Convex Quadratic Programming in AMPL

Robert Fourer
Northwestern University / AMPL Optimization 4er@ampl.com
Jared Erickson
Northwestern University / Ziena Optimization jarederickson2012@u.northwestern.edu
4th International Conference on Continuous Optimization Caparica, Lisbon, Portugal - 29 July-1 August 2013

Thu.A.23: Extending the Power and Expressiveness of Optimization Modeling Languages

Convex Quadratic Programming in AMPL

A surprising variety of optimization applications can be written in terms of convex quadratic objectives and constraints that are handled effectively by extensions to linear solvers. "Elliptical" convex quadratic programs are easily recognized once the matrices of quadratic coefficients are extracted, through a test for positive-semidefiniteness. "Conic" problems are also convex quadratic and can in principle also be detected numerically, but are more commonly recognized by their equivalence to certain canonical forms. Additionally, varied combinations of sums-ofsquares, Euclidean norms, quadraticlinear ratios, products of powers, p-norms, and log-Chebychev terms
can be identified symbolically and transformed to quadratic problems that have conic formulations. The power and convenience of an algebraic modeling language may be extended to support these cases, with the help of a recursive tree-walk approach that detects and (where necessary) transforms arbitrarily complex instances; modelers are thereby freed from the timeconsuming and error-prone work of maintaining the equivalent canonical formulations explicitly. We describe the challenges of creating the requisite detection and transformation routines for the AMPL language, and report computational tests that suggest the usefulness of these routines.

Outline

What is convex quadratic?

* What kind of solver do you want to use?

Introductory examples

* Product of linear terms
* Traffic network

Detection and transformation

* Where they are done now
* Where they should be done
* Our new extensions
* Theory
* Implementation
* Testing

What is Convex Quadratic?

Convex quadratic objective

* PSD quadratic + linear

Convex quadratic constraints

* Linear
* PSD quadratic \leq constant
* Conic quadratic

Anything transformable to the above

What kind of solver do you want to use?

What kind of solver?

General Nonlinear Solver

MINOS, KNITRO, Ipopt, SNOPT, CONOPT, . . .

Advantages

* Accepts any form of problem
* Tolerates nonconvexities

Disadvantages

* Relies on smoothness
* Uses complex mechanisms
* Function evals, line searches, convergence tests, . . .
* Reports only local optimality

What kind of solver?

Extended Linear Solver

CPLEX, Gurobi, Xpress, MOSEK, . . .

Advantages

* Uses mechanisms adapted from linear programming
* Sparse coefficient lists, fast interior-point methods, . . .
* Tolerates nonsmooth functions \& regions
* Reports global optimality

Disadvantages

* Requires recognizable convex quadratic formulations
* Rejects problems not in required form

Convex Quadratic Programming in AMPL ${ }^{\vee}$ Using "Linear" Solvers

Robert Fourer
Northwestern University / AMPL Optimization 4er@ampl.com
Jared Erickson
Northwestern University / Ziena Optimization jarederickson2012@u.northwestern.edu
4th International Conference on Continuous Optimization Caparica, Lisbon, Portugal - 29 July-1 August 2013

Thu.A.23: Extending the Power and Expressiveness of Optimization Modeling Languages

Possibilities for Integer Variables

Zero-one

* Extend linear branch-and-bound
* Transform to linear
* requires just one binary in each quadratic term
* many alternatives available
* Transform to PSD quadratic
* based on $x^{2}=x$ for any binary x

General integer

* Extend linear branch-and-bound
* Transform to zero-one
* creates $\log _{2} U$ binaries for domain of size U

Continuous

${ }_{\wedge}$ Convex Quadratic Programming in AMPL ${ }^{\vee}$ Using "Linear" Solvers

Robert Fourer
Northwestern University / AMPL Optimization 4er@ampl.com
Jared Erickson
Northwestern University / Ziena Optimization jarederickson2012@u.northwestern.edu
4th International Conference on Continuous Optimization Caparica, Lisbon, Portugal - 29 July-1 August 2013

