబ⁄ ≤ ܠ௡ାଵ܎ + ݃௡ାଵ,  α௜ ∈ ℚା,  ߙ௜ ≥ ଴ߙ	 ≥ 1
 ∑ ܠ௜܎ + ݃௜ ఈ೔௡௜ୀଵ ≤ ܠ௡ାଵ܎ + ݃௡ାଵ ఈబ
 Minimize  ∑ ܠ௜܎ + ݃௜ ఈ೔௡௜ୀଵ

. . . standard SOCP has ࢏ࢻ ≡ ૛
52
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Other Objective Forms
Unrestricted product of powers

 Minimize  −∏ ܠ௜܎ + ݃௜ ఈ೔௡௜ୀଵ for any ߙ௜ ∈ ℚା
Logarithmic Chebychev approximation

 Minimize  max௜ୀଵ௡ log ܠ௜܎ − log	(݃௜) 	
Why no constraint versions?

 Not SOC-representable

 Transformation changes objective value (but not solution)
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Example: Sum-of-Norms Objective
Given

 Minimize  ∑ ܽ௜	 ∑ ܠ௜௝܎ + ݃௜௝ ଶ௡௝ୀଵ + ܿ௜௠௜ୀଵ
Transform to

 Minimize  ∑ ௜௠௜ୀଵݏ
 ∑ ௜௝ଶݐ + ܽ௜ଶܿ௜௡௝ୀଵ ≤ ௜ݏ  ,௜ଶݏ ≥ 0, ݅ = 1, . . . , ݉
 ܽ௜ ܠ௜௝܎ + ݃௜௝ = ,	௜௝ݐ ݆ = 1, . . . , ݊
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Detection

boolean isSumNorms (Node);

case of Node {

PLUS: return( isSumNorms(Node.left) and isSumNorms(Node.right) );

TIMES: return( isSumNorms(Node.right) and
isConst(Node.left) and value(Node.left) > 0 );

SQRT: return( isNormSquared(Node.child) );

}

boolean isSumSquares (Node);

case of Node {

PLUS: return( isSumSquares(Node.left) and isSumSquares(Node.right) );

POWER: return( isLinear(Node.left) and 
isConst(Node.right) and value(Node.right) == 2 );

CONST: return( value(Node) > 0 );

}

Sum of Norms
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Transformation: Preliminaries
Functions

 ݋ objective

 ݈௜ linear inequality ௜ݍ standard cone

 ݁௜ linear equality ௜ݎ rotated cone

Terminology
 ݉௖ most recently used constraint of type c

 ݊ most recently used variable index

 ݔ vector of original variables

 ݒ vector of all variables

Example
 ݈ଵ ݒ ≔ ଵݔ3 − 2,		݈ଵ ݒ ≔ ݈ଵ ݒ + ,ଷݒ 	 ݈ଵ ݒ ≤ 0

create  3ݔଵ + ଷݒ ≤ 2
56
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Transformation: Utilities

newVar ࢈ ) ;++࢔;(
add variable ࢜࢔	;
if ( ࢈ ) then add ࢜࢔ ≥ ࢈ ;

newFunc ࢉ ) ;++ࢉ࢓;(
add constraint of type ࢉ	ࢉ࢓ࢉ; ࢜ ≔ ૙	;

Sum of Norms
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Transformation: Sum of Norms

newFunc( ࢕ ࢕࢓࢕;( ࢜ ≔ ૙	;
tranSumNorms( Root, ࢕࢓࢕ ࢜ , 1 );

Sum of Norms
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Transformation: Sum of Norms

tranSumNorms ( Node, ࢉ ,(࢜)࢕ );

case of Node {

PLUS: tranSumNorms( Node.left, ࢉ ,(࢜)࢕ );
tranSumNorms( Node.right, ࢕ ࢜ ࢉ , );

MULT: tranSumNorms( Node.right, ࢉ ,(࢜)࢕ ∙	value(Node.left) );
SQRT: newVar( 0 );࢕(࢜) ∶= (࢜)࢕	 ࢔࢜	+	 ;

newFunc( ࢗ ࢗ࢓ࢗ;( ࢜ ≔ ૛࢔࢜− ;
tranSumSquares( Node.child, ࢗ࢓ࢗ ࢜ ࢉ , );

}

Sum of Norms
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Transformation: Sum of Squares

tranSumSquares ( Node, ࢉ ,(࢜)ࢗ );

case of Node {

PLUS: tranSumSquares( Node.left, ࢉ ,(࢜)ࢗ );
tranSumSquares( Node.right, ࢉ ,(࢜)ࢗ );

POWER: newvar(  );ࢗ(࢜) ∶= (࢜)ࢗ ;૛࢔࢜	+	
newfunc( ࢋ ࢋ࢓ࢋ;( ࢜ ≔ ࢔࢜− ;
tranLinear( Node.left, ࢋ࢓ࢋ ࢜ ࢉ , );

CONST: ࢗ ࢜ ≔ ࢗ ࢜ + ૛ࢉ ∙	value(Node);
}

Sum of Norms
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Issues
Which SOCP-solvable forms . . .

 are of practical use?

 are worth transforming?
 for continuous problems?
 for integer problems?
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