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Convex Quadratic Programming in AMPL

A surprising variety of optimization 
applications can be written in terms 
of convex quadratic objectives and 
constraints that are handled 
effectively by extensions to linear 
solvers. “Elliptical” convex quadratic 
programs are easily recognized once 
the matrices of quadratic coefficients 
are extracted, through a test for 
positive-semidefiniteness. “Conic” 
problems are also convex quadratic 
and can in principle also be detected 
numerically, but are more commonly 
recognized by their equivalence to 
certain canonical forms. Additionally, 
varied combinations of sums-of-
squares, Euclidean norms, quadratic-
linear ratios, products of powers, 
p-norms, and log-Chebychev terms 

can be identified symbolically and 
transformed to quadratic problems 
that have conic formulations. The 
power and convenience of an 
algebraic modeling language may be 
extended to support these cases, with 
the help of a recursive tree-walk 
approach that detects and (where 
necessary) transforms arbitrarily 
complex instances; modelers are 
thereby freed from the time-
consuming and error-prone work of 
maintaining the equivalent canonical 
formulations explicitly. We describe 
the challenges of creating the requisite 
detection and transformation routines 
for the AMPL language, and report 
computational tests that suggest the 
usefulness of these routines.
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What is convex quadratic?
 What kind of solver do you want to use?

Introductory examples
 Product of linear terms

 Traffic network

Detection and transformation
 Where they are done now

 Where they should be done

 Our new extensions
 Theory
 Implementation
 Testing
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Outline
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Convex quadratic objective
 PSD quadratic + linear

Convex quadratic constraints
 Linear

 PSD quadratic  ≤  constant
 Conic quadratic

Anything transformable to the above

What kind of solver do you want to use?

4

What is Convex Quadratic?
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MINOS, KNITRO, Ipopt, SNOPT, CONOPT, . . .

Advantages
 Accepts any form of problem

 Tolerates nonconvexities

Disadvantages
 Relies on smoothness

 Uses complex mechanisms
 Function evals, line searches, convergence tests, . . .

 Reports only local optimality
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General Nonlinear Solver
What kind of solver?
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CPLEX, Gurobi, Xpress, MOSEK, . . .

Advantages
 Uses mechanisms adapted from linear programming

 Sparse coefficient lists, fast interior-point methods, . . .

 Tolerates nonsmooth functions & regions

 Reports global optimality

Disadvantages
 Requires recognizable convex quadratic formulations

 Rejects problems not in required form
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Extended Linear Solver
What kind of solver?
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Zero-one
 Extend linear branch-and-bound

 Transform to linear
 requires just one binary in each quadratic term
 many alternatives available

 Transform to PSD quadratic
 based on = for any binary 

General integer
 Extend linear branch-and-bound

 Transform to zero-one
 creates log binaries for domain of size 

8

Possibilities for Integer Variables
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Example 1: Product of Linear Terms
Original formulation

 Maximize  (∑ ) (∑ ) 
 ∑ ≥ 0,  ∑ ≥ 0

Conic reformulation
 Maximize  

 ≤  ,  ≥ 0, ≥ 0
 = ∑ ,  = ∑  
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AMPL Model
Direct formulation

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;

maximize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 17;
subject to SumY: sum {j in 1..n} j * Y[j] >= 17;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = 7;

Product of Linear Terms
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AMPL Solution

Rejected by Gurobi

ampl: model xy4.mod;
ampl: option solver gurobi;

ampl: solve;

Gurobi 5.5.0: quadratic objective is not positive definite

Product of Linear Terms

Solved by KNITRO

ampl: model xy4a.mod;
ampl: option solver knitro;

ampl: solve;

KNITRO 8.1.1: Locally optimal solution.
objective 887.414414; feasibility error 7.05e-08
10 iterations; 11 function evaluations
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AMPL Model
Conic reformulation

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;

var ZX >= 0;
var ZY >= 0;
var Z;

maximize Obj: Z;

subject to ZXdef: ZX = sum {j in 1..n} c[j]*X[j];
subject to ZYdef: ZY = sum {j in 1..n} d[j]*Y[j];

subject to Zdef: Z^2 <= ZX * ZY; # still not positive semidefinite

subject to SumX: .......

