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AMPL

Algebraic modeling language: symbolic data

set SHIFTS;               # shifts

param Nsched;             # number of schedules;
set SCHEDS = 1..Nsched;   # set of schedules

set SHIFT_LIST {SCHEDS} within SHIFTS;

param rate {SCHEDS} >= 0;      # pay rates
param required {SHIFTS} >= 0;  # staffing requirements

param least_assign >= 0;       # min workers on any schedule used
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AMPL

Algebraic modeling language: symbolic model

var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

minimize Total_Cost:
sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}: 
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use1 {j in SCHEDS}:
least_assign * Use[j] <= Work[j];

subject to Least_Use2 {j in SCHEDS}:
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
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AMPL

Explicit data independent of symbolic model

set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
Mon3 Tue3 Wed3 Thu3 Fri3 ;

param Nsched := 126 ;

set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ;  .......

param required :=  Mon1 100  Mon2 78  Mon3 52 
Tue1 100  Tue2 78  Tue3 52
Wed1 100  Wed2 78  Wed3 52
Thu1 100  Thu2 78  Thu3 52
Fri1 100  Fri2 78  Fri3 52
Sat1 100  Sat2 78 ;
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AMPL

Solver independent of model & data

ampl: model sched1.mod;
ampl: data sched.dat;

ampl: let least_assign := 7;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.1: optimal integer solution; objective 266
1131 MIP simplex iterations
142 branch-and-bound nodes

ampl: option omit_zero_rows 1, display_1col 0;
ampl: display Work;

Work [*] :=
6 28    31  9    66 11    89  9   118 18

18 18    36  7    78 26    91 25   119  7
20  9    37 18    82 18   112 27   122 36
;
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AMPL

Language independent of solver

ampl: option solver gurobi;
ampl: solve;

Gurobi 4.5.0: optimal solution; objective 266
504 simplex iterations
50 branch-and-cut nodes 

ampl: display Work;

Work [*] :=
1 20    37 36    89 28   101 12   119  7
2  8    71  7    91 16   109 28   122  8

21 36    87  7    95  8   116 17   124 28
;
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Discontinuous domains
 Semi-continuous case

 Discrete case

Implications
 CPLEX indicator constraints

Piecewise-linear terms

Complementarity conditions

Quadratic functions
 Elliptic forms

 Conic forms

9

Topics
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var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

subject to Least_Use1 {j in SCHEDS}:
least_assign * Use[j] <= Work[j];

subject to Least_Use2 {j in SCHEDS}:
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];

Formulation with zero-one variables

Discontinuous Domains

var Work {j in SCHEDS} integer, in {0} union

interval [least_assign, (max {i in SHIFT_LIST[j]} required[i])];

Formulation with discrete domains
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Two Common Cases
Instead of a continuous variable . . .

var Buy {j in FOOD} >= 0;

Semi-continuous case

var Buy {j in FOOD} in {0} union interval[30,40];

Discrete case

var Buy {j in FOOD} in {1,2,5,10,20,50};

. . . any union of points & intervals possible

Discontinuous Domains
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Semi-Continuous Case
Continuous

CPLEX 12.3.0.1: optimal solution; objective 88.2
1 dual simplex iterations (0 in phase I)

ampl: display Buy;

BEEF  0        FISH  0         MCH 46.6667    SPG  0
CHK  0         HAM  0         MTL  0         TUR  0

Semi-Continuous

CPLEX 12.3.0.1: optimal integer solution; objective 116.4

27 MIP simplex iterations
5 branch-and-bound nodes

ampl: display Buy;

BEEF  0        FISH  0         MCH 30         SPG  0
CHK  0         HAM  0         MTL 30         TUR  0

Discontinuous Domains
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Semi-Continuous Case (cont’d)
Continuous

8 variables, all linear

4 constraints, all linear; 31 nonzeros

1 linear objective; 8 nonzeros.

Semi-Continuous

16 variables:
8 binary variables
8 linear variables

20 constraints, all linear; 63 nonzeros

1 linear objective; 8 nonzeros.

