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Given
Set of nodes representing intersections

Entrance to network

Exit from network	 ⊆ 	 ∪ { } 	× 	 ∪ { }
Set of arcs representing road links

and
Base travel time for each road link ( , ) ∈
Traffic sensitivity for each road link ( , ) ∈
Capacity for each road link ( , ) ∈
Desired throughput from to 
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Example: Traffic Network
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Determine
Traffic flow through road link ( , ) ∈
Actual travel time on road link ( , ) ∈

to minimize

Average travel time from e to f
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Formulation
Traffic Network
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Subject to
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Formulation (cont’d)

Travel times increase as flow approaches capacity

Flow out equals flow in at any intersection

Flow into the entrance equals the specified throughput

Traffic Network
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AMPL Formulation

Symbolic data

set INTERS;          # intersections (network nodes)

param EN symbolic;   # entrance
param EX symbolic;   # exit

check {EN,EX} not within INTERS;

set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};

# road links (network arcs)

param base {ROADS} > 0;  # base travel times
param sens {ROADS} > 0;  # traffic sensitivities
param cap {ROADS} > 0;   # capacities

param through > 0;       # throughput

Traffic Network
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AMPL Formulation (cont’d)

Symbolic model

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Data

Explicit data independent of symbolic model

set INTERS := b c ;

param EN := a ;
param EX := d ;

param: ROADS: base cap sens :=
a b    4   10   .1
a c    1   12   .7
c b    2   20   .9
b d    1   15   .5
c d    6   10   .1 ;

param through := 20 ;

Traffic Network
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AMPL Solution

Model + data = problem to solve, using KNITRO

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver knitro;
ampl: solve;

KNITRO 7.0.0: Locally optimal solution.
objective 61.04695019; feasibility error 3.55e-14
12 iterations; 25 function evaluations

ampl: display Flow, Time;

:       Flow       Time   :=
a b    9.55146   25.2948
a c   10.4485    57.5709
b d   11.0044    21.6558
c b    1.45291    3.41006
c d    8.99562   14.9564
;

Traffic Network
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AMPL Solution (cont’d)

Same with integer-valued variables

ampl: solve;

KNITRO 7.0.0: Locally optimal solution.
objective 76.26375; integrality gap 0
3 nodes; 5 subproblem solves

ampl: display Flow, Time;

:   Flow   Time  :=
a b    9   13
a c   11   93.4
b d   11   21.625
c b    2   4
c d    9   15
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Traffic Network
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AMPL Solution (cont’d)

Model + data = problem to solve, using CPLEX?

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: 
Constraint _scon[1] is not convex quadratic 
since it is an equality constraint.

Traffic Network
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AMPL Solution (cont’d)

Look at the model again . . .

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Solution (cont’d)

Quadratically constrained reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Solution (cont’d)

Model + data = problem to solve, using CPLEX?

ampl: model trafficQUAD.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: 
QP Hessian is not positive semi-definite.

Traffic Network
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AMPL Solution (cont’d)

Quadratic reformulation #2

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
Slack[i,j] = 1 - Flow[i,j]/cap[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Solution (cont’d)

Model + data = problem to solve, using CPLEX!

ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: primal optimal; objective 61.04693968
15 barrier iterations

ampl: display Flow;

Flow :=
a b    9.55175
a c   10.4482
b d   11.0044
c b    1.45264
c d    8.99561
;

Traffic Network
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AMPL Solution (cont’d)

Same with integer-valued variables

ampl: solve;

CPLEX 12.3.0.0: optimal integer solution within mipgap or absmipgap; 
objective 76.26375017

19 MIP barrier iterations
0 branch-and-bound nodes

ampl: display Flow;

Flow :=
a b    9
a c   11
b d   11
c b    2
c d    9
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Traffic Network
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General nonlinear solver
 Fewer variables

 More natural formulation

MIP solver with convex quadratic option
 Mathematically simpler formulation

 No derivative evaluations
 no problems with nondifferentiable points

 More powerful large-scale solver technologies

18

Which Solver Is Preferable?
Traffic Network
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Convex quadratic programs
 “Elliptic” forms

