
Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 1

Specifying
“Logical” Conditions in
AMPL Optimization Models

Robert Fourer

AMPL Optimization
www.ampl.com — 773-336-AMPL

INFORMS Annual Meeting
Phoenix, Arizona — 14-17 October 2012
Session SA15, Software Demonstrations

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 2

New and Forthcoming Developments in the
AMPL Modeling Language and System

Optimization modelers are often stymied by the
complications of converting problem logic into
algebraic constraints suitable for solvers. The AMPL
modeling language thus allows various logical
conditions to be described directly. Additionally a new
interface to the ILOG CP solver handles logic in a
natural way not requiring conventional
transformations.

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations

Free AMPL book chapters

AMPL for Courses

Extended function library

Extended support for “logical” conditions
 AMPL driver for CPLEX Opt Studio “Concert” C++ interface

 Support for ILOG CP constraint programming solver

 Support for “logical” constraints in CPLEX

INFORMS Impact Prize to . . .
 Originators of AIMMS, AMPL, GAMS, LINDO, MPL

 Awards presented Sunday 8:30-9:45, Conv Ctr West 101

 Doors close 8:45!

3

AMPL News

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations

Chapters now free for download
 www.ampl.com/BOOK/download.html

Bound copies remain available
 purchase from usual sources

4

AMPL Book

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations

Streamlined for quick setup
 One-page application form for each course offering

 AMPL & solvers in one compressed file for each platform
 No problem size limitations

 Freely install on any computer supporting the course

 Freely distribute to students for their own computers
 Times out after your specified course end date

Includes top-quality solvers
 CONOPT, CPLEX, Gurobi, KNITRO, MINOS, SNOPT

Used in over 50 courses this fall
 More information: www.ampl.com/courses.html

 Application form: www.ampl.com/AMPLforCourses.pdf

. . . or stop by our booth

5

AMPL for Courses

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations

AMPL bindings for GNU Scientific Library
 Over 300 free open-source functions

 probability distributions: pdf, cdf
 special functions: Bessel, erf, gamma, . . .
 random number generators

 Easy to “install”
 download amplgsl.dll to your AMPL folder/directory

Accessible to AMPL
 Invoke load amplgsl.dll; at start of session

 Specify function gsl_...; for each function needed

Accessible to solvers
 Apply to variable expressions in objective, constraints

 1st & 2nd derivatives provided

6

Extended Function Library

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 7

Example

hs069 (minimum-cost inspection plan)

function gsl_cdf_ugaussian_P;

param l {1..4};
param u {1..4};

var x {j in 1..4} >= l[j], <= u[j] := 1;

param a := 0.1;
param b := 1000;
param d := 1;
param n := 4;

minimize obj:
(a*n - (b*(exp(x[1])-1) - x[3])*x[4]/(exp(x[1]) - 1 + x[4]))/x[1] ;

subject to constr1:
x[3] = 2*gsl_cdf_ugaussian_P(-x[2]);

subject to constr2:
x[4] = gsl_cdf_ugaussian_P(-x[2] + d*sqrt(n)) +

gsl_cdf_ugaussian_P(-x[2] - d*sqrt(n));

Extended Function Library

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 8

Example (cont’d)

hs069 solution

model hs069.mod;
data hs069.dat;

load amplgsl.dll;

ampl: option solver knitro;

ampl: solve;

KNITRO 8.0.0: Locally optimal solution.
objective -956.7128867; feasibility error 3.41e-11
10 iterations; 11 function evaluations

ampl: display x;

1 0.0293714
2 1.19025
3 0.233947
4 0.791668

Extended Function Library

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations

GNU General Public License

Suitable for noncommercial uses
 Research

 Stand-alone modeling

 Open-source development

Contact us for commercial alternatives
 More permissive open-source licenses

 Licensed commercial libraries

9

Licensing
Extended Function Library

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations

Introductory examples
 Spatial location

 Multicommodity transportation

Supported “logical” operators
 General forms

 Examples

Prospective enhancements . . .