Discontinuous Domains



Robert Fourer, AMPL Models for  “Not Linear” Optimization Using Linear Solvers
INFORMS Annual Meeting — November 13-16, 2011 — SessionTC10 14

Semi-Continuous Case (cont’d)

Converted to MIP with extra binary variables . . .

subject to (Buy[BEEF]+IUlb):
Buy['BEEF'] - 30*(Buy[BEEF]+b) >= 0;

subject to (Buy[BEEF]+IUub):
-Buy['BEEF'] + 40*(Buy[BEEF]+b) >= 0;

subject to (Buy[CHK]+IUlb):
Buy['CHK'] - 30*(Buy[CHK]+b) >= 0;

subject to (Buy[CHK]+IUub):
-Buy['CHK'] + 40*(Buy[CHK]+b) >= 0;

subject to (Buy[FISH]+IUlb):
Buy['FISH'] - 30*(Buy[FISH]+b) >= 0;

subject to (Buy[FISH]+IUub):
-Buy['FISH'] + 40*(Buy[FISH]+b) >= 0;

.......

Discontinuous Domains
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Discrete Case
Continuous

CPLEX 12.3.0.1: optimal solution; objective 88.2
1 dual simplex iterations (0 in phase I)

ampl: display Buy;

BEEF  0        FISH  0         MCH 46.6667    SPG  0
CHK  0         HAM  0         MTL  0         TUR  0

Discrete

CPLEX 12.3.0.1: optimal integer solution; objective 95.49

51 MIP simplex iterations
23 branch-and-bound nodes

ampl: display Buy;

BEEF  1   FISH  1    MCH 10    SPG  5
CHK 20    HAM  1    MTL  2    TUR  1

Discontinuous Domains
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Discrete Case (cont’d)

Continuous

8 variables, all linear

4 constraints, all linear; 31 nonzeros

1 linear objective; 8 nonzeros.

Discrete

Substitution eliminates 8 variables.

48 variables, all binary

12 constraints, all linear; 234 nonzeros

1 linear objective; 48 nonzeros.

Discontinuous Domains
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Discrete Case (cont’d)

Converted to MIP in binary variables . . .

minimize Total_Cost:

3.19*(Buy[BEEF]+b)[0] + 6.38*(Buy[BEEF]+b)[1] + 
15.95*(Buy[BEEF]+b)[2] + 31.9*(Buy[BEEF]+b)[3] + 
63.8*(Buy[BEEF]+b)[4] + 159.5*(Buy[BEEF]+b)[5] + 
2.59*(Buy[CHK]+b)[0] + 5.18*(Buy[CHK]+b)[1] + 
12.95*(Buy[CHK]+b)[2] + 25.9*(Buy[CHK]+b)[3] + 
51.8*(Buy[CHK]+b)[4] + 129.5*(Buy[CHK]+b)[5] + ...

subject to Diet['A']:

700 <= 60*(Buy[BEEF]+b)[0] + 120*(Buy[BEEF]+b)[1] + 
300*(Buy[BEEF]+b)[2] + 600*(Buy[BEEF]+b)[3] + 
1200*(Buy[BEEF]+b)[4] + 3000*(Buy[BEEF]+b)[5] + 
8*(Buy[CHK]+b)[0] + 16*(Buy[CHK]+b)[1] + 40*(Buy[CHK]+b)[2] + 
80*(Buy[CHK]+b)[3] + 160*(Buy[CHK]+b)[4] + 400*(Buy[CHK]+b)[5] + ...

Discontinuous Domains
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Discrete Case (cont’d)

and SOS type 1 constraints . . .

subject to (Buy[BEEF]+sos1):

(Buy[BEEF]+b)[0] + (Buy[BEEF]+b)[1] + (Buy[BEEF]+b)[2] + 
(Buy[BEEF]+b)[3] + (Buy[BEEF]+b)[4] + (Buy[BEEF]+b)[5] = 1;

subject to (Buy[CHK]+sos1):

(Buy[CHK]+b)[0] + (Buy[CHK]+b)[1] + (Buy[CHK]+b)[2] + 
(Buy[CHK]+b)[3] + (Buy[CHK]+b)[4] + (Buy[CHK]+b)[5] = 1;  ...

