AMPL Models for "Not Linear" Optimization Using "Linear" Solvers

Robert Fourer
AMPL Optimization Inc.
www.ampl.com - +1 773-336-AMPL

EURO-INFORMS Joint International Meeting
Rome - 1-4 July 2013
Session WB-9, Sponsor Presentations

Linear or Not?

"Linear" solvers

* Linear and convex quadratic objectives \&constraints
* Continuous or integer variables (or both)
* CPLEX, Gurobi, Xpress, MOSEK, SCIP, CBC, . . .
"Not Linear" problems
* Objectives \& constraints in any other form
* Same continuous or integer variables

Goals

* Apply linear solvers to not linear problems
* Make this as easy as possible
. . . with help from an algebraic modeling language

Intro to AMPL

Algebraic modeling language: symbolic data

```
set SHIFTS; # shifts
param Nsched; # number of schedules;
set SCHEDS = 1..Nsched; # set of schedules
set SHIFT_LIST {SCHEDS} within SHIFTS;
param rate {SCHEDS} >= 0; # pay rates
param required {SHIFTS} >= 0; # staffing requirements
param least_assign >= 0; # min workers on any schedule used
```


AMPL

Algebraic modeling language: symbolic model

```
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
minimize Total_Cost:
    sum {j in SCHEDS} rate[j] * Work[j];
subject to Shift_Needs {i in SHIFTS}:
    sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];
subject to Least_Use1 {j in SCHEDS}:
    least_assign * Use[j] <= Work[j];
subject to Least_Use2 {j in SCHEDS}:
    Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
```


AMPL

Explicit data independent of symbolic model

```
set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
    Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
    Mon3 Tue3 Wed3 Thu3 Fri3 ;
param Nsched := 126 ;
set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ;
param required := Mon1 100 Mon2 78 Mon3 52
    Tue1 }100\mathrm{ Tue2 78 Tue3 52
    Wed1 }100\mathrm{ Wed2 }78\mathrm{ Wed3 }5
    Thu1 }100\mathrm{ Thu2 78 Thu3 52
    Fri1 100 Fri2 78 Fri3 52
    Sat1 100 Sat2 78 ;
```


AMPL

Solver independent of model \& data

```
ampl: model sched1.mod;
ampl: data sched.dat;
ampl: let least_assign := 15;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.5.1.0: optimal integer solution; objective 266
20914 MIP simplex iterations
3085 branch-and-bound node
ampl: option omit_zero_rows 1, display_1col 0;
ampl: display Work;
Work [*] :=
\begin{tabular}{rrrrrrrrrr}
6 & 28 & 31 & 9 & 66 & 11 & 89 & 9 & 118 & 18 \\
18 & 18 & 36 & 7 & 78 & 26 & 91 & 25 & 119 & 7 \\
20 & 9 & 37 & 18 & 82 & 18 & 112 & 27 & 122 & 36
\end{tabular}
;
```


AMPL

Language independent of solver

```
ampl: option solver gurobi;
ampl: solve;
Gurobi 5.5.0: optimal solution; objective 266
25713 simplex iterations
2528 branch-and-cut nodes
ampl: display Work;
Work [*] :=
    1 20 37 36 89 28 101 12 
    2
    21 36 
;
```


Intro to "Not Linear" Optimization

How do I linearize this?

* . . $+c x y+\ldots$ in my objective
* where x, y are variables; c is a positive constant

It depends . . .
$*$ What kinds of variables are x and y ?

* Are you minimizing or maximizing?

Intro Example

Case 1: Binary, Minimize

Original formulation

```
param c > 0;
var x binary;
var y binary;
minimize Obj: ... + c * x * y + ...
```


Linearization

```
var z;
minimize Obj: ... + c * z + ...
subject to zODefn: z >= 0;
subject to zxyDefn: z >= x + y - 1;
```

\ldots z can be continuous
(minimization forces it to 0 or 1)

Intro Example

Case 1 (cont'd)

Many other reformulations possible
$*$ Best choice depends on problem and solver

* This one seems the best overall choice
* see tests in Jared Erickson's dissertation: JaredErickson2012@u.northwestern.edu

Extends to product of two linear terms

* Multiply them out

Intro Example

Case 1 (cont'd)

General model...

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} binary;
var Y {1..n} binary;
minimize Obj:
    (sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);
subject to SumX: sum {j in 1..n} j * X[j] >= 17;
subject to SumY: sum {j in 1..n} j * Y[j] >= 17;
subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = 7;
```


Intro Example

Case 1 (cont'd)

Transformed automatically

* AMPL interface . . .
* multiplies out the linear objective terms
* sends quadratic coefficient list to CPLEX
* CPLEX solver . . .
* transforms products of binaries to linear formulations

Solved by CPLEX

```
ampl: model xy1.mod;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.5.O.1: optimal integer solution; objective 232.6083992
54 MIP simplex iterations
20 branch-and-bound nodes
```


Intro Example

Case 2: Binary, Maximize

Original formulation

```
param c > 0;
var x binary;
var y binary;
maximize Obj: ... + c * x * y + ...
```


Linearization

```
var z;
maximize Obj: ... + c * z + ...
subject to zxDefn: z <= x;
subject to zyDefn: z <= y;
```


Intro Example

Case 2 (cont'd)

Constraints depend on objective sense

* Minimize: z >= 0 , $\mathrm{z}>=\mathrm{x}+\mathrm{y}-1$
* Maximize: $\mathrm{z}<=\mathrm{x}, \mathrm{z}<=\mathrm{y}$

Would it help to include all?

* No, the continuous relaxation is not tightened
* But may need all when
extending this idea to $x y$ in constraints

Intro Example

Case 3: Binary \& Continuous, Minimize

Original formulation

```
param c > 0;
var x binary;
var y >= L, <= U;
minimize Obj: ... + c * x * y + ...
```


Linearization

```
var z;
minimize Obj: ... + c * z + ...
subject to zLDefn: z >= L * x;
subject to zUDefn: z >= y - U * (1-x);
```


Intro Example

Case 3 (cont'd)

Extends in obvious ways

* Maximization form is symmetric
* y may be integer rather than continuous
* reduces to binary case with $[L, U]=[0,1]$

Extends to product of two linear terms

* Multiply them out
* Equate the y term to a new variable

Intro Example

Case 3 (cont'd)

General model...

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} binary;
var Y {1..n} >= 0, <= 2;
minimize Obj:
    (sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);
subject to SumX: sum {j in 1..n} j * X[j] >= 17;
subject to SumY: sum {j in 1..n} j * Y[j] >= 17;
subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = 7;
```


Intro Example

Case 3 (cont'd)

