Strategies for Using Algebraic Modeling Languages to Formulate Second-Order Cone Programs

Robert Fourer, Jared Erickson

Industrial Engineering \& Management Sciences Northwestern University

4er@northwestern.edu, jarederickson2012@u.northwestern.edu
$21^{\text {st }}$ International Symposium on Mathematical Programming Berlin - 20-24 August 2012

Thu.1.H1058 Modeling Languages and Software I

Strategies for Using Algebraic Modeling Languages to Formulate Second-Order Cone Programs

A surprising variety of optimization applications can be written as convex quadratic problems that linear solvers can be extended to handle effectively. Particular interest has focused on conic constraint regions and the "secondorder cone programs" (or SOCPs) that they define. Whether given quadratic constraints define a convex cone can in principle be determined numerically, but of greater interest are the varied combinations of sums and maxima of Euclidean norms, quadraticlinear ratios, products of powers, p-norms, and log-Chebychev terms that can be identified and transformed symbolically. The power
and convenience of algebraic modeling language may be extended to support such forms, with the help of a recursive treewalk approach that detects and converts arbitrarily complex instances - freeing modelers from the time-consuming and errorprone work of maintaining the equivalent SOCPs explicitly. These facilities moreover integrate well with other common linear and quadratic transformations. We describe the challenges of creating the requisite detection and transformation routines, and report computational tests using the AMPL language.

Example: Traffic Network

Given

N Set of nodes representing intersections
$e \quad$ Entrance to network
f Exit from network

$$
A \subseteq N \cup\{e\} \times N \cup\{f\}
$$

Set of arcs representing road links

and

$b_{i j}$ Base travel time for each road link $(i, j) \in A$
$s_{i j}$ Traffic sensitivity for each road link $(i, j) \in A$
$c_{i j}$ Capacity for each road link $(i, j) \in A$
T Desired throughput from e to f

Traffic Network

Formulation

Determine

$x_{i j} \quad$ Traffic flow through road link $(i, j) \in A$
$t_{i j} \quad$ Actual travel time on road link $(i, j) \in A$
to minimize

$$
\Sigma_{(i, j) \in A} t_{i j} x_{i j} / T
$$

Average travel time from e to f

Traffic Network

Formulation (cont'd)

Subject to

$t_{i j}=b_{i j}+\frac{s_{i j} x_{i j}}{1-x_{i j} / c_{i j}} \quad$ for all $(i, j) \in A$
Travel times increase as flow approaches capacity
$\Sigma_{(i, j) \in A} x_{i j}=\Sigma_{(j, i) \in A} x_{j i}$ for all $i \in N$
Flow out equals flow in at any intersection
$\Sigma_{(e, j) \in A} x_{e j}=T$
Flow into the entrance equals the specified throughput

Traffic Network

AMPL Formulation

Symbolic data

```
set INTERS; # intersections (network nodes)
param EN symbolic; # entrance
param EX symbolic; # exit
    check {EN,EX} not within INTERS;
set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};
    # road links (network arcs)
param base {ROADS} > 0; # base travel times
param sens {ROADS} > 0; # traffic sensitivities
param cap {ROADS} > 0; # capacities
param through > 0; # throughput
```


Traffic Network

AMPL Formulation (cont'd)

Symbolic model

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
    (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
    Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Traffic Network

AMPL Data

Explicit data independent of symbolic model

```
set INTERS := b c ;
param EN := a ;
param EX := d ;
param: ROADS: base cap sens :=
\begin{tabular}{llll} 
a b & 4 & 10 & .1
\end{tabular}
    a c llll
    c b 2 20 . }
    b d 1 15 . 5
    c d 6 10 . 1 ;
```

param through := 20 ;

Traffic Network

AMPL Solution

Model + data $=$ problem to solve, using KNITRO

```
ampl: model traffic.mod;
ampl: data traffic.dat;
ampl: option solver knitro;
ampl: solve;
KNITRO 7.O.O: Locally optimal solution.
objective 61.04695019; feasibility error 3.55e-14
12 iterations; 25 function evaluations
ampl: display Flow, Time;
: Flow Time :=
a b 9.55146 25.2948
a c 10.4485 57.5709
b d 11.0044 21.6558
c b 1.45291 3.41006
c d 8.99562 14.9564
;
```

