Strategies for Using Algebraic Modeling Languages to Formulate Second-Order Cone Programs

Robert Fourer, Jared Erickson

Industrial Engineering \& Management Sciences Northwestern University

4er@northwestern.edu, jarederickson2012@u.northwestern.edu

INFORMS Annual Meeting
Charlotte - 13-16 November 2011
SB03.1 Optimization Software

Example: Traffic Network

Given

N Set of nodes representing intersections
$e \quad$ Entrance to network
f Exit from network

$$
A \subseteq N \cup\{e\} \times N \cup\{f\}
$$

Set of arcs representing road links

and

$b_{i j}$ Base travel time for each road link $(i, j) \in A$
$s_{i j}$ Traffic sensitivity for each road link $(i, j) \in A$
$c_{i j}$ Capacity for each road link $(i, j) \in A$
T Desired throughput from e to f

Traffic Network

Formulation

Determine

$x_{i j} \quad$ Traffic flow through road link $(i, j) \in A$
$t_{i j} \quad$ Actual travel time on road link $(i, j) \in A$
to minimize

$$
\Sigma_{(i, j) \in A} t_{i j} x_{i j} / T
$$

Average travel time from e to f

Traffic Network

Formulation (cont'd)

Subject to

$t_{i j}=b_{i j}+\frac{s_{i j} x_{i j}}{1-x_{i j} / c_{i j}} \quad$ for all $(i, j) \in A$
Travel times increase as flow approaches capacity
$\Sigma_{(i, j) \in A} x_{i j}=\Sigma_{(j, i) \in A} x_{j i}$ for all $i \in N$
Flow out equals flow in at any intersection
$\Sigma_{(e, j) \in A} x_{e j}=T$
Flow into the entrance equals the specified throughput

Traffic Network

AMPL Formulation

Symbolic data

```
set INTERS; # intersections (network nodes)
param EN symbolic; # entrance
param EX symbolic; # exit
    check {EN,EX} not within INTERS;
set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};
    # road links (network arcs)
param base {ROADS} > 0; # base travel times
param sens {ROADS} > 0; # traffic sensitivities
param cap {ROADS} > 0; # capacities
param through > 0; # throughput
```


Traffic Network

AMPL Formulation (cont'd)

Symbolic model

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
    (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
    Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Traffic Network

AMPL Data

Explicit data independent of symbolic model

```
set INTERS := b c ;
param EN := a ;
param EX := d ;
param: ROADS: base cap sens :=
a b \(4 \quad 10 \quad .1\)
    a c 1 1 12 % .7
    c b 2 20 . }
    b d 1 15 . 5
    c d 6 10 . 1 ;
```

param through := 20 ;

Traffic Network

AMPL Solution

Model + data $=$ problem to solve, using KNITRO

```
ampl: model traffic.mod;
ampl: data traffic.dat;
ampl: option solver knitro;
ampl: solve;
KNITRO 7.O.O: Locally optimal solution.
objective 61.04695019; feasibility error 3.55e-14
12 iterations; 25 function evaluations
ampl: display Flow, Time;
: Flow Time :=
a b 9.55146 25.2948
a c 10.4485 57.5709
b d 11.0044 21.6558
c b 1.45291 3.41006
c d 8.99562 14.9564
;
```


Traffic Network

AMPL Solution (cont'd)

Same with integer-valued variables

```
var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];
```

```
ampl: solve;
KNITRO 7.O.0: Locally optimal solution.
objective 76.26375; integrality gap 0
3 nodes; 5 subproblem solves
ampl: display Flow, Time;
: Flow Time :=
a b 9 13
a c 11 93.4
b d 11 21.625
c b 2 4
c d 9 15
;
```

Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using CPLEX?

```
ampl: model traffic.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0:
Constraint _scon[1] is not convex quadratic
since it is an equality constraint.
```


Traffic Network

AMPL Solution (cont'd)

Look at the model again . . .