Transformed automatically

* AMPL interface . . .
* multiplies out the linear objective terms
* sends quadratic coefficient list to CPLEX
* CPLEX 12.5 solver . . .
* checks quadratic function for convexity

Rejected by CPLEX 12.5

```
ampl: model xy3.mod;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.5.0.1: QP Hessian is not positive semi-definite.
```


Intro Example

Case 3 (cont'd)

Transformed automatically

* AMPL interface . . .
* multiplies out the linear objective terms
* sends quadratic coefficient list to Gurobi
* Gurobi 5.5 solver . . .
* transforms products of variables to linear formulations

Solved by Gurobi 5.5

```
ampl: model xy3.mod;
ampl: option solver gurobi;
ampl: solve;
Gurobi 5.5.0: optimal solution; objective 177.090486
216 simplex iterations
9 branch-and-cut nodes
```


Intro Example

Case 3 (cont'd)

Transformed automatically

* AMPL interface . . .
* multiplies out the linear objective terms
* sends quadratic coefficient list to CPLEX
* CPLEX 12.5.1 solver . . .
* transforms products of variables to linear formulations

Solved by CPLEX 12.5.1

```
ampl: model xy3.mod;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.5.1.0: optimal integer solution; objective 177.090486
148 MIP simplex iterations
```


Intro Example

Case 4: Continuous, Maximize

Original formulation

```
param c > 0;
var x >= Lx, <= Ux;
var y >= Ly, <= Uy;
maximize Obj: c * x * y;
```

Conic reformulation

```
maximize Obj: c * z;
subject to zDefn: z^2 <= x * y;
```


Intro Example

Case 4 (cont'd)

Solvable by linear programming techniques

* Original objective is quasi-concave
* Conic constraint region is convex

Can't sum terms in objective

* Optimal solutions are preserved, but
* Objective value changes (to square root of actual)
* Not a problem if maximizing $c x^{1 / 2} y^{1 / 2}$

Can't do anything with minimize!

* But can minimize a convex quadratic $\left(2 x y+x^{2}+y^{2}\right)$
* But can minimize product of negative powers
. . . more with conics and quadratics later in talk

Intro Example

Case 4 (cont'd)

General model...

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;
maximize Obj:
    (sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);
subject to SumX: sum {j in 1..n} j * X[j] >= 17;
subject to SumY: sum {j in 1..n} j * Y[j] >= 17;
subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = 7;
```


Intro Example

Case 4 (cont'd)

Transformed automatically

* AMPL interface . . .
* multiplies out the linear objective terms
* sends quadratic coefficient list to Gurobi
* Gurobi solver . . .
* checks quadratic function for convexity

Rejected by Gurobi

```
ampl: model xy4.mod;
ampl: option solver gurobi;
ampl: solve;
Gurobi 5.5.0: quadratic objective is not positive definite
```


Intro Example

Case 4 (cont'd)

Model transformed "by hand". . .

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;
var ZX >= 0;
var ZY >= 0;
var Z;
maximize Obj: Z;
subject to ZXdef: ZX = sum {j in 1..n} c[j]*X[j];
subject to ZYdef: ZY = sum {j in 1..n} d[j]*Y[j];
subject to Zdef: Z^2 <= ZX * ZY; # still not positive semidefinite
subject to SumX:
```


Intro Example

Case 4 (cont'd)

Transformed automatically

* AMPL interface
* detects quadratic constraint terms
* sends quadratic coefficient list to Gurobi
* Gurobi solver . . .
* detects conic constraint structure

Solved by Gurobi

```
ampl: model xy4b.mod;
ampl: option solver gurobi;
ampl: solve;
Gurobi 5.5.0: optimal solution; objective 29.78949442
10 barrier iterations
ampl: display ZX*ZY;
ZX*ZY = 887.414 # equals Obj^2
```


Intro Example

Key Questions

Can it be transformed?

* Yes or no?
* Transformed to what?
. . . very sensitive to mathematical form
Who will make the transformation?
* The human modeler?
* The modeling system?
* The solver?
. . . often some combination of these

Topics

Discontinuous domains

* Semi-continuous case
* Discrete case

Logic

* Indicator constraints
* Disjunctions and generalizations

Piecewise-linear terms
Convex quadratic functions
$*$ Elliptic forms

* Conic forms

Discontinuous Domains

Traditional: bounded variable domains

* $x>=$ some lower bound
* $x<=$ some upper bound

Extended: arbitrary variable domains
$\star x$ in any union of points and intervals

Example: Scheduling (revisited)

Formulation with zero-one variables

```
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
subject to Least_Use1 {j in SCHEDS}:
    least_assign * Use[j] <= Work[j];
subject to Least_Use2 {j in SCHEDS}:
    Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
```


Formulation with discrete domains

```
var Work {j in SCHEDS} integer, in {0} union
    interval [least_assign, (max {i in SHIFT_LIST[j]} required[i])];
```


Simple Example: Diet

Continuous formulations

```
set NUTR;
set FOOD;
param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];
param amt {NUTR,FOOD} >= 0;
var Buy {j in FOOD} >= f_min[j], <= f_max[j];
minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];
subject to Diet {i in NUTR}:
    n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];
```

Discontinuous Domains

Two Common Cases

Instead of a continuous variable . . .

```
var Buy {FOOD} >= 0, <= 100;
```

Semi-continuous case

```
var Buy {FOOD} in {0} union interval[30,40];
```

Discrete case

```
var Buy {FOOD} in {1,2,5,10,20,50};
```

Discontinuous Domains

Semi-Continuous Case

Continuous

```
Gurobi 5.5.0: optimal solution; objective 88.2
1 simplex iterations
ampl: display Buy;
\begin{tabular}{rlrlllll} 
BEEF & 0 & FISH & 0 & MCH 46.6667 & SPG & 0 \\
CHK & 0 & HAM & 0 & MTL & 0 & TUR & 0
\end{tabular}
```


Semi-Continuous

```
Gurobi 5.5.0: optimal solution; objective 116.4
6 0 ~ s i m p l e x ~ i t e r a t i o n s
11 branch-and-cut nodes
ampl: display Buy;
\begin{tabular}{rlrlllll} 
BEEF & 0 & FISH & 0 & MCH 30 & SPG & 0 \\
CHK & 0 & HAM & 0 & MTL 30 & TUR & 0
\end{tabular}
```

Discontinuous Domains

Semi-Continuous Case (cont'd)

Continuous

```
8 variables, all linear
4 constraints, all linear; 31 nonzeros
1 linear objective; 8 nonzeros.
```

Semi-Continuous

```
16 variables:
    8 binary variables
    8 linear variables
```

20 constraints, all linear; 63 nonzeros
1 linear objective; 8 nonzeros.