Traffic Network

AMPL Solution (cont'd)

Same with integer-valued variables

```
var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];
```

```
ampl: solve;
KNITRO 7.O.0: Locally optimal solution.
objective 76.26375; integrality gap 0
3 nodes; 5 subproblem solves
ampl: display Flow, Time;
: Flow Time :=
a b 9 13
a c 11 93.4
b d 11 21.625
c b 2 4
c d 9 15
;
```

Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using CPLEX?

```
ampl: model traffic.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0:
Constraint _scon[1] is not convex quadratic
since it is an equality constraint.
```


Traffic Network

AMPL Solution (cont'd)

Look at the model again . . .

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
    (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
    Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Traffic Network

AMPL Solution (cont'd)

Quadratically constrained reformulation

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]~2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using CPLEX?

```
ampl: model trafficQUAD.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0:
QP Hessian is not positive semi-definite.
```


Traffic Network

AMPL Solution (cont'd)

Quadratic reformulation \#2

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];
subject to Slack_Def {(i,j) in ROADS}:
    Slack[i,j] = 1 - Flow[i,j]/cap[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using CPLEX!

```
ampl: model trafficSOC.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0: primal optimal; objective 61.04693968
15 barrier iterations
ampl: display Flow;
Flow :=
a b 9.55175
a c 10.4482
b d 11.0044
c b 1.45264
c d 8.99561
;
```


Traffic Network

AMPL Solution (cont'd)

Same with integer-valued variables

```
var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];
```

```
ampl: solve;
CPLEX 12.3.0.0: optimal integer solution within mipgap or absmipgap;
    objective 76.26375017
19 MIP barrier iterations
O branch-and-bound nodes
ampl: display Flow;
Flow :=
a b 9
a c 11
b d 11
c b 2
c d 9
;
```


Traffic Network

Which Solver Is Preferable?

General nonlinear solver

* Fewer variables
* More natural formulation

MIP solver with convex quadratic option

* Convex quadratic formulation
* known global optimum
* No derivative evaluations
* no problems with nondifferentiable points
* Specialized large-scale solver technologies

What we're studying

* Write the model in its natural formulation
* Convert automatically to the convex quadratic formulation

Outline

Convex quadratic programs

* "Elliptic" forms
* "Conic" forms
* Second Order Cone Programs: SOCPs

SOCP-solvable forms

* Quadratic
* SOC-representable
* Other objective functions

Detection \& transformation of SOCPs

* General principles
* Example: Sum of norms
* Survey of nonlinear test problems
* Two small computational examples

Convex Quadratic Programs

"Elliptic" quadratic programming

* Detection
* Solving
"Conic" quadratic programming
* Detection
* Solving

"Elliptic" Quadratic Programming

Symbolic detection

* Objectives
* Minimize $x_{1}^{2}+\ldots+x_{n}^{2}$
$*$ Minimize $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}, a_{i} \geq 0$
* Constraints
* $x_{1}^{2}+\ldots+x_{n}^{2} \leq r$
* $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq r, a_{i} \geq 0$

Numerical detection

* Objectives
* Minimize $\mathbf{x}^{T} \mathbf{Q x}+\mathbf{q x}$
* Constraints
* $\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q x} \leq r$
$\star . .$. where \mathbf{Q} is positive semidefinite

Elliptic QP

Solving

Representation

* Much like LP
* Coefficient lists for linear terms
* Coefficient lists for quadratic terms
* A lot simpler than general NLP

Optimization

* Much like LP
* Generalizations of barrier methods
* Generalizations of simplex methods
* Extensions of mixed-integer branch-and-bound schemes
* Simple derivative computations
* Less overhead than general-purpose nonlinear solvers
. . . your speedup may vary

Elliptic QP

Example

Portfolio optimization

```
set A; # asset categories
set T := {1973..1994}; # years
param R {T,A}; # returns on asset categories
param mu default 2; # weight on variance
param mean {j in A} = (sum {i in T} R[i,j]) / card(T);
param Rtilde {i in T, j in A} = R[i,j] - mean[j];
var Frac {A} >=0;
var Mean = sum {j in A} mean[j] * Frac[j];
var Variance =
    sum {i in T} (sum {j in A} Rtilde[i,j]*Frac[j])^2 / card{T};
minimize RiskReward: mu * Variance - Mean;
subject to TotalOne: sum {j in A} Frac[j] = 1;
```


