Strategies for Using Algebraic Modeling Languages to Formulate Second-Order Cone Programs

Robert Fourer, Jared Erickson

Industrial Engineering & Management Sciences Northwestern University

4er@northwestern.edu, jarederickson2012@u.northwestern.edu

INFORMS Annual Meeting Charlotte — 13-16 November 2011

SB03.1 Optimization Software

Robert Fourer, Jared Erickson, Strategies for Using Algebraic Modeling Languages to Formulate SOCPs INFORMS Annual Meeting — Charlotte 13-16 November 2011

Example: Traffic Network

Given

- *N* Set of nodes representing intersections
- *e* Entrance to network
- *f* Exit from network
- $A \subseteq N \cup \{e\} \times N \cup \{f\}$

Set of arcs representing road links

and

- b_{ij} Base travel time for each road link $(i, j) \in A$
- s_{ij} Traffic sensitivity for each road link $(i, j) \in A$
- c_{ij} Capacity for each road link $(i, j) \in A$
- T Desired throughput from e to f

Traffic Network Formulation

Determine

- x_{ij} Traffic flow through road link $(i, j) \in A$
- t_{ij} Actual travel time on road link $(i, j) \in A$

to minimize

 $\Sigma_{(i,j)\in A} t_{ij} x_{ij}/T$

Average travel time from e to f

4

Traffic Network **Formulation** (cont'd)

Subject to $t_{ij} = b_{ij} + \frac{s_{ij}x_{ij}}{1 - x_{ij}/c_{ij}} \text{ for all } (i,j) \in A$

Travel times increase as flow approaches capacity

 $\Sigma_{(i,j)\in A} x_{ij} = \Sigma_{(j,i)\in A} x_{ji}$ for all $i \in N$

Flow out equals flow in at any intersection

 $\Sigma_{(e,j)\in A} x_{ej} = T$

Flow into the entrance equals the specified throughput

Traffic Network AMPL Formulation

Symbolic data

set INTERS; #	intersections (network nodes)
param EN symbolic; # param EX symbolic; #	
check {EN,EX} not within INTERS;	
<pre>set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};</pre>	
<pre># road links (network arcs)</pre>	
<pre>param base {ROADS} > 0 param sens {ROADS} > 0 param cap {ROADS} > 0;</pre>	; # traffic sensitivities
param through > 0;	# throughput

6

Symbolic model

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
  (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
  Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
  sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
  sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

Traffic Network AMPL Data

Explicit data independent of symbolic model

Traffic Network AMPL Solution

Model + data = problem to solve, using KNITRO

```
ampl: model traffic.mod;
ampl: data traffic.dat;
ampl: option solver knitro;
ampl: solve;
KNITRO 7.0.0: Locally optimal solution.
objective 61.04695019; feasibility error 3.55e-14
12 iterations; 25 function evaluations
ampl: display Flow, Time;
       Flow
                 Time
:
                        :=
a b
   9.55146 25.2948
a c 10.4485 57.5709
b d 11.0044 21.6558
c b 1.45291 3.41006
cd 8.99562 14.9564
;
```

Same with integer-valued variables

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];</pre>

```
ampl: solve;
KNITRO 7.0.0: Locally optimal solution.
objective 76.26375; integrality gap 0
3 nodes; 5 subproblem solves
ampl: display Flow, Time;
    Flow
          Time :=
    9
a b
          13
   11 93.4
a c
b d 11 21.625
cb 2
        4
        15
c d
    9
;
```

Model + *data* = *problem to solve, using CPLEX?*

```
ampl: model traffic.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0:
Constraint _scon[1] is not convex quadratic
since it is an equality constraint.
```

Look at the model again . . .