Discontinuous Domains

Semi-Continuous Case (cont'd)

Converted to MIP with extra binary variables . . .

```
subject to (Buy[BEEF]+IUlb):
    Buy['BEEF'] - 30*(Buy[BEEF]+b) >= 0;
subject to (Buy[BEEF]+IUub):
    -Buy['BEEF'] + 40*(Buy[BEEF]+b) >= 0;
subject to (Buy[CHK]+IUlb):
    Buy['CHK'] - 30*(Buy[CHK]+b) >= 0;
subject to (Buy[CHK]+IUub):
    -Buy['CHK'] + 40*(Buy[CHK]+b) >= 0;
subject to (Buy[FISH]+IUlb):
    Buy['FISH'] - 30*(Buy[FISH]+b) >= 0;
subject to (Buy[FISH]+IUub):
    -Buy['FISH'] + 40*(Buy[FISH]+b) >= 0;
```

....... .

Discontinuous Domains

Discrete Case

Continuous

```
Gurobi 5.5.0: optimal solution; objective 88.2
1 simplex iterations
ampl: display Buy;
\begin{tabular}{rlrlllll} 
BEEF & 0 & FISH & 0 & MCH 46.6667 & SPG & 0 \\
CHK & 0 & HAM & 0 & MTL & 0 & TUR & 0
\end{tabular}
```


Discrete

```
Gurobi 5.5.0: optimal solution; objective 95.49
85 simplex iterations
15 branch-and-cut nodes
ampl: display Buy;
BEEF 1 FISH 1 MCH 10 SPG 5
    CHK 20 HAM 1 MTL 2 TUR 1
```

Discontinuous Domains

Discrete Case (cont'd)

Continuous

```
8 variables, all linear
4 constraints, all linear; 31 nonzeros
1 linear objective; 8 nonzeros.
```


Discrete

Substitution eliminates 8 variables.
48 variables, all binary
12 constraints, all linear; 234 nonzeros
1 linear objective; 48 nonzeros.

Discontinuous Domains

Discrete Case (cont'd)

Converted to MIP in binary variables . . .

```
minimize Total_Cost:
3.19*(Buy[BEEF]+b)[0] + 6.38*(Buy[BEEF]+b)[1] +
15.95*(Buy[BEEF]+b)[2] + 31.9*(Buy[BEEF]+b)[3] +
63.8*(Buy[BEEF]+b)[4] + 159.5*(Buy[BEEF]+b)[5] +
2.59*(Buy[CHK]+b)[0] + 5.18*(Buy[CHK]+b)[1] +
12.95*(Buy[CHK]+b)[2] + 25.9*(Buy[CHK]+b)[3] +
51.8*(Buy[CHK]+b)[4] + 129.5*(Buy[CHK]+b)[5] + ...
subject to Diet['A']:
700 <= 60*(Buy[BEEF]+b)[0] + 120*(Buy[BEEF]+b)[1] +
300*(Buy[BEEF]+b)[2] + 600*(Buy[BEEF]+b)[3] +
1200*(Buy[BEEF]+b) [4] + 3000* (Buy[BEEF]+b) [5] +
8*(Buy[CHK]+b)[0] + 16*(Buy[CHK]+b)[1] + 40*(Buy[CHK]+b)[2] +
80*(Buy[CHK]+b)[3] + 160*(Buy[CHK]+b)[4] + 400*(Buy[CHK]+b)[5] + ...
```

Discontinuous Domains

Discrete Case (cont'd)

and SOS type 1 constraints . . .

```
subject to (Buy[BEEF]+sos1):
(Buy[BEEF]+b)[0] + (Buy[BEEF]+b)[1] + (Buy[BEEF]+b)[2] +
(Buy[BEEF]+b)[3] + (Buy[BEEF]+b)[4] + (Buy[BEEF]+b)[5] = 1;
subject to (Buy[CHK]+sos1):
(Buy[CHK]+b)[0] + (Buy[CHK]+b)[1] + (Buy[CHK]+b)[2] +
(Buy[CHK]+b)[3] + (Buy[CHK]+b)[4] + (Buy[CHK]+b)[5] = 1; ...
```

Discontinuous Domains

Discrete Case (cont'd)
 with SOS type 1 markers in output file

```
S0 48 sos
O 20
120
20
320
420
520
63
76
S4 48 sosref
0 1
12
25
310
420
5 50
6 1
7 2 ...
```

Discontinuous Domains

Conversion for Solver

General case

* Arbitrary union of points and intervals
* Auxiliary binary variable for each point or interval
* 3 auxiliary constraints for each variable

Union of points

* Auxiliary binary variable for each point
* Auxiliary constraint for each variable
* Enhanced branching in solver * "special ordered sets of type 1"

Zero union interval (semi-continuous)

* Auxiliary binary variable for each variable
* 2 auxiliary constraints for each variable
* Enhanced branching in solver

Logical Conditions

Common "not linear" logical expressions

* Disjunctions (or), implications (==>)
* Counting expressions (count), Counting constraints (atleast, atmost)
* Aggregate constraints (alldiff, numberof)

Variety of solvers

* Mixed-integer programming: CPLEX
* Applied directly
* Applied after conversion to MIP
* Constraint programming: ILOG CP, Gecode, JaCoP
* Applied directly

Logical Conditions

Example: Scheduling (revisited)

Formulation with zero-one variables

```
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
subject to Least_Use1 {j in SCHEDS}:
    least_assign * Use[j] <= Work[j];
subject to Least_Use2 {j in SCHEDS}:
    Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
```


Formulation with implications

```
subject to Least_Use:
    Use[j] = 1 ==> least_assign <= Work[j]
        else Work[j] = 0;
```


Scheduling

Conversion for Solver

Pass logic to CPLEX

* AMPL writes "logical" constraints as expression trees
* AMPL-CPLEX driver "walks" the trees
* detects indicator forms
* converts to CPLEX library calls
* CPLEX solves within its branch-and-cut framework

Scheduling

Which is Fastest?

```
Use[j] = 1 ==> least_assign <= Work[j] else Work[j] = 0;
```

```
CPLEX 12.3.0.1: optimal integer solution; objective 266
1265016 MIP simplex iterations
231882 branch-and-bound nodes
```

least_assign * Use[j] <= Work[j];
Work[j] <= (max \{i in SHIFT_LIST[j]\} required[i]) * Use[j];
CPLEX 12.3.0.1: optimal integer solution; objective 266
776836 MIP simplex iterations
109169 branch-and-bound nodes
Use[j] = 1 ==> least_assign <= Work[j] <=
(max $\{\mathrm{i}$ in SHIFT_LIST[j]\} required[i]) else Work[j] = 0;

```
CPLEX 12.3.0.1: optimal integer solution; objective 266
13470 MIP simplex iterations
2161 branch-and-bound nodes
```