 “Conic” forms
 SOCPs or second-order cone programs

SOCP-solvable forms
 Quadratic

 SOC-representable

 Other objective functions

Detection & transformation of SOCPs
 General principles

 Example: Sum of norms

 Survey of nonlinear test problems

19

Outline
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“Elliptic” quadratic programming
 Detection

 Solving

“Conic” quadratic programming
 Detection

 Solving

20

Convex Quadratic Programs
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Symbolic detection
 Objectives

 Minimize  	+	. . .	+	
 Minimize 	∑ ( + ) ,  ≥ 0

 Constraints
 	+	. . . 	+	 	≤
 ∑ ( + ) ≤ ,  ≥ 0

Numerical detection
 Objectives

 Minimize  +
 Constraints

 + ≤
 . . . where Q is positive semidefinite

21

“Elliptic” Quadratic Programming
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Representation
 Much like LP

 Coefficient lists for linear terms
 Coefficient lists for quadratic terms

 A lot simpler than general NLP

Optimization
 Much like LP

 Generalizations of barrier methods
 Generalizations of simplex methods
 Extensions of mixed-integer branch-and-bound schemes

 Simple derivative computations

 Less overhead than general-purpose nonlinear solvers
. . . your speedup may vary

22

Solving
Elliptic QP
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Standard cone

29

“Conic” Quadratic Programming

. . . boundary not smooth

Rotated cone
 ≤ , ≥ 0, ≥ 0, . . .

y

z

+ ≤ ≥ 0 + ≤ , ≥ 0
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Symbolic detection
 Constraints (standard)

 	+	. . . 	+	 	≤ , ≥ 0
 ∑ ( + ) ≤ ( + ) ,, . . . 	 , ≥ 0, + ≥ 0

 Constraints (rotated)
 	+	. . . 	+	 	≤	 , ≥ 0, ≥ 0
 ∑ + ≤ + + ,, . . . 	 , ≥ 0, 		 + ≥ 0, 	 + ≥ 0

Numerical detection
 + ≤ 	
 . . . where Q has one negative eigenvalue

 see Ashutosh Mahajan and Todd Munson, “Exploiting 
Second-Order Cone Structure for Global Optimization”
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“Conic” Quadratic Programming
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Similarities
 Describe by lists of coefficients

 Solve by extensions of LP barrier methods

 Extend to mixed-integer branch-and-bound

Differences
 Quadratic part not positive semi-definite

 Nonnegativity is essential

 Boundary of feasible region is not differentiable

 Many convex problems can be reduced to these . . .

Terminology
 Second-order cone programs, SOCPs

 Allow also elliptical quadratic & linear constraints

31

Solving
Conic QP
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Quadratic
 Constraints (already seen)

 Objectives

SOC-representable
 Quadratic-linear ratios

 Generalized geometric means

 Generalized p-norms

Other objective functions
 Generalized product-of-powers

 Logarithmic Chebychev

32

SOCP-Solvable Forms
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Standard cone constraints
 ∑ ( + ) ≤ ( + ) ,, . . . , ≥ 0, + ≥ 0

Rotated cone constraints
 ∑ + ≤ + + ,, . . . , ≥ 0, 		 + ≥ 0, 	 + ≥ 0

Sum-of-squares objectives
 Minimize  ∑ +

 Minimize
Subject to ∑ + ≤ ,  ≥ 0

Quadratic
SOCP-solvable



Robert Fourer, Jared Erickson, Strategies for Using Algebraic Modeling Languages to Formulate SOCPs
INFORMS Annual Meeting — Charlotte 13-16 November 2011

Definition
 Function is SOC-representable iff . . .

 ≤ ( + )	is equivalent to some 
combination of linear and quadratic cone constraints

Minimization property
 Minimize is SOC-solvable

 Minimize
Subject to ( ) ≤

Combination properties
 ∙ is SOC-representable for any ≥ 0
 ∑ is SOC-representable

 	 is SOC-representable
. . . requires a recursive detection algorithm!