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
  (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
  Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
  sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
  sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

Quadratically constrained reformulation

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]^2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

Model + *data* = *problem to solve, using CPLEX?*

```
ampl: model trafficQUAD.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0:
QP Hessian is not positive semi-definite.
```

Quadratic reformulation #2

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];
subject to Slack_Def {(i,j) in ROADS}:
    Slack[i,j] = 1 - Flow[i,j]/cap[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

Model + *data* = *problem to solve, using CPLEX!*

```
ampl: model trafficSOC.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0: primal optimal; objective 61.04693968
15 barrier iterations
ampl: display Flow;
Flow :=
a b 9.55175
a c 10.4482
b d 11.0044
c b 1.45264
c d 8.99561
```

;

Same with integer-valued variables

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];</pre>

```
ampl: solve;
CPLEX 12.3.0.0: optimal integer solution within mipgap or absmipgap;
   objective 76.26375017
19 MIP barrier iterations
0 branch-and-bound nodes
ampl: display Flow;
Flow :=
a b
      9
ac 11
bd
    11
c b
    2
c d
      9
;
```

Traffic Network Which Solver Is Preferable?

General nonlinear solver

- Fewer variables
- More natural formulation

MIP solver with convex quadratic option

- Mathematically simpler formulation
- No derivative evaluations
 - * no problems with nondifferentiable points
- More powerful large-scale solver technologies

Outline

Convex quadratic programs

- "Elliptic" forms
- "Conic" forms
 - * **SOCPs** or second-order cone programs

SOCP-solvable forms

- Quadratic
- SOC-representable
- Other objective functions

Detection & transformation of SOCPs

- General principles
- Example: Sum of norms
- Survey of nonlinear test problems

Convex Quadratic Programs

"Elliptic" quadratic programming

- Detection
- Solving

"Conic" quadratic programming

- Detection
- Solving

"Elliptic" Quadratic Programming

Symbolic detection

◆ Objectives
* Minimize x₁² + ... + x_n²
* Minimize ∑_{i=1}ⁿ a_i (f_ix + g_i)², a_i ≥ 0
◆ Constraints
* x₁² + ... + x_n² ≤ r
* ∑_{i=1}ⁿ a_i (f_ix + g_i)² ≤ r, a_i ≥ 0

Numerical detection

Objectives
Minimize x^TQx + qx

Constraints

* $\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{q} \mathbf{x} \le r$

 $\boldsymbol{\ast}$. . . where \boldsymbol{Q} is positive semidefinite

Elliptic QP Solving

Representation

- ✤ Much like LP
 - * Coefficient lists for linear terms
 - * Coefficient lists for quadratic terms
- * A lot simpler than general NLP

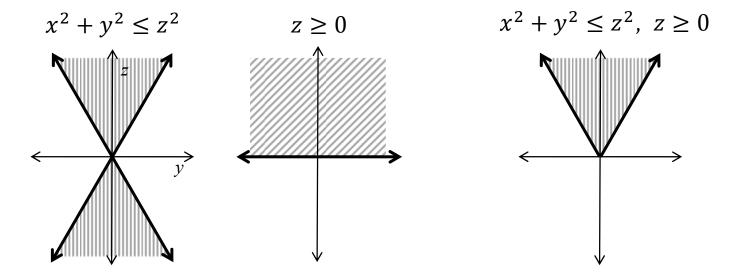
Optimization

- Much like LP
 - ***** Generalizations of barrier methods
 - ***** Generalizations of simplex methods
 - * Extensions of mixed-integer branch-and-bound schemes
- Simple derivative computations
- Less overhead than general-purpose nonlinear solvers

... your speedup may vary

"Conic" Quadratic Programming

Standard cone



... boundary not smooth

Rotated cone

$$x^2 \le yz, \ y \ge 0, z \ge 0, \ldots$$

"Conic" Quadratic Programming

Symbolic detection

- ★ Constraints (standard)
 ★ $x_1^2 + \ldots + x_n^2 \le x_{n+1}^2$, $x_{n+1} \ge 0$ ★ $\sum_{i=1}^n a_i (\mathbf{f}_i \mathbf{x} + g_i)^2 \le a_{n+1} (\mathbf{f}_{n+1} \mathbf{x} + g_{n+1})^2$, $a_1, \ldots, a_{n+1} \ge 0$, $\mathbf{f}_{n+1} \mathbf{x} + g_{n+1} \ge 0$
- Constraints (rotated)

*
$$x_1^2 + \ldots + x_n^2 \le x_{n+1} \ x_{n+2}, \ x_{n+1} \ge 0, \ x_{n+2} \ge 0$$

