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Convexity Detection in
Large-Scale Optimization

Knowing that an optimization problem has 
a convex (or concave) objective and a convex 
constraint region is often valuable in 
computing a solution and interpreting the 
result.  But determining whether a problem is 
convex is an intractable problem in general.  

The first part of this presentation describes 
practical approaches to proving convexity, 
based on applying fundamental properties of 
convex functions to expressions built from 
standard mathematical functions.  Among 
several possibilities, proofs of convexity may 
be constructed by recursively “walking” the 
expression graphs routinely produced by 
optimization modeling languages.  Disproofs 
of convexity can also be valuable, but pose a 
quite different challenge involving a search for 
counterexamples.

The second part of the presentation turns 
to the unexpected complexities of detecting 
convex quadratic programs, which are 
amenable to efficient extensions of linear and 

mixed-integer programming solution methods.  
Although testing a quadratic function for 
convexity is easy, there is much more involved 
in testing whether a collection of quadratic 
inequalities defines a convex region.  
Particular interest has focused on conic 
regions and the “second-order cone programs” 
(or SOCPs) that they define.  Whether given 
quadratic constraints define a convex cone 
can be determined numerically.  But of equal 
interest are the numerous other objective and 
constraint types that have equivalent 
formulations as SOCPs.  These include various 
combinations of sums and maxima of 
Euclidean norms, quadratic-linear ratios, 
products of powers, p-norms, and log-
Chebychev terms.  The tree-walk approach can 
be adapted to automatically detect and 
convert arbitrarily complex instances of these 
forms, freeing modelers from the time-
consuming and error-prone work of 
maintaining the equivalent SOCPs explicitly.
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Does it have nice properties?
 Is it convex?

 Is it equivalent to a convex quadratic?

Does knowing that help to solve the problem?
 Are the results more believable?

 Are the computations more reliable? 

 Are the computations more efficient?

3

Given an Optimization Model . . .
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Thought
 Theorems

 Equivalent formulations

Computation
 Detection algorithms

 Transformation algorithms

 Faster and more reliable

 Intractable in general

 Challenging in concept

 Challenging to implement

4

Ways to Answer These Questions
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Given
Set of nodes representing intersections

Entrance to network

Exit from network	 ⊆ 	 ∪ { } 	× 	 ∪ { }
Set of arcs representing road links

and
Base travel time for each road link ( , ) ∈
Capacity for each road link ( , ) ∈
Traffic sensitivity for each road link ( , ) ∈
Desired throughput from to 

5

Introduction: Traffic Network
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Determine
Traffic flow through road link ( , ) ∈
Actual travel time on road link ( , ) ∈

to minimize

Average travel time from e to f

6

Example: Traffic Network
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Subject to

7

Example: Traffic Network

Travel times increase as flow approaches capacity

Flow out equals flow in at any intersection

Flow into the entrance equals the specified throughput



Robert Fourer, Convexity Detection in Large-Scale Optimization
OR 53 — Nottingham 6-8 September 2011 8

AMPL Traffic Network

Traffic network: symbolic data

set INTERS;          # intersections (network nodes)

param EN symbolic;   # entrance
param EX symbolic;   # exit

check {EN,EX} not within INTERS;

set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};

# road links (network arcs)

param base {ROADS} > 0;  # base travel times
param cap {ROADS} > 0;   # capacities
param sens {ROADS} > 0;  # traffic sensitivities

param through > 0;       # throughput
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AMPL Traffic Network

Algebraic modeling language: symbolic model

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;
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AMPL Traffic Network

Explicit data independent of symbolic model

set INTERS := b c ;

param EN := a ;
param EX := d ;

param: ROADS: base cap sens :=
a b    4   10   .1
a c    1   12   .7
c b    2   20   .9
b d    1   15   .5
c d    6   10   .1 ;

param through := 20 ;
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AMPL Traffic Network

Model + data = problem to solve, using KNITRO

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver knitro;
ampl: solve;