Discontinuous Domains
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Discrete Case (cont’d)

with SOS type 1 markers in output file

S0 48 sos
0 20
1 20
2 20
3 20
4 20
5 20
6 36
7 36 ...

S4 48 sosref
0 1
1 2
2 5
3 10
4 20
5 50
6 1
7 2  ...

Discontinuous Domains
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General case
 Arbitrary union of points and intervals

 Auxiliary binary variable for each point or interval

 3 auxiliary constraints for each variable

Union of points
 Auxiliary binary variable for each point

 Auxiliary constraint for each variable

 Enhanced branching in solver
 “special ordered sets of type 1”

Zero union interval (semi-continuous)
 Auxiliary binary variable for each variable

 2 auxiliary constraints for each variable

 Enhanced branching in solver

20

Conversion for Solver
Discontinuous Domains
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subject to Least_Use1 {j in SCHEDS}:
least_assign * Use[j] <= Work[j];

subject to Least_Use2 {j in SCHEDS}:
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];

Formulation with zero-one variables

Implications

subject to Least_Use1_logical {j in SCHEDS}:
Use[j] = 1 ==> Work[j] >= least_assign;

subject to Least_Use2_logical {j in SCHEDS}:
Use[j] = 0 ==> Work[j] = 0;

Formulation with implications

subject to Least_Use_logical {j in SCHEDS}:
Use[j] = 1 ==> least_assign <= Work[j] else Work[j] = 0;



Robert Fourer, AMPL Models for  “Not Linear” Optimization Using Linear Solvers
INFORMS Annual Meeting — November 13-16, 2011 — SessionTC10

General possibilities
 Conditional expression

 Conditional constraint

 Conditional command

AMPL syntax choices
 if condition then expr1 else expr2

 condition ==> constraint1 else constraint2
 also <== and <==>

 if condition then {commands} else {commands}

Supported by solvers
 Nonlinear if-then-else

 CPLEX indicator constraints

22

Design of Conditional Operators
Implications
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Nonlinear if-then-else
More stable expression near zero

subject to logRel {j in 1..N}:

(if X[j] < -delta || X[j] > delta

then log(1+X[j]) / X[j] else (1 - X[j] / 2) <= logLim;

Implications
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CPLEX Indicator Constraints
Indicator constraints

 (binary variable = 0) implies constraint

 (binary variable = 1) implies constraint

. . . handled directly by solver

AMPL “implies” operator
 Use ==> for “implies”
 Also recognize an else clause
 Similarly define <== and <==>

 if-then-else expressions & statements as before

Implications
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Example 1
Multicommodity flow with fixed costs

set ORIG;   # origins
set DEST;   # destinations
set PROD;   # products

param supply {ORIG,PROD} >= 0;  # amounts available at origins
param demand {DEST,PROD} >= 0;  # amounts required at destinations
param limit {ORIG,DEST} >= 0;

param vcost {ORIG,DEST,PROD} >= 0; # variable shipment cost on routes
param fcost {ORIG,DEST} > 0;       # fixed cost on routes

var Trans {ORIG,DEST,PROD} >= 0;   # actual units to be shipped
var Use {ORIG, DEST} binary;       # = 1 iff link is used

minimize total_cost:
sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p]

+ sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];

Implications
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Example 1 (cont’d )

Conventional constraints

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = supply[i,p];

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p]; 

subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = supply[i,p];

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p]; 

subject to UseDefinition {i in ORIG, j in DEST, p in PROD}:
Trans[i,j,p] <= min(supply[i,p], demand[j,p]) * Use[i,j];

Implications
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Example 1 (cont’d )

Indicator constraint formulations

subject to DefineUsedB {i in ORIG, j in DEST, p in PROD}:

Use[i,j] = 0 ==> Trans[i,j,p] = 0;

subject to DefineUsedC {i in ORIG, j in DEST}:

Use[i,j] = 0 ==> sum {p in PROD} Trans[i,j,p] = 0

else sum {p in PROD} Trans[i,j,p] <= limit[i,j];

subject to DefineUsedA {i in ORIG, j in DEST}:

Use[i,j] = 0 ==> sum {p in PROD} Trans[i,j,p] = 0;