* $\sum_{i=1}^n a_i (\mathbf{f}_i \mathbf{x} + g_i)^2 \le a_{n+1} (\mathbf{f}_{n+1} \mathbf{x} + g_{n+1}) (\mathbf{f}_{n+2} \mathbf{x} + g_{n+2}),$
 $a_1, \ldots, a_{n+1} \ge 0, \ \mathbf{f}_{n+1} \mathbf{x} + g_{n+1} \ge 0, \ \mathbf{f}_{n+2} \mathbf{x} + g_{n+2} \ge 0$

Numerical detection

 $\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{q} \mathbf{x} \le r$

- $\boldsymbol{\ast}$. . . where \boldsymbol{Q} has one negative eigenvalue
 - * see Ashutosh Mahajan and Todd Munson, "Exploiting Second-Order Cone Structure for Global Optimization"

Conic QP Solving

Similarities

- Describe by lists of coefficients
- Solve by extensions of LP barrier methods
- Extend to mixed-integer branch-and-bound

Differences

- Quadratic part not positive semi-definite
- Nonnegativity is essential
- Boundary of feasible region is not differentiable
- * Many convex problems can be reduced to these . . .

Terminology

- Second-order cone programs, SOCPs
- Allow also elliptical quadratic & linear constraints

SOCP-Solvable Forms

Quadratic

- Constraints (already seen)
- Objectives

SOC-representable

- Quadratic-linear ratios
- Generalized geometric means
- Generalized *p*-norms

Other objective functions

- Generalized product-of-powers
- Logarithmic Chebychev

SOCP-solvable Quadratic

Standard cone constraints

Rotated cone constraints

$$\sum_{i=1}^{n} a_i (\mathbf{f}_i \mathbf{x} + g_i)^2 \le a_{n+1} (\mathbf{f}_{n+1} \mathbf{x} + g_{n+1}) (\mathbf{f}_{n+2} \mathbf{x} + g_{n+2}),$$

$$a_1, \dots, a_{n+1} \ge 0, \ \mathbf{f}_{n+1} \mathbf{x} + g_{n+1} \ge 0, \ \mathbf{f}_{n+2} \mathbf{x} + g_{n+2} \ge 0$$

Sum-of-squares objectives

* Minimize
$$\sum_{i=1}^{n} a_i (\mathbf{f}_i \mathbf{x} + g_i)^2$$

* Minimize vSubject to $\sum_{i=1}^{n} a_i (\mathbf{f}_i \mathbf{x} + g_i)^2 \le v^2, v \ge 0$

SOCP-solvable SOC-Representable

Definition

- * Function s(x) is SOC-representable *iff*...
- ★ s(x) ≤ $a_n(\mathbf{f}_{n+1}\mathbf{x} + g_{n+1})$ is equivalent to some combination of linear and quadratic cone constraints

Minimization property

- * Minimize s(x) is SOC-solvable
 - * Minimize v_{n+1} Subject to $s(x) \le v_{n+1}$

Combination properties

- * $a \cdot s(x)$ is SOC-representable for any $a \ge 0$
- * $\sum_{i=1}^{n} s_i(x)$ is SOC-representable
- * $max_{i=1}^{n} s_i(x)$ is SOC-representable

^{...} requires a recursive detection algorithm!

SOCP-solvable **SOC-Representable (1)**

Vector norm

- $\|\mathbf{a} \cdot (\mathbf{F}\mathbf{x} + \mathbf{g})\| = \sqrt{\sum_{i=1}^{n} a_i^2 (\mathbf{f}_i \mathbf{x} + g_i)^2} \le a_{n+1} (\mathbf{f}_{n+1} \mathbf{x} + g_{n+1})$
 - * square both sides to get standard SOC $\sum_{i=1}^{n} a_i^2 (\mathbf{f}_i \mathbf{x} + g_i)^2 \le a_{n+1}^2 (\mathbf{f}_{n+1} \mathbf{x} + g_{n+1})^2$

Quadratic-linear ratio

$$\stackrel{\bullet}{\star} \frac{\sum_{i=1}^{n} a_{i} (\mathbf{f}_{i} \mathbf{x} + g_{i})^{2}}{\mathbf{f}_{n+2} \mathbf{x} + g_{n+2}} \leq a_{n+1} (\mathbf{f}_{n+1} \mathbf{x} + g_{n+1})$$