10

Support for “Logical” Conditions

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 11

Logic Example 1

Spatial location
 Build n observation posts

 Locate at points on an n-by-n grid

 Incur equal construction costs

Non-interference constraints
 No post blocks any other’s view

 along any row, column or diagonal of the grid

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 12

Mixed-Integer Linear Formulation

One variable per grid point

Logic Example 1

param n integer > 0;

var Build {1..n,1..n} binary;

subj to row_conflicts {i in 1..n}:
sum {j in 1..n} Build[i,j] = 1;

subj to col_conflicts {j in 1..n}:
sum {i in 1..n} Build[i,j] = 1;

subj to diag1_conflicts {k in 3..2*n-1}:
sum {i in max(1,k-n)..min(n,k-1)} Build[i,k-i] <= 1;

subj to diag2_conflicts {k in -(n-2)..(n-2)}:
sum {i in max(k,0)+1..min(k,0)+n} Build[i,i-k] <= 1;

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 13

CP-Style Formulation

One variable per grid row

Logic Example 1

param n integer > 0;

var Col {1..n} integer >= 1 <= n;

subj to col_conflicts: alldiff {i in 1..n} Col[i];

subj to diag1_conflicts: alldiff {i in 1..n} (Col[i] + i);

subj to diag2_conflicts: alldiff {i in 1..n} (Col[i] - i);

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 14

Solve with CPLEX or ILOG CP
Logic Example 1

ampl: model locMIP.mod;
ampl: let n := 8;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.4.0.1: optimal integer solution; objective 0
26 MIP simplex iterations
0 branch-and-bound nodes
Objective = find a feasible point.

ampl: model locCP.mod;
ampl: let n := 8;

ampl: option solver ilogcp;

ampl: solve;
ilogcp 12.4.0: feasible solution
1731 choice points, 1458 fails

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 15

Solve Times

CP MIP
n ilogcp cplex

5 0.02 0.02
10 0.08 0.03
15 0.14 0.08
20 0.14 0.12
25 0.14 0.06
30 0.16 0.03
35 0.28 0.25
40 0.20 0.69
45 0.23 0.12
50 0.34 0.95

Logic Example 1

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 16

Solve Times (cont’d)

CP MIP
n ilogcp cplex

50 0.27 0.94
100 0.39 1.36
150 0.61 5.73
200 1.20 125.86
250 1.11 441.39
300 1.62 1470.29
350 1.56
400 2.18
450 2.70
500 4.15

Logic Example 1

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 17

Logic Example 2

Multicommodity transportation
 Inventory of each product at each origin

 Demand for each product at each destination

 Limited shipment capacity of each origin-destination link

Minimum-shipment constraints
 From each origin to each destination,

 either ship nothing
 or ship at least minload units

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 18

Mixed-Integer Linear Formulation

Symbolic data

Logic Example 2

set ORIG; # origins
set DEST; # destinations
set PROD; # products

param supply {ORIG,PROD} >= 0; # availabilities at origins
param demand {DEST,PROD} >= 0; # requirements at destinations
param limit {ORIG,DEST} >= 0; # capacities of links

param cost {ORIG,DEST,PROD} >= 0; # shipment cost

param minload >= 0; # minimum shipment size

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 19

Mixed-Integer Linear Formulation

Symbolic model (variables and objective)

Logic Example 2

var Trans {ORIG,DEST,PROD} >= 0; # actual units to be shipped

var Use {ORIG, DEST} binary; # 1 if link used, 0 otherwise

minimize Total_Cost:

sum {i in ORIG, j in DEST, p in PROD} cost[i,j,p] * Trans[i,j,p];

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 20

Mixed-Integer Linear Formulation

Symbolic model (constraints)