Logical Conditions

Example: Multi-Commodity

Minimum-shipment constraints

* From each origin to each destination, either ship nothing or ship at least minload units

Conventional linear mixed-integer formulation

```
var Trans {ORIG,DEST,PROD} >= 0;
var Use {ORIG, DEST} binary;
subject to Multi {i in ORIG, j in DEST}:
    sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];
subject to Min_Ship {i in ORIG, j in DEST}:
    sum {p in PROD} Trans[i,j,p] >= minload * Use[i,j];
```


Multi-Commodity

Zero-One Alternatives

Mixed-integer formulation using implications

```
subject to Multi_Min_Ship {i in ORIG, j in DEST}:
    Use[i,j] = 1 ==>
        minload <= sum {p in PROD} Trans[i,j,p] <= limit[i,j]
    else sum {p in PROD} Trans[i,j,p] = 0;
```


Solved directly by CPLEX

```
ampl: model multmipImpl.mod;
ampl: data multmipG.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.5.0.1: optimal integer solution; objective 235625
175 MIP simplex iterations
O branch-and-bound nodes
```


Multi-Commodity

Non-Zero-One Alternatives

Disjunctive constraint

```
subject to Multi_Min_Ship {i in ORIG, j in DEST}:
    sum {p in PROD} Trans[i,j,p] = 0 or
    minload <= sum {p in PROD} Trans[i,j,p] <= limit[i,j];
```


Solved by CPLEX after automatic conversion

```
ampl: model multmipDisj.mod;
ampl: data multmipG.dat;
ampl: solve;
CPLEX 12.5.0.1: logical constraint not indicator constraint.
ampl: option solver ilogcp;
ampl: option ilogcp_options 'optimizer cplex';
ampl: solve;
ilogcp 12.4.0: optimal solution
O nodes, 175 iterations, objective 235625
```


Logical Conditions

Example: Optimal Arrangement

Optimally line up a group of people

* Given a set of adjacency preferences, maximize the number that are satisfied

Decision variables

* For each preference "i1 adjacent to i2":

Sat [i1,i2] = 1 iff this is satisfied in the lineup

* Pos [i] is the position of person i in the line
. . . fewer variables, larger domains

Arrangement

"CP-Style" Alternative

All-different \& other logic constraints

```
param nPeople integer > 0;
set PREFS within {i1 in 1..nPeople, i2 in 1..nPeople: i1 <> i2};
var Sat {PREFS} binary;
var Pos {1..nPeople} integer >= 1, <= nPeople;
maximize NumSat: sum {(i1,i2) in PREFS} Sat[i1,i2];
subject to OnePersonPerPosition:
    alldiff {i in 1..nPeople} Pos[i];
subject to SatDefn {(i1,i2) in PREFS}:
    Sat[i1,i2] = 1 <==> Pos[i1]-Pos[i2] = 1 or Pos[i2]-Pos[i1] = 1;
subject to SymmBreaking:
    Pos[1] < Pos[2];
```


Arrangement

"CP-Style" Alternative (cont'd)

11 people, 20 preferences

```
ampl: model photo.mod;
ampl: data photo11.dat;
ampl: option solver ilogcp;
ampl: solve;
ilogcp 12.5.0: optimizer cp
ilogcp 12.5.0: optimal solution
8837525 choice points, }8432821 fails, objective 12
ampl: option solver gecode;
ampl: solve;
gecode 3.7.3: optimal solution
589206448 nodes, 294603205 fails, objective 12
ampl:
```


Logical conditions

Example: Assignment

Assignment to groups with "no one isolated"

```
var Lone {(i1,i2) in ISO, j in REST} binary;
param give {ISO} default 2;
param giveTitle {TITLE} default 2;
param giveLoc {LOC} default 2;
param upperbnd {(i1,i2) in ISO, j in REST} :=
    min (ceil((number2[i1,i2]/card {PEOPLE}) * hiDine[j]) + give[i1,i2],
        hiTargetTitle[i1,j] + giveTitle[i1],
        hiTargetLoc[i2,j] + giveLoc[i2], number2[i1,i2]);
subj to Isolation1 {(i1,i2) in ISO, j in REST}:
    Assign2[i1,i2,j] <= upperbnd[i1,i2,j] * Lone[i1,i2,j];
subj to Isolation2a {(i1,i2) in ISO, j in REST}:
    Assign2[i1,i2,j] >= Lone[i1,i2,j];
subj to Isolation2b {(i1,i2) in ISO, j in REST}:
    Assign2[i1,i2,j] +
        sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j]
        >= 2 * Lone[i1,i2,j];
```


Assignment

Example (cont'd)

Same using indicator constraints

```
var Lone {(i1,i2) in ISO, j in REST} binary;
subj to Isolation1 {(i1,i2) in ISO, j in REST}:
    Lone[i1,i2,j] = 0 ==> Assign2[i1,i2,j] = 0;
subj to Isolation2b {(i1,i2) in ISO, j in REST}:
    Lone[i1,i2,j] = 1 ==> Assign2[i1,i2,j] +
        sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j] >= 2;
```


Logical Conditions

Example: Workforce Planning

Layoff costs incurred only during a shutdown

```
var LayoffCost {m in MONTHS} >=0;
subj to LayoffCostDefn1 {m in MONTHS}:
    LayoffCost[m]
        <= snrLayOffWages * 31 * maxNbrSnrEmpl * (1 - NoShut[m]);
subj to LayoffCostDefn2a {m in MONTHS}:
    LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl
        <= maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];
subj to LayoffCostDefn2b {m in MONTHS}:
    LayoffCost[m] - snrLayOffWages * ShutdownDays[m] * maxNbrSnrEmpl
        >= -maxNbrSnrEmpl * 2 * dayAvail[m] * snrLayOffWages * NoShut[m];
```


Workforce Planning

Example (cont'd)

Same using indicator constraints

```
var LayoffCost {m in MONTHS} >=0;
subj to LayoffCostDefn1 {m in MONTHS}:
    NoShut[m] = 1 ==> LayoffCost[m] = 0;
subj to LayoffCostDefn2 {m in MONTHS}:
    NoShut[m] = 0 ==> LayoffCost[m] =
        snrLayoffWages * ShutdownDays[m] * maxNumberSnrEmpl;
```


Piecewise-Linear Terms

Definition

* Function of one variable
* Linear on intervals
* Continuous

Issues

* Describing the function
* choice of specification
* syntax in the modeling language
* Communicating the function to a solver
* direction description
* transformation to linear or linear-integer

