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“Linear” solvers
 Linear and convex quadratic objectives &constraints

 Continuous or integer variables (or both)

 CPLEX, Gurobi, Xpress, MOSEK, SCIP, CBC, . . .

“Not Linear” problems
 Objectives & constraints in any other form

 Same continuous or integer variables

Goals
 Apply linear solvers to not linear problems

 Make this as easy as possible

. . . with help from an algebraic modeling language

3

Linear or Not?
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Intro to AMPL

Algebraic modeling language: symbolic data

set SHIFTS;               # shifts

param Nsched;             # number of schedules;
set SCHEDS = 1..Nsched;   # set of schedules

set SHIFT_LIST {SCHEDS} within SHIFTS;

param rate {SCHEDS} >= 0;      # pay rates
param required {SHIFTS} >= 0;  # staffing requirements

param least_assign >= 0;       # min workers on any schedule used
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AMPL

Algebraic modeling language: symbolic model

var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

minimize Total_Cost:
sum {j in SCHEDS} rate[j] * Work[j];

subject to Shift_Needs {i in SHIFTS}: 
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use1 {j in SCHEDS}:
least_assign * Use[j] <= Work[j];

subject to Least_Use2 {j in SCHEDS}:
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
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AMPL

Explicit data independent of symbolic model

set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
Mon3 Tue3 Wed3 Thu3 Fri3 ;

param Nsched := 126 ;

set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ;  .......

param required :=  Mon1 100  Mon2 78  Mon3 52 
Tue1 100  Tue2 78  Tue3 52
Wed1 100  Wed2 78  Wed3 52
Thu1 100  Thu2 78  Thu3 52
Fri1 100  Fri2 78  Fri3 52
Sat1 100  Sat2 78 ;
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AMPL

Solver independent of model & data

ampl: model sched1.mod;
ampl: data sched.dat;

ampl: let least_assign := 15;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.5.1.0: optimal integer solution; objective 266
20914 MIP simplex iterations
3085 branch-and-bound node

ampl: option omit_zero_rows 1, display_1col 0;
ampl: display Work;

Work [*] :=
6 28    31  9    66 11    89  9   118 18

18 18    36  7    78 26    91 25   119  7
20  9    37 18    82 18   112 27   122 36
;
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AMPL

Language independent of solver

ampl: option solver gurobi;
ampl: solve;

Gurobi 5.5.0: optimal solution; objective 266
25713 simplex iterations
2528 branch-and-cut nodes 

ampl: display Work;

Work [*] :=
1 20    37 36    89 28   101 12   119  7
2  8    71  7    91 16   109 28   122  8

21 36    87  7    95  8   116 17   124 28
;
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How do I linearize this?
 . . . + c x y + . . .  in my objective

 where x, y are variables; c is a positive constant

It depends . . .
 What kinds of variables are x and y?

 Are you minimizing or maximizing?

9

Intro to “Not Linear” Optimization
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Case 1: Binary, Minimize
Original formulation

param c > 0;
var x binary;
var y binary;

minimize Obj: ... + c * x * y + ...

Linearization

var z;

minimize Obj: ... + c * z + ...

subject to z0Defn: z >= 0;

subject to zxyDefn: z >= x + y — 1;

Intro Example

. . . z can be continuous
(minimization forces it to 0 or 1)
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Many other reformulations possible
 Best choice depends on problem and solver

 This one seems the best overall choice
 see tests in Jared Erickson’s dissertation:

JaredErickson2012@u.northwestern.edu

Extends to product of two linear terms
 Multiply them out

11

Case 1 (cont’d)
Intro Example
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Case 1 (cont’d)
General model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;

minimize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 17;
subject to SumY: sum {j in 1..n} j * Y[j] >= 17;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = 7;

Intro Example
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Case 1 (cont’d)

Solved by CPLEX

ampl: model xy1.mod;
ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.0.1: optimal integer solution; objective 232.6083992
54 MIP simplex iterations
20 branch-and-bound nodes

Intro Example

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX

 CPLEX solver . . .
 transforms products of binaries to linear formulations
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Case 2: Binary, Maximize
Original formulation

param c > 0;
var x binary;
var y binary;

maximize Obj: ... + c * x * y + ...

Linearization

var z;

maximize Obj: ... + c * z + ...

subject to zxDefn: z <= x;

subject to zyDefn: z <= y;

Intro Example

. . . z can be continuous
(maximization forces it to 0 or 1)
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Constraints depend on objective sense
 Minimize:  z >= 0, z >= x + y - 1

 Maximize:  z <= x, z <= y

Would it help to include all?
 No, the continuous relaxation is not tightened

 But may need all when 
extending this idea to xy in constraints

15

Case 2 (cont’d)
Intro Example
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Case 3: Binary & Continuous, Minimize
Original formulation

param c > 0;
var x binary;
var y >= L, <= U;

minimize Obj: ... + c * x * y + ...

Linearization

var z;

minimize Obj: ... + c * z + ...

subject to zLDefn: z >= L * x;

subject to zUDefn: z >= y - U * (1 — x);

Intro Example
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Extends in obvious ways
 Maximization form is symmetric

 y may be integer rather than continuous
 reduces to binary case with [L,U] = [0,1] 

Extends to product of two linear terms
 Multiply them out

 Equate the y term to a new variable

17

Case 3 (cont’d)
Intro Example
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Case 3 (cont’d)
General model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} >= 0, <= 2;

minimize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 17;
subject to SumY: sum {j in 1..n} j * Y[j] >= 17;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = 7;

Intro Example
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Case 3 (cont’d)

Rejected by CPLEX 12.5

ampl: model xy3.mod;
ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.0.1: QP Hessian is not positive semi-definite.