Logic Example 2

subject to Supply {i in ORIG, p in PROD}:

sum {j in DEST} Trans[i,j,p] <= supply[i,p];

subject to Demand {j in DEST, p in PROD}:

sum {i in ORIG} Trans[i,j,p] = demand[j,p];

subject to Multi {i in ORIG, j in DEST}:

sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];

subject to Min_Ship {i in ORIG, j in DEST}:

sum {p in PROD} Trans[i,j,p] >= minload * Use[i,j];

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 21

Mixed-Integer Linear Formulation

Explicit data independent of symbolic model

Logic Example 2

set ORIG := GARY CLEV PITT ;
set DEST := FRA DET LAN WIN STL FRE LAF ;
set PROD := bands coils plate ;

param supply (tr): GARY CLEV PITT :=
bands 400 700 800
coils 800 1600 1800
plate 200 300 300 ;

param demand (tr):
FRA DET LAN WIN STL FRE LAF :=

bands 300 300 100 75 650 225 250
coils 500 750 400 250 950 850 500
plate 100 100 0 50 200 100 250 ;

param limit default 625 ;

param minload := 375 ;

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 22

Mixed-Integer Linear Formulation

Explicit data (continued)

Logic Example 2

param cost :=

[*,*,bands]: FRA DET LAN WIN STL FRE LAF :=
GARY 30 10 8 10 11 71 6
CLEV 22 7 10 7 21 82 13
PITT 19 11 12 10 25 83 15

[*,*,coils]: FRA DET LAN WIN STL FRE LAF :=
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20

[*,*,plate]: FRA DET LAN WIN STL FRE LAF :=
GARY 41 15 12 16 17 86 8
CLEV 29 9 13 9 28 99 18
PITT 26 14 17 13 31 104 20 ;

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 23

Mixed-Integer Linear Formulation

Model + data = problem instance to be solved

ampl: model multminship.mod;
ampl: data multminship.dat;

ampl: option solver gurobi;

ampl: solve;

Gurobi 5.0.0: optimal solution; objective 201750
141 simplex iterations
13 branch-and-cut node

ampl: display Use;

Use [*,*]

: DET FRA FRE LAF LAN STL WIN :=
CLEV 1 1 1 0 1 1 0
GARY 0 0 1 1 0 1 0
PITT 1 1 1 1 0 1 1
;

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 24

Mixed-Integer Linear Formulation

Solver choice independent of model and data

ampl: model multminship.mod;
ampl: data multminship.dat;

ampl: option solver cplex;

ampl: solve;

CPLEX 12.4.0.1: optimal integer solution; objective 201750
155 MIP simplex iterations
17 branch-and-bound nodes

ampl: display Use;

Use [*,*]

: DET FRA FRE LAF LAN STL WIN :=
CLEV 1 1 1 0 1 1 0
GARY 0 0 1 1 0 1 0
PITT 1 1 1 1 0 1 1
;

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 25

Domain-Based Formulation

Model

var Trans {ORIG,DEST,PROD} >= 0;

var SumTrans {i in ORIG, j in DEST}

in {0} union interval[minload,limit[i,j]];

minimize Total_Cost:

sum {i in ORIG, j in DEST, p in PROD} cost[i,j,p] * Trans[i,j,p];

subject to Supply {i in ORIG, p in PROD}:

sum {j in DEST} Trans[i,j,p] <= supply[i,p];

subject to Demand {j in DEST, p in PROD}:

sum {i in ORIG} Trans[i,j,p] = demand[j,p];

subject to Multi {i in ORIG, j in DEST}:

SumTrans[i,j] = sum {p in PROD} Trans[i,j,p];

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 26

Domain-Based Formulation

Solution

ampl: model multminshipA.mod;
ampl: data multminship.dat;

ampl: option solver gurobi;

ampl: solve;

Gurobi 5.0.0: optimal solution; objective 201750
154 simplex iterations
14 branch-and-cut node

display SumTrans;

SumTrans [*,*]