KNITRO 7.0.0: Locally optimal solution.
objective 61.04695019; feasibility error 3.55e-14
12 iterations; 25 function evaluations

ampl: display Flow, Time;

:       Flow       Time   :=
a b    9.55146   25.2948
a c   10.4485    57.5709
b d   11.0044    21.6558
c b    1.45291    3.41006
c d    8.99562   14.9564
;



Robert Fourer, Convexity Detection in Large-Scale Optimization
OR 53 — Nottingham 6-8 September 2011 12

AMPL Traffic Network

Same with integer-valued variables

ampl: solve;

KNITRO 7.0.0: Locally optimal solution.
objective 76.26375; integrality gap 0
3 nodes; 5 subproblem solves

ampl: display Flow, Time;

:   Flow   Time  :=
a b    9   13
a c   11   93.4
b d   11   21.625
c b    2   4
c d    9   15
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];
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AMPL Traffic Network

Model + data = problem to solve, using CPLEX?

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: 
Constraint _scon[1] is not convex quadratic 
since it is an equality constraint.
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AMPL Traffic Network

Look at the model again . . .

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;
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AMPL Traffic Network

Quadratic reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;
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AMPL Traffic Network

Model + data = problem to solve, using CPLEX?

ampl: model trafficQUAD.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: 
QP Hessian is not positive semi-definite.
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AMPL Traffic Network

Quadratic reformulation #2

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
Slack[i,j] = 1 - Flow[i,j]/cap[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;
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AMPL Traffic Network

Model + data = problem to solve, using CPLEX!

ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: primal optimal; objective 61.04693968
15 barrier iterations

ampl: display Flow;

Flow :=
a b    9.55175
a c   10.4482
b d   11.0044
c b    1.45264
c d    8.99561
;
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AMPL Traffic Network

Same with integer-valued variables

ampl: solve;

CPLEX 12.3.0.0: optimal integer solution within mipgap or absmipgap; 
objective 76.26375017

19 MIP barrier iterations
0 branch-and-bound nodes

ampl: display Flow;

Flow :=
a b    9
a c   11
b d   11
c b    2
c d    9
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];
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Example: AC Power Network

Sines & cosines due to Kirchhoff’s laws for AC

var G{(k,m) in YBUS} =

if(k == m) then ...

else if(k != m) then
sum {(l,k,m) in BRANCH}
(- branch_g[l,k,m] * cos(branch_def[l,k,m])
- branch_b[l,k,m] * sin(branch_def[l,k,m])) * branch_tap[l,k,m] +

sum {(l,m,k) in BRANCH} 
(- branch_g[l,m,k] * cos(branch_def[l,m,k])
+ branch_b[l,m,k] * sin(branch_def[l,m,k])) * branch_tap[l,m,k];

minimize active_power :

sum {k in BUS : bus_type[k] == 2 || bus_type[k] == 3} 
(bus_p_load[k]
+ sum {(k,m) in YBUS}

bus_voltage[k] * bus_voltage[m]
* (  G[k,m] * cos(bus_angle[k] - bus_angle[m])

+ B[k,m] * sin(bus_angle[k] - bus_angle[m])) )^2;
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Recursive tree-walking algorithms
 Expression trees

 Detection algorithms

 Transformation algorithms

Convexity of general expressions
 Proof of convexity

 Disproof of convexity

Convexity of quadratic problems
 Conic constraints

 Detection of equivalent problems

 Transformation of equivalent problems

21

Outline
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Expression
base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j])

Expression tree

22

Recursive Tree-Walking Algorithms
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Detection: isLinear()

boolean isLinear (Node);

case of Node {

PLUS:  
MINUS: return( isLinear(Node.left) and isLinear(Node.right) );

TIMES: return( isConst(Node.left) and isLinear(Node.right) or
isLinear(Node.left) and isConst(Node.right) );

DIV: return( isLinear(Node.left) and isConst(Node.right) );

VAR: return( TRUE );

CONST: return( TRUE );

}

. . . to detect, test isLinear(root)
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Detection: isQuadr()

boolean isQuadr (Node);

case of Node {

PLUS:  
MINUS: return( isQuadr(Node.left) and isQuadr(Node.right) );