Elliptic QP

Example (cont'd)

Portfolio data

```
set A :=
    US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000
    NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD;
param R:
    US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000
    NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD :=
\begin{tabular}{lllllllll}
1973 & 1.075 & 0.942 & 0.852 & 0.815 & 0.698 & 1.023 & 0.851 & 1.677 \\
1974 & 1.084 & 1.020 & 0.735 & 0.716 & 0.662 & 1.002 & 0.768 & 1.722 \\
1975 & 1.061 & 1.056 & 1.371 & 1.385 & 1.318 & 1.123 & 1.354 & 0.760 \\
1976 & 1.052 & 1.175 & 1.236 & 1.266 & 1.280 & 1.156 & 1.025 & 0.960 \\
1977 & 1.055 & 1.002 & 0.926 & 0.974 & 1.093 & 1.030 & 1.181 & 1.200 \\
1978 & 1.077 & 0.982 & 1.064 & 1.093 & 1.146 & 1.012 & 1.326 & 1.295 \\
1979 & 1.109 & 0.978 & 1.184 & 1.256 & 1.307 & 1.023 & 1.048 & 2.212 \\
1980 & 1.127 & 0.947 & 1.323 & 1.337 & 1.367 & 1.031 & 1.226 & 1.296 \\
1981 & 1.156 & 1.003 & 0.949 & 0.963 & 0.990 & 1.073 & 0.977 & 0.688 \\
1982 & 1.117 & 1.465 & 1.215 & 1.187 & 1.213 & 1.311 & 0.981 & 1.084 \\
1983 & 1.092 & 0.985 & 1.224 & 1.235 & 1.217 & 1.080 & 1.237 & 0.872 \\
1984 & 1.103 & 1.159 & 1.061 & 1.030 & 0.903 & 1.150 & 1.074 & 0.825
\end{tabular}
```


Elliptic QP

Example (cont'd)

Solving with CPLEX

```
ampl: model markowitz.mod;
ampl: data markowitz.dat;
ampl: option solver cplexamp;
ampl: solve;
variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.
CPLEX 12.2.0.0: optimal solution; objective -1.098362471
12 QP barrier iterations
ampl:
```


Elliptic QP

Example (cont'd)

Solving with CPLEX (simplex)

```
ampl: model markowitz.mod;
ampl: data markowitz.dat;
ampl: option solver cplexamp;
ampl: option cplex_options 'primalopt';
ampl: solve;
8 variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.
CPLEX 12.2.0.0: primalopt
No QP presolve or aggregator reductions.
CPLEX 12.2.0.0: optimal solution; objective -1.098362476
5 QP simplex iterations (0 in phase I)
ampl:
```


Elliptic QP

Example (cont'd)

Optimal portfolio

```
ampl: option omit_zero_rows 1;
ampl: display Frac;
            EAFE 0.216083
            GOLD 0.185066
LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX 0.397056
                                    WILSHIRE_5000 0.201795 ;
ampl: display Mean, Variance;
Mean = 1.11577
Variance = 0.00870377
ampl:
```


Elliptic QP

Example (cont'd)

Optimal portfolio (discrete)

```
var Share {A} integer >= 0, <= 100;
var Frac {j in A} = Share[j] / 100;
```

```
ampl: solve;
CPLEX 12.2.0.0: optimal integer solution within mipgap or absmipgap;
    objective -1.098353751
10 MIP simplex iterations
O branch-and-bound nodes
absmipgap = 8.72492e-06, relmipgap = 7.94364e-06
ampl: display Frac;
\begin{tabular}{rl} 
EAFE & 0.22 \\
GOLD & 0.18 \\
LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX & 0.4 \\
WILSHIRE_5000 & \(0.2 ;\)
\end{tabular}
```


"Conic" Quadratic Programming

Standard cone

$$
x^{2}+y^{2} \leq z^{2}, z \geq 0
$$

. . . boundary not smooth
Rotated cone

$$
\div x^{2} \leq y z, y \geq 0, z \geq 0, \ldots
$$

"Conic" Quadratic Programming

Symbolic detection

* Constraints (standard)

$$
\begin{aligned}
& * x_{1}^{2}+\ldots+x_{n}^{2} \leq x_{n+1}^{2}, x_{n+1} \geq 0 \\
& * \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2}, \\
& \quad a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0
\end{aligned}
$$