: DET FRA FRE LAF LAN STL WIN :=
CLEV 625 425 425 0 500 625 0
GARY 0 0 375 425 0 600 0
PITT 525 475 375 575 0 575 375
;

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 27

Domain-Based Formulation

Solution

ampl: model multminshipA.mod;
ampl: data multminship.dat;

ampl: option solver cplex;

ampl: solve;

CPLEX 12.4.0.1: optimal integer solution; objective 201750
155 MIP simplex iterations
17 branch-and-bound nodes

display SumTrans;

SumTrans [*,*]

: DET FRA FRE LAF LAN STL WIN :=
CLEV 625 425 425 0 500 625 0
GARY 0 0 375 400 0 625 0
PITT 525 475 375 600 0 550 375
;

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 28

Implication-Based Formulation

Model

var Trans {ORIG,DEST,PROD} >= 0;

var Use {ORIG, DEST} binary;

minimize Total_Cost:

sum {i in ORIG, j in DEST, p in PROD} cost[i,j,p] * Trans[i,j,p];

subject to Supply {i in ORIG, p in PROD}:

sum {j in DEST} Trans[i,j,p] <= supply[i,p];

subject to Demand {j in DEST, p in PROD}:

sum {i in ORIG} Trans[i,j,p] = demand[j,p];

subject to Multi {i in ORIG, j in DEST}:

Use[i,j] = 0 ==> sum {p in PROD} Trans[i,j,p] = 0 else

minload <= sum {p in PROD} Trans[i,j,p] <= limit[i,j];

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 29

Implication-Based Formulation

Solution

ampl: model multminshipB.mod;
ampl: data multminship.dat;

ampl: option solver gurobi;

ampl: solve;

Gurobi 5.0.0: Sorry, gurobi cannot handle logical constraints.

exit code 7
<BREAK>

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 30

Implication-Based Formulation

Solution

ampl: model multminshipB.mod;
ampl: data multminship.dat;

ampl: option solver cplex;

ampl: solve;

CPLEX 12.4.0.1: optimal integer solution; objective 201750
159 MIP simplex iterations
17 branch-and-bound nodes

ampl: display Use;

Use [*,*]

: DET FRA FRE LAF LAN STL WIN :=
CLEV 1 1 1 0 1 1 0
GARY 0 0 1 1 0 1 0
PITT 1 1 1 1 0 1 1
;

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 31

Disjunctive Formulation

Model

var Trans {ORIG,DEST,PROD} >= 0;

minimize Total_Cost:

sum {i in ORIG, j in DEST, p in PROD} cost[i,j,p] * Trans[i,j,p];

subject to Supply {i in ORIG, p in PROD}:

sum {j in DEST} Trans[i,j,p] <= supply[i,p];

subject to Demand {j in DEST, p in PROD}:

sum {i in ORIG} Trans[i,j,p] = demand[j,p];

subject to Multi {i in ORIG, j in DEST}:

forall {p in PROD} Trans[i,j,p] = 0 or

minload <= sum {p in PROD} Trans[i,j,p] <= limit[i,j];

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 32

Disjunctive Formulation

Solution

ampl: model multminshipC.mod;
ampl: data multminship.dat;

ampl: option solver cplex;

ampl: solve;

CPLEX 12.4.0.1:
logical constraint _slogcon[1] is not an indicator constraint.

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 33

Disjunctive Formulation

Solution

ampl: model multminshipC.mod;
ampl: data multminship.dat;

ampl: option solver ilogcp;

ampl: solve;

ilogcp 12.4.0: CP Optimizer doesn't support continuous variables.