TIMES: return( isLinear(Node.left) and isLinear(Node.right) or
isQuadr(Node.left) and isConst(Node.right)   or
isConst(Node.left) and isQuadr(Node.right) );

POWER: return( isLinear(Node.left) and 
isConst(Node.right) and value(Node.right) == 2 );

VAR: return( TRUE );

CONST: return( TRUE );

}
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Transformation: buildLinear()

(coeff,const) = buildLinear (Node);

if Node.L then (coefL,consL) = buildLinear(Node.L);
if Node.R then (coefR,consR) = buildLinear(Node.R);

case of Node {

PLUS:  coeff = mergeLists( coefL, coefR );
const = consL + consR;

TIMES: ...

DIV: coeff = coefL / consR;
const = consL / consR;

VAR: coeff = makeList( 1, Node.index );
const = 0;

CONST: coeff = makeList( );
const = Node.value;

}

. . . to transform, call buildLinear(root)
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Analyses
 Proof of convexity

 Disproof of convexity

Larger context (“DrAMPL”)
 Classify problems based on AMPL output

 Recommend solvers

. . . joint project with Dominique Orban,
École Polytechnique de Montréal

26

Convexity of General Expressions
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Significance of Convexity

Theory
 For an optimization problem of the form

a local minimum is global provided

 f is convex
 each gi is convex
 each hi is linear

Practice
 Many physical problems are naturally convex 

if formulated properly
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Earlier approaches
 D.R. Stoutmeyer, “Automatic categorization of optimization problems: 

An application of computer symbolic mathematics.”  Operations Research
26 (1978) 773–788.

 I.P. Nenov, D.H. Fylstra and L.V. Kolev, “Convexity determination in the 
Microsoft Excel solver using automatic differentiation techniques.” 
Fourth International Workshop on Automatic Differentiation (2004).

 M.C. Grant, S. Boyd and Y. Ye “Disciplined convex programming.”  
In L. Liberti, N. Maculan, eds. Global Optimization: From Theory to 
Implementation. Springer, Nonconvex Optimization and Its Applications 
Series (2006) 155–210.

This work
 R. Fourer, C. Maheshwari, A. Neumaier, D. Orban and H. Schichl, 

“Convexity and Concavity Detection in Computational Graphs: Tree 
Walks for Convexity Assessment.”  dx.doi.org/10.1287/ijoc.1090.0321: 
INFORMS Journal on Computing 22 (2010) 26–43.

28

Interest in Convexity Detection
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Proof of Convexity

Apply properties of functions
 ||x||p is convex,  ≥ 0 everywhere

 xα is convex for α ≤ 0, α ≥ 1; –xα is convex for 0 ≤ α ≤ 1

 xp for even p > 0 is convex everywhere, 
decreasing on x ≤ 0, increasing on x ≥ 0, etc.

 – log x and x log x are convex and increasing on x > 0

 sin x is concave on 0 ≤ x ≤  π, convex on π ≤ x ≤ 2π,
increasing on 0 ≤ x ≤ π/2 and 3π/2 ≤ x ≤ 2π, decreasing . . . 
≥ –1 and ≤ 1 everywhere

 eαx is convex, increasing everywhere for α > 0, etc.

 – (Πi xi)1/n is convex where all xi > 0
. . . etc., etc.
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Proof of Convexity (cont’d)

Apply properties of convexity
 Certain expressions are convex:

 – f(x) for any concave f
 α f(x) for any convex f and α > 0
 f(x) + g(x) for any convex f and g
 f(Ax + b) for any convex f
 f(g(x)) for any convex nondecreasing f and convex g
 f(g(x)) for any convex nonincreasing f and concave g

 Use these with function properties to assess 
convexity of node expressions on their domains

Apply properties of concavity, similarly
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Proof of Convexity (cont’d)

Recursively apply isConvex (lb,ub)
 Return values

 +1: convex

 0: can’t tell

 -1: concave

 Bounds
 lb: lower bound

 ub: upper bound

Deduce status of each nonlinear expression
 Convex, concave, or indeterminate

 Lower and upper bounds
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Disproof of Convexity

Find any counterexample
 Sample in feasible region

 Test any characterization of convex functions

Sampling along lines
 Look for

 See implementation in John Chinneck’s MProbe
(www.sce.carleton.ca/faculty/chinneck/mprobe.html)

Sampling at points
 Look for ∇2 f(x) not positive semi-definite
 Implemented in DrAMPL . . .