Intro Example

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX

 CPLEX 12.5 solver . . .
 checks quadratic function for convexity
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Case 3 (cont’d)

Solved by Gurobi 5.5

ampl: model xy3.mod;
ampl: option solver gurobi;

ampl: solve;

Gurobi 5.5.0: optimal solution; objective 177.090486
216 simplex iterations
9 branch-and-cut nodes

Intro Example

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to Gurobi

 Gurobi 5.5 solver . . .
 transforms products of variables to linear formulations
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Case 3 (cont’d)

Solved by CPLEX 12.5.1

ampl: model xy3.mod;
ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.1.0: optimal integer solution; objective 177.090486
148 MIP simplex iterations

Intro Example

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to CPLEX

 CPLEX 12.5.1 solver . . .
 transforms products of variables to linear formulations
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Case 4: Continuous, Maximize
Original formulation

param c > 0;
var x >= Lx, <= Ux;
var y >= Ly, <= Uy;

maximize Obj: c * x * y;

Conic reformulation

maximize Obj: c * z;

subject to zDefn: z^2 <= x * y;

Intro Example
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Solvable by linear programming techniques
 Original objective is quasi-concave

 Conic constraint region is convex

Can’t sum terms in objective
 Optimal solutions are preserved, but

 Objective value changes (to square root of actual)
 Not a problem if maximizing  cx1/2 y1/2

Can’t do anything with minimize!
 But can minimize a convex quadratic (2xy + x2 + y2)

 But can minimize product of negative powers

. . . more with conics and quadratics later in talk

23

Case 4 (cont’d)
Intro Example
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Case 4 (cont’d)
General model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;

maximize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 17;
subject to SumY: sum {j in 1..n} j * Y[j] >= 17;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = 7;

Intro Example
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Case 4 (cont’d)

Rejected by Gurobi

ampl: model xy4.mod;
ampl: option solver gurobi;

ampl: solve;

Gurobi 5.5.0: quadratic objective is not positive definite

Intro Example

Transformed automatically
 AMPL interface . . .

 multiplies out the linear objective terms
 sends quadratic coefficient list to Gurobi

 Gurobi solver . . .
 checks quadratic function for convexity
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Case 4 (cont’d)
Model transformed “by hand” . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;

var ZX >= 0;
var ZY >= 0;
var Z;

maximize Obj: Z;

subject to ZXdef: ZX = sum {j in 1..n} c[j]*X[j];
subject to ZYdef: ZY = sum {j in 1..n} d[j]*Y[j];

subject to Zdef: Z^2 <= ZX * ZY; # still not positive semidefinite

subject to SumX: .......

Intro Example
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Case 4 (cont’d)

Solved by Gurobi

ampl: model xy4b.mod;
ampl: option solver gurobi;

ampl: solve;

Gurobi 5.5.0: optimal solution; objective 29.78949442
10 barrier iterations

ampl: display ZX*ZY;
ZX*ZY = 887.414   # equals Obj^2

Intro Example

Transformed automatically
 AMPL interface . . .

 detects quadratic constraint terms
 sends quadratic coefficient list to Gurobi

 Gurobi solver . . .
 detects conic constraint structure
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Key Questions
Intro Example

Can it be transformed?
 Yes or no?

 Transformed to what?

. . . very sensitive to mathematical form

Who will make the transformation?
 The human modeler?

 The modeling system?

 The solver?

. . . often some combination of these
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Discontinuous domains
 Semi-continuous case

 Discrete case

Logic
 Indicator constraints

 Disjunctions and generalizations

Piecewise-linear terms

Convex quadratic functions
 Elliptic forms

 Conic forms

29

Topics
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Traditional: bounded variable domains
 x >= some lower bound

 x <= some upper bound

Extended: arbitrary variable domains
 x in any union of points and intervals

30

Discontinuous Domains
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var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

subject to Least_Use1 {j in SCHEDS}:
least_assign * Use[j] <= Work[j];

subject to Least_Use2 {j in SCHEDS}:
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];

Formulation with zero-one variables

Example: Scheduling (revisited)

var Work {j in SCHEDS} integer, in {0} union

interval [least_assign, (max {i in SHIFT_LIST[j]} required[i])];

Formulation with discrete domains
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set NUTR;
set FOOD;

param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];

param amt {NUTR,FOOD} >= 0;

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];

subject to Diet {i in NUTR}:

n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

Continuous formulations

Simple Example: Diet
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Two Common Cases
Instead of a continuous variable . . .

var Buy {FOOD} >= 0, <= 100;

Semi-continuous case

var Buy {FOOD} in {0} union interval[30,40];

Discrete case

var Buy {FOOD} in {1,2,5,10,20,50};

Discontinuous Domains
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Semi-Continuous Case
Continuous

Gurobi 5.5.0: optimal solution; objective 88.2
1 simplex iterations

ampl: display Buy;

BEEF  0        FISH  0         MCH 46.6667    SPG  0
CHK  0         HAM  0         MTL  0         TUR  0

Semi-Continuous

Gurobi 5.5.0: optimal solution; objective 116.4

60 simplex iterations
11 branch-and-cut nodes

ampl: display Buy;

BEEF  0        FISH  0         MCH 30         SPG  0
CHK  0         HAM  0         MTL 30         TUR  0

Discontinuous Domains



Robert Fourer, AMPL Models for  “Not Linear” Optimization Using Linear Solvers
IEURO/INFORMS Intl Meeting, Rome — 1-4 July 2013 — WB-9 Sponsor Presentations 35

Semi-Continuous Case (cont’d)
Continuous

8 variables, all linear

4 constraints, all linear; 31 nonzeros

1 linear objective; 8 nonzeros.

Semi-Continuous

16 variables:
8 binary variables
8 linear variables

20 constraints, all linear; 63 nonzeros

1 linear objective; 8 nonzeros.

Discontinuous Domains
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Semi-Continuous Case (cont’d)

Converted to MIP with extra binary variables . . .

subject to (Buy[BEEF]+IUlb):
Buy['BEEF'] - 30*(Buy[BEEF]+b) >= 0;

subject to (Buy[BEEF]+IUub):
-Buy['BEEF'] + 40*(Buy[BEEF]+b) >= 0;

subject to (Buy[CHK]+IUlb):
Buy['CHK'] - 30*(Buy[CHK]+b) >= 0;

subject to (Buy[CHK]+IUub):
-Buy['CHK'] + 40*(Buy[CHK]+b) >= 0;

subject to (Buy[FISH]+IUlb):
Buy['FISH'] - 30*(Buy[FISH]+b) >= 0;

subject to (Buy[FISH]+IUub):
-Buy['FISH'] + 40*(Buy[FISH]+b) >= 0;

.......

Discontinuous Domains
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Discrete Case
Continuous

Gurobi 5.5.0: optimal solution; objective 88.2
1 simplex iterations

ampl: display Buy;

BEEF  0        FISH  0         MCH 46.6667    SPG  0
CHK  0         HAM  0         MTL  0         TUR  0

Discrete

Gurobi 5.5.0: optimal solution; objective 95.49

85 simplex iterations
15 branch-and-cut nodes

ampl: display Buy;

BEEF  1   FISH  1    MCH 10    SPG  5
CHK 20    HAM  1    MTL  2    TUR  1

Discontinuous Domains
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Discrete Case (cont’d)

Continuous

8 variables, all linear

4 constraints, all linear; 31 nonzeros

1 linear objective; 8 nonzeros.