* where $\mathbf{f}_{n+2}\mathbf{x} + g_{n+2} \ge 0$

* multiply by denominator to get rotated SOC $\sum_{i=1}^{n} a_i (\mathbf{f}_i \mathbf{x} + g_i)^2 \le a_{n+1} (\mathbf{f}_{n+1} \mathbf{x} + g_{n+1}) (\mathbf{f}_{n+2} \mathbf{x} + g_{n+2})$

SOCP-solvable **SOC-Representable (2)**

Negative geometric mean

* apply recursively $[\log_2 p]$ times

Generalizations

 $\begin{aligned} & \bullet - \prod_{i=1}^{n} (\mathbf{f}_{i} \mathbf{x} + g_{i})^{\alpha_{i}} \leq a_{n+1} (\mathbf{f}_{n+1} \mathbf{x} + g_{n+1}): \ \sum_{i=1}^{n} \alpha_{i} \leq 1, \, \alpha_{i} \in \mathbb{Q}^{+} \\ & \bullet \ \prod_{i=1}^{n} (\mathbf{f}_{i} \mathbf{x} + g_{i})^{-\alpha_{i}} \leq a_{n+1} (\mathbf{f}_{n+1} \mathbf{x} + g_{n+1}), \, \alpha_{i} \in \mathbb{Q}^{+} \\ & * \text{ all require } \mathbf{f}_{i} \mathbf{x} + g_{i} \geq 0 \end{aligned}$

SOCP-solvable **SOC-Representable (3)**

p-norm

- ♦ $(\sum_{i=1}^{n} |\mathbf{f}_i \mathbf{x} + g_i|^p)^{1/p} \le \mathbf{f}_{n+1} \mathbf{x} + g_{n+1}, \ p \in \mathbb{Q}^+, \ p \ge 1$
 - * $(|x_1|^5 + |x_2|^5)^{1/5} \le x_3$ can be written $|x_1|^5/x_3^4 + |x_2|^5/x_3^4 \le x_3$ which becomes $v_1 + v_2 \le x_3$ with $-v_1^{1/5} x_3^{4/5} \le \pm x_1, -v_1^{1/5} x_3^{4/5} \le \pm x_2$

reduces to product of powers

Generalizations

- $\bigstar \ (\sum_{i=1}^{n} |\mathbf{f}_{i}\mathbf{x} + g_{i}|^{\alpha_{i}})^{1/\alpha_{0}} \le \mathbf{f}_{n+1}\mathbf{x} + g_{n+1}, \ \alpha_{i} \in \mathbb{Q}^{+}, \ \alpha_{i} \ge \alpha_{0} \ge 1$
- $\mathbf{\bullet} \ \sum_{i=1}^{n} |\mathbf{f}_i \mathbf{x} + g_i|^{\alpha_i} \le (\mathbf{f}_{n+1} \mathbf{x} + g_{n+1})^{\alpha_0}$
- * Minimize $\sum_{i=1}^{n} |\mathbf{f}_i \mathbf{x} + g_i|^{\alpha_i}$

... standard SOCP has $\alpha_i \equiv 2$

SOCP-solvable Other Objective Functions

Unrestricted product of powers

★ Minimize $-\prod_{i=1}^{n} (\mathbf{f}_i \mathbf{x} + g_i)^{\alpha_i}$ for any $\alpha_i \in \mathbb{Q}^+$

Logarithmic Chebychev approximation

* Minimize $\max_{i=1}^{n} |\log(\mathbf{f}_i \mathbf{x}) - \log(g_i)|$

Why no constraint versions?