* Constraints (rotated)

$$
\begin{aligned}
& * \quad x_{1}^{2}+\ldots+x_{n}^{2} \leq x_{n+1} x_{n+2}, x_{n+1} \geq 0, x_{n+2} \geq 0 \\
& * \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right), \\
& \quad a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0, \mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0
\end{aligned}
$$

Numerical detection

* $\mathbf{x}^{T} \mathbf{Q x}+\mathbf{q x} \leq r$
* ... where \mathbf{Q} has one negative eigenvalue
* see Ashutosh Mahajan and Todd Munson, "Exploiting Second-Order Cone Structure for Global Optimization"

Conic QP

Solving

Similarities

* Describe by lists of coefficients
* Solve by extensions of LP barrier methods
* Extend to mixed-integer branch-and-bound

Differences

* Quadratic part not positive semi-definite
* Nonnegativity is essential
* Boundary of feasible region is not differentiable
* Many convex problems can be reduced to these . . .

SOCP-Solvable Forms

Quadratic

* Constraints (already seen)
* Objectives

SOC-representable

* Quadratic-linear ratios
* Generalized geometric means
* Generalized p-norms

Other objective functions

* Generalized product-of-powers
* Logarithmic Chebychev

SOCP-solvable

Quadratic

Standard cone constraints

$$
\begin{gathered}
* \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2} \\
a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0
\end{gathered}
$$

Rotated cone constraints

$$
\begin{array}{r}
\div \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right) \\
\quad a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0, \mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0
\end{array}
$$

Sum-of-squares objectives
$*$ Minimize $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}$

* Minimize v

Subject to $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq v^{2}, v \geq 0$

SOCP-solvable

SOC-Representable

Definition

* Function $s(x)$ is SOC-representable iff . . .
* $s(x) \leq a_{n}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)$ is equivalent to some combination of linear and quadratic cone constraints

Minimization property
\star Minimize $s(x)$ is SOC-solvable

* Minimize $\quad v_{n+1}$

Subject to $\quad s(x) \leq v_{n+1}$
Combination properties
$\div a \cdot s(x)$ is SOC-representable for any $a \geq 0$
$\star \sum_{i=1}^{n} s_{i}(x)$ is SOC-representable

* $\max _{i=1}^{n} s_{i}(x)$ is SOC-representable
. . . requires a recursive detection algorithm!

SOCP-solvable

SOC-Representable (1)

Vector norm

$$
\star \mathbf{a} \cdot(\mathbf{F} \mathbf{x}+\mathbf{g}) \|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)
$$

* square both sides to get standard SOC

$$
\sum_{i=1}^{n} a_{i}^{2}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}^{2}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2}
$$

Quadratic-linear ratio

* $\frac{\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}}{\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)$
$*$ where $\mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0$
* multiply by denominator to get rotated SOC

$$
\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right)
$$

SOCP-solvable

SOC-Representable (2)

Negative geometric mean

$$
\begin{aligned}
& -\prod_{i=1}^{p}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{1 / p} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, p \in \mathbb{Z}^{+} \\
& *-x_{1}^{1 / 4} x_{2}^{1 / 4} x_{3}^{1 / 4} x_{4}^{1 / 4} \leq-x_{5} \text { becomes rotated SOCs: } \\
& \quad x_{5}^{2} \leq v_{1} v_{2}, v_{1}^{2} \leq x_{1} x_{2}, v_{2}^{2} \leq x_{3} x_{4} \\
& * \text { apply recursively }\left\lceil\log _{2} p\right\rceil \text { times }
\end{aligned}
$$

Generalizations

$$
\begin{aligned}
& *-\prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{\alpha_{i}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right): \sum_{i=1}^{n} \alpha_{i} \leq 1, \alpha_{i} \in \mathbb{Q}^{+} \\
& * \prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{-\alpha_{i}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right), \alpha_{i} \in \mathbb{Q}^{+} \\
& \quad * \text { all require } \mathbf{f}_{i} \mathbf{x}+g_{i} \text { to have proper sign }
\end{aligned}
$$