Implications
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Example 2
Assignment to groups with “no one isolated”

var Lone {(i1,i2) in ISO, j in REST} binary;

param give {ISO} default 2;
param giveTitle {TITLE} default 2;
param giveLoc {LOC} default 2;

param upperbnd {(i1,i2) in ISO, j in REST} :=
min (ceil((number2[i1,i2]/card {PEOPLE}) * hiDine[j]) + give[i1,i2],

hiTargetTitle[i1,j] + giveTitle[i1],
hiTargetLoc[i2,j] + giveLoc[i2], number2[i1,i2]);

subj to Isolation1 {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] <= upperbnd[i1,i2,j] * Lone[i1,i2,j];

subj to Isolation2a {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] >= Lone[i1,i2,j];

subj to Isolation2b {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] +

sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j]
>= 2 * Lone[i1,i2,j];

Implications
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Example 2
Same using indicator constraints

var Lone {(i1,i2) in ISO, j in REST} binary;

subj to Isolation1 {(i1,i2) in ISO, j in REST}:
Lone[i1,i2,j] = 0 ==> Assign2[i1,i2,j] = 0;

subj to Isolation2b {(i1,i2) in ISO, j in REST}:
Lone[i1,i2,j] = 1 ==> Assign2[i1,i2,j] +
sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j] >= 2;

Implications
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Example 3
Workforce planning

var LayoffCost {m in MONTHS} >=0;

subj to LayoffCostDefn1 {m in MONTHS}:
LayoffCost[m]

<= snrLayOffWages * 31 * maxNbrSnrEmpl * (1 - NoShut[m]);

subj to LayoffCostDefn2a {m in MONTHS}:
LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl

<= maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];

subj to LayoffCostDefn2b {m in MONTHS}:
LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl 

>= -maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];

Implications
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Example 3
Same using indicator constraints

var LayoffCost {m in MONTHS} >=0;

subj to LayoffCostDefn1 {m in MONTHS}:
NoShut[m] = 1 ==> LayoffCost[m] = 0;

subj to LayoffCostDefn2 {m in MONTHS}:
NoShut[m] = 0 ==> LayoffCost[m] = 

snrLayoffWages * ShutdownDays[m] * maxNumberSnrEmpl;

Implications
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Conversion for Solver
Pass logic to CPLEX

 AMPL writes “logical” constraints as expression trees
 AMPL-CPLEX driver “walks” the trees

 detects indicator forms
 converts to CPLEX library calls

 CPLEX solves using standard MIP software

Implications

ampl: solve;

252 variables, all nonlinear
17 algebraic constraints, all linear; 630 nonzeros

17 inequality constraints
126 logical constraints
1 linear objective; 2 nonzeros.

CPLEX 12.3.0.1: optimal integer solution; objective 266
1265016 MIP simplex iterations
231882 branch-and-bound nodes
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Which is Fastest?
Use[j] = 1 ==> least_assign <= Work[j] else Work[j] = 0;

Implications

CPLEX 12.3.0.1: optimal integer solution; objective 266
1265016 MIP simplex iterations
231882 branch-and-bound nodes

least_assign * Use[j] <= Work[j];
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];

CPLEX 12.3.0.1: optimal integer solution; objective 266
776836 MIP simplex iterations
109169 branch-and-bound nodes

Use[j] = 1 ==> least_assign <= Work[j] <= 
(max {i in SHIFT_LIST[j]} required[i]) else Work[j] = 0;

CPLEX 12.3.0.1: optimal integer solution; objective 266
13470 MIP simplex iterations
2161 branch-and-bound nodes
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Definition
 Function of one variable

 Linear on intervals

 Continuous

Issues
 Describing the function

 choice of specification
 syntax in the modeling language

 Communicating the function to a solver
 direction description
 transformation to linear or linear-integer

34

Piecewise-Linear Terms
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Possibilities
 List of breakpoints and either:

 change in slope at each breakpoint
 value of the function at each breakpoint

 List of slopes and either:
 distance between breakpoints bounding each slope
 value of intercept associated with each slope

 Lists of breakpoints and slopes

Also needed in some cases
 One particular breakpoint

 One particular slope

 Value at one particular point

35

Specification
Piecewise-Linear
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AMPL Specification: Examples
Piecewise-Linear