34

SOC-Representable
SOCP-solvable
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SOC-Representable (1)
Vector norm

 ∙ + = ∑ + ≤ +
 square both sides to get standard SOC∑ + ≤ +

Quadratic-linear ratio


∑ 	 		 	 ≤ +
 where + ≥ 0
 multiply by denominator to get rotated SOC∑ 	 + ≤ 	 + +

35

SOCP-solvable
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SOC-Representable (2)
Negative geometric mean

 −∏ + ⁄ ≤ + ,  ∈ ℤ
 − / / / / ≤ − becomes rotated SOCs:≤ , ≤ , ≤
 apply recursively log times

Generalizations
 −∏ + ≤ + :		∑ ≤ 1, ∈ ℚ
 ∏ + ≤  + , 	 ∈ ℚ

 all require + ≥ 0

36

SOCP-solvable
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SOC-Representable (3)
p-norm

 ∑ + ⁄ ≤ + ,  ∈ ℚ ,  ≥ 1
 + ⁄ ≤ can be written⁄ + ⁄ 	≤ which becomes+ ≤ with  − ⁄ ⁄ ≤ ± , − ⁄ ⁄ ≤ ±
 reduces to product of powers

Generalizations
 ∑ + ⁄ ≤ + ,  α ∈ ℚ ,  ≥	 ≥ 1
 ∑ + ≤ +
 Minimize  ∑ +

. . . standard SOCP has ≡
37

SOCP-solvable
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Other Objective Functions
Unrestricted product of powers

 Minimize  −∏ + for any ∈ ℚ
Logarithmic Chebychev approximation

 Minimize  max log − log	( ) 	
Why no constraint versions?

 Not SOC-representable

 Transformation changes objective value (but not solution)

38

SOCP-solvable
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Principles
 Representation of expressions by trees

 Recursive tree-walk functions
 isLinear(), isQuadratic(), buildLinear()

Example: Sum of norms

Survey of nonlinear test problems

. . . Ph.D. project of Jared Erickson,
Northwestern University

39

Detection & Transformation of SOCPs
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Expression
base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j])

Expression tree

40

Representation

+

/5

* -

0.1 x[5] 1 /

x[5] 10

. . . actually a DAG

Principles



Robert Fourer, Jared Erickson, Strategies for Using Algebraic Modeling Languages to Formulate SOCPs
INFORMS Annual Meeting — Charlotte 13-16 November 2011 41

Detection: isLinear()

boolean isLinear (Node);

case of Node {

PLUS:  
MINUS: return( isLinear(Node.left) and isLinear(Node.right) );

TIMES: return( isConst(Node.left) and isLinear(Node.right) or
isLinear(Node.left) and isConst(Node.right) );

DIV: return( isLinear(Node.left) and isConst(Node.right) );

VAR: return( TRUE );

CONST: return( TRUE );

}

. . . to detect, test isLinear(root)

Principles
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Detection: isQuadr()

boolean isQuadr (Node);

case of Node {

PLUS:  
MINUS: return( isQuadr(Node.left) and isQuadr(Node.right) );

TIMES: return( isLinear(Node.left) and isLinear(Node.right) or
isQuadr(Node.left) and isConst(Node.right)   or
isConst(Node.left) and isQuadr(Node.right) );

POWER: return( isLinear(Node.left) and 
isConst(Node.right) and value(Node.right) == 2 );

VAR: return( TRUE );

CONST: return( TRUE );

}

Principles
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Transformation: buildLinear()

(coeff,const) = buildLinear (Node);

if Node.L then (coefL,consL) = buildLinear(Node.L);
if Node.R then (coefR,consR) = buildLinear(Node.R);

case of Node {

PLUS:  coeff = mergeLists( coefL, coefR );
const = consL + consR;

TIMES: ...