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
    (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
    Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Traffic Network

AMPL Solution (cont'd)

Quadratically constrained reformulation

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]~2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using CPLEX?

```
ampl: model trafficQUAD.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0:
QP Hessian is not positive semi-definite.
```


Traffic Network

AMPL Solution (cont'd)

Quadratic reformulation \#2

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];
subject to Slack_Def {(i,j) in ROADS}:
    Slack[i,j] = 1 - Flow[i,j]/cap[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using CPLEX!

```
ampl: model trafficSOC.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.O.O: primal optimal; objective 61.04693968
15 barrier iterations
ampl: display Flow;
Flow :=
a b 9.55175
a c 10.4482
b d 11.0044
c b 1.45264
c d 8.99561
;
```

Traffic Network

AMPL Solution (cont'd)

Same with integer-valued variables

```
var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];
```

```
ampl: solve;
CPLEX 12.3.0.0: optimal integer solution within mipgap or absmipgap;
    objective 76.26375017
19 MIP barrier iterations
O branch-and-bound nodes
ampl: display Flow;
Flow :=
a b 9
a c 11
b d 11
c b 2
c d 9
;
```


Traffic Network

Which Solver Is Preferable?

General nonlinear solver

* Fewer variables
* More natural formulation

MIP solver with convex quadratic option

* Mathematically simpler formulation
* No derivative evaluations
* no problems with nondifferentiable points
* More powerful large-scale solver technologies

Outline

Convex quadratic programs

* "Elliptic" forms
* "Conic" forms
* SOCPs or second-order cone programs

SOCP-solvable forms

* Quadratic
* SOC-representable
* Other objective functions

Detection \& transformation of SOCPs

* General principles
* Example: Sum of norms
* Survey of nonlinear test problems

Convex Quadratic Programs

"Elliptic" quadratic programming

* Detection
* Solving
"Conic" quadratic programming
* Detection
* Solving

"Elliptic" Quadratic Programming

Symbolic detection

* Objectives
* Minimize $x_{1}^{2}+\ldots+x_{n}^{2}$
* Minimize $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}, a_{i} \geq 0$
* Constraints
* $x_{1}^{2}+\ldots+x_{n}^{2} \leq r$
* $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq r, a_{i} \geq 0$

Numerical detection

* Objectives
* Minimize $\mathbf{x}^{T} \mathbf{Q x}+\mathbf{q x}$
* Constraints
* $\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q x} \leq r$
$\star . .$. where \mathbf{Q} is positive semidefinite

Elliptic QP

Solving

Representation

* Much like LP
* Coefficient lists for linear terms
* Coefficient lists for quadratic terms
* A lot simpler than general NLP

Optimization

* Much like LP
* Generalizations of barrier methods
* Generalizations of simplex methods
* Extensions of mixed-integer branch-and-bound schemes
* Simple derivative computations
* Less overhead than general-purpose nonlinear solvers
. . . your speedup may vary

"Conic" Quadratic Programming

Standard cone

$$
x^{2}+y^{2} \leq z^{2}, z \geq 0
$$

. . . boundary not smooth
Rotated cone

$$
\div x^{2} \leq y z, y \geq 0, z \geq 0, \ldots
$$

"Conic" Quadratic Programming

Symbolic detection

* Constraints (standard)

$$
\begin{aligned}
& * x_{1}^{2}+\ldots+x_{n}^{2} \leq x_{n+1}^{2}, x_{n+1} \geq 0 \\
& * \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2}, \\
& \quad a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0
\end{aligned}
$$

* Constraints (rotated)

$$
\begin{aligned}
& * \quad x_{1}^{2}+\ldots+x_{n}^{2} \leq x_{n+1} x_{n+2}, x_{n+1} \geq 0, x_{n+2} \geq 0 \\
& * \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right), \\
& \quad a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0, \mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0
\end{aligned}
$$

Numerical detection

* $\mathbf{x}^{T} \mathbf{Q x}+\mathbf{q x} \leq r$
* ... where \mathbf{Q} has one negative eigenvalue
* see Ashutosh Mahajan and Todd Munson, "Exploiting Second-Order Cone Structure for Global Optimization"

Conic QP

Solving

Similarities

* Describe by lists of coefficients
* Solve by extensions of LP barrier methods
* Extend to mixed-integer branch-and-bound

Differences

* Quadratic part not positive semi-definite
* Nonnegativity is essential
* Boundary of feasible region is not differentiable
* Many convex problems can be reduced to these . . .