Discrete

Substitution eliminates 8 variables.

48 variables, all binary

12 constraints, all linear; 234 nonzeros

1 linear objective; 48 nonzeros.

Discontinuous Domains
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Discrete Case (cont’d)

Converted to MIP in binary variables . . .

minimize Total_Cost:

3.19*(Buy[BEEF]+b)[0] + 6.38*(Buy[BEEF]+b)[1] + 
15.95*(Buy[BEEF]+b)[2] + 31.9*(Buy[BEEF]+b)[3] + 
63.8*(Buy[BEEF]+b)[4] + 159.5*(Buy[BEEF]+b)[5] + 
2.59*(Buy[CHK]+b)[0] + 5.18*(Buy[CHK]+b)[1] + 
12.95*(Buy[CHK]+b)[2] + 25.9*(Buy[CHK]+b)[3] + 
51.8*(Buy[CHK]+b)[4] + 129.5*(Buy[CHK]+b)[5] + ...

subject to Diet['A']:

700 <= 60*(Buy[BEEF]+b)[0] + 120*(Buy[BEEF]+b)[1] + 
300*(Buy[BEEF]+b)[2] + 600*(Buy[BEEF]+b)[3] + 
1200*(Buy[BEEF]+b)[4] + 3000*(Buy[BEEF]+b)[5] + 
8*(Buy[CHK]+b)[0] + 16*(Buy[CHK]+b)[1] + 40*(Buy[CHK]+b)[2] + 
80*(Buy[CHK]+b)[3] + 160*(Buy[CHK]+b)[4] + 400*(Buy[CHK]+b)[5] + ...

Discontinuous Domains
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Discrete Case (cont’d)

and SOS type 1 constraints . . .

subject to (Buy[BEEF]+sos1):

(Buy[BEEF]+b)[0] + (Buy[BEEF]+b)[1] + (Buy[BEEF]+b)[2] + 
(Buy[BEEF]+b)[3] + (Buy[BEEF]+b)[4] + (Buy[BEEF]+b)[5] = 1;

subject to (Buy[CHK]+sos1):

(Buy[CHK]+b)[0] + (Buy[CHK]+b)[1] + (Buy[CHK]+b)[2] + 
(Buy[CHK]+b)[3] + (Buy[CHK]+b)[4] + (Buy[CHK]+b)[5] = 1;  ...

Discontinuous Domains
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Discrete Case (cont’d)

with SOS type 1 markers in output file

S0 48 sos
0 20
1 20
2 20
3 20
4 20
5 20
6 36
7 36 ...

S4 48 sosref
0 1
1 2
2 5
3 10
4 20
5 50
6 1
7 2  ...

Discontinuous Domains
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General case
 Arbitrary union of points and intervals

 Auxiliary binary variable for each point or interval

 3 auxiliary constraints for each variable

Union of points
 Auxiliary binary variable for each point

 Auxiliary constraint for each variable

 Enhanced branching in solver
 “special ordered sets of type 1”

Zero union interval (semi-continuous)
 Auxiliary binary variable for each variable

 2 auxiliary constraints for each variable

 Enhanced branching in solver

42

Conversion for Solver
Discontinuous Domains
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Logical Conditions

Common “not linear” logical expressions
 Disjunctions (or), implications (==>)

 Counting expressions (count),
Counting constraints (atleast, atmost)

 Aggregate constraints (alldiff, numberof)

Variety of solvers
 Mixed-integer programming: CPLEX

 Applied directly
 Applied after conversion to MIP

 Constraint programming: ILOG CP, Gecode, JaCoP
 Applied directly
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var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;

subject to Least_Use1 {j in SCHEDS}:
least_assign * Use[j] <= Work[j];

subject to Least_Use2 {j in SCHEDS}:
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];

Formulation with zero-one variables

Example: Scheduling (revisited)

subject to Least_Use:
Use[j] = 1 ==> least_assign <= Work[j]

else Work[j] = 0;

Formulation with implications

Logical Conditions
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Conversion for Solver
Pass logic to CPLEX

 AMPL writes “logical” constraints as expression trees
 AMPL-CPLEX driver “walks” the trees

 detects indicator forms
 converts to CPLEX library calls

 CPLEX solves within its branch-and-cut framework

Scheduling
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Which is Fastest?
Use[j] = 1 ==> least_assign <= Work[j] else Work[j] = 0;

CPLEX 12.3.0.1: optimal integer solution; objective 266
1265016 MIP simplex iterations
231882 branch-and-bound nodes

least_assign * Use[j] <= Work[j];
Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];

CPLEX 12.3.0.1: optimal integer solution; objective 266
776836 MIP simplex iterations
109169 branch-and-bound nodes

Use[j] = 1 ==> least_assign <= Work[j] <= 
(max {i in SHIFT_LIST[j]} required[i]) else Work[j] = 0;

CPLEX 12.3.0.1: optimal integer solution; objective 266
13470 MIP simplex iterations
2161 branch-and-bound nodes

Scheduling
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Example: Multi-Commodity

Minimum-shipment constraints
 From each origin to each destination, either

ship nothing or ship at least minload units

Conventional linear mixed-integer formulation

var Trans {ORIG,DEST,PROD} >= 0;

var Use {ORIG, DEST} binary;

....... 

subject to Multi {i in ORIG, j in DEST}:

sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];

subject to Min_Ship {i in ORIG, j in DEST}:

sum {p in PROD} Trans[i,j,p] >= minload * Use[i,j];

Logical Conditions
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Zero-One Alternatives

Mixed-integer formulation using implications

Multi-Commodity

subject to Multi_Min_Ship {i in ORIG, j in DEST}:

Use[i,j] = 1  ==>

minload <= sum {p in PROD} Trans[i,j,p] <= limit[i,j]

else sum {p in PROD} Trans[i,j,p] = 0;

Solved directly by CPLEX

ampl: model multmipImpl.mod;
ampl: data multmipG.dat;

ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.0.1: optimal integer solution; objective 235625
175 MIP simplex iterations
0 branch-and-bound nodes
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Non-Zero-One Alternatives

Disjunctive constraint

subject to Multi_Min_Ship {i in ORIG, j in DEST}:

sum {p in PROD} Trans[i,j,p] = 0  or

minload <= sum {p in PROD} Trans[i,j,p] <= limit[i,j];