)()1()())1(( 2121 xxxx fff λλλλ −+>−+
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Disproof of Convexity (cont’d)

Sampling
 Choose points x0

such that x01, . . . , x0n are within inferred bounds

Testing
 Apply GLTR (galahad.rl.ac.uk/galahad-www/doc/gltr.pdf) to

 Declare nonconvex if GLTR’s Lanczos method 
finds a direction of negative curvature

 Declare inconclusive if GLTR 
reaches the trust region boundary
without finding a direction of negative curvature
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Testing Convexity Analyzers

Principles
 Disprovers can establish nonconvexity, suggest convexity

 Provers can establish convexity, suggest nonconvexity

Test problems
 Established test sets:

COPS (17), CUTE (734), Hock & Schittkowski (119),
Netlib (40), Schittkowski (195), Vanderbei (29 groups)

 Submissions to NEOS Server

Design of experiments
 Run a prover and a disprover on each test problem

 Check results for consistency

 Collect and characterize problems found to be convex

 Inspect functions not proved or disproved convex,
to suggest possible enhancements to analyzers
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Example

Torsion model (parameters and variables)
param nx > 0, integer;    # grid points in 1st direction
param ny > 0, integer;    # grid points in 2nd direction

param c;                  # constant

param hx := 1/(nx+1);     # grid spacing
param hy := 1/(ny+1);     # grid spacing

param area := 0.5*hx*hy;  # area of triangle

param D {i in 0..nx+1,j in 0..ny+1} =

min( min(i,nx-i+1)*hx, min(j,ny-j+1)*hy );

# distance to the boundary

var v {i in 0..nx+1, j in 0..ny+1};

# definition of the 
# finite element approximation
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Example (cont’d)

Torsion model (objective and constraints)
var linLower = sum {i in 0..nx, j in 0..ny} 

(v[i+1,j] + v[i,j] + v[i,j+1]);

var linUpper = sum {i in 1..nx+1, j in 1..ny+1} 
(v[i,j] + v[i-1,j] + v[i,j-1]);

var quadLower = sum {i in 0..nx,j in 0..ny} (
((v[i+1,j] - v[i,j])/hx)**2 + ((v[i,j+1] - v[i,j])/hy)**2 );

var quadUpper = sum {i in 1..nx+1, j in 1..ny+1} (
((v[i,j] - v[i-1,j])/hx)**2 + ((v[i,j] - v[i,j-1])/hy)**2 );

minimize Stress:
area * ((quadLower+quadUpper)/2 - c*(linLower+linUpper)/3);

subject to distanceBound {i in 0..nx+1, j in 0..ny+1}:
-D[i,j] <= v[i,j] <= D[i,j];
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Example (cont’d)

Output from AMPL’s presolver
Presolve eliminates 2704 constraints and 204 variables.
Substitution eliminates 4 variables.

Adjusted problem:
2500 variables, all nonlinear
0 constraints
1 nonlinear objective; 2500 nonzeros.
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Example (cont’d)

Output from DrAMPL (analysis)
Problem type 
-------------
-Problem has bounded variables
-Problem has no constraints

Analyzing problem using only objective
--------------------------------------
-This objective is quadratic
-Problem is a QP with bounds

-0.833013 <= objective <= 0.8359

Problem convexity
------------------
Nonlinear objective looks convex on its domain.