SOCP-solvable

SOC-Representable (3)

p-norm

$$
\nLeftarrow\left(\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{p}\right)^{1 / p} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, p \in \mathbb{Q}^{+}, p \geq 1
$$

* $\left(\left|x_{1}\right|^{5}+\left|x_{2}\right|^{5}\right)^{1 / 5} \leq x_{3}$ can be written $\left|x_{1}\right|^{5} / x_{3}^{4}+\left|x_{2}\right|^{5} / x_{3}^{4} \leq x_{3}$ which becomes

$$
v_{1}+v_{2} \leq x_{3} \text { with }-v_{1}^{1 / 5} x_{3}^{4 / 5} \leq \pm x_{1},-v_{1}^{1 / 5} x_{3}^{4 / 5} \leq \pm x_{2}
$$

* reduces to product of powers

Generalizations

$*\left(\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}}\right)^{1 / \alpha_{0}} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, \alpha_{i} \in \mathbb{Q}^{+}, \alpha_{i} \geq \alpha_{0} \geq 1$
$* \sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}} \leq\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{\alpha_{0}}$

* Minimize $\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}}$
. . . standard SOCP has $\alpha_{i} \equiv 2$

SOCP-solvable

Other Objective Functions

Unrestricted product of powers

* Minimize $-\prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{\alpha_{i}}$ for any $\alpha_{i} \in \mathbb{Q}^{+}$

Logarithmic Chebychev approximation
$*$ Minimize $\max _{i=1}^{n}\left|\log \left(\mathbf{f}_{i} \mathbf{x}\right)-\log \left(g_{i}\right)\right|$
Why no constraint versions?

* Not SOC-representable
* Transformation changes objective value (but not solution)

Detection \& Transformation of SOCPs

Principles

* Representation of expressions by trees
* Recursive tree-walk functions * isLinear(), isQuadratic(), buildLinear()

Example: Sum of norms
Survey of nonlinear test problems
Two small computational examples

Principles

Representation

Expression

```
base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j])
```

Expression tree

. . . actually a DAG

Principles

Detection: isLinear()

```
boolean isLinear (Node);
case of Node {
    PLUS:
    MINUS: return( isLinear(Node.left) and isLinear(Node.right) );
    TIMES: return( isConst(Node.left) and isLinear(Node.right) or
        isLinear(Node.left) and isConst(Node.right) );
    DIV: return( isLinear(Node.left) and isConst(Node.right) );
    VAR: return( TRUE );
    CONST: return( TRUE );
}
```

. . . to detect, test isLinear (root)

Principles

Detection: isQuadr()

```
boolean isQuadr (Node);
case of Node {
    PLUS:
    MINUS: return( isQuadr(Node.left) and isQuadr(Node.right) );
    TIMES: return( isLinear(Node.left) and isLinear(Node.right) or
        isQuadr(Node.left) and isConst(Node.right) or
        isConst(Node.left) and isQuadr(Node.right) );
    POWER: return( isLinear(Node.left) and
        isConst(Node.right) and value(Node.right) == 2 );
    VAR: return( TRUE );
    CONST: return( TRUE );
}
```


Principles

Transformation: buildLinear()

```
(coeff,const) = buildLinear (Node);
if Node.L then (coefL,consL) = buildLinear(Node.L);
if Node.R then (coefR,consR) = buildLinear(Node.R);
case of Node {
    PLUS: coeff = mergeLists( coefL, coefR );
        const = consL + consR;
    TIMES: ...
    DIV: coeff = coefL / consR;
        const = consL / consR;
    VAR: coeff = makeList( 1, Node.index );
        const = 0;
    CONST: coeff = makeList( );
        const = Node.value;
}
```


Example: Sum-of-Norms Objective

Given

* Minimize $\sum_{i=1}^{m} a_{i} \sqrt{\sum_{j=1}^{n_{i}}\left(\mathbf{f}_{i j} \mathbf{x}+g_{i j}\right)^{2}}$

Transform to

* Minimize $\sum_{i=1}^{m} a_{i} y_{i}$
$* \sum_{j=1}^{n_{i}} z_{i j}^{2} \leq y_{i}^{2}, y_{i} \geq 0, \quad i=1, \ldots, m$
$* z_{i j}=\mathbf{f}_{i j} \mathbf{x}+g_{i j}, \quad i=1, \ldots, m, j=1, \ldots, n_{i}$
Two steps
* Detection
* Transformation