Multi-Commodity

Solved by CPLEX after automatic conversion

ampl: model multmipDisj.mod;
ampl: data multmipG.dat;

ampl: solve;

CPLEX 12.5.0.1: logical constraint not indicator constraint.

ampl: option solver ilogcp;
ampl: option ilogcp_options 'optimizer cplex';

ampl: solve;

ilogcp 12.4.0: optimal solution
0 nodes, 175 iterations, objective 235625
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Example: Optimal Arrangement

Optimally line up a group of people
 Given a set of adjacency preferences,

maximize the number that are satisfied

Decision variables
 For each preference “i1 adjacent to i2”:

Sat[i1,i2] = 1 iff this is satisfied in the lineup

 Pos[i] is the position of person i in the line

. . . fewer variables, larger domains

Logical Conditions
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“CP-Style” Alternative

All-different & other logic constraints

param nPeople integer > 0;
set PREFS within {i1 in 1..nPeople, i2 in 1..nPeople: i1 <> i2};

var Sat {PREFS} binary;
var Pos {1..nPeople} integer >= 1, <= nPeople;

maximize NumSat: sum {(i1,i2) in PREFS} Sat[i1,i2];

subject to OnePersonPerPosition:

alldiff {i in 1..nPeople} Pos[i];

subject to SatDefn {(i1,i2) in PREFS}:

Sat[i1,i2] = 1 <==> Pos[i1]-Pos[i2] = 1 or Pos[i2]-Pos[i1] = 1;

subject to SymmBreaking:

Pos[1] < Pos[2];

Arrangement
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“CP-Style” Alternative (cont’d)

11 people, 20 preferences

ampl: model photo.mod;
ampl: data photo11.dat;

ampl: option solver ilogcp;

ampl: solve;

ilogcp 12.5.0: optimizer cp
ilogcp 12.5.0: optimal solution
8837525 choice points, 8432821 fails, objective 12

ampl: option solver gecode;

ampl: solve;

gecode 3.7.3: optimal solution
589206448 nodes, 294603205 fails, objective 12

ampl:

Arrangement
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Example: Assignment
Assignment to groups with “no one isolated”

var Lone {(i1,i2) in ISO, j in REST} binary;

param give {ISO} default 2;
param giveTitle {TITLE} default 2;
param giveLoc {LOC} default 2;

param upperbnd {(i1,i2) in ISO, j in REST} :=
min (ceil((number2[i1,i2]/card {PEOPLE}) * hiDine[j]) + give[i1,i2],

hiTargetTitle[i1,j] + giveTitle[i1],
hiTargetLoc[i2,j] + giveLoc[i2], number2[i1,i2]);

subj to Isolation1 {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] <= upperbnd[i1,i2,j] * Lone[i1,i2,j];

subj to Isolation2a {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] >= Lone[i1,i2,j];

subj to Isolation2b {(i1,i2) in ISO, j in REST}:
Assign2[i1,i2,j] +

sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j]
>= 2 * Lone[i1,i2,j];

Logical conditions
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Example (cont’d)

Same using indicator constraints

var Lone {(i1,i2) in ISO, j in REST} binary;

subj to Isolation1 {(i1,i2) in ISO, j in REST}:
Lone[i1,i2,j] = 0 ==> Assign2[i1,i2,j] = 0;

subj to Isolation2b {(i1,i2) in ISO, j in REST}:
Lone[i1,i2,j] = 1 ==> Assign2[i1,i2,j] +
sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j] >= 2;

Assignment
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Example: Workforce Planning
Layoff costs incurred only during a shutdown

var LayoffCost {m in MONTHS} >=0;

subj to LayoffCostDefn1 {m in MONTHS}:
LayoffCost[m]

<= snrLayOffWages * 31 * maxNbrSnrEmpl * (1 - NoShut[m]);

subj to LayoffCostDefn2a {m in MONTHS}:
LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl

<= maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];

subj to LayoffCostDefn2b {m in MONTHS}:
LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl 

>= -maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];

Logical Conditions
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Example (cont’d)

Same using indicator constraints

var LayoffCost {m in MONTHS} >=0;

subj to LayoffCostDefn1 {m in MONTHS}:
NoShut[m] = 1 ==> LayoffCost[m] = 0;

subj to LayoffCostDefn2 {m in MONTHS}:
NoShut[m] = 0 ==> LayoffCost[m] = 

snrLayoffWages * ShutdownDays[m] * maxNumberSnrEmpl;

Workforce Planning
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Definition
 Function of one variable

 Linear on intervals

 Continuous

Issues
 Describing the function

 choice of specification
 syntax in the modeling language

 Communicating the function to a solver
 direction description
 transformation to linear or linear-integer

57

Piecewise-Linear Terms
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Possibilities
 List of breakpoints and either:

 change in slope at each breakpoint
 value of the function at each breakpoint

 List of slopes and either:
 distance between breakpoints bounding each slope
 value of intercept associated with each slope

 Lists of breakpoints and slopes

Also needed in some cases
 One particular breakpoint

 One particular slope

 Value at one particular point

58

Specification
Piecewise-Linear
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AMPL Specification: Examples
Piecewise-Linear

<<0; -1,1>> x[j]

<<-1,1,3,5; -5,-1,0,1.5,3>> x[j]

<<3,5; 0.25,1.00,0.50>> x[j]
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General forms
 <breakpoint-list; slope-list> variable

 Zero at zero
 Bounds on variable specified independently

 <breakpoint-list; slope-list> (variable, zero-point)
 Zero at zero-point

 <breakpoint-list; slope-list> variable + constant
 Has value constant at zero

Breakpoint & slope list forms
 Simple list

 <<lim1[i,j],lim2[i,j]; r1[i,j],r2[i,j],r3[i,j]>>

 Indexed list
 << {k in 1..nlim[i,j]} lim[i,j,k]; 

{k in 1..nlim[i,j]+1} r[i,j,k]>>

60

AMPL Specification: Syntax
Piecewise-Linear
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AMPL Applications (1)
Design of a planar structure

var Force {bars};   # Forces on bars:
# positive in tension, negative in compression

minimize TotalWeight:  (density / yield_stress) *

sum {(i,j) in bars} length[i,j] * <<0; -1,+1>> Force[i,j];