Piecewise-Linear

Specification

Possibilities

$*$ List of breakpoints and either:

* change in slope at each breakpoint
* value of the function at each breakpoint
\star List of slopes and either:
* distance between breakpoints bounding each slope
* value of intercept associated with each slope
* Lists of breakpoints and slopes

Also needed in some cases

* One particular breakpoint
* One particular slope
* Value at one particular point

Piecewise-Linear

AMPL Specification: Examples

$$
\ll 0 ;-1,1 \gg x[j]
$$

<<-1,1,3,5; -5,-1,0,1.5,3>> x[j]

<<3,5; 0.25,1.00,0.50>> x[j]

Piecewise-Linear

AMPL Specification: Syntax

General forms

* <breakpoint-list; slope-list> variable
* Zero at zero
* Bounds on variable specified independently
* <breakpoint-list; slope-list> (variable, zero-point)
* Zero at zero-point
* <breakpoint-list; slope-list> variable + constant
* Has value constant at zero

Breakpoint \& slope list forms

* Simple list
 * <<lim1[i,j],lim2[i,j]; r1[i,j],r2[i,j],r3[i,j]>>
* Indexed list

```
* << {k in 1..nlim[i,j]} lim[i,j,k];
    {k in 1..nlim[i,j]+1} r[i,j,k]>>
```


Piecewise-Linear

AMPL Applications (1)

Design of a planar structure

```
var Force {bars}; # Forces on bars:
    # positive in tension, negative in compression
minimize TotalWeight: (density / yield_stress) *
    sum {(i,j) in bars} length[i,j] * <<0; -1,+1>> Force[i,j];
    # Weight is proportional to length
    # times absolute value of force
subject to Xbal {k in joints: k <> fixed}:
    sum {(i,k) in bars} xcos[i,k] * Force[i,k]
    - sum {(k,j) in bars} xcos[k,j] * Force[k,j] = xload[k];
subject to Ybal {k in joints: k <> fixed and k <> rolling}:
    sum {(i,k) in bars} ycos[i,k] * Force[i,k]
    - sum {(k,j) in bars} ycos[k,j] * Force[k,j] = yload[k];
    # Forces balance in
    # horizontal and vertical directions
```


Piecewise-Linear

AMPL Applications (2)

Data fitting for credit scoring

```
var Wt_const; # Constant term in computing all scores
var Wt {j in factors} >= if wttyp[j] = 'pos' then O else -Infinity
    <= if wttyp[j] = 'neg' then O else +Infinity;
    # Weights on the factors
var Sc {i in people}; # Scores for the individuals
minimize Penalty: # Sum of penalties for all individuals
    Gratio * sum {i in Good} << {k in 1..Gpce-1} if Gbktyp[k] = 'A'
                                then Gbkfac[k]*app_amt
                                else Gbkfac[k]*bal_amt[i];
    {k in 1..Gpce} Gslope[k] >> Sc[i] +
    Bratio * sum {i in Bad} << {k in 1..Bpce-1} if Bbktyp[k] = 'A'
                                then Bbkfac[k]*app_amt
                                else Bbkfac[k]*bal_amt[i];
            {k in 1...Bpce} Bslope[k] >> Sc[i];
```


Piecewise-Linear

Conversion for Solver

Transportation costs

```
param rate1 {i in ORIG, j in DEST} >= 0;
param rate2 {i in ORIG, j in DEST} >= rate1[i,j];
param rate3 {i in ORIG, j in DEST} >= rate2[i,j];
param limit1 {i in ORIG, j in DEST} >= 0;
param limit2 {i in ORIG, j in DEST} >= limit1[i,j];
var Trans {ORIG,DEST} >= 0;
minimize Total_Cost:
    sum {i in ORIG, j in DEST}
        <<limit1[i,j], limit2[i,j];
        rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];
```


Piecewise-Linear

Minimizing Convex Costs

Equivalent linear program

```
ampl: model trpl2.mod; data trpl.dat; solve;
Substitution eliminates 15 variables.
21 piecewise-linear terms replaced by 35 variables and 15 constraints.
Adjusted problem:
4 1 \text { variables, all linear}
10 constraints, all linear; }82\mathrm{ nonzeros
1 linear objective; 41 nonzeros.
CPLEX 10.1.0: optimal solution; objective 199100
12 dual simplex iterations (O in phase I)
ampl: display Trans;
\begin{tabular}{lrrrrrrrl}
\(:\) & DET & FRA & FRE & LAF & LAN & STL & WIN & : \\
CLEV & 500 & 0 & 200 & 500 & 500 & 500 & 400 & \\
GARY & 0 & 0 & 900 & 300 & 0 & 200 & 0 & \\
PITT & 700 & 900 & 0 & 200 & 100 & 1000 & 0 & ;
\end{tabular}
```

Piecewise-Linear

Minimizing Non-Convex Costs

Equivalent mixed-integer program

```
model trpl3.mod; data trpl.dat; solve;
Substitution eliminates 18 variables.
21 piecewise-linear terms replaced by }87\mathrm{ variables and 87 constraints.
Adjusted problem:
90 variables:
    4 1 ~ b i n a r y ~ v a r i a b l e s
    49 linear variables
79 constraints, all linear; 251 nonzeros
1 linear objective; 49 nonzeros.
CPLEX 10.1.0: optimal integer solution; objective 256100
189 MIP simplex iterations
1 4 4 ~ b r a n c h - a n d - b o u n d ~ n o d e s ~
ampl: display Trans;
\begin{tabular}{llrrlrrrl}
\(:\) & DET & FRA & FRE & LAF & LAN & STL & WIN & \(:=\) \\
CLEV & 1200 & 0 & 0 & 1000 & 0 & 0 & 400 & \\
GARY & 0 & 0 & 1100 & 0 & 300 & 0 & 0 & \\
PITT & 0 & 900 & 0 & 0 & 300 & 1700 & 0 &
\end{tabular}
```

Piecewise-Linear

Minimizing Non-Convex Costs (cont'd)
 . . . with SOS type 2 markers in output file

```
S0 87 sos
    3 16
4918
    416
5018
S1 64 sos
10 19
11 18
1218
1435
S4 46 sosref
3-501
4751
5 -501
6 500
```

Piecewise-Linear

Conversion for Solver

Equivalent linear program if . . .