- Not SOC-representable
- Transformation changes objective value (but not solution)

Detection & Transformation of SOCPs

Principles

Representation of expressions by trees

Recursive tree-walk functions

* isLinear(), isQuadratic(), buildLinear()

Example: Sum of norms

Survey of nonlinear test problems

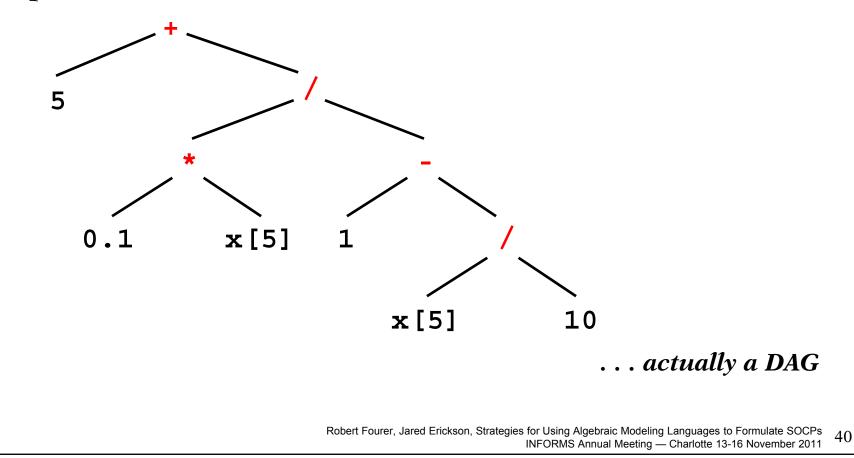
... Ph.D. project of Jared Erickson, Northwestern University

Principles **Representation**

Expression

```
base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j])
```

Expression tree



Principles Detection: isLinear()

... to detect, test isLinear(root)

Principles Detection: isQuadr()

Principles **Transformation:** buildLinear()

```
(coeff,const) = buildLinear (Node);
if Node.L then (coefL,consL) = buildLinear(Node.L);
if Node.R then (coefR,consR) = buildLinear(Node.R);
case of Node {
PLUS: coeff = mergeLists( coefL, coefR );
       const = consL + consR;
TIMES .
DIV: coeff = coefL / consR;
       const = consL / consR;
VAR: coeff = makeList( 1, Node.index );
       const = 0;
CONST: coeff = makeList( );
       const = Node.value;
}
```

... to transform, call buildLinear(root)

Robert Fourer, Jared Erickson, Strategies for Using Algebraic Modeling Languages to Formulate SOCPs INFORMS Annual Meeting — Charlotte 13-16 November 2011 43

Example: Sum-of-Norms Objective

Given

• Minimize
$$\sum_{i=1}^{m} a_i \sqrt{\sum_{j=1}^{n_i} (\mathbf{f}_{ij}\mathbf{x} + g_{ij})^2}$$

Transform to

- Minimize $\sum_{i=1}^{m} a_i y_i$
- ★ ∑_{j=1}^{n_i} z_{ij}² ≤ y_i², y_i ≥ 0, i = 1,...,m
 ★ z_{ij} = **f**_{ij}**x** + g_{ij}, i = 1,...,m, j = 1,...,n_i

Sum of Norms Detection

SUMOFNORMS

Sum: $f_1 + f_2$ is SUMOFNORMS if f_1 , f_2 are SUMOFNORMS **Product:** f_1f_2 is SUMOFNORMS if f_1 is SUMOFNORMS and f_2 is POSCONSTANT or f_2 is SUMOFNORMS and f_1 is POSCONSTANT **Square root:** \sqrt{f} is SUMOFNORMS if f is SUMOFSQUARES

SUMOFSQUARES

Sum: $f_1 + f_2$ is SUMOFSQUARES if f_1 , f_2 are SUMOFSQUARES Product: f_1f_2 is SUMOFSQUARES if f_1 is SUMOFSQUARES and f_2 is POSCONSTANT or f_2 is SUMOFSQUARES and f_1 is POSCONSTANT Square: f^2 is SUMOFSQUARES if f is LINEAR Constant: c is SUMOFSQUARES if c is POSCONSTANT Sum of Norms
Detection (cont'd)

Mathematical

• Minimize $\sum_{i=1}^{m} a_i \sqrt{\sum_{j=1}^{n_i} (\mathbf{f}_{ij}\mathbf{x} + g_{ij})^2}$

Practical

- Constant multiples inside any sum
- Recursive nesting of constant multiples & sums
- * Constant as a special case of a square