Detected 0/0 nonlinear convex  constraints,
0/0 nonlinear concave constraints.
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Issues

Algorithmic requirements
 Convexity outside feasible region

Nonconvex cases missed
 Choice of starting point can be crucial

Convex cases missed
 Polynomials

 − 4 + 6 − 4 + 1 is  − 1
 − 4 + 7 − 2 + 2 is  − 1 + + 1

 Quadratics . . .

Convexity Analysis
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“Elliptic” quadratic programming
 Detection

 Solving

“Conic” quadratic programming
 Detection

 Solving

 Conversion

. . . Ph.D. project of Jared Erickson,
Northwestern University

40

Convexity of Quadratic Expressions
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Symbolic detection
 Objectives

 Minimize  	+	. . .	+	
 Minimize 	∑ ( + ) ,  ≥ 0

 Constraints
 	+	. . . 	+	 	≤
 ∑ ( + ) ≤ ,  ≥ 0

Numerical detection
 Objectives

 Minimize  +
 Constraints

 + ≤
 . . . where Q is positive semidefinite

41

“Elliptic” Quadratic Programming
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Representation
 Much like LP

 Coefficient lists for linear terms
 Coefficient lists for quadratic terms

 No expression trees

Optimization
 Much like LP

 Generalizations of barrier methods
 Generalizations of simplex methods
 Extensions of mixed-integer branch-and-bound schemes

 Simple derivative computations

 Less overhead than general-purpose nonlinear solvers
. . . your speedup may vary

42

Solving
Elliptic QP
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Standard cone

49

“Conic” Quadratic Programming

. . . boundary not smooth

Rotated cone
 ≤ , ≥ 0, ≥ 0, . . .

y

z

+ ≤ ≥ 0 + ≤ , ≥ 0
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Symbolic detection
 Constraints (standard)

 	+	. . . 	+	 	≤ , ≥ 0
 ∑ ( + ) ≤ ( + ) ,, . . . 	 , ≥ 0, + ≥ 0

 Constraints (rotated)
 	+	. . . 	+	 	≤	 , ≥ 0, ≥ 0
 ∑ + ≤ + + ,, . . . 	 , ≥ 0, 		 + ≥ 0, 	 + ≥ 0

Numerical detection
 + ≤ 	
 . . . where Q has one negative eigenvalue

 see Ashutosh Mahajan and Todd Munson, “Exploiting 
Second-Order Cone Structure for Global Optimization”

50

“Conic” Quadratic Programming
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Similarities
 Describe by lists of coefficients

 Solve by extensions of LP barrier methods

 Extend to mixed-integer branch-and-bound

Differences
 Quadratic part not positive semi-definite

 Nonnegativity is essential

 Boundary of feasible region is not differentiable

 Many convex problems can be reduced to these . . .

Terminology
 Second-order cone programs, SOCPs

 Allow also elliptical quadratic & linear constraints

51

Solving
Conic QP
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Quadratic
 Constraints (already seen)

 Objectives

SOC-representable
 Quadratic-linear ratios

 Generalized geometric means

 Generalized p-norms

Other objective functions
 Generalized product-of-powers

 Logarithmic Chebychev

61

SOCP-Solvable Forms
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Standard cone constraints
 ∑ ( + ) ≤ ( + ) ,, . . . , ≥ 0, + ≥ 0

Rotated cone constraints
 ∑ + ≤ + + ,, . . . , ≥ 0, 		 + ≥ 0, 	 + ≥ 0

Sum-of-squares objectives
 Minimize  ∑ +

 Minimize
Subject to ∑ + ≤ ,  ≥ 0

Quadratic
SOCP-solvable
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Definition
 Function is SOC-representable iff . . .