Sum of Norms

Detection

SumOfNorms

Sum: $e_{1}+e_{2}$ is SumOfNorms if e_{1}, e_{2} are SumOfNorms
Product: $e_{1} e_{2}$ is SumOFNorms if
e_{1} is SumOFNorms and e_{2} is PosConstant or
e_{2} is SumOfNorms and e_{1} is PosConstant
Square root: \sqrt{e} is SumOfNorms if e is SumOfSouares

SumOfSquares

Sum: $e_{1}+e_{2}$ is SumOfSouares if e_{1}, e_{2} are SumOfSouares
Product: $e_{1} e_{2}$ is SumOFSoundes if
e_{1} is SumOfSQuares and e_{2} is PosConstant or
e_{2} is SumOfSouares and e_{1} is PosConstant
Square: e^{2} is SumOfSouares if e is Linear
Constant: c is SumOfSouares if c is PosConstant

Sum of Norms

Detection Issues

Mathematical

* Minimize $\sum_{i=1}^{m} a_{i} \sqrt{\sum_{j=1}^{n_{i}}\left(\mathbf{f}_{i j} \mathbf{x}+g_{i j}\right)^{2}}$

Practical

* Constant multiples inside any sum
* Recursive nesting of constant multiples \& sums
* Constant as a special case of a square

$$
* \sqrt{3\left(4 x_{1}+7\left(x_{2}+2 x_{3}\right)+6\right)^{2}+\left(x_{4}+x_{5}\right)^{2}+17}
$$

Sum of Norms

Transformation

TransformSumOfNorms (Expr e, Obj o, real k)
Sum: e1 + e2 where e1, e2 are SumOFNorms
TransformSumOfNorms (e1, o,k)
TransformSumOFNorms (e2,o,k)
Product: e1 * c2 where e1 is SUMOFNORMS and c2 is PosConstant
TRANSFORMSUMOFNORMS (e1, o, c2*k)
Product: c1 * e2 where e2 is SumOFNorms and c1 is PosConstant
TRANSFORMSUMOFNORMS (e2, $0, c 1 * k)$
Square root: sqrt(e) where e is SumOFSQUARES
yi := NEWNONNEGVAR(); o += k * yi
qi := NEWLECON(); qi += -yi^2
TransformSumOfSquares (e,qi,1)

Sum of Norms

Transformation (cont'd)

TransformSumOfSouares (Expr e, LeCon qi, real k)
Sum: e1 +e2 where e1, e2 are SumOfSouares
TransformSumOfSouares (e1,o,k)
TransformSumOfSouares (e2,o,k)
Product: e1 * c2 where e1 is SumOfSouares and c2 is PosConstant TransformSumOfSouares (e1,o,c2*k)
Product: c1 * e2 where e2 is SumOfSouares and c1 is PosConstant
TransformSumOfSouares ($\mathrm{e} 2, \mathrm{o}, \mathrm{c} 1 * \mathrm{k}$)
Square: sqr(zij) where zij is Variable
qi += k * zij^2

Square: $\operatorname{sqr}(\mathrm{e})$ where e is LINEAR

$$
z i j:=\operatorname{NEWVAR}() ; q i+=k * z i j \wedge 2
$$

lij := NEWEQCON(); lij += zij - e
Constant: c is PosConstant
zij:= NewVar(); qi +=k * zij^2
lij:= NEWEQCon(); lij += zij-sqrt(c)

Sum of Norms

Transformation Issues

Mathematical

* Minimize $\sum_{i=1}^{m} a_{i} y_{i}$
$* \sum_{j=1}^{n_{i}} z_{i j}^{2} \leq y_{i}^{2}, y_{i} \geq 0$
$* z_{i j}=\mathbf{f}_{i j} \mathbf{x}+g_{i j}$

Practical

* Generalization: handle all previously mentioned
* Efficiency: don't define $z_{i j}$ when $\mathbf{f}_{i j} \mathbf{x}+g_{i j}$ is a single variable
* Trigger by calling TransformSumOfNorms (e, o, k) with
* e the root node
* o an empty objective
* $\mathrm{k}=1$

Challenges

Extending to all cases previously cited

* All prove amenable to recursive tree-walk
* Details much harder to work out

Checking nonnegativity of linear expressions

* Heuristic catches many non-obvious instances

Assessing usefulness...