Product of Linear Terms
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AMPL Solution

Now solved by Gurobi

ampl: model xy4b.mod;
ampl: option solver gurobi;

ampl: solve;

Gurobi 5.5.0: optimal solution; objective 29.78950153
11 barrier iterations

ampl: ampl: print Z^2;
887.4144013356272

Product of Linear Terms

Related cases
 Minimize can’t be reformulated

 (∑ ) / (∑ ) / offers more possibilities

 Many other products of powers can be handled
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Given
Set of nodes representing intersections

Entrance to network

Exit from network ⊆  ∪ { }  ×  ∪ { }
Set of arcs representing road links

and
Base travel time for each road link ( , ) ∈
Traffic sensitivity for each road link ( , ) ∈
Capacity for each road link ( , ) ∈
Desired throughput from to 

15

Example 2: Traffic Network
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Determine
Traffic flow through road link ( , ) ∈
Actual travel time on road link ( , ) ∈

to minimize

Average travel time from e to f

16

Formulation
Traffic Network
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Subject to

17

Formulation (cont’d)

Travel times increase as flow approaches capacity

Flow out equals flow in at any intersection

Flow into the entrance equals the specified throughput

Traffic Network
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AMPL Formulation

Symbolic data

set INTERS;          # intersections (network nodes)

param EN symbolic;   # entrance
param EX symbolic;   # exit

check {EN,EX} not within INTERS;

set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};

# road links (network arcs)

param base {ROADS} > 0;  # base travel times
param sens {ROADS} > 0;  # traffic sensitivities
param cap {ROADS} > 0;   # capacities

param through > 0;       # throughput

Traffic Network
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AMPL Formulation (cont’d)

Symbolic model

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Data

Explicit data independent of symbolic model

set INTERS := b c ;

param EN := a ;
param EX := d ;

param: ROADS: base cap sens :=
a b    4   10   .1
a c    1   12   .7
c b    2   20   .9
b d    1   15   .5
c d    6   10   .1 ;

param through := 20 ;

Traffic Network

a

c

b
d
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AMPL Solution

Model + data = problem to solve, using KNITRO

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver knitro;
ampl: solve;

KNITRO 8.1.1: Locally optimal solution.
objective 61.04695019; feasibility error 1.42e-14
9 iterations; 15 function evaluations

ampl: display Flow, Time;

:       Flow       Time   :=
a b    9.55146   25.2948
a c   10.4485    57.5709
b d   11.0044    21.6558
c b    1.45291    3.41006
c d    8.99562   14.9564
;

Traffic Network
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AMPL Solution (cont’d)

Model + data = problem to solve, using CPLEX?

ampl: model traffic.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.5.1.0: 
Constraint _scon[1] is not convex quadratic 
since it is an equality constraint.

Traffic Network
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AMPL Solution (cont’d)

Look at the model again . . .

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Solution (cont’d)

Quadratically constrained reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Solution (cont’d)

Model + data = problem to solve, using CPLEX?

ampl: model trafficQUAD.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.5.1.0: 
QP Hessian is not positive semi-definite.

Traffic Network
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AMPL Solution (cont’d)

Quadratic reformulation #2

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
Slack[i,j] = 1 - Flow[i,j]/cap[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Solution (cont’d)

Model + data = problem to solve, using CPLEX!

ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.5.1.0: primal optimal; objective 61.04693968
15 barrier iterations

ampl: display Flow;

Flow :=
a b    9.55175
a c   10.4482
b d   11.0044
c b    1.45264
c d    8.99561
;

Traffic Network
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Where they are done now
 In AMPL

 In the AMPL-solver interface

 In the solver

Where they should be done

How we have extended them

30

Detection and Transformation



Robert Fourer, Jared Erickson, Convex Quadratic Programming in AMPL
ICCOPT 2013 — Lisbon 29 July-1 August 2013

Model instantiated with data

Expression trees written to problem file
 (10.1 ) (5.3 + 1.7 )
 (10.1 * x[2]) * (5.3 * y[5] + 1.7 * y[8])

31

In AMPL

*

+*

* *

5.3 y[5] 1.7 y[8]

10.1 x[2]
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Quadratic problem detected
 Products of linear terms multiplied out

 Quadraticity test applied by recursive tree walk

Nonzero quadratic coefficients sent to solver
 Coefficients extracted from tree

 Solver-specific routines called

32

In the AMPL-Solver Interface
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Test for recognized convex quadratics

“Elliptic” case: numerical test


Min +≤ + where is positive semidefinite

“Conic” case: symbolic test
  + . . .  +  ≤ , ≥ 0
  + . . .  +  ≤  , ≥ 0, ≥ 0

. . . second-order cone programs (SOCPs)

33

In the Solver
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In AMPL?
 Some solution strategies may be ruled out

In the solver?
 Each solver will have its own implementation

In the AMPL-solver interface?
 Recognition routines can be shared where appropriate

 Representation details can be different for each solver

 New ideas can be tried out

. . . interface source is open

34

Where Should Detection and
Transformation Be Done?
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Example 3: Schittkowski #255 (err)

var x {1..4} >= -20, <= 20;

minimize f: 

100*(x[2] - x[1]^2) + (1-x[1])^2 + 90*(x[4]-x[3]^2) + (1-x[3])^2 + 

10.1*((x[2]-1)^2 + (x[4]-1)^2) + 19.8*(x[2]-1)*(x[4]-1);
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AMPL Solution by KNITRO

Starting point 2

ampl: model s255.mod;

ampl: let {j in 1..4} x[j] := +1;

ampl: solve;

KNITRO 8.0.0: Locally optimal solution.
objective -75376.125; feasibility error 0
8 iterations; 9 function evaluations

s255 (err)

Starting point 1

ampl: model s255.mod;

ampl: let {j in 1..4} x[j] := -1;

ampl: solve;

KNITRO 8.0.0: Locally optimal solution.
objective -75216.1247; feasibility error 0
7 iterations; 8 function evaluations



Robert Fourer, Jared Erickson, Convex Quadratic Programming in AMPL
ICCOPT 2013 — Lisbon 29 July-1 August 2013 37

AMPL Solution by “Linear” Solvers

Solved by Gurobi

ampl: model s255.mod;

ampl: option solver gurobi;

ampl: solve;

Gurobi 5.5.0: optimal solution; objective -75376.125
7 barrier iterations

s255 (err)

Rejected by CPLEX

ampl: model s255.mod;

ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.1.0: QP Hessian is not positive semi-definite.



Robert Fourer, Jared Erickson, Convex Quadratic Programming in AMPL
ICCOPT 2013 — Lisbon 29 July-1 August 2013

Theory
 Targets for transformation

 SOCP-equivalent forms

Implementation via recursive tree walks
 Detection

 Transformation

Testing
 Existence of SOCP-equivalent problems

 Performance of “linear” vs. nonlinear solvers

Prospects . . .