exit code 1
<BREAK>

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 34

Disjunctive Formulation

Solution (variables declared integer)

ampl: model multminshipC.mod;
ampl: data multminship.dat;

ampl: option solver ilogcp;

ampl: solve;

ilogcp 12.4.0:

exit code 3
<BREAK>

Logic Example 2

. . . takes longer than you want to wait

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 35

Disjunctive Formulation

Solution by CPLEX

ampl: model multminshipC.mod;
ampl: data multminship.dat;

ampl: option solver ilogcp;
ampl: option ilogcp_options 'optimizer=cplex';

ampl: solve;

ilogcp 12.4.0: optimizer=cplex
ilogcp 12.4.0: optimal solution
35 nodes, 381 iterations, objective 201750

ampl: display {i in ORIG, j in DEST} sum {p in PROD} Trans[i,j,p];

sum{p in PROD} Trans[i,j,p] [*,*]

: DET FRA FRE LAF LAN STL WIN :=
CLEV 625 425 425 0 500 625 0
GARY 0 0 375 425 0 600 0
PITT 525 475 375 575 0 575 375
;

Logic Example 2

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 36

CP-Style Location Model (revisited)

Solution by CPLEX?

Logic Example 1

ampl: model locCP.mod;
ampl: let n := 8;

ampl: option solver ilogcp;
ampl: option ilogcp_options 'optimizer=cplex';

ampl: solve;

ilogcp 12.4.0: optimizer=cplex

Error: IloAlgorithm cannot extract
extractables 51, 51, 302, 302, 553 and 553

exit code 1
<BREAK>

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 37

Supported CP-Style Operators

General forms
 Logical

 Counting

 Global

Examples
 Scheduling

 Assignment

 Matching

 Transportation

 Sequencing

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 38

Logical Operators

Unary and binary
 constraint-expr and constraint-expr

 constraint-expr or constraint-expr

 not constraint-expr

Iterated forms
 exists { indexing } constraint-expr

 forall { indexing } constraint-expr

General Forms

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 39

Logical Operators (cont’d)

Implication expressions
 if constraint-expr then expr

 if constraint-expr then expr else expr

Implication constraints
 constraint-expr ==> constraint-expr

 constraint-expr ==> constraint-expr else constraint-expr

 constraint-expr <== constraint-expr

 constraint-expr <== constraint-expr else constraint-expr

 constraint-expr <==> constraint-expr

General Forms

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 40

Counting Operators

Counting expressions
 count { indexing } (constraint)

 numberof num-expr in (expr1, expr2, . . .)

Counting constraints
 atmost num-expr { indexing } (constraint)

 atleast num-expr { indexing } (constraint)

 exactly num-expr { indexing } (constraint)

General Forms

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 41

“Global” Operators

All-different constraint
 alldiff { indexing } expr

 alldiff (expr1, expr2, . . .)

Counting expression
 numberof const-expr in (expr1, expr2, . . .)

. . . consolidate all having same expr-list

Form of expr1, expr2, . . . in list
 expr

 { indexing } expr

General Forms

Robert Fourer, Detection & Transformation 4
IE/MS 454 Large-Scale Optimization, NW Univ, Winter 2009 42

Every job either precedes or follows every other job

subj to NoConflict12
{i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:

Start[i2] >= Start[i1] +
setupTime[i1,i2] - BIG * (1 - Prec[i1,i2]);

subj to NoConflict21
{i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:

Start[i2] >= Start[i1] +
setupTime[i2,i1] - BIG * Prec[i1,i2];

subj to NoConflict
{i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:

Start[i2] >= Start[i1] + setupTime[i1,i2] or
Start[i1] >= Start[i2] + setupTime[i2,i1];

Examples

Logical Conditions

Robert Fourer, Detection & Transformation 4
IE/MS 454 Large-Scale Optimization, NW Univ, Winter 2009 43

Logical Conditions (cont’d)

No one should feel isolated within an assigned group

subj to NoIso0 {(i1,i2) in TYPE, j in GROUP}:

Assign[i1,i2,j] <= upperbnd[i1,i2,j] * Any[i1,i2,j];

subj to NoIso1a {(i1,i2) in TYPE, j in GROUP}:

Assign[i1,i2,j] >= Any[i1,i2,j];

subj to NoIso1b {(i1,i2) in TYPE, j in GROUP}:

Assign[i1,i2,j] +
sum {ii1 in ADJ[i1]: (ii1,i2) in TYPE} Assign[ii1,i2,j]
>= 2 * Any[i1,i2,j];

subj to NoIso {(i1,i2) in TYPE, j in GROUP}:

not (Assign[i1,i2,j] = 1 and

sum {ii1 in ADJ[i1]: (ii1,i2) in TYPE} Assign[ii1,i2,j] = 0);

Examples

Robert Fourer, Detection & Transformation 4
IE/MS 454 Large-Scale Optimization, NW Univ, Winter 2009 44

Cardinality Restrictions

A warehouse may not serve too many different customers

var Serve {WHSE,CUST} binary;

subj to UDef {i in WHSE, j in CUST, p in PROD}:

sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Serve[i,j];

subj to MaxServe {i in WHSE}: sum {j in CUST} Serve[i,j] <= mxsrv;

subj to MaxServe {i in WHSE}:

count {j in CUST} (sum {p in PRD} Trans[i,j,p] > 0) <= mxsrv;

subj to MaxServe {i in WHSE}:

atmost mxsrv {j in CUST} (sum {p in PRD} Trans[i,j,p] > 0);

Examples

Robert Fourer, Detection & Transformation 4
IE/MS 454 Large-Scale Optimization, NW Univ, Winter 2009 45

Matching

Assign each job to a different machine

var Assign {JOBS,MACHINES} binary;

subj to OneJobPerMachine {k in MACHINES}:

sum {j in JOBS} Assign[j,k] = 1;

var MachineforJob {JOBS} in MACHINES;

subj to OneJobPerMachine:

alldiff {j in JOBS} MachineForJob[j];

Examples

Robert Fourer, Detection & Transformation 4
IE/MS 454 Large-Scale Optimization, NW Univ, Winter 2009 46

Assignment

Assign a limited number of jobs to each machine

var Assign {JOBS,MACHINES} binary;

subj to CapacityOfMachine {k in MACHINES}:

sum {j in JOBS} Assign[j,k] <= cap[k];

var MachineforJob {JOBS} in MACHINES;

subj to CapacityOfMachine {k in MACHINES}:

numberof k in ({j in JOBS} MachineForJob[j]) <= cap[k];

Examples

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 47

What’s missing (currently)?

Domain-based formulations
 Sending directly to solver

 Object-valued variables

CP-style formulations
 Variables in subscripts

Support for additional solvers

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 48

Domain-Based Formulation

Variable in arbitrary set of numbers

var SumTrans {i in ORIG, j in DEST}

in {0} union interval[minload,limit[i,j]];

What’s Missing?

Transform in AMPL (current)
 Convert to linear MIP

 Add “SOS” markers used by some MIP solvers

Send directly to solver (prospective)
 Write representation of domain in problem file

 Let interface decide how to convert for solver
 Semi-continuous variables (CPLEX)
 Arbitrary domains (CP)

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 49

Variables in Subscripts

Return to spatial location problem
 Build n observation posts

 Locate at points on an n-by-n grid

 Minimize total construction cost

Non-interference constraints
 No post blocks any other’s view

 along any row, column or diagonal of the grid

What’s Missing?

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 50

Mixed-Integer Linear Formulation

Sum of n2 costs times binary variables

Variables in Subscripts

param n integer > 0;
param cost {1..n,1..n};

var Build {1..n,1..n} binary;

minimize TotalCost:
sum {i in 1..n, j in 1..n} cost[i,j] * Build[i,j];

subj to row_conflicts {i in 1..n}:
sum {j in 1..n} Build[i,j] = 1;

subj to col_conflicts {j in 1..n}:
sum {i in 1..n} Build[i,j] = 1;

subj to diag1_conflicts {k in 3..2*n-1}:
sum {i in max(1,k-n)..min(n,k-1)} Build[i,k-i] <= 1;

subj to diag2_conflicts {k in -(n-2)..(n-2)}:
sum {i in max(k,0)+1..min(k,0)+n} Build[i,i-k] <= 1;