* Objective
* minimizes convex (increasing slopes) or
* maximizes concave (decreasing slopes)

* Constraints expressions
* convex and on the left-hand side of a \leq constraint
* convex and on the right-hand side of $a \geq$ constraint
* concave and on the left-hand side of $a \geq$ constraint
$*$ concave and on the right-hand side of $\mathrm{a} \leq$ constraint
Equivalent mixed-integer program otherwise
* At least one binary variable per piece
* Enhanced branching in solver
* "special ordered sets of type 2"

Convex Quadratic Functions

Two distinct cases

* Elliptic functions
* Conic functions

Handled by standard "linear" solvers

* Description by coefficient lists
* Solution by simplex or interior-point methods
* Solution with integer variables by branch-and-bound

Elliptic Quadratic: Example

Portfolio optimization

```
set A; # asset categories
set T := {1973..1994}; # years
param R {T,A}; # returns on asset categories
param mu default 2; # weight on variance
param mean {j in A} = (sum {i in T} R[i,j]) / card(T);
param Rtilde {i in T, j in A} = R[i,j] - mean[j];
var Frac {A} >=0;
var Mean = sum {j in A} mean[j] * Frac[j];
var Variance =
    sum {i in T} (sum {j in A} Rtilde[i,j]*Frac[j])^2 / card{T};
minimize RiskReward: mu * Variance - Mean;
subject to TotalOne: sum {j in A} Frac[j] = 1;
```


Elliptic Quadratic

Example (cont'd)

Portfolio data

```
set A :=
    US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000
    NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD;
param R:
    US_3-MONTH_T-BILLS US_GOVN_LONG_BONDS SP_500 WILSHIRE_5000
    NASDAQ_COMPOSITE LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX EAFE GOLD :=
\begin{tabular}{lllllllll}
1973 & 1.075 & 0.942 & 0.852 & 0.815 & 0.698 & 1.023 & 0.851 & 1.677 \\
1974 & 1.084 & 1.020 & 0.735 & 0.716 & 0.662 & 1.002 & 0.768 & 1.722 \\
1975 & 1.061 & 1.056 & 1.371 & 1.385 & 1.318 & 1.123 & 1.354 & 0.760 \\
1976 & 1.052 & 1.175 & 1.236 & 1.266 & 1.280 & 1.156 & 1.025 & 0.960 \\
1977 & 1.055 & 1.002 & 0.926 & 0.974 & 1.093 & 1.030 & 1.181 & 1.200 \\
1978 & 1.077 & 0.982 & 1.064 & 1.093 & 1.146 & 1.012 & 1.326 & 1.295 \\
1979 & 1.109 & 0.978 & 1.184 & 1.256 & 1.307 & 1.023 & 1.048 & 2.212 \\
1980 & 1.127 & 0.947 & 1.323 & 1.337 & 1.367 & 1.031 & 1.226 & 1.296 \\
1981 & 1.156 & 1.003 & 0.949 & 0.963 & 0.990 & 1.073 & 0.977 & 0.688 \\
1982 & 1.117 & 1.465 & 1.215 & 1.187 & 1.213 & 1.311 & 0.981 & 1.084 \\
1983 & 1.092 & 0.985 & 1.224 & 1.235 & 1.217 & 1.080 & 1.237 & 0.872 \\
1984 & 1.103 & 1.159 & 1.061 & 1.030 & 0.903 & 1.150 & 1.074 & 0.825
\end{tabular}
```


Elliptic Quadratic

Example (cont'd)

Solving with CPLEX

```
ampl: model markowitz.mod;
ampl: data markowitz.dat;
ampl: option solver cplexamp;
ampl: solve;
8 variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.
CPLEX 12.2.0.0: optimal solution; objective -1.098362471
12 QP barrier iterations
ampl:
```


Elliptic Quadratic

Example (cont'd)

Solving with CPLEX (simplex)

```
ampl: model markowitz.mod;
ampl: data markowitz.dat;
ampl: option solver cplexamp;
ampl: option cplex_options 'primalopt';
ampl: solve;
8 variables, all nonlinear
1 constraint, all linear; 8 nonzeros
1 nonlinear objective; 8 nonzeros.
CPLEX 12.2.0.0: primalopt
No QP presolve or aggregator reductions.
CPLEX 12.2.0.0: optimal solution; objective -1.098362476
5 QP simplex iterations (0 in phase I)
ampl:
```


Elliptic Quadratic

Example (cont'd)

Optimal portfolio

```
ampl: option omit_zero_rows 1;
ampl: display Frac;
            EAFE 0.216083
            GOLD 0.185066
LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX 0.397056
                                    WILSHIRE_5000 0.201795 ;
ampl: display Mean, Variance;
Mean = 1.11577
Variance = 0.00870377
ampl:
```


Elliptic Quadratic

Example (cont'd)

Optimal portfolio (discrete)

```
var Share {A} integer >= 0, <= 100;
var Frac {j in A} = Share[j] / 100;
```

```
ampl: solve;
CPLEX 12.2.0.0: optimal integer solution within mipgap or absmipgap;
    objective -1.098353751
10 MIP simplex iterations
O branch-and-bound nodes
absmipgap = 8.72492e-06, relmipgap = 7.94364e-06
ampl: display Frac;
\begin{tabular}{rll} 
EAFE & 0.22 \\
GOLD & 0.18 \\
LEHMAN_BROTHERS_CORPORATE_BONDS_INDEX & 0.4 \\
WILSHIRE_5000 & \(0.2 ;\)
\end{tabular}
```


Elliptic Quadratic

Detection for Solver

Symbolic detection (not used)

* Objectives
* Minimize $x_{1}^{2}+\ldots+x_{n}^{2}$
$*$ Minimize $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}, a_{i} \geq 0$
* Constraints
* $x_{1}^{2}+\ldots+x_{n}^{2} \leq r$
* $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq r, a_{i} \geq 0$

Numerical detection

* Objectives
* Minimize $\mathbf{x}^{T} \mathbf{Q x}+\mathbf{q x}$
* Constraints
* $\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q x} \leq r$
$\star . .$. where \mathbf{Q} is positive semidefinite

Elliptic Quadratic

Solving

Representation

* Much like LP
* Coefficient lists for linear terms
* Coefficient lists for quadratic terms
* A lot simpler than general NLP

Optimization

* Much like LP
* Generalizations of barrier methods
* Generalizations of simplex methods
* Extensions of mixed-integer branch-and-bound schemes
* Simple derivative computations
* Less overhead than general-purpose nonlinear solvers
. . . actual speedup will vary

Conic Quadratic: Example

Traffic network: symbolic data

```
set INTERS; # intersections (network nodes)
param EN symbolic; # entrance
param EX symbolic; # exit
    check {EN,EX} not within INTERS;
set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};
    # road links (network arcs)
param base {ROADS} > 0; # base travel times
param sens {ROADS} > 0; # traffic sensitivities
param cap {ROADS} > 0; # capacities
param through > 0; # throughput
```


Conic Quadratic

Example (cont'd)