38

Detection and Transformation 
of SOCP-Equivalent Forms



Robert Fourer, Jared Erickson, Convex Quadratic Programming in AMPL
ICCOPT 2013 — Lisbon 29 July-1 August 2013

Standard cone

39

Theory: Conic Constraint Forms

. . . boundary not smooth

Rotated cone
 ≤ , ≥ 0, ≥ 0, . . .

y

z

+ ≤ ≥ 0 + ≤ , ≥ 0
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Symbolic detection
  + . . .  +  ≤ , ≥ 0
  + . . .  +  ≤ , ≥ 0, ≥ 0

 implemented through recursive tree walks

Numerical detection
 + ≤ ,  where Q has one negative eigenvalue

 see Ashutosh Mahajan and Todd Munson, “Exploiting 
Second-Order Cone Structure for Global Optimization”

 not addressed in our work

40

Targets for Transformation
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Quadratic
 Constraints

 Objectives

SOC-representable
 Quadratic-linear ratios

 Generalized geometric means

 Generalized p-norms

Other objective functions
 Generalized product-of-powers

 Logarithmic Chebychev

41

SOCP-Equivalent Forms
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Standard cone constraints
 ∑ ( + ) ≤ ( + ) ,, . . . , ≥ 0, + ≥ 0

 ∑ ≤ , ≥ 0
 = / ( + ),  = 1, . . . , + 1

Rotated cone constraints
 ∑ + ≤ + + ,, . . . , ≥ 0,   + ≥ 0,  + ≥ 0

Sum-of-squares objectives
 Minimize  ∑ +

 Minimize
Subject to ∑ + ≤ ,  ≥ 0

Quadratic Generalizations
SOCP-equivalent
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Definition
 Function is SOC-representable iff . . .

 ≤ ( + ) is equivalent to some 
combination of linear and quadratic cone constraints

Minimization property
 Minimize is SOC-equivalent

 Minimize
Subject to ( ) ≤

Combination properties
 ∙ is SOC-representable for any ≥ 0
 ∑ is SOC-representable

  is SOC-representable
. . . requires a recursive detection algorithm!

43

SOC-Representable
SOCP-equivalent
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SOC-Representable (1)
Vector norm

 ∙ + = ∑ + ≤ +
 square both sides to get standard SOC∑ + ≤ +

Quadratic-linear ratio


∑     ≤ +
 where + ≥ 0
 multiply by denominator to get rotated SOC∑  + ≤  + +

44

SOCP-equivalent
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SOC-Representable (2)
Negative geometric mean

 − ∏ + ⁄ ≤ + ,  ∈ ℤ
 − / / / / ≤ − becomes rotated SOCs:≤ , ≤ , ≤
 apply recursively log times

Generalizations
 − ∏ + ≤ + :  ∑ ≤ 1, ∈ ℚ
 ∏ + ≤ + ,  ∈ ℚ

 all require +  to have proper sign

45

SOCP-equivalent
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SOC-Representable (3)
p-norm

 ∑ + ⁄ ≤ + ,  ∈ ℚ ,  ≥ 1
 + ⁄ ≤ can be written⁄ + ⁄  ≤ which becomes+ ≤ with  − ⁄ ⁄ ≤ ± , − ⁄ ⁄ ≤ ±
 reduces to product of powers

Generalizations
 ∑ + ⁄ ≤ + ,  α ∈ ℚ ,  ≥  ≥ 1
 ∑ + ≤ +
 Minimize  ∑ +

. . . standard SOCP has ≡
46

SOCP-equivalent
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Other Objective Functions
Unrestricted product of powers

 Minimize  − ∏ + for any ∈ ℚ
Logarithmic Chebychev approximation

 Minimize  max log − log ( )  
Why no constraint versions?

 Not SOC-representable

 Transformation changes objective value (but not solution)

47

SOCP-equivalent
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Principles
 Representation of expressions by trees

 Recursive tree-walk functions
 isLinear(), isQuadratic(), buildLinear()

Example: Sum of norms

48

Implementation
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Expression
base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j])

Expression tree

49

Representation

+

/5

* -

0.1 x[5] 1 /

x[5] 10

. . . actually a DAG

Principles
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Detection: isQuadr()

boolean isQuadr (Node);

case of Node {

PLUS:  
MINUS: return( isQuadr(Node.left) and isQuadr(Node.right) );

TIMES: return( isLinear(Node.left) and isLinear(Node.right) or
isQuadr(Node.left) and isConst(Node.right)   or
isConst(Node.left) and isQuadr(Node.right) );