* $\sqrt{3(4x_1 + 7(x_2 + 2x_3) + 6)^2 + (x_4 + x_5)^2 + 17}$

Sum of Norms **Transformation**

TRANSFORMSUMOFNORMS (f, o, k)

```
Sum: f_1 + f_2 where f_1, f_2 are SUMOFNORMS
TRANSFORMSUMOFNORMS (f_1, o, k)
TRANSFORMSUMOFNORMS (f_2, o, k)
```

```
Product: f_1c_2 where f_1 is SUMOFNORMS and c_2 is POSCONSTANT
TRANSFORMSUMOFNORMS (f_1, o, c_2k)
```

```
Product: c_1 f_2 where f_2 is SUMOFNORMS and c_1 is POSCONSTANT TRANSFORMSUMOFNORMS (f_2, o, c_1 k)
```

```
Square root: \sqrt{f} where f is SUMOFSQUARES
y_i := \text{NEWNONNEGVAR}(); o += ky_i
```

```
q_i := \text{NEWLECON}(); q_i + = -y_i^2
```

TRANSFORMSUMOFSQUARES(f, q_i , 1)

Sum of Norms **Transformation** (cont'd)

```
TRANSFORMSUMOFSQUARES (f, q, k)
Sum: f_1 + f_2 where f_1, f_2 are SUMOFSQUARES
   TRANSFORMSUMOFSQUARES (f_1, q, k)
   TRANSFORMSUMOFSQUARES (f_2, q, k)
Product: f_1c_2 where f_1 is SUMOFSQUARES and c_2 is POSCONSTANT
   TRANSFORMSUMOFSQUARES (f_1, q, c_2k)
Product: c_1 f_2 where f_2 is SUMOFSQUARES and c_1 is POSCONSTANT
   TRANSFORMSUMOFSQUARES (f_2, q, c_1k)
Square: v^2 where v is VARIABLE
   q + = v^2
Square: f^2 where f is LINEAR
   z_{ij} := \text{NEWVAR}(); q + = z_{ij}^2
   e_{ij} := \text{NEWEQCON}(); e_{ij} += z_{ij} - f
Constant: c is POSCONSTANT
   z_{ij} := \text{NEWVAR}(); q += z_{ij}^2
   e_{ij} := \text{NEWEQCON}(); \quad e_{ij} += z_{ij} - \sqrt{c}
```

Sum of Norms **Transformation** (cont'd)

Mathematical

- * Minimize $\sum_{i=1}^{m} a_i y_i$
- $\sum_{j=1}^{n_i} z_{ij}^2 \leq y_i^2$, $y_i \geq 0$
- $\diamond \ z_{ij} = \mathbf{f}_{ij}\mathbf{x} + g_{ij}$

Practical

- Handle all previously mentioned generalizations
- ✤ Don't define z_{ij} when $f_{ij}x + g_{ij}$ is a single variable
- Trigger by calling TRANSFORMSUMOFNORMS(*f*, *o*, *k*) with *f* the root node
 - * *o* an empty objective
 - ***** *k* = 1

Challenges

Extending to all cases previously cited

- * All prove amenable to recursive tree-walk
- Details much harder to work out

Checking nonnegativity of linear expressions

Heuristic catches many non-obvious instances

Assessing usefulness

- ✤ With continuous variables . . .
- ✤ With discrete variables . . .

Survey of Test Problems

12% of 1238 nonlinear problems were SOC-solvable!

not counting QPs with sum-of-squares objectives

from Vanderbei's CUTE & non-CUTE, and netlib/ampl

A variety of forms detected

- * hs064 has $4/x_1 + 32/x_2 + 120/x_3 \le 1$
- * hs036 minimizes $-x_1x_2x_3$
- * hs073 has 1.645 $\sqrt{0.28x_1^2 + 0.19x_2^2 + 20.5x_3^2 + 0.62x_4^2} \le \dots$
- polak4 is a max of sums of squares
- ✤ hs049 minimizes $(x_1 x_2)^2 + (x_3 1)^2 + (x_4 1)^4 + (x_5 1)^6$
- emfl_nonconvex has $\sum_{k=1}^{2} (x_{jk} a_{ik})^2 \le s_{ij}^2$

... survey of integer programs to come ... solver tests to come