Terminology

* Second-order cone programs, SOCPs
* Allow also elliptical quadratic \& linear constraints

SOCP-Solvable Forms

Quadratic

* Constraints (already seen)
* Objectives

SOC-representable

* Quadratic-linear ratios
* Generalized geometric means
* Generalized p-norms

Other objective functions

* Generalized product-of-powers
* Logarithmic Chebychev

SOCP-solvable

Quadratic

Standard cone constraints

$$
\begin{gathered}
* \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2} \\
a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0
\end{gathered}
$$

Rotated cone constraints

$$
\begin{array}{r}
\div \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right) \\
\quad a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0, \mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0
\end{array}
$$

Sum-of-squares objectives
$*$ Minimize $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}$

* Minimize v

Subject to $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq v^{2}, v \geq 0$

SOCP-solvable

SOC-Representable

Definition

* Function $s(x)$ is SOC-representable iff . . .
* $s(x) \leq a_{n}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)$ is equivalent to some combination of linear and quadratic cone constraints

Minimization property
\star Minimize $s(x)$ is SOC-solvable

* Minimize $\quad v_{n+1}$

Subject to $\quad s(x) \leq v_{n+1}$
Combination properties
$\div a \cdot s(x)$ is SOC-representable for any $a \geq 0$
$\star \sum_{i=1}^{n} s_{i}(x)$ is SOC-representable

* $\max _{i=1}^{n} s_{i}(x)$ is SOC-representable
. . . requires a recursive detection algorithm!

SOCP-solvable

SOC-Representable (1)

Vector norm

$$
\star \mathbf{a} \cdot(\mathbf{F} \mathbf{x}+\mathbf{g}) \|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)
$$

* square both sides to get standard SOC

$$
\sum_{i=1}^{n} a_{i}^{2}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}^{2}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2}
$$

Quadratic-linear ratio

* $\frac{\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}}{\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)$
$*$ where $\mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0$
* multiply by denominator to get rotated SOC

$$
\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right)
$$

SOCP-solvable

SOC-Representable (2)

Negative geometric mean

$$
\begin{aligned}
& -\prod_{i=1}^{p}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{1 / p} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, p \in \mathbb{Z}^{+} \\
& *-x_{1}^{1 / 4} x_{2}^{1 / 4} x_{3}^{1 / 4} x_{4}^{1 / 4} \leq-x_{5} \text { becomes rotated SOCs: } \\
& \quad x_{5}^{2} \leq v_{1} v_{2}, v_{1}^{2} \leq x_{1} x_{2}, v_{2}^{2} \leq x_{3} x_{4} \\
& * \text { apply recursively }\left\lceil\log _{2} p\right\rceil \text { times }
\end{aligned}
$$

Generalizations

$$
\begin{aligned}
& *-\prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{\alpha_{i}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right): \sum_{i=1}^{n} \alpha_{i} \leq 1, \alpha_{i} \in \mathbb{Q}^{+} \\
& * \prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{-\alpha_{i}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right), \alpha_{i} \in \mathbb{Q}^{+} \\
& \quad * \text { all require } \mathbf{f}_{i} \mathbf{x}+g_{i} \geq 0
\end{aligned}
$$

SOCP-solvable

SOC-Representable (3)

p-norm

$$
\nLeftarrow\left(\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{p}\right)^{1 / p} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, p \in \mathbb{Q}^{+}, p \geq 1
$$

* $\left(\left|x_{1}\right|^{5}+\left|x_{2}\right|^{5}\right)^{1 / 5} \leq x_{3}$ can be written $\left|x_{1}\right|^{5} / x_{3}^{4}+\left|x_{2}\right|^{5} / x_{3}^{4} \leq x_{3}$ which becomes

$$
v_{1}+v_{2} \leq x_{3} \text { with }-v_{1}^{1 / 5} x_{3}^{4 / 5} \leq \pm x_{1},-v_{1}^{1 / 5} x_{3}^{4 / 5} \leq \pm x_{2}
$$

* reduces to product of powers

Generalizations

$*\left(\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}}\right)^{1 / \alpha_{0}} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, \alpha_{i} \in \mathbb{Q}^{+}, \alpha_{i} \geq \alpha_{0} \geq 1$
$* \sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}} \leq\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{\alpha_{0}}$

* Minimize $\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}}$
. . . standard SOCP has $\alpha_{i} \equiv 2$

SOCP-solvable

Other Objective Functions

Unrestricted product of powers

* Minimize $-\prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{\alpha_{i}}$ for any $\alpha_{i} \in \mathbb{Q}^{+}$

Logarithmic Chebychev approximation
$*$ Minimize $\max _{i=1}^{n}\left|\log \left(\mathbf{f}_{i} \mathbf{x}\right)-\log \left(g_{i}\right)\right|$
Why no constraint versions?