<<0; -1,1>> x[j]

<<-1,1,3,5; -5,-1,0,1.5,3>> x[j]

<<3,5; 0.25,1.00,0.50>> x[j]
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General forms
 <breakpoint-list; slope-list> variable

 Zero at zero
 Bounds on variable specified independently

 <breakpoint-list; slope-list> (variable, zero-point)
 Zero at zero-point

 <breakpoint-list; slope-list> variable + constant
 Has value constant at zero

Breakpoint & slope list forms
 Simple list

 <<lim1[i,j],lim2[i,j]; r1[i,j],r2[i,j],r3[i,j]>>

 Indexed list
 << {k in 1..nlim[i,j]} lim[i,j,k]; 

{k in 1..nlim[i,j]+1} r[i,j,k]>>

37

AMPL Specification: Syntax
Piecewise-Linear
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AMPL Applications (1)
Design of a planar structure

var Force {bars};   # Forces on bars:
# positive in tension, negative in compression

minimize TotalWeight:  (density / yield_stress) *

sum {(i,j) in bars} length[i,j] * <<0; -1,+1>> Force[i,j];

# Weight is proportional to length
# times absolute value of force

subject to Xbal {k in joints: k <> fixed}:

sum {(i,k) in bars} xcos[i,k] * Force[i,k]
- sum {(k,j) in bars} xcos[k,j] * Force[k,j] = xload[k];

subject to Ybal {k in joints: k <> fixed and k <> rolling}:

sum {(i,k) in bars} ycos[i,k] * Force[i,k]
- sum {(k,j) in bars} ycos[k,j] * Force[k,j] = yload[k];

# Forces balance in
# horizontal and vertical directions

Piecewise-Linear
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AMPL Applications (2)
Data fitting for credit scoring

var Wt_const;             # Constant term in computing all scores

var Wt {j in factors} >= if wttyp[j] = 'pos' then 0 else -Infinity
<= if wttyp[j] = 'neg' then 0 else +Infinity;

# Weights on the factors

var Sc {i in people};     # Scores for the individuals

minimize Penalty:         # Sum of penalties for all individuals

Gratio * sum {i in Good} << {k in 1..Gpce-1} if Gbktyp[k] = 'A' 

then Gbkfac[k]*app_amt 
else Gbkfac[k]*bal_amt[i];

{k in 1..Gpce} Gslope[k] >> Sc[i] +

Bratio * sum {i in Bad}  << {k in 1..Bpce-1} if Bbktyp[k] = 'A'

then Bbkfac[k]*app_amt
else Bbkfac[k]*bal_amt[i];

{k in 1..Bpce} Bslope[k] >> Sc[i];

Piecewise-Linear
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Conversion for Solver

Transportation costs

param rate1 {i in ORIG, j in DEST} >= 0;
param rate2 {i in ORIG, j in DEST} >= rate1[i,j];
param rate3 {i in ORIG, j in DEST} >= rate2[i,j];

param limit1 {i in ORIG, j in DEST} >= 0;
param limit2 {i in ORIG, j in DEST} >= limit1[i,j];

var Trans {ORIG,DEST} >= 0;

minimize Total_Cost:

sum {i in ORIG, j in DEST} 
<<limit1[i,j], limit2[i,j]; 
rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];

Piecewise-Linear
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Minimizing Convex Costs
Equivalent linear program

ampl: model trpl2.mod; data trpl.dat; solve;

Substitution eliminates 15 variables.
21 piecewise-linear terms replaced by 35 variables and 15 constraints.

Adjusted problem:
41 variables, all linear
10 constraints, all linear; 82 nonzeros
1 linear objective; 41 nonzeros.

CPLEX 10.1.0: optimal solution; objective 199100
12 dual simplex iterations (0 in phase I)

ampl: display Trans;

:      DET   FRA   FRE   LAF   LAN   STL   WIN  :=

CLEV   500     0   200   500   500    500   400
GARY     0     0   900   300     0    200     0
PITT   700   900     0   200   100   1000     0 ;

Piecewise-Linear
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Minimizing Non-Convex Costs
Equivalent mixed-integer program

model trpl3.mod; data trpl.dat; solve;

Substitution eliminates 18 variables.
21 piecewise-linear terms replaced by 87 variables and 87 constraints.