Traffic network: symbolic model

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
    (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
    Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Conic Quadratic

Example (cont'd)

Traffic network: sample data

```
set INTERS := b c ;
param EN := a ;
param EX := d ;
param: ROADS: base cap sens :=
\begin{tabular}{llll} 
a b & 4 & 10 & .1
\end{tabular}
    a c llll
    c b 2 20 . }
    b d 1 15 . 5
    c d 6 10 . 1 ;
```

param through := 20 ;

Conic Quadratic

Example (cont'd)

Model + data $=$ problem to solve, using KNITRO

```
ampl: model traffic.mod;
ampl: data traffic.dat;
ampl: option solver knitro;
ampl: solve;
KNITRO 7.O.O: Locally optimal solution.
objective 61.04695019; feasibility error 3.55e-14
12 iterations; 25 function evaluations
ampl: display Flow, Time;
: Flow Time :=
a b 9.55146 25.2948
a c 10.4485 57.5709
b d 11.0044 21.6558
c b 1.45291 3.41006
c d 8.99562 14.9564
;
```


Conic Quadratic

Example (cont'd)

Same with integer-valued variables

```
var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];
```

```
ampl: solve;
KNITRO 7.O.0: Locally optimal solution.
objective 76.26375; integrality gap 0
3 nodes; 5 subproblem solves
ampl: display Flow, Time;
: Flow Time :=
a b 9 13
a c 11 93.4
b d 11 21.625
c b 2 4
c d 9 15
;
```


Conic Quadratic

Example (cont'd)

Model + data $=$ problem to solve, using CPLEX?

```
ampl: model traffic.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0:
Constraint _scon[1] is not convex quadratic
since it is an equality constraint.
```


Conic Quadratic

Example (cont'd)

Look at the model again . . .

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
    (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
    Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Conic Quadratic

Example (cont'd)

Quadratically constrained reformulation

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]~2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Conic Quadratic

Example (cont'd)

Model + data $=$ problem to solve, using CPLEX?

```
ampl: model trafficQUAD.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0:
QP Hessian is not positive semi-definite.
```


Conic Quadratic

Example (cont'd)

Quadratic reformulation \#2

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];
subject to Slack_Def {(i,j) in ROADS}:
    Slack[i,j] = 1 - Flow[i,j]/cap[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Conic Quadratic

Example (cont'd)

Model + data = problem to solve, using CPLEX!

```
ampl: model trafficSOC.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0: primal optimal; objective 61.04693968
15 barrier iterations
ampl: display Flow;
Flow :=
a b 9.55175
a c 10.4482
b d 11.0044
c b 1.45264
c d 8.99561
;
```


Conic Quadratic

Example (cont'd)

Same with integer-valued variables

```
var Flow {(i,j) in ROADS} integer >= 0, <= .9999 * cap[i,j];
```

```
ampl: solve;
CPLEX 12.3.0.0: optimal integer solution within mipgap or absmipgap;
    objective 76.26375017
19 MIP barrier iterations
O branch-and-bound nodes
ampl: display Flow;
Flow :=
a b 9
a c 11
b d 11
c b 2
c d 9
;
```


Conic Quadratic

Which Solver Is Preferable?

General nonlinear solver

* Fewer variables
* More natural formulation

MIP solver with convex quadratic option

* Mathematically simpler formulation
* No derivative evaluations
* no problems with nondifferentiable points
* More powerful large-scale solver technologies

Conic Quadratic

Second-Order Cone Programs (SOCPs)

Standard cone
$x^{2}+y^{2} \leq z^{2}$
$z \geq 0$

$x^{2}+y^{2} \leq z^{2}, z \geq 0$

. . . boundary not smooth
Rotated cone

$$
\% x^{2} \leq y z, y \geq 0, z \geq 0, \ldots
$$

Conic QP

Solving: Conic vs. Elliptic

Similarities

* Describe by lists of coefficients
* Solve by extensions of LP barrier methods
\star Extend to mixed-integer branch-and-bound
Differences in conic case
* Quadratic part not positive semi-definite
* Nonnegativity is essential
* Boundary of feasible region is not differentiable
* Many convex problems can be reduced to this case . . .

SOCP-Solvable Forms

Quadratic

* Constraints (already seen)
* Objectives

SOC-representable

* Quadratic-linear ratios
* Generalized geometric means
* Generalized p-norms

Other objective functions

* Generalized product-of-powers
* Logarithmic Chebychev

SOCP-solvable

Quadratic

Standard cone constraints

$$
\begin{gathered}
* \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2} \\
a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0
\end{gathered}
$$

Rotated cone constraints

$$
\begin{array}{r}
\div \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right) \\
\quad a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0, \mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0
\end{array}
$$

Sum-of-squares objectives

* Minimize $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}$
* Minimize v

Subject to $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq v^{2}, v \geq 0$

SOCP-solvable

SOC-Representable

Definition

* Function $s(x)$ is SOC-representable iff . . .
$* s(x) \leq a_{n}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)$ is equivalent to some combination of linear and quadratic cone constraints

Minimization property

* Minimize $s(x)$ is SOC-solvable
* Minimize v_{n+1} Subject to $\quad s(x) \leq v_{n+1}$

Combination properties
$\div a \cdot s(x)$ is SOC-representable for any $a \geq 0$
$\star \sum_{i=1}^{n} s_{i}(x)$ is SOC-representable

* $\max _{i=1}^{n} s_{i}(x)$ is SOC-representable
. . . requires a recursive detection algorithm!

SOCP-solvable

SOC-Representable (1)

Vector norm

$$
\|\mathbf{a} \cdot(\mathbf{F} \mathbf{x}+\mathbf{g})\|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)
$$

* square both sides to get standard SOC

$$
\sum_{i=1}^{n} a_{i}^{2}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}^{2}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2}
$$

Quadratic-linear ratio

$$
夫 \frac{\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}}{\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)
$$

* where $\mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0$
* multiply by denominator to get rotated SOC

$$
\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right)
$$

SOCP-solvable

SOC-Representable (2)

Negative geometric mean

$$
\begin{aligned}
& -\prod_{i=1}^{p}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{1 / p} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, p \in \mathbb{Z}^{+} \\
& *-x_{1}^{1 / 4} x_{2}^{1 / 4} x_{3}^{1 / 4} x_{4}^{1 / 4} \leq-x_{5} \text { becomes rotated SOCs: } \\
& \quad x_{5}^{2} \leq v_{1} v_{2}, v_{1}^{2} \leq x_{1} x_{2}, v_{2}^{2} \leq x_{3} x_{4} \\
& * \text { apply recursively }\left\lceil\log _{2} p\right\rceil \text { times }
\end{aligned}
$$