* Not SOC-representable
* Transformation changes objective value (but not solution)

Detection \& Transformation of SOCPs

Principles

* Representation of expressions by trees
* Recursive tree-walk functions * isLinear(), isQuadratic(), buildLinear()

Example: Sum of norms
Survey of nonlinear test problems
. . . Ph.D. project of Jared Erickson, Northwestern University

Principles

Representation

Expression

```
base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j])
```

Expression tree

. . . actually a DAG

Principles

Detection: isLinear()

```
boolean isLinear (Node);
case of Node {
    PLUS:
    MINUS: return( isLinear(Node.left) and isLinear(Node.right) );
    TIMES: return( isConst(Node.left) and isLinear(Node.right) or
        isLinear(Node.left) and isConst(Node.right) );
    DIV: return( isLinear(Node.left) and isConst(Node.right) );
    VAR: return( TRUE );
    CONST: return( TRUE );
}
```

. . . to detect, test isLinear (root)

Principles

Detection: isQuadr()

```
boolean isQuadr (Node);
case of Node {
    PLUS:
    MINUS: return( isQuadr(Node.left) and isQuadr(Node.right) );
    TIMES: return( isLinear(Node.left) and isLinear(Node.right) or
        isQuadr(Node.left) and isConst(Node.right) or
        isConst(Node.left) and isQuadr(Node.right) );
    POWER: return( isLinear(Node.left) and
        isConst(Node.right) and value(Node.right) == 2 );
    VAR: return( TRUE );
    CONST: return( TRUE );
}
```


Principles

Transformation: buildLinear()

```
(coeff,const) = buildLinear (Node);
if Node.L then (coefL,consL) = buildLinear(Node.L);
if Node.R then (coefR,consR) = buildLinear(Node.R);
case of Node {
    PLUS: coeff = mergeLists( coefL, coefR );
        const = consL + consR;
    TIMES: ...
    DIV: coeff = coefL / consR;
        const = consL / consR;
    VAR: coeff = makeList( 1, Node.index );
        const = 0;
    CONST: coeff = makeList( );
        const = Node.value;
}
```

. . . to transform, call buildLinear (root)

Example: Sum-of-Norms Objective

Given

* Minimize $\sum_{i=1}^{m} a_{i} \sqrt{\sum_{j=1}^{n_{i}}\left(\mathbf{f}_{i j} \mathbf{x}+g_{i j}\right)^{2}}$

Transform to

$*$ Minimize $\sum_{i=1}^{m} a_{i} y_{i}$
$* \sum_{j=1}^{n_{i}} z_{i j}^{2} \leq y_{i}^{2}, y_{i} \geq 0, \quad i=1, \ldots, m$
$* z_{i j}=\mathbf{f}_{i j} \mathbf{x}+g_{i j}, \quad i=1, \ldots, m, j=1, \ldots, n_{i}$

Sum of Norms

Detection

SumOfNorms

Sum: $f_{1}+f_{2}$ is SumOfNorms if f_{1}, f_{2} are SumOFNorms
Product: $f_{1} f_{2}$ is SumOFNorms if
f_{1} is SumOfNorms and f_{2} is PosConstant or
f_{2} is SumOfNorms and f_{1} is PosConstant
Square root: \sqrt{f} is SumOfNorms if f is SumOfSouares

SumOFSquares

Sum: $f_{1}+f_{2}$ is SumOFSouares if f_{1}, f_{2} are SumOfSouares
Product: $f_{1} f_{2}$ is SumOFSQuares if
f_{1} is SumOfSquares and f_{2} is PosConstant or
f_{2} is SumOFSQuares and f_{1} is PosConstant
Square: f^{2} is SumOFSQuares if f is Linear
Constant: c is SumOfSouares if c is PosConstant

Sum of Norms

Detection (cont'd)

Mathematical

\div Minimize $\sum_{i=1}^{m} a_{i} \sqrt{\sum_{j=1}^{n_{i}}\left(\mathbf{f}_{i j} \mathbf{x}+g_{i j}\right)^{2}}$

Practical

* Constant multiples inside any sum
* Recursive nesting of constant multiples \& sums
* Constant as a special case of a square

$$
* \sqrt{3\left(4 x_{1}+7\left(x_{2}+2 x_{3}\right)+6\right)^{2}+\left(x_{4}+x_{5}\right)^{2}+17}
$$

Sum of Norms

Transformation

TransformSumOFNorms (f, o, k)