Adjusted problem:
90 variables:

41 binary variables
49 linear variables

79 constraints, all linear; 251 nonzeros
1 linear objective; 49 nonzeros.

CPLEX 10.1.0: optimal integer solution; objective 256100
189 MIP simplex iterations
144 branch-and-bound nodes

ampl: display Trans;

:      DET    FRA   FRE    LAF    LAN   STL    WIN  :=

CLEV   1200     0      0   1000     0      0   400
GARY      0     0   1100      0   300      0     0
PITT      0   900      0      0   300   1700     0

Piecewise-Linear
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Minimizing Non-Convex Costs (cont’d)

. . . with SOS type 2 markers in output file

S0 87 sos
3 16
49 18
4 16
50 18  ...

S1 64 sos
10 19
11 18
12 18
14 35  ...

S4 46 sosref
3 -501
4  751
5 -501
6  500  ...

Piecewise-Linear
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Equivalent linear program if . . .
 Objective

 minimizes convex (increasing slopes) or
 maximizes concave (decreasing slopes)

 Constraints expressions
 convex and on the left-hand side of a ≤ constraint
 convex and on the right-hand side of a ≥ constraint
 concave and on the left-hand side of a ≥ constraint
 concave and on the right-hand side of a ≤ constraint

Equivalent mixed-integer program otherwise
 At least one binary variable per piece

 Enhanced branching in solver
 “special ordered sets of type 2”

44

Conversion for Solver
Piecewise-Linear
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Closely associated with optimization
 Two inequalities must both hold

 At least one must hold with equality

Now can be readily solved
 Send to standard solver like KNITRO

 Let solver reformulate for tractability

45

Complementarity Conditions
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Elliptic functions

Conic functions

61

Quadratic Functions
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Elliptic Quadratic: Example
Portfolio optimization

set A; # asset categories
set T := {1973..1994};   # years

param R {T,A};           # returns on asset categories
param mu default 2;      # weight on variance

param mean {j in A} = (sum {i in T} R[i,j]) / card(T);

param Rtilde {i in T, j in A} = R[i,j] - mean[j];

var Frac {A} >=0; 

var Mean = sum {j in A} mean[j] * Frac[j];

var Variance = 
sum {i in T} (sum {j in A} Rtilde[i,j]*Frac[j])^2 / card{T};

minimize RiskReward:  mu * Variance - Mean;

subject to TotalOne:  sum {j in A} Frac[j] = 1;
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Example (cont’d)

Portfolio data

set A := 
US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000
NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD;   

param R:
US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000 
NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD :=

1973  1.075  0.942  0.852  0.815  0.698  1.023  0.851  1.677 
1974  1.084  1.020  0.735  0.716  0.662  1.002  0.768  1.722 
1975  1.061  1.056  1.371  1.385  1.318  1.123  1.354  0.760 
1976  1.052  1.175  1.236  1.266  1.280  1.156  1.025  0.960 
1977  1.055  1.002  0.926  0.974  1.093  1.030  1.181  1.200 
1978  1.077  0.982  1.064  1.093  1.146  1.012  1.326  1.295 
1979  1.109  0.978  1.184  1.256  1.307  1.023  1.048  2.212 
1980  1.127  0.947  1.323  1.337  1.367  1.031  1.226  1.296 
1981  1.156  1.003  0.949  0.963  0.990  1.073  0.977  0.688 
1982  1.117  1.465  1.215  1.187  1.213  1.311  0.981  1.084 
1983  1.092  0.985  1.224  1.235  1.217  1.080  1.237  0.872 
1984  1.103  1.159  1.061  1.030  0.903  1.150  1.074  0.825 ...

Elliptic Quadratic
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Example (cont’d)

Solving with CPLEX

ampl: model markowitz.mod;
ampl: data markowitz.dat;

ampl: option solver cplexamp;

ampl: solve;

8 variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.

