

WHY BOUND COMPUTATIONS?

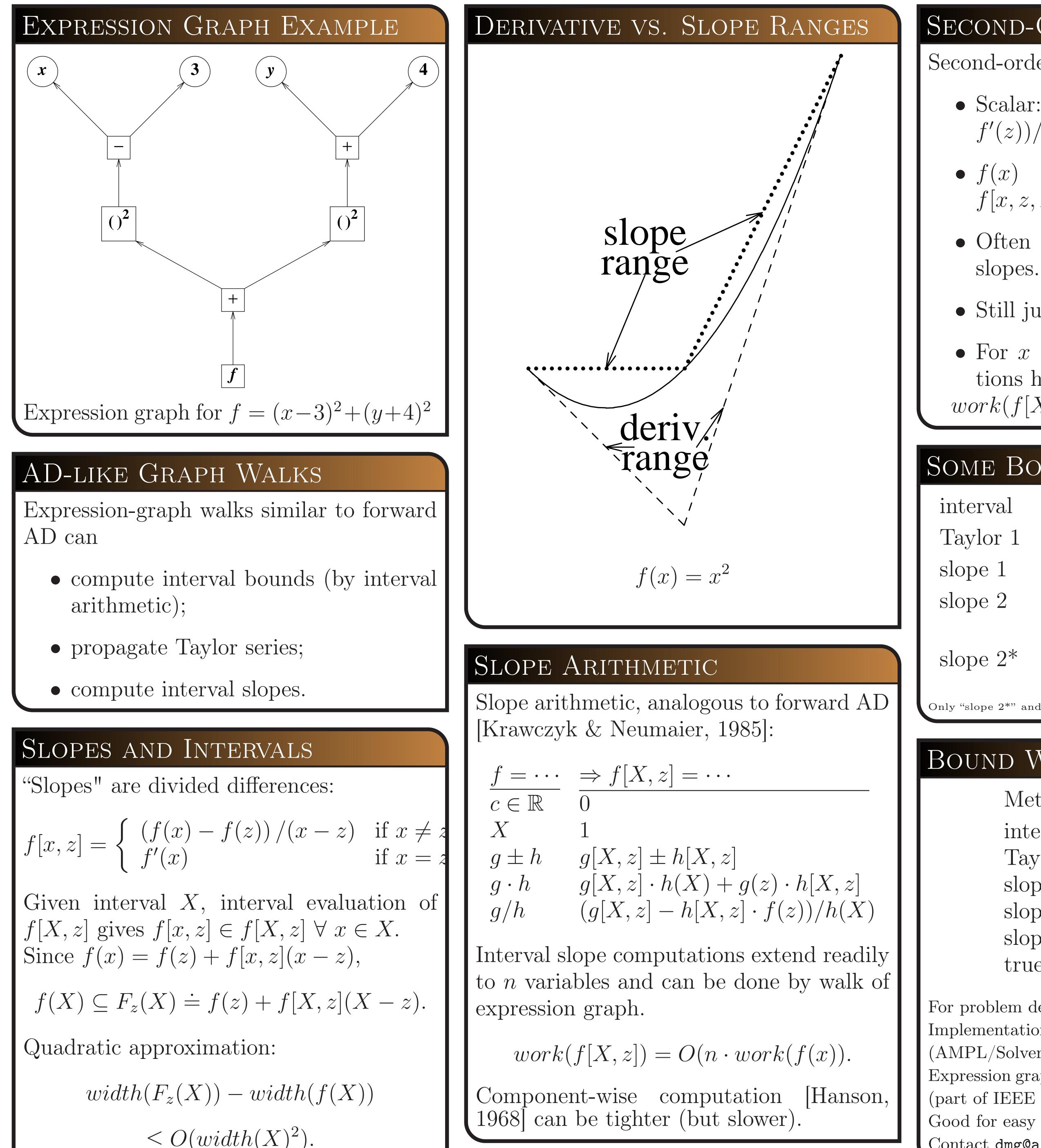
- Global optimization
- Assess effects of input uncertainty
- Design avoid failures

DMG work done at Sandia National Laboratories in Albuquerque, NM, building on work of others cited in the paper:

http://www.sandia.gov/~dmgay/bounds10.pdf Original motivation for this work: assess utility of "uncertainty compiler".

COMPUTATION STRATEGIES

- Compile, link, execute
 - Only choice for large scale?
- Interpret
 - \circ E.g., python, awk, perl, ...
- Mixture


 \circ E.g., Java, AMPL, ... All involve expression graphs.

EXPRESSION GRAPHS

Uses include

- Simplifications before evaluations
- Evaluations
- Derivative computations (AD)
- Bound computations, e.g.,
 - interval
 - Taylor series
 - slope
- Convexity detection.

Bounds from Slopes David M. Gay dmg@ampl.com http://www.ampl.com

$$\leq O(width(X)^2).$$

SECOND-ORDER SLOPES

Second-order slopes:

• Scalar: f[x, z, z] = (f[x, z] f'(z))/(x-z).

• f(x) = f(z) + f'(z)(x - z) + $f[x, z, z](x - z)^2.$

• Often get tighter bounds than with

• Still just quadratic approximation.

• For $x \in \mathbb{R}^n$, component-wise evaluations have $work(f[X, z, z]) = O(n \cdot work(f(x))).$

Some Bounding Techniques

 $F(X) \supset f(X)$ Taylor 1 f(z) + F'(X)(X - z)f(z) + F[X, z](X - z)f(z) + f'(z)(X - z) $+F[X,z,z](X-z)^2$ slope $2^* \{f(z) + f'(z)h + F[X, z, z]h^2 :$ $h \in X - z\}$ Only "slope 2^* " and the implementation are new in the present work.

BOUND WIDTHS ON 2 EXAMPLES

Method	Barnes	Sn525
interval	162.417	0.7226
Taylor 1	9.350	0.3609
slope 1	6.453	0.3529
slope 2	3.007	0.1140
slope 2^*	2.993	0.1003
true	2.330	0.0903

For problem details, see the paper. Implementation (not finished) built on facilities in ASL (AMPL/Solver interface library). Expression graphs from AMPL; use directed roundings (part of IEEE arithmetic standard). Good for easy development, quick tests.

Contact dmg@acm.org for more details.