Generalizations

$\because-\prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{\alpha_{i}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right): \sum_{i=1}^{n} \alpha_{i} \leq 1, \alpha_{i} \in \mathbb{Q}^{+}$
$* \prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{-\alpha_{i}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right), \alpha_{i} \in \mathbb{Q}^{+}$
$*$ all require $\mathbf{f}_{i} \mathbf{x}+g_{i}$ to have proper sign

SOCP-solvable

SOC-Representable (3)

p-norm

$$
\nLeftarrow\left(\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{p}\right)^{1 / p} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, p \in \mathbb{Q}^{+}, p \geq 1
$$

* $\left(\left|x_{1}\right|^{5}+\left|x_{2}\right|^{5}\right)^{1 / 5} \leq x_{3}$ can be written $\left|x_{1}\right|^{5} / x_{3}^{4}+\left|x_{2}\right|^{5} / x_{3}^{4} \leq x_{3}$ which becomes

$$
v_{1}+v_{2} \leq x_{3} \text { with }-v_{1}^{1 / 5} x_{3}^{4 / 5} \leq \pm x_{1},-v_{1}^{1 / 5} x_{3}^{4 / 5} \leq \pm x_{2}
$$

* reduces to product of powers

Generalizations

$*\left(\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}}\right)^{1 / \alpha_{0}} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, \alpha_{i} \in \mathbb{Q}^{+}, \alpha_{i} \geq \alpha_{0} \geq 1$
$\star \sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}} \leq\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{\alpha_{0}}$

* Minimize $\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}}$
. . . standard SOCP has $\alpha_{i} \equiv 2$

SOCP-solvable

Other Objective Functions

Unrestricted product of powers

* Minimize $-\prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{\alpha_{i}}$ for any $\alpha_{i} \in \mathbb{Q}^{+}$

Logarithmic Chebychev approximation

* Minimize $\max _{i=1}^{n}\left|\log \left(\mathbf{f}_{i} \mathbf{x}\right)-\log \left(g_{i}\right)\right|$

Why no constraint versions?

* Not SOC-representable
* Transformation changes objective value (but not solution)

Challenges

Extending to all cases previously cited

* All prove amenable to recursive tree-walk
* Details much harder to work out

Checking nonnegativity of linear expressions

* Heuristic catches many non-obvious instances

Assessing usefulness...

* Results from Jared Erickson's dissertation:

JaredErickson2012@u.northwestern.edu

Survey of Test Problems

12% of 1238 nonlinear problems were SOC-solvable!

* not counting QPs with sum-of-squares objectives
* from Vanderbei's CUTE \& non-CUTE, and netlib/ampl

A variety of forms detected
$\dot{\mathrm{hs}} 064$ has $4 / x_{1}+32 / x_{2}+120 / x_{3} \leq 1$

* hs036 minimizes $-x_{1} x_{2} x_{3}$
* hs073 has $1.645 \sqrt{0.28 x_{1}^{2}+0.19 x_{2}^{2}+20.5 x_{3}^{2}+0.62 x_{4}^{2}} \leq \ldots$
* polak4 is a max of sums of squares
\div hs049 minimizes $\left(x_{1}-x_{2}\right)^{2}+\left(x_{3}-1\right)^{2}+\left(x_{4}-1\right)^{4}+\left(x_{5}-1\right)^{6}$
* emfl_nonconvex has $\sum_{k=1}^{2}\left(x_{j k}-a_{i k}\right)^{2} \leq s_{i j}^{2}$
. . . similar for nonlinear integer programs

Computational Experience

Two solver possibilities

* NLP: General-purpose mixed-integer nonlinear
* KNITRO, Bonmin, BARON
* SOCP: Linear mixed-integer extended to convex quadratic * CPLEX, Gurobi, Xpress

Reliability: Advantage to SOCP

* Far fewer failures
* Global optimum is assured

Efficiency: Undecided

* Times can be comparable
* Limited experience with difficult integer models

Small Example 1

SOCP-solvable with nonsmooth functions

```
var x {1..5} integer;
var y {1..5} >= 0;
minimize obj: sum {i in 1..5} (
    sqrt( (x[i]+2)~2 + (y[i]+1)^2 ) + sqrt( (x[i]+y[i])^2 ) + y[3]^2 );
subj to xsum: sum {i in 1..5} x[i] <= -12;
subj to ysum: sum {i in 1..5} y[i] >= 10;
subj to socprep:
    max {i in 1..5} ( (x[i]^2 + 1)/(i+y[i]) + y[i]^3 ) <= 30;
```


Small Example 1 (cont'd)

General nonlinear solver (integer)
KNITRO 8.0.0: Convergence to an infeasible point.
Problem may be locally infeasible.
General nonlinear solver (continuous relaxation)

```
KNITRO 8.0.0:
--- ERROR evaluating objective gradient.
--- ERROR evaluating constraint gradients.
Evaluation error.
objective 17.14615551; feasibility error 0
233 iterations; 1325 function evaluations
```


Small Example 1 (cont'd)
 Convex quadratic solver (integer)

```
CPLEX 12.4.0
Total time (root+branch&cut) = 0.21 sec.
Solution value = 17.246212
: x y
1 -3 3
2 -2 1.99993
3 -2 0.000300084
4 -3 3
5 -2 1.99993
;
```


Computational Example (cont'd)

Convex quadratic solver (continuous relaxation)

```
CPLEX 12.4.0
Total time = 0.04 sec.
Solution value = 17.141355
: ccc
2 -2.49707 2.49707
3 -2.01171 0.011716
4 -2.49707 2.49707
5 -2.49707 2.49707
;
```


Small Example 2

SOCP-solvable with p-norms

```
var x {1..100} >= 0 integer;
minimize obj:
    (sum {i in 1..60} x[i]^3) - (1/3) +
    (sum {i in 40..99} (1+x[i]-x[i+1])~4) ~ (1/4);
subject to c1 {i in 1..50}:
    x[i] + x[i+50] >= i/10;
```


Small Example 2 (cont'd)

General nonlinear solver (integer)

```
KNITRO 8.0.0: Locally optimal solution.
objective 4.24223232; integrality gap -1.5e-09
5517 nodes; 5517 subproblem solves
Total time = 70.1364 sec.
```

Convex quadratic solver (integer)

```
CPLEX 12.4.0
objective 4.242235
352 branch-and-cut nodes, 18360 iterations
Total time (root+branch&cut) = 6.45 sec.
```


Conclusions

Can solve many "not linear" problem types using "linear" solvers
Details are highly problem-dependent
More could be done to automate the process

* Detect solvable forms
* Convert to linear or quadratic formulations