Survey of Test Problems

12% of 1238 nonlinear problems were SOC-solvable!

* not counting QPs with sum-of-squares objectives
* from Vanderbei's CUTE \& non-CUTE, and netlib/ampl

A variety of forms detected
$\dot{\mathrm{hs} 064}$ has $4 / x_{1}+32 / x_{2}+120 / x_{3} \leq 1$

* hs036 minimizes $-x_{1} x_{2} x_{3}$
$*$ hs073 has $1.645 \sqrt{0.28 x_{1}^{2}+0.19 x_{2}^{2}+20.5 x_{3}^{2}+0.62 x_{4}^{2}} \leq \ldots$
* polak4 is a max of sums of squares
\div hs049 minimizes $\left(x_{1}-x_{2}\right)^{2}+\left(x_{3}-1\right)^{2}+\left(x_{4}-1\right)^{4}+\left(x_{5}-1\right)^{6}$
$\dot{*}$ emfl_nonconvex has $\sum_{k=1}^{2}\left(x_{j k}-a_{i k}\right)^{2} \leq s_{i j}^{2}$
. . . similar for nonlinear integer programs

Computational Experience

Two solver possibilities

* NLP: General-purpose mixed-integer nonlinear
* KNITRO, Bonmin, BARON
* SOCP: Linear mixed-integer extended to convex quadratic * CPLEX, Gurobi, Xpress

Reliability: Advantage to SOCP

* Far fewer failures
* Global optimum is assured

Efficiency: Undecided

* Times can be comparable
* Limited experience with difficult integer models

Small Example 1

SOCP-solvable with nonsmooth functions

```
var x {1..5} integer;
var y {1..5} >= 0;
minimize obj: sum {i in 1..5} (
    sqrt( (x[i]+2)~2 + (y[i]+1)^2 ) + sqrt( (x[i]+y[i])^2 ) + y[3]^2 );
subj to xsum: sum {i in 1..5} x[i] <= -12;
subj to ysum: sum {i in 1..5} y[i] >= 10;
subj to socprep:
    max {i in 1..5} ( (x[i]^2 + 1)/(i+y[i]) + y[i]^3 ) <= 30;
```


Small Example 1 (cont'd)

General nonlinear solver (integer)
KNITRO 8.0.0: Convergence to an infeasible point.
Problem may be locally infeasible.
General nonlinear solver (continuous relaxation)

```
KNITRO 8.0.0:
--- ERROR evaluating objective gradient.
--- ERROR evaluating constraint gradients.
Evaluation error.
objective 17.14615551; feasibility error 0
233 iterations; 1325 function evaluations
```


Small Example 1 (cont'd)
 Convex quadratic solver (integer)

```
CPLEX 12.4.0
Total time (root+branch&cut) = 0.21 sec.
Solution value = 17.246212
: x y
1 -3 3
2 -2 1.99993
3
4 -3 3
5 -2 1.99993
;
```


Computational Example (cont'd)

Convex quadratic solver (continuous relaxation)

```
CPLEX 12.4.0
Total time = 0.04 sec.
Solution value = 17.141355
: x y
1 -2.49707 2.49707
2 -2.49707 2.49707
3 -2.01171 0.011716
4 -2.49707 2.49707
5 -2.49707 2.49707
;
```


Small Example 2

SOCP-solvable with p-norms

```
var x {1..100} >= 0 integer;
minimize obj:
    (sum {i in 1..60} x[i]^3) - (1/3) +
    (sum {i in 40..99} (1+x[i]-x[i+1])~4) ~ (1/4);
subject to c1 {i in 1..50}:
    x[i] + x[i+50] >= i/10;
```


Small Example 2 (cont'd)

General nonlinear solver (integer)

```
KNITRO 8.0.0: Locally optimal solution.
objective 4.24223232; integrality gap -1.5e-09
5517 nodes; 5517 subproblem solves
Total time = 70.1364 sec.
```

Convex quadratic solver (integer)

```
CPLEX 12.4.0
objective 4.242235
352 branch-and-cut nodes, 18360 iterations
Total time (root+branch&cut) = 6.45 sec.
```