DIV: coeff = coefL / consR;
const = consL / consR;

VAR: coeff = makeList( 1, Node.index );
const = 0;

CONST: coeff = makeList( );
const = Node.value;

}

. . . to transform, call buildLinear(root)

Principles
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Example: Sum-of-Norms Objective
Given

 Minimize  ∑ 	 ∑ +
Transform to

 Minimize  ∑
 ∑ ≤ ,  ≥ 0, = 1, . . . ,
 = + , = 1, . . . , , = 1, . . . ,

44
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Detection

SUMOFNORMS

Sum: + is SUMOFNORMS if , are SUMOFNORMS

Product: is SUMOFNORMS if
is SUMOFNORMS and is POSCONSTANT or
is SUMOFNORMS and is POSCONSTANT

Square root: is SUMOFNORMS if is SUMOFSQUARES

Sum of Norms

SUMOFSQUARES

Sum: + is SUMOFSQUARES if , are SUMOFSQUARES

Product: is SUMOFSQUARES if
is SUMOFSQUARES and is POSCONSTANT or
is SUMOFSQUARES and is POSCONSTANT

Square: is SUMOFSQUARES if is LINEAR

Constant: is SUMOFSQUARES if is POSCONSTANT
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Mathematical

 Minimize  ∑ 	 ∑ +
Practical

 Constant multiples inside any sum

 Recursive nesting of constant multiples & sums

 Constant as a special case of a square

 3 4 + 7 + 2 + 6 + + + 17

46

Detection (cont’d)
Sum of Norms
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Transformation

TRANSFORMSUMOFNORMS ( , , )

Sum: + where , are SUMOFNORMS

TRANSFORMSUMOFNORMS ( , , )
TRANSFORMSUMOFNORMS ( , , )

Product: where is SUMOFNORMS and is POSCONSTANT

TRANSFORMSUMOFNORMS ( , , )

Product: where is SUMOFNORMS and is POSCONSTANT

TRANSFORMSUMOFNORMS ( , , )

Square root: where is SUMOFSQUARES

:= NEWNONNEGVAR();  += 
:= NEWLECON();  += −

TRANSFORMSUMOFSQUARES( , , 1)

Sum of Norms
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Transformation (cont’d)

TRANSFORMSUMOFSQUARES ( , , )

Sum: + where , are SUMOFSQUARES

TRANSFORMSUMOFSQUARES ( , , )
TRANSFORMSUMOFSQUARES ( , , )

Product: where is SUMOFSQUARES and is POSCONSTANT

TRANSFORMSUMOFSQUARES ( , , )`

Product: where is SUMOFSQUARES and is POSCONSTANT

TRANSFORMSUMOFSQUARES ( , , )

Square: where is VARIABLE+=	
Square: where is LINEAR

:= NEWVAR();  += 
:= NEWEQCON();  += − 	

Constant: is POSCONSTANT

:= NEWVAR();  += 
:= NEWEQCON();   += −	

Sum of Norms
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Mathematical

 Minimize  ∑
 ∑ ≤ ,  ≥ 0
 = +

Practical
 Handle all previously mentioned generalizations

 Don’t define when + is a single variable

 Trigger by calling TRANSFORMSUMOFNORMS( , , ) with
 the root node
 an empty objective
 = 1

49

Transformation (cont’d)
Sum of Norms
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Challenges
Extending to all cases previously cited

 All prove amenable to recursive tree-walk

 Details much harder to work out

Checking nonnegativity of linear expressions
 Heuristic catches many non-obvious instances

Assessing usefulness
 With continuous variables . . .

 With discrete variables . . .

50
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Survey of Test Problems
12% of 1238 nonlinear problems were SOC-solvable!

 not counting QPs with sum-of-squares objectives

 from Vanderbei’s CUTE & non-CUTE, and netlib/ampl

A variety of forms detected
 hs064 has 4⁄ + 32⁄ + 120⁄ ≤ 	1
 hs036 minimizes −
 hs073 has 1.645	 0.28 + 	0.19 + 	20.5 + 	0.62 ≤	. . .
 polak4 is a max of sums of squares

 hs049 minimizes	 − +	 − 1 +	 − 1 +	 − 1
 emfl_nonconvex has ∑ − ≤	

. . . survey of integer programs to come
. . . solver tests to come
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