# Weight is proportional to length
# times absolute value of force

subject to Xbal {k in joints: k <> fixed}:

sum {(i,k) in bars} xcos[i,k] * Force[i,k]
- sum {(k,j) in bars} xcos[k,j] * Force[k,j] = xload[k];

subject to Ybal {k in joints: k <> fixed and k <> rolling}:

sum {(i,k) in bars} ycos[i,k] * Force[i,k]
- sum {(k,j) in bars} ycos[k,j] * Force[k,j] = yload[k];

# Forces balance in
# horizontal and vertical directions

Piecewise-Linear
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AMPL Applications (2)
Data fitting for credit scoring

var Wt_const;             # Constant term in computing all scores

var Wt {j in factors} >= if wttyp[j] = 'pos' then 0 else -Infinity
<= if wttyp[j] = 'neg' then 0 else +Infinity;

# Weights on the factors

var Sc {i in people};     # Scores for the individuals

minimize Penalty:         # Sum of penalties for all individuals

Gratio * sum {i in Good} << {k in 1..Gpce-1} if Gbktyp[k] = 'A' 

then Gbkfac[k]*app_amt 
else Gbkfac[k]*bal_amt[i];

{k in 1..Gpce} Gslope[k] >> Sc[i] +

Bratio * sum {i in Bad}  << {k in 1..Bpce-1} if Bbktyp[k] = 'A'

then Bbkfac[k]*app_amt
else Bbkfac[k]*bal_amt[i];

{k in 1..Bpce} Bslope[k] >> Sc[i];

Piecewise-Linear
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Conversion for Solver

Transportation costs

param rate1 {i in ORIG, j in DEST} >= 0;
param rate2 {i in ORIG, j in DEST} >= rate1[i,j];
param rate3 {i in ORIG, j in DEST} >= rate2[i,j];

param limit1 {i in ORIG, j in DEST} >= 0;
param limit2 {i in ORIG, j in DEST} >= limit1[i,j];

var Trans {ORIG,DEST} >= 0;

minimize Total_Cost:

sum {i in ORIG, j in DEST} 
<<limit1[i,j], limit2[i,j]; 
rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];

Piecewise-Linear
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Minimizing Convex Costs
Equivalent linear program

ampl: model trpl2.mod; data trpl.dat; solve;

Substitution eliminates 15 variables.
21 piecewise-linear terms replaced by 35 variables and 15 constraints.

Adjusted problem:
41 variables, all linear
10 constraints, all linear; 82 nonzeros
1 linear objective; 41 nonzeros.

CPLEX 10.1.0: optimal solution; objective 199100
12 dual simplex iterations (0 in phase I)

ampl: display Trans;

:      DET   FRA   FRE   LAF   LAN   STL   WIN  :=

CLEV   500     0   200   500   500    500   400
GARY     0     0   900   300     0    200     0
PITT   700   900     0   200   100   1000     0 ;

Piecewise-Linear
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Minimizing Non-Convex Costs
Equivalent mixed-integer program

model trpl3.mod; data trpl.dat; solve;

Substitution eliminates 18 variables.
21 piecewise-linear terms replaced by 87 variables and 87 constraints.

Adjusted problem:
90 variables:

41 binary variables
49 linear variables

79 constraints, all linear; 251 nonzeros
1 linear objective; 49 nonzeros.

CPLEX 10.1.0: optimal integer solution; objective 256100
189 MIP simplex iterations
144 branch-and-bound nodes

ampl: display Trans;

:      DET    FRA   FRE    LAF    LAN   STL    WIN  :=

CLEV   1200     0      0   1000     0      0   400
GARY      0     0   1100      0   300      0     0
PITT      0   900      0      0   300   1700     0

Piecewise-Linear



Robert Fourer, AMPL Models for  “Not Linear” Optimization Using Linear Solvers
IEURO/INFORMS Intl Meeting, Rome — 1-4 July 2013 — WB-9 Sponsor Presentations 66

Minimizing Non-Convex Costs (cont’d)

. . . with SOS type 2 markers in output file

S0 87 sos
3 16
49 18
4 16
50 18  ...

S1 64 sos
10 19
11 18
12 18
14 35  ...

S4 46 sosref
3 -501
4  751
5 -501
6  500  ...

Piecewise-Linear
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Equivalent linear program if . . .
 Objective

 minimizes convex (increasing slopes) or
 maximizes concave (decreasing slopes)

 Constraints expressions
 convex and on the left-hand side of a ≤ constraint
 convex and on the right-hand side of a ≥ constraint
 concave and on the left-hand side of a ≥ constraint
 concave and on the right-hand side of a ≤ constraint

Equivalent mixed-integer program otherwise
 At least one binary variable per piece

 Enhanced branching in solver
 “special ordered sets of type 2”

67

Conversion for Solver
Piecewise-Linear
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Two distinct cases
 Elliptic functions

 Conic functions

Handled by standard “linear” solvers
 Description by coefficient lists

 Solution by simplex or interior-point methods

 Solution with integer variables by branch-and-bound

68

Convex Quadratic Functions
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Elliptic Quadratic: Example
Portfolio optimization

set A; # asset categories
set T := {1973..1994};   # years

param R {T,A};           # returns on asset categories
param mu default 2;      # weight on variance

param mean {j in A} = (sum {i in T} R[i,j]) / card(T);

param Rtilde {i in T, j in A} = R[i,j] - mean[j];

var Frac {A} >=0; 

var Mean = sum {j in A} mean[j] * Frac[j];

var Variance = 
sum {i in T} (sum {j in A} Rtilde[i,j]*Frac[j])^2 / card{T};

minimize RiskReward:  mu * Variance - Mean;

subject to TotalOne:  sum {j in A} Frac[j] = 1;
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Example (cont’d)

Portfolio data

set A := 
US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000
NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD;   

param R:
US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000 
NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD :=

1973  1.075  0.942  0.852  0.815  0.698  1.023  0.851  1.677 
1974  1.084  1.020  0.735  0.716  0.662  1.002  0.768  1.722 
1975  1.061  1.056  1.371  1.385  1.318  1.123  1.354  0.760 
1976  1.052  1.175  1.236  1.266  1.280  1.156  1.025  0.960 
1977  1.055  1.002  0.926  0.974  1.093  1.030  1.181  1.200 
1978  1.077  0.982  1.064  1.093  1.146  1.012  1.326  1.295 
1979  1.109  0.978  1.184  1.256  1.307  1.023  1.048  2.212 
1980  1.127  0.947  1.323  1.337  1.367  1.031  1.226  1.296 
1981  1.156  1.003  0.949  0.963  0.990  1.073  0.977  0.688 
1982  1.117  1.465  1.215  1.187  1.213  1.311  0.981  1.084 
1983  1.092  0.985  1.224  1.235  1.217  1.080  1.237  0.872 
1984  1.103  1.159  1.061  1.030  0.903  1.150  1.074  0.825 ...

