WhY BOUND COMPUTATIONS?

- Global optimization
- Assess effects of input uncertainty
- Design - avoid failures

DMG work done at Sandia National Laboratories in Albuquerque, NM, building on work of others cited in the paper:
http://www.sandia.gov/~dmgay/bounds10.pdf Original motivation for this work: assess utility of "uncertainty compiler".

Computation Strategies

- Compile, link, execute
- Only choice for large scale?
- Interpret
- E.g., python, awk, perl, .
- Mixture
- E.g., Java, AMPL,

All involve expression graphs.

Expression Graphs

Uses include

- Simplifications before evaluations
- Evaluations
- Derivative computations (AD)
- Bound computations, e.g.,
- interval
- Taylor series
- slope
- Convexity detection.

Expression Graph Example

Expression graph for $f=(x-3)^{2}+(y+4)^{2}$

AD-LIKE GRAPH WALKS

Expression-graph walks similar to forward AD can

- compute interval bounds (by interval arithmetic);
- propagate Taylor series;
- compute interval slopes.

SLOPES AND INTERVALS

"Slopes" are divided differences:
$f[x, z]= \begin{cases}(f(x)-f(z)) /(x-z) & \text { if } x \neq \\ f^{\prime}(x) & \text { if } x=\end{cases}$ Given interval X, interval evaluation of $f[X, z]$ gives $f[x, z] \in f[X, z] \forall x \in X$. Since $f(x)=f(z)+f[x, z](x-z)$,
$f(X) \subseteq F_{z}(X) \doteq f(z)+f[X, z](X-z)$.
Quadratic approximation:

$$
\text { width }\left(F_{z}(X)\right)-\operatorname{width}(f(X))
$$

$\leq O\left(\right.$ width $\left.(X)^{2}\right)$.

Derivative vs. Slope Ranges

$$
f(x)=x^{2}
$$

Slope Arithmetic

Slope arithmetic, analogous to forward AD [Krawczyk \& Neumaier, 1985]:

$$
\begin{array}{ll}
\frac{f=\cdots}{c \in \mathbb{R}} & \Rightarrow f[X, z]=\cdots \\
X & 1 \\
g \pm h & g[X, z] \pm h[X, z] \\
g \cdot h & g[X, z] \cdot h(X)+g(z) \cdot h[X, z] \\
g / h & (g[X, z]-h[X, z] \cdot f(z)) / h(X)
\end{array}
$$

Interval slope computations extend readily to n variables and can be done by walk of expression graph.

$$
\operatorname{work}(f[X, z])=O(n \cdot \operatorname{work}(f(x)) .
$$

Component-wise computation [Hanson, 1968] can be tighter (but slower).

SECOND-ORDER SLOPES

Second-order slopes:

- Scalar: $f[x, z, z]=(f[x, z]-$ $\left.f^{\prime}(z)\right) /(x-z)$.
- $f(x)=f(z)+f^{\prime}(z)(x-z)+$ $f[x, z, z](x-z)^{2}$.
- Often get tighter bounds than with slopes.
- Still just quadratic approximation.
- For $x \in \mathbb{R}^{n}$, component-wise evaluations have
$\operatorname{work}(f[X, z, z])=O(n \cdot \operatorname{work}(f(x)))$.

```
Some Bounding Techniques
interval \(\quad F(X) \supset f(X)\)
Taylor \(1 \quad f(z)+F^{\prime}(X)(X-z)\)
slope \(1 \quad f(z)+F[X, z](X-z)\)
slope \(2 \quad f(z)+f^{\prime}(z)(X-z)\)
        \(+F[X, z, z](X-z)^{2}\)
slope \(2^{*} \quad\left\{f(z)+f^{\prime}(z) h+F[X, z, z] h^{2}\right.\)
    \(h \in X-z\}\)
```

Bound WidThs on 2 Examples

Method	Barnes	Sn525
interval	162.417	0.7226
Taylor 1	9.350	0.3609
slope 1	6.453	0.3529
slope 2	3.007	0.1140
slope 2*	2.993	0.1003
true	2.330	0.0903

For problem details, see the paper.
Implementation (not finished) built on facilities in ASL
(AMPL/Solver interface library).
Expression graphs from AMPL; use directed roundings (part of IEEE arithmetic standard).
Good for easy development, quick tests.
Contact dmg@acm.org for more details.