Sum: $f_{1}+f_{2}$ where f_{1}, f_{2} are SumOFNorms
TransformSumOfNorms (f_{1}, o, k)
TransformSumOfNorms (f_{2}, o, k)
Product: $f_{1} c_{2}$ where f_{1} is SumOfNorms and c_{2} is PosConstant
TransformSumOFNorms ($f_{1}, o, c_{2} k$)
Product: $c_{1} f_{2}$ where f_{2} is SumOfNorms and c_{1} is PosConstant
TransformSumOFNorms $\left(f_{2}, o, c_{1} k\right)$
Square root: \sqrt{f} where f is SumOfSouares
$y_{i}:=\operatorname{NEWNONNEGVAR}() ; o+=k y_{i}$
$q_{i}:=\operatorname{NEWLECON}() ; q_{i}+=-y_{i}^{2}$
TransformSumOfSQuares $\left(f, q_{i}, 1\right)$

Sum of Norms

Transformation (cont'd)

TransformSumOFSquares (f, q, k)

Sum: $f_{1}+f_{2}$ where f_{1}, f_{2} are SumOFSouares
TransformSumOFSouares (f_{1}, q, k)
TransformSumOFSouares (f_{2}, q, k)
Product: $f_{1} c_{2}$ where f_{1} is SumOfSouares and c_{2} is PosConstant
TransformSumOFSouares $\left(f_{1}, q, c_{2} k\right)^{\prime}$
Product: $c_{1} f_{2}$ where f_{2} is SumOFSouares and c_{1} is PosConstant
TransformSumOfSouares ($f_{2}, q, c_{1} k$)
Square: v^{2} where v is Variable

$$
q+=v^{2}
$$

Square: f^{2} where f is Linear

$$
\begin{aligned}
& z_{i j}:=\operatorname{NEWVAR}() ; q+=z_{i j}^{2} \\
& e_{i j}:=\operatorname{NEWEQCon}() ; e_{i j}+=z_{i j}-f
\end{aligned}
$$

Constant: c is PosConstant

$$
\begin{aligned}
& z_{i j}:=\operatorname{NEWVAR}() ; q+=z_{i j}^{2} \\
& e_{i j}:=\operatorname{NEWEOCON}() ; \quad e_{i j}+=z_{i j}-\sqrt{c}
\end{aligned}
$$

Sum of Norms

Transformation (cont'd)

Mathematical

* Minimize $\sum_{i=1}^{m} a_{i} y_{i}$
$* \sum_{j=1}^{n_{i}} z_{i j}^{2} \leq y_{i}^{2}, y_{i} \geq 0$
$\star z_{i j}=\mathbf{f}_{i j} \mathbf{x}+g_{i j}$

Practical

* Handle all previously mentioned generalizations
* Don't define $z_{i j}$ when $\mathbf{f}_{i j} \mathbf{x}+g_{i j}$ is a single variable
* Trigger by calling TransformSumOFNorms (f, o, k) with
* f the root node
* o an empty objective
* $k=1$

Challenges

Extending to all cases previously cited

* All prove amenable to recursive tree-walk
* Details much harder to work out

Checking nonnegativity of linear expressions

* Heuristic catches many non-obvious instances

Assessing usefulness

* With continuous variables . . .
* With discrete variables . . .

Survey of Test Problems

12% of 1238 nonlinear problems were SOC-solvable!

* not counting QPs with sum-of-squares objectives
* from Vanderbei's CUTE \& non-CUTE, and netlib/ampl

A variety of forms detected
$\dot{\mathrm{hs} 064}$ has $4 / x_{1}+32 / x_{2}+120 / x_{3} \leq 1$

* hs036 minimizes $-x_{1} x_{2} x_{3}$
* hs073 has $1.645 \sqrt{0.28 x_{1}^{2}+0.19 x_{2}^{2}+20.5 x_{3}^{2}+0.62 x_{4}^{2}} \leq \ldots$
* polak4 is a max of sums of squares
\div hs049 minimizes $\left(x_{1}-x_{2}\right)^{2}+\left(x_{3}-1\right)^{2}+\left(x_{4}-1\right)^{4}+\left(x_{5}-1\right)^{6}$
* emfl_nonconvex has $\sum_{k=1}^{2}\left(x_{j k}-a_{i k}\right)^{2} \leq s_{i j}^{2}$
. . . survey of integer programs to come
. . . solver tests to come