Elliptic Quadratic
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Example (cont’d)

Solving with CPLEX

ampl: model markowitz.mod;
ampl: data markowitz.dat;

ampl: option solver cplexamp;

ampl: solve;

8 variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.

CPLEX 12.2.0.0: optimal solution; objective -1.098362471
12 QP barrier iterations

ampl:

Elliptic Quadratic
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Example (cont’d)

Solving with CPLEX (simplex)

ampl: model markowitz.mod;
ampl: data markowitz.dat;

ampl: option solver cplexamp;
ampl: option cplex_options 'primalopt';

ampl: solve;

8 variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.

CPLEX 12.2.0.0: primalopt
No QP presolve or aggregator reductions.

CPLEX 12.2.0.0: optimal solution; objective -1.098362476
5 QP simplex iterations (0 in phase I)

ampl: 

Elliptic Quadratic



Robert Fourer, AMPL Models for  “Not Linear” Optimization Using Linear Solvers
IEURO/INFORMS Intl Meeting, Rome — 1-4 July 2013 — WB-9 Sponsor Presentations 73

Example (cont’d)

Optimal portfolio

ampl: option omit_zero_rows 1;

ampl: display Frac;

EAFE  0.216083
GOLD  0.185066

LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX  0.397056
WILSHIRE_5000  0.201795 ;

ampl: display Mean, Variance;

Mean = 1.11577
Variance = 0.00870377

ampl: 

Elliptic Quadratic
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Example (cont’d)

Optimal portfolio (discrete)

var Share {A} integer >= 0, <= 100;

var Frac {j in A} = Share[j] / 100; 

Elliptic Quadratic

ampl: solve;

CPLEX 12.2.0.0: optimal integer solution within mipgap or absmipgap; 
objective -1.098353751

10 MIP simplex iterations
0 branch-and-bound nodes

absmipgap = 8.72492e-06, relmipgap = 7.94364e-06

ampl: display Frac;

EAFE  0.22
GOLD  0.18

LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX  0.4
WILSHIRE_5000  0.2 ;
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Symbolic detection (not used)
 Objectives

 Minimize  ݔଵଶ + . . ௡ଶݔ + .
 Minimize  ∑ ܽ௜(܎௜ܠ + ݃௜)ଶ௡௜ୀଵ ,  ܽ௜ ≥ 0

 Constraints
 . + ଵଶݔ . . ≥ ௡ଶݔ +  ݎ
 ∑ ܽ௜(܎௜ܠ + ݃௜)ଶ௡௜ୀଵ ≤ ௜ܽ  ,ݎ ≥ 0

Numerical detection
 Objectives

 Minimize  ܠۿ்ܠ + ܠܙ
 Constraints

 ܠۿ்ܠ + ܠܙ ≤ ݎ
 . . . where Q is positive semidefinite

75

Detection for Solver
Elliptic Quadratic
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Representation
 Much like LP

 Coefficient lists for linear terms
 Coefficient lists for quadratic terms

 A lot simpler than general NLP

Optimization
 Much like LP

 Generalizations of barrier methods
 Generalizations of simplex methods
 Extensions of mixed-integer branch-and-bound schemes

 Simple derivative computations

 Less overhead than general-purpose nonlinear solvers
. . . actual speedup will vary
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Elliptic Quadratic
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Conic Quadratic: Example

Traffic network: symbolic data

set INTERS;          # intersections (network nodes)

param EN symbolic;   # entrance
param EX symbolic;   # exit

check {EN,EX} not within INTERS;

set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};

# road links (network arcs)

param base {ROADS} > 0;  # base travel times
param sens {ROADS} > 0;  # traffic sensitivities
param cap {ROADS} > 0;   # capacities

param through > 0;       # throughput
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Example (cont’d)

Traffic network: symbolic model

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic Quadratic
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Example (cont’d)

Traffic network: sample data

set INTERS := b c ;

param EN := a ;
param EX := d ;

param: ROADS: base cap sens :=
a b    4   10   .1
a c    1   12   .7
c b    2   20   .9
b d    1   15   .5
c d    6   10   .1 ;

param through := 20 ;

Conic Quadratic
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Example (cont’d)

Model + data = problem to solve, using KNITRO

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver knitro;
ampl: solve;

KNITRO 7.0.0: Locally optimal solution.
objective 61.04695019; feasibility error 3.55e-14
12 iterations; 25 function evaluations

ampl: display Flow, Time;

:       Flow       Time   :=
a b    9.55146   25.2948
a c   10.4485    57.5709
b d   11.0044    21.6558
c b    1.45291    3.41006
c d    8.99562   14.9564
;

Conic Quadratic
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Example (cont’d)

Same with integer-valued variables

ampl: solve;

KNITRO 7.0.0: Locally optimal solution.
objective 76.26375; integrality gap 0
3 nodes; 5 subproblem solves

ampl: display Flow, Time;

:   Flow   Time  :=
a b    9   13
a c   11   93.4
b d   11   21.625
c b    2   4
c d    9   15
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Conic Quadratic
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Example (cont’d)

Model + data = problem to solve, using CPLEX?

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: 
Constraint _scon[1] is not convex quadratic 
since it is an equality constraint.

Conic Quadratic
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Example (cont’d)

Look at the model again . . .

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic Quadratic
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Example (cont’d)

Quadratically constrained reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic Quadratic
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Example (cont’d)

Model + data = problem to solve, using CPLEX?

ampl: model trafficQUAD.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: 
QP Hessian is not positive semi-definite.

Conic Quadratic



Robert Fourer, AMPL Models for  “Not Linear” Optimization Using Linear Solvers
IEURO/INFORMS Intl Meeting, Rome — 1-4 July 2013 — WB-9 Sponsor Presentations 89

Example (cont’d)

Quadratic reformulation #2

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
Slack[i,j] = 1 - Flow[i,j]/cap[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Conic Quadratic
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Example (cont’d)

Model + data = problem to solve, using CPLEX!

ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.3.0.0: primal optimal; objective 61.04693968
15 barrier iterations

ampl: display Flow;

Flow :=
a b    9.55175
a c   10.4482
b d   11.0044
c b    1.45264
c d    8.99561
;

Conic Quadratic



Robert Fourer, AMPL Models for  “Not Linear” Optimization Using Linear Solvers
IEURO/INFORMS Intl Meeting, Rome — 1-4 July 2013 — WB-9 Sponsor Presentations 91

Example (cont’d)

Same with integer-valued variables

ampl: solve;

CPLEX 12.3.0.0: optimal integer solution within mipgap or absmipgap; 
objective 76.26375017

19 MIP barrier iterations
0 branch-and-bound nodes

ampl: display Flow;

Flow :=
a b    9
a c   11
b d   11
c b    2
c d    9
;

var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];

Conic Quadratic
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General nonlinear solver
 Fewer variables

 More natural formulation

MIP solver with convex quadratic option
 Mathematically simpler formulation

 No derivative evaluations
 no problems with nondifferentiable points

 More powerful large-scale solver technologies
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Which Solver Is Preferable?
Conic Quadratic
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Standard cone

93

Second-Order Cone Programs (SOCPs)

. . . boundary not smooth

Rotated cone
 ଶݔ ≤ ,ݖݕ ݕ ≥ 0, ݖ ≥ 0, . . .

y

z

ଶݔ + ଶݕ ≤ ଶݖ ݖ ≥ 0 ଶݔ + ଶݕ ≤ ,ଶݖ ݖ ≥ 0
Conic Quadratic
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Similarities
 Describe by lists of coefficients

 Solve by extensions of LP barrier methods

 Extend to mixed-integer branch-and-bound

Differences in conic case
 Quadratic part not positive semi-definite

 Nonnegativity is essential

 Boundary of feasible region is not differentiable

 Many convex problems can be reduced to this case . . .

94

Solving: Conic vs. Elliptic
Conic QP
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Quadratic
 Constraints (already seen)

 Objectives

SOC-representable
 Quadratic-linear ratios

 Generalized geometric means

 Generalized p-norms

Other objective functions
 Generalized product-of-powers

 Logarithmic Chebychev

95

SOCP-Solvable Forms
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Standard cone constraints
 ∑ ܽ௜(܎௜ܠ + ݃௜)ଶ௡௜ୀଵ ≤ ܽ௡ାଵ(܎௡ାଵܠ + ݃௡ାଵ)ଶ,ܽଵ, . . . , ܽ௡ାଵ ≥ 0, ܠ௡ାଵ܎ + ݃௡ାଵ ≥ 0

Rotated cone constraints
 ∑ ܽ௜ ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ ≤ ܽ௡ାଵ ܠ௡ାଵ܎ + ݃௡ାଵ ܠ௡ାଶ܎ + ݃௡ାଶ ,ܽଵ, . . . , ܽ௡ାଵ ≥ 0, ܠ௡ାଵ܎   + ݃௡ାଵ ≥ ܠ௡ାଶ܎  ,0 + ݃௡ାଶ ≥ 0

Sum-of-squares objectives
 Minimize  ∑ ܽ௜ ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ

 Minimize ݒ
Subject to ∑ ܽ௜ ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ ≤ ݒ  ,ଶݒ ≥ 0

Quadratic
SOCP-solvable
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Definition
 Function ݏ ݔ is SOC-representable iff . . .

 ݏ ݔ ≤ ܽ௡(܎௡ାଵܠ + ݃௡ାଵ) is equivalent to some 
combination of linear and quadratic cone constraints

Minimization property
 Minimize ݏ ݔ is SOC-solvable

 Minimize ௡ାଵݒ
Subject to (ݔ)ݏ ≤ ௡ାଵݒ

Combination properties
 ܽ ∙ ݏ ݔ is SOC-representable for any ܽ ≥ 0
 ∑ ௜ݏ ௡௜ୀଵݔ is SOC-representable

 ௜ୀଵ௡ݔܽ݉ ௜ݏ  ݔ is SOC-representable
. . . requires a recursive detection algorithm!
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SOC-Representable
SOCP-solvable
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SOC-Representable (1)
Vector norm

 ܉ ∙ ܠ۴ + ܏ = ∑ ܽ௜ଶ ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ ≤ ܽ௡ାଵ ܠ௡ାଵ܎ + ݃௡ାଵ
 square both sides to get standard SOC∑ ܽ௜ଶ ܠ௜܎ + ݃௜ ଶ௡௜ୀଵ ≤ ܽ௡ାଵଶ ܠ௡ାଵ܎ + ݃௡ାଵ ଶ

Quadratic-linear ratio


∑ ௔೔ ା ௚೔ ܠ೔܎ మ೙೔సభ܎೙శమܠ ା ௚೙శమ ≤ ܽ௡ାଵ ܠ௡ାଵ܎ + ݃௡ାଵ
 where ܎௡ାଶܠ + ݃௡ାଶ ≥ 0
 multiply by denominator to get rotated SOC∑ ܽ௜ ܎௜ܠ + ݃௜ ଶ௡௜ୀଵ ≤ ܽ௡ାଵ ܎௡ାଵܠ + ݃௡ାଵ ܠ௡ାଶ܎ + ݃௡ାଶ
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SOCP-solvable
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SOC-Representable (2)
Negative geometric mean

 − ∏ ܠ௜܎ + ݃௜ ଵ ௣⁄௣௜ୀଵ ≤ ܠ௡ାଵ܎ + ݃௡ାଵ,  ݌ ∈ ℤା
 ସଵ/ସݔଷଵ/ସݔଶଵ/ସݔଵଵ/ସݔ− ≤ ହݔ− becomes rotated SOCs:ݔହଶ ≤ ଵଶݒ ,ଶݒଵݒ ≤ ଶଶݒ ,ଶݔଵݔ ≤ ସݔଷݔ
 apply recursively logଶ ݌ times

Generalizations
 − ∏ ܠ௜܎ + ݃௜ ఈ೔௡௜ୀଵ ≤ ܽ௡ାଵ ܠ௡ାଵ܎ + ݃௡ାଵ :  ∑ ௜ߙ ≤ 1௡௜ୀଵ ௜ߙ , ∈ ℚା
 ∏ ܠ௜܎ + ݃௜ ିఈ೔௡௜ୀଵ ≤ ܽ௡ାଵ ܠ௡ାଵ܎ + ݃௡ାଵ ௜ߙ  , ∈ ℚା

 all require ܎௜ܠ + ݃௜ to have proper sign
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SOCP-solvable
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SOC-Representable (3)
p-norm