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 51

CP-Style Formulation

Sum of n2 conditional terms

Variables in Subscripts

param n integer > 0;
param cost {1..n,1..n};

var Col {1..n} integer >= 1 <= n;

minimize TotalCost:
sum {i in 1..n, j in 1..n} if Col[i] = j then cost[i,j];

subj to col_conflicts: alldiff {i in 1..n} Col[i];

subj to diag1_conflicts: alldiff {i in 1..n} (Col[i] + i);

subj to diag2_conflicts: alldiff {i in 1..n} (Col[i] - i);

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 52

CP-Style Formulation

Sum of n costs

Variables in Subscripts

param n integer > 0;
param cost {1..n,1..n};

var Col {1..n} integer >= 1 <= n;

minimize TotalCost:
sum {i in 1..n} cost[i,Col[i]];

subj to col_conflicts: alldiff {i in 1..n} Col[i];

subj to diag1_conflicts: alldiff {i in 1..n} (Col[i] + i);

subj to diag2_conflicts: alldiff {i in 1..n} (Col[i] - i);

. . . “variable in subscript”

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 53

Domain-Based Formulation

Variable in arbitrary set

var Serve {CLI} in LOC;
var Open {LOC} binary;

minimize TotalCost:
sum {i in 1..mCLI} srvCost[i,Serve[i]] +
bdgCost * sum {j in 1..nLOC} Open[j];

subject to OpenDefn {i in 1..mCLI}: Open[Serve[i]] = 1;

Variables in Subscripts

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 54

Additional Solvers

ILOG CP is a good start
 Allows experimentation with

a mature general-purpose CP solver

 Permits some comparisons to a MIP solver

 . . . but IBM has a modeling language tailored to CP

AMPL’s strength is solver-independence
 Other solvers can benefit from this technology

 Various possibilities under consideration
 Other constraint programming solvers
 LINDO Global
 SCIP
 LocalSolver
 . . .

What’s Missing?

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 55

How to Get the CP Interface

If you have an IBM CPLEX license from us
 Log in to your account at the AMPL download site

 Click on an ilogcp link to get a bundle of the needed files

If you have a AMPL academic license from us
 Join the IBM Academic Initiative

 Send info@ampl.com a request to add
free 1-year licenses for the CPLEX and ILOG CP solvers

Or request a free 30-day AMPL trial
 Write in ILOG CP as one of the solvers to include

Robert Fourer, Logical Conditions in AMPL
INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 56

is an integrated Excel add-in
that makes it easy to develop and deliver AMPL
optimization models using the familiar Excel
environment. SolverStudio adds a text editor to Excel
that allows an optimization model to be created
using AMPL and then embedded and saved within a
spreadsheet. SolverStudio also provides an
integrated data editor that allows model data (AMPL
parameters and sets) to be stored and edited on the
spreadsheet. SolverStudio’s Solve button runs the
AMPL model while seamlessly managing data
transfers with the spreadsheet. AMPL models can be
solved locally, or in the cloud using NEOS. As well as
working with AMPL, SolverStudio also supports the
GAMS, PuLP and Gurobi Python modelling
languages, amongst others.

SolverStudio is being developed and supported by
Andrew Mason at the Department of Engineering
Science, University of Auckland, New Zealand. Solver

Studio
for Excel http://solverstudio.orgS

ol
ve

rS
tu

di
o

 A
M

PL
 M

od
el

in
g

in
 E

xc
el

 SolverStudio

• Build & solve AMPL models using Excel
• Solve AMPL models in the cloud using NEOS.
• Free download: http://solverstudio.orgS

ol
ve

rS
tu

di
o

• Easily define params & sets on spreadsheet
• Automatic data exchange with model
• Free download from http://solverstudio.orgS

ol
ve

rS
tu

di
o