CPLEX 12.2.0.0: optimal solution; objective -1.098362471
12 QP barrier iterations

ampl:

Elliptic Quadratic
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Example (cont’d)

Solving with CPLEX (simplex)

ampl: model markowitz.mod;
ampl: data markowitz.dat;

ampl: option solver cplexamp;
ampl: option cplex_options 'primalopt';

ampl: solve;

8 variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.

CPLEX 12.2.0.0: primalopt
No QP presolve or aggregator reductions.

CPLEX 12.2.0.0: optimal solution; objective -1.098362476
5 QP simplex iterations (0 in phase I)

ampl: 

Elliptic Quadratic
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Example (cont’d)

Optimal portfolio

ampl: option omit_zero_rows 1;

ampl: display Frac;

EAFE  0.216083
GOLD  0.185066

LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX  0.397056
WILSHIRE_5000  0.201795 ;

ampl: display Mean, Variance;

Mean = 1.11577
Variance = 0.00870377

ampl: 

Elliptic Quadratic
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Example (cont’d)

Optimal portfolio (discrete)

var Share {A} integer >= 0, <= 100;

var Frac {j in A} = Share[j] / 100; 

Elliptic Quadratic

ampl: solve;

CPLEX 12.2.0.0: optimal integer solution within mipgap or absmipgap; 
objective -1.098353751

10 MIP simplex iterations
0 branch-and-bound nodes

absmipgap = 8.72492e-06, relmipgap = 7.94364e-06

ampl: display Frac;

EAFE  0.22
GOLD  0.18

LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX  0.4
WILSHIRE_5000  0.2 ;
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Symbolic detection
 Objectives

 Minimize  	+	. . .	+	
 Minimize 	∑ ( + ) ,  ≥ 0

 Constraints
 	+	. . . 	+	 	≤
 ∑ ( + ) ≤ ,  ≥ 0

Numerical detection
 Objectives

 Minimize  +
 Constraints

 + ≤
 . . . where Q is positive semidefinite

68

Detection for Solver
Elliptic Quadratic
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Representation
 Much like LP

 Coefficient lists for linear terms
 Coefficient lists for quadratic terms

 A lot simpler than general NLP

Optimization
 Much like LP

 Generalizations of barrier methods
 Generalizations of simplex methods
 Extensions of mixed-integer branch-and-bound schemes

 Simple derivative computations

 Less overhead than general-purpose nonlinear solvers
. . . actual speedup will vary

69

Solving
Elliptic Quadratic
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Conic Quadratic: Example

Traffic network: symbolic data

set INTERS;          # intersections (network nodes)

param EN symbolic;   # entrance
param EX symbolic;   # exit

check {EN,EX} not within INTERS;

set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};

# road links (network arcs)

param base {ROADS} > 0;  # base travel times
param sens {ROADS} > 0;  # traffic sensitivities
param cap {ROADS} > 0;   # capacities

param through > 0;       # throughput
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Example (cont’d)

Traffic network: symbolic model

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic Quadratic
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Example (cont’d)

Traffic network: sample data

set INTERS := b c ;

param EN := a ;
param EX := d ;

param: ROADS: base cap sens :=
a b    4   10   .1
a c    1   12   .7
c b    2   20   .9
b d    1   15   .5
c d    6   10   .1 ;

param through := 20 ;

Conic Quadratic
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Example (cont’d)

Model + data = problem to solve, using KNITRO

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver knitro;
ampl: solve;

KNITRO 7.0.0: Locally optimal solution.
objective 61.04695019; feasibility error 3.55e-14
12 iterations; 25 function evaluations

ampl: display Flow, Time;

:       Flow       Time   :=
a b    9.55146   25.2948
a c   10.4485    57.5709
b d   11.0044    21.6558
c b    1.45291    3.41006
c d    8.99562   14.9564
;

Conic Quadratic
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Example (cont’d)

Same with integer-valued variables

ampl: solve;

KNITRO 7.0.0: Locally optimal solution.
objective 76.26375; integrality gap 0
3 nodes; 5 subproblem solves

ampl: display Flow, Time;

:   Flow   Time  :=
a b    9   13
a c   11   93.4
b d   11   21.625
c b    2   4
c d    9   15
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Conic Quadratic
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Example (cont’d)

Model + data = problem to solve, using CPLEX?