 ∑ ܠ௜܎ + ݃௜ ௣௡௜ୀଵ ଵ ௣⁄ ≤ ܠ௡ାଵ܎ + ݃௡ାଵ,  ݌ ∈ ℚା,  ݌ ≥ 1
 ଵݔ ହ + ଶݔ ହ ଵ ହ⁄ ≤ ଷݔ can be writtenݔଵ ହ ⁄ଷସݔ + ଶݔ ହ ⁄ଷସݔ  ≤ ଷݔ which becomesݒଵ + ଶݒ ≤ ଷݔ with  −ݒଵଵ ହ⁄ ଷସݔ ହ⁄ ≤ ଵଵݒ− ,ଵݔ± ହ⁄ ଷସݔ ହ⁄ ≤ ଶݔ±
 reduces to product of powers

Generalizations
 ∑ ܠ௜܎ + ݃௜ ఈ೔௡௜ୀଵ ଵ ఈబ⁄ ≤ ܠ௡ାଵ܎ + ݃௡ାଵ,  α௜ ∈ ℚା,  ߙ௜ ≥ ଴ߙ  ≥ 1
 ∑ ܠ௜܎ + ݃௜ ఈ೔௡௜ୀଵ ≤ ܠ௡ାଵ܎ + ݃௡ାଵ ఈబ
 Minimize  ∑ ܠ௜܎ + ݃௜ ఈ೔௡௜ୀଵ

. . . standard SOCP has ࢏ࢻ ≡ ૛
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Other Objective Functions
Unrestricted product of powers

 Minimize  − ∏ ܠ௜܎ + ݃௜ ఈ೔௡௜ୀଵ for any ߙ௜ ∈ ℚା
Logarithmic Chebychev approximation

 Minimize  max௜ୀଵ௡ log ܠ௜܎ − log (݃௜)  
Why no constraint versions?

 Not SOC-representable

 Transformation changes objective value (but not solution)
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SOCP-solvable
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Challenges
Extending to all cases previously cited

 All prove amenable to recursive tree-walk

 Details much harder to work out

Checking nonnegativity of linear expressions
 Heuristic catches many non-obvious instances

Assessing usefulness . . .
 Results from Jared Erickson’s dissertation:

JaredErickson2012@u.northwestern.edu
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Survey of Test Problems
12% of 1238 nonlinear problems were SOC-solvable!

 not counting QPs with sum-of-squares objectives

 from Vanderbei’s CUTE & non-CUTE, and netlib/ampl

A variety of forms detected
 hs064 has 4 ⁄ଵݔ + 32 ⁄ଶݔ + 120 ⁄ଷݔ ≤  1
 hs036 minimizes −ݔଵݔଶݔଷ
 hs073 has 1.645 0.28ݔଵଶ + ଶଶݔ0.19  + ଷଶݔ20.5  + ସଶݔ0.62  ≤ . . .
 polak4 is a max of sums of squares

 hs049 minimizes ݔଵ − ଶݔ ଶ + ଷݔ  − 1 ଶ + ସݔ  − 1 ସ + ହݔ  − 1 ଺
 emfl_nonconvex has ∑ ௝௞ݔ − ܽ௜௞ ଶଶ௞ୀଵ ≤ ௜௝ଶݏ 

. . . similar for nonlinear integer programs
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Computational Experience
Two solver possibilities

 NLP: General-purpose mixed-integer nonlinear
 KNITRO, Bonmin, BARON

 SOCP: Linear mixed-integer extended to convex quadratic
 CPLEX, Gurobi, Xpress

Reliability: Advantage to SOCP
 Far fewer failures

 Global optimum is assured

Efficiency: Undecided
 Times can be comparable

 Limited experience with difficult integer models
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Small Example 1
SOCP-solvable with nonsmooth functions

var x {1..5} integer;
var y {1..5} >= 0;

minimize obj: sum {i in 1..5} (

sqrt( (x[i]+2)^2 + (y[i]+1)^2 ) + sqrt( (x[i]+y[i])^2 ) + y[3]^2 );

subj to xsum: sum {i in 1..5} x[i] <= -12; 

subj to ysum: sum {i in 1..5} y[i] >= 10; 

subj to socprep: 

max {i in 1..5} ( (x[i]^2 + 1)/(i+y[i]) + y[i]^3 ) <= 30;
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Small Example 1 (cont’d)

General nonlinear solver (integer)

KNITRO 8.0.0: Convergence to an infeasible point. 

Problem may be locally infeasible.

General nonlinear solver (continuous relaxation)

KNITRO 8.0.0: 

--- ERROR evaluating objective gradient.
--- ERROR evaluating constraint gradients.

Evaluation error.

objective 17.14615551; feasibility error 0
233 iterations; 1325 function evaluations
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Small Example 1 (cont’d)

Convex quadratic solver (integer)

CPLEX 12.4.0

Total time (root+branch&cut) = 0.21 sec.

Solution value  = 17.246212

:    x         y
1   -3   3
2   -2   1.99993
3   -2   0.000300084
4   -3   3
5   -2   1.99993
;
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Computational Example (cont’d)

Convex quadratic solver (continuous relaxation)

CPLEX 12.4.0

Total time = 0.04 sec.

Solution value  = 17.141355

:   x         y
1   -2.49707   2.49707
2   -2.49707   2.49707
3   -2.01171   0.011716
4   -2.49707   2.49707
5   -2.49707   2.49707
;
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Small Example 2
SOCP-solvable with p-norms

var x {1..100} >= 0 integer;

minimize obj:

(sum {i in 1..60} x[i]^3) ^ (1/3) + 

(sum {i in 40..99} (1+x[i]-x[i+1])^4) ^ (1/4);

subject to c1 {i in 1..50}: 

x[i] + x[i+50] >= i/10;
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Small Example 2 (cont’d)

General nonlinear solver (integer)

KNITRO 8.0.0: Locally optimal solution.

objective 4.24223232; integrality gap -1.5e-09
5517 nodes; 5517 subproblem solves

Total time = 70.1364 sec.

Convex quadratic solver (integer)

CPLEX 12.4.0

objective 4.242235
352 branch-and-cut nodes, 18360 iterations

Total time (root+branch&cut) = 6.45 sec.
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Can solve many “not linear” problem types
using “linear” solvers

Details are highly problem-dependent

More could be done to automate the process
 Detect solvable forms

 Convert to linear or quadratic formulations
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Conclusions