 ≤ ( + )	is equivalent to some 
combination of linear and quadratic cone constraints

Minimization property
 Minimize is SOC-solvable

 Minimize
Subject to ( ) ≤

Combination properties
 ∙ is SOC-representable for any ≥ 0
 ∑ is SOC-representable

 	 is SOC-representable
. . . requires a recursive detection algorithm!
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SOC-Representable (1)
Vector norm

 ∙ + = ∑ + ≤ +
 Square both sides to get standard SOC∑ + ≤ +

Quadratic-linear ratio


∑ 	 		 	 ≤ +
 Multiply by denominator to get rotated SOC∑ 	 + ≤ 	 + +
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SOC-Representable (2)
Negative geometric mean

 −∏ + ⁄ ≤ + ,  ∈ ℤ
 − / / / / ≤ − becomes rotated SOCs:≤ , ≤ , ≤
 apply recursively log times

Generalizations
 −∏ + ≤ + :		∑ ≤ 1, ∈ ℚ
 ∏ + ≤  + , 	 ∈ ℚ
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SOC-Representable (3)
p-norm

 ∑ + ⁄ ≤ + ,  ∈ ℚ ,  ≥ 1
 + ⁄ ≤ can be written⁄ + ⁄ 	≤ which becomes+ ≤ with  − ⁄ ⁄ ≤ ± , − ⁄ ⁄ ≤ ±
 reduces to product of powers

Generalizations
 ∑ + ⁄ ≤ + ,  α ∈ ℚ ,  ≥	 ≥ 1
 ∑ + ≤ +
 Minimize  ∑ +

. . . standard SOCP has ≡
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Other Objective Forms
Unrestricted product of powers

 Minimize  −∏ + for any ∈ ℚ
Logarithmic Chebychev approximation

 Minimize  max log − log	( ) 	
Why no constraint versions?

 Not SOC-representable

 Transformation changes objective value (but not solution)
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Example: Sum-of-Norms Objective
Given

 Minimize  ∑ 	 ∑ + +
Transform to

 Minimize  ∑
 ∑ + ≤ ,  ≥ 0, = 1, . . . ,
 + = 	, = 1, . . . ,
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Detection

boolean isSumNorms (Node);

case of Node {

PLUS: return( isSumNorms(Node.left) and isSumNorms(Node.right) );

TIMES: return( isSumNorms(Node.right) and
isConst(Node.left) and value(Node.left) > 0 );

SQRT: return( isNormSquared(Node.child) );

}

boolean isSumSquares (Node);

case of Node {

PLUS: return( isSumSquares(Node.left) and isSumSquares(Node.right) );

POWER: return( isLinear(Node.left) and 
isConst(Node.right) and value(Node.right) == 2 );

CONST: return( value(Node) > 0 );

}

Sum of Norms
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Transformation: Preliminaries
Functions

 objective

 linear inequality standard cone

 linear equality rotated cone

Terminology
 most recently used constraint of type c

 most recently used variable index

 vector of original variables

 vector of all variables

Example
 ≔ 3 − 2,		 ≔ + , 	 ≤ 0

create  3 + ≤ 2
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Transformation: Utilities

newVar ( );

++;
add variable 	;
if ( ) then add ≥ ;

newFunc ( );

++;
add constraint of type 	;≔ 	;

Sum of Norms
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Transformation: Sum of Norms

newFunc( );≔ 	;
tranSumNorms( Root, , 1 );

Sum of Norms
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Transformation: Sum of Norms

tranSumNorms ( Node, ( ), );

case of Node {

PLUS: tranSumNorms( Node.left, ( ), );
tranSumNorms( Node.right, , );

MULT: tranSumNorms( Node.right, ( ), ∙	value(Node.left) );
SQRT: newVar( 0 );( ) ∶= 	 ( ) 	+	 ;

newFunc( );≔ − ;

tranSumSquares( Node.child, , );

}

Sum of Norms
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Transformation: Sum of Squares

tranSumSquares ( Node, ( ), );

case of Node {

PLUS: tranSumSquares( Node.left, ( ), );
tranSumSquares( Node.right, ( ), );

POWER: newvar(  );( ) ∶= ( ) 	+ 	 ;

newfunc( );≔ − ;

tranLinear( Node.left, , );

CONST: ≔ + ∙	value(Node);
}

Sum of Norms
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Issues
Which SOCP-solvable forms . . .

 are of practical use?

 are worth transforming?
 for continuous problems?
 for integer problems?
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