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: 
Constraint _scon[1] is not convex quadratic 
since it is an equality constraint.

Conic Quadratic
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Example (cont’d)

Look at the model again . . .

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic Quadratic
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Example (cont’d)

Quadratically constrained reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic Quadratic
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Example (cont’d)

Model + data = problem to solve, using CPLEX?

ampl: model trafficQUAD.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: 
QP Hessian is not positive semi-definite.

Conic Quadratic
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Example (cont’d)

Quadratic reformulation #2

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
Slack[i,j] = 1 - Flow[i,j]/cap[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic Quadratic
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Example (cont’d)

Model + data = problem to solve, using CPLEX!

ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: primal optimal; objective 61.04693968
15 barrier iterations

ampl: display Flow;

Flow :=
a b    9.55175
a c   10.4482
b d   11.0044
c b    1.45264
c d    8.99561
;

Conic Quadratic
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Example (cont’d)

Same with integer-valued variables

ampl: solve;

CPLEX 12.3.0.0: optimal integer solution within mipgap or absmipgap; 
objective 76.26375017

19 MIP barrier iterations
0 branch-and-bound nodes

ampl: display Flow;

Flow :=
a b    9
a c   11
b d   11
c b    2
c d    9
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Conic Quadratic



Robert Fourer, AMPL Models for  “Not Linear” Optimization Using Linear Solvers
INFORMS Annual Meeting — November 13-16, 2011 — SessionTC10

General nonlinear solver
 Fewer variables

 More natural formulation

MIP solver with convex quadratic option
 Mathematically simpler formulation

 No derivative evaluations
 no problems with nondifferentiable points

 More powerful large-scale solver technologies

85

Which Solver Is Preferable?
Conic Quadratic
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Standard cone

86

Second-Order Cone Programs (SOCPs)

. . . boundary not smooth

Rotated cone
 ≤ , ≥ 0, ≥ 0, . . .

y

z

+ ≤ ≥ 0 + ≤ , ≥ 0
Conic Quadratic
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Symbolic detection
 Constraints (standard)

 	+	. . . 	+	 	≤ , ≥ 0
 ∑ ( + ) ≤ ( + ) ,, . . . 	 , ≥ 0, + ≥ 0

 Constraints (rotated)
 	+	. . . 	+	 	≤	 , ≥ 0, ≥ 0
 ∑ + ≤ + + ,, . . . 	 , ≥ 0, 		 + ≥ 0, 	 + ≥ 0

Numerical detection
 + ≤ 	
 . . . where Q has one negative eigenvalue

 see Ashutosh Mahajan and Todd Munson, “Exploiting 
Second-Order Cone Structure for Global Optimization”
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Detection for Solver
Conic Quadratic
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SOC-representable functions
 Quadratic-linear ratios

 Geometric means and generalizations

 Norms, p-norms, and generalizations

Available transformations
 Objectives:  Minimize ( )
 Constraints:  ≤ + , where + ≥ 0
 Combinations of these

 sums
 minimums
 positive multiples

Other objective functions
 Generalized product-of-powers

 Logarithmic Chebychev
88

Detection & Conversion for Solver
Conic Quadratic
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Similarities to elliptic quadratic
 Describe by lists of coefficients

 Solve by extensions of LP barrier methods

 Extend to mixed-integer branch-and-bound

Differences from elliptic quadratic
 Quadratic part not positive semi-definite

 Nonnegativity is essential

 Boundary of feasible region is not differentiable

89

Solving
Conic Quadratic
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Survey of Test Problems
12% of 1238 nonlinear problems were SOC-solvable!

 not counting QPs with sum-of-squares objectives

 from Vanderbei’s CUTE & non-CUTE, and netlib/ampl

A variety of forms detected
 hs064 has 4⁄ + 32⁄ + 120⁄ ≤ 	1
 hs036 minimizes −
 hs073 has 1.645	 0.28 + 	0.19 + 	20.5 + 	0.62 ≤	. . .
 polak4 is a max of sums of squares

 hs049 minimizes	 − +	 − 1 +	 − 1 +	 − 1
 emfl_nonconvex has ∑ − ≤	

. . . survey of integer programs to come
. . . solver tests to come

90

Conic Quadratic