POWER: return( isLinear(Node.left) and 
isConst(Node.right) and value(Node.right) == 2 );

VAR: return( TRUE );

CONST: return( TRUE );

}

Principles
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Detection: isLinear()

boolean isLinear (Node);

case of Node {

PLUS:  
MINUS: return( isLinear(Node.left) and isLinear(Node.right) );

TIMES: return( isConst(Node.left) and isLinear(Node.right) or
isLinear(Node.left) and isConst(Node.right) );

DIV: return( isLinear(Node.left) and isConst(Node.right) );

VAR: return( TRUE );

CONST: return( TRUE );

}

. . . to detect, test isLinear(root)

Principles
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Transformation: buildLinear()

(coeff,const) = buildLinear (Node);

if Node.L then (coefL,consL) = buildLinear(Node.L);
if Node.R then (coefR,consR) = buildLinear(Node.R);

case of Node {

PLUS:  coeff = mergeLists( coefL, coefR );
const = consL + consR;

TIMES: ...

DIV: coeff = coefL / consR;
const = consL / consR;

VAR: coeff = makeList( 1, Node.index );
const = 0;

CONST: coeff = makeList( );
const = Node.value;

}

. . . to transform, call buildLinear(root)

Principles
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Example: Sum-of-Norms Objective
Given

 Minimize  ∑  ∑ +
Transform to

 Minimize  ∑
 ∑ ≤ ,  ≥ 0, = 1, . . . ,
 = + , = 1, . . . , , = 1, . . . ,

Two steps
 Detection

 Transformation

53
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Detection

SUMOFNORMS

Sum: + is SUMOFNORMS if , are SUMOFNORMS

Product: is SUMOFNORMS if
is SUMOFNORMS and is POSCONSTANT or
is SUMOFNORMS and is POSCONSTANT

Square root: is SUMOFNORMS if is SUMOFSQUARES

Sum of Norms

SUMOFSQUARES

Sum: + is SUMOFSQUARES if , are SUMOFSQUARES

Product: is SUMOFSQUARES if
is SUMOFSQUARES and is POSCONSTANT or
is SUMOFSQUARES and is POSCONSTANT

Square: is SUMOFSQUARES if is LINEAR

Constant: is SUMOFSQUARES if is POSCONSTANT
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Mathematical

 Minimize  ∑  ∑ +
Practical

 Constant multiples inside any sum

 Recursive nesting of constant multiples & sums

 Constant as a special case of a square

 3 4 + 7 + 2 + 6 + + + 17
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Transformation

TRANSFORMSUMOFNORMS (Expr e, Obj o, real k)
Sum: e1 + e2 where e1, e2 are SUMOFNORMS

TRANSFORMSUMOFNORMS (e1,o,k)
TRANSFORMSUMOFNORMS (e2,o,k)

Product: e1 * c2 where e1 is SUMOFNORMS and c2 is POSCONSTANT

TRANSFORMSUMOFNORMS (e1,o,c2∗k)

Product: c1 * e2 where e2 is SUMOFNORMS and c1 is POSCONSTANT

TRANSFORMSUMOFNORMS (e2,o,c1∗k)

Square root: sqrt(e) where e is SUMOFSQUARES

yi := NEWNONNEGVAR();  o += k * yi
qi := NEWLECON();  qi += -yi^2
TRANSFORMSUMOFSQUARES (e,qi,1)

Sum of Norms
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Transformation (cont’d)

TRANSFORMSUMOFSQUARES (Expr e, LeCon qi, real k)
Sum: e1 + e2 where e1, e2 are SUMOFSQUARES

TRANSFORMSUMOFSQUARES (e1,o,k)
TRANSFORMSUMOFSQUARES (e2,o,k)

Product: e1 * c2 where e1 is SUMOFSQUARES and c2 is POSCONSTANT

TRANSFORMSUMOFSQUARES (e1,o,c2∗k)

Product: c1 * e2 where e2 is SUMOFSQUARES and c1 is POSCONSTANT

TRANSFORMSUMOFSQUARES (e2,o,c1∗k)

Square: sqr(zij) where zij is VARIABLE

qi += k * zij^2
Square: sqr(e) where e is LINEAR

zij := NEWVAR();  qi += k * zij^2
lij := NEWEQCON();  lij += zij - e

Constant: c is POSCONSTANT

zij := NEWVAR();  qi += k * zij^2
lij := NEWEQCON();  lij += zij – sqrt(c)

Sum of Norms
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Mathematical
 Minimize  ∑
 ∑ ≤ ,  ≥ 0
 = +

Practical
 Generalization: handle all previously mentioned

 Efficiency: don’t define when + is a single variable

 Trigger by calling TRANSFORMSUMOFNORMS(e,o,k) with
 e the root node
 o an empty objective
 k = 1
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Challenges
Extending to all cases previously cited

 All prove amenable to recursive tree-walk

 Details much harder to work out

Checking nonnegativity of linear expressions
 Heuristic catches many non-obvious instances

Assessing usefulness . . .
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Survey of nonlinear test problems

Comparison of performance

60

Testing
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Survey of Test Problems (1)
12% of 1238 nonlinear problems were SOC-solvable!

 not counting QPs with sum-of-squares objectives

 from Vanderbei’s CUTE & non-CUTE, and netlib/ampl

A variety of forms detected
 hs064 has 4⁄ + 32⁄ + 120⁄ ≤  1
 hs036 minimizes −
 hs073 has 1.645 0.28 +  0.19 +  20.5 +  0.62 ≤ . . .
 polak4 is a max of sums of squares

 hs049 minimizes − +  − 1 +  − 1 +  − 1
 emfl_nonconvex has ∑ − ≤  
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Survey of Test Problems (2)
Counted number of test problems . . .

 Solvable already by a “linear” solver

 Detected as SOCP-equivalent by our routines

62
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Comparison of Performance
SOCP-equivalent with nonsmooth functions

var x {1..5} integer;
var y {1..5} >= 0;

minimize obj: sum {i in 1..5} (

sqrt( (x[i]+2)^2 + (y[i]+1)^2 ) + sqrt( (x[i]+y[i])^2 ) + y[3]^2 );

subj to xsum: sum {i in 1..5} x[i] <= -12; 

subj to ysum: sum {i in 1..5} y[i] >= 10; 

subj to socprep: 

max {i in 1..5} ( (x[i]^2 + 1)/(i+y[i]) + y[i]^3 ) <= 30;
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Comparison (cont’d)

General nonlinear solver (integer)

KNITRO 8.0.0: Convergence to an infeasible point. 

Problem may be locally infeasible.

General nonlinear solver (continuous relaxation)

KNITRO 8.0.0: 

--- ERROR evaluating objective gradient.
--- ERROR evaluating constraint gradients.

Evaluation error.

objective 17.14615551; feasibility error 0
233 iterations; 1325 function evaluations
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Comparison
Convex quadratic solver (integer)

CPLEX 12.4.0

Total time (root+branch&cut) = 0.21 sec.

Solution value  = 17.246212

:    x         y
1   -3   3
2   -2   1.99993
3   -2   0.000300084
4   -3   3
5   -2   1.99993
;
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Comparison
Convex quadratic solver (continuous relaxation)

CPLEX 12.4.0

Total time = 0.04 sec.

Solution value  = 17.141355

:   x         y
1   -2.49707   2.49707
2   -2.49707   2.49707
3   -2.01171   0.011716
4   -2.49707   2.49707
5   -2.49707   2.49707
;
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Robust implementation needed
 Focus on forms most likely to be worthwhile

 Modularize to work with varied solver interfaces

Value will be established gradually
 Teach users about convex quadratic features

 Collect experience with new models
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Prospects