Thu.A.23: Extending the Power and Expressiveness of Optimization Modeling Languages

Example 1: Product of Linear Terms

Original formulation

$$
\begin{aligned}
& \otimes \text { Maximize }\left(\sum_{j=1}^{n} c_{j} x_{j}\right)\left(\sum_{j=1}^{n} d_{j} y_{j}\right) \\
& \therefore \sum_{j=1}^{n} c_{j} x_{j} \geq 0, \sum_{j=1}^{n} d_{j} y_{j} \geq 0
\end{aligned}
$$

Conic reformulation

* Maximize z
* $z^{2} \leq z_{x} z_{y}, \quad z_{x} \geq 0, z_{y} \geq 0$
$* z_{x}=\sum_{j=1}^{n} c_{j} x_{j}, \quad z_{y}=\sum_{j=1}^{n} d_{j} y_{j}$

Product of Linear Terms

AMPL Model

Direct formulation

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;
maximize Obj:
    (sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);
subject to SumX: sum {j in 1..n} j * X[j] >= 17;
subject to SumY: sum {j in 1..n} j * Y[j] >= 17;
subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = 7;
```


Product of Linear Terms

AMPL Solution

Solved by KNITRO

```
ampl: model xy4a.mod;
ampl: option solver knitro;
ampl: solve;
KNITRO 8.1.1: Locally optimal solution.
objective 887.414414; feasibility error 7.05e-08
10 iterations; 11 function evaluations
```


Rejected by Gurobi

```
ampl: model xy4.mod;
ampl: option solver gurobi;
ampl: solve;
Gurobi 5.5.0: quadratic objective is not positive definite
```


Product of Linear Terms

AMPL Model

Conic reformulation

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} >= 0, <= 2;
var Y {1..n} >= 0, <= 2;
var ZX >= 0;
var ZY >= 0;
var Z;
maximize Obj: Z;
subject to ZXdef: ZX = sum {j in 1..n} c[j]*X[j];
subject to ZYdef: ZY = sum {j in 1..n} d[j]*Y[j];
subject to Zdef: Z^2 <= ZX * ZY; # still not positive semidefinite
subject to SumX:
```


Product of Linear Terms

AMPL Solution

Now solved by Gurobi

```
ampl: model xy4b.mod;
ampl: option solver gurobi;
ampl: solve;
Gurobi 5.5.0: optimal solution; objective 29.78950153
11 barrier iterations
ampl: ampl: print Z^2;
887.4144013356272
```


Related cases

* Minimize can't be reformulated
* $\left(\sum_{j=1}^{n} x_{j}\right)^{1 / 2}\left(\sum_{j=1}^{n} y\right)^{1 / 2}$ offers more possibilities
* Many other products of powers can be handled

Example 2: Traffic Network

Given

N Set of nodes representing intersections
e Entrance to network
f Exit from network

$$
A \subseteq N \cup\{e\} \times N \cup\{f\}
$$

Set of arcs representing road links

and

$b_{i j}$ Base travel time for each road link $(i, j) \in A$
$s_{i j}$ Traffic sensitivity for each road link $(i, j) \in A$
$c_{i j} \quad$ Capacity for each road link $(i, j) \in A$
T Desired throughput from e to f

Traffic Network

Formulation

Determine

$x_{i j} \quad$ Traffic flow through road link $(i, j) \in A$
$t_{i j} \quad$ Actual travel time on road link $(i, j) \in A$
to minimize

$$
\Sigma_{(i, j) \in A} t_{i j} x_{i j} / T
$$

Average travel time from e to f

Traffic Network

Formulation (cont'd)

Subject to

$t_{i j}=b_{i j}+\frac{s_{i j} x_{i j}}{1-x_{i j} / c_{i j}} \quad$ for all $(i, j) \in A$
Travel times increase as flow approaches capacity
$\Sigma_{(i, j) \in A} x_{i j}=\Sigma_{(j, i) \in A} x_{j i}$ for all $i \in N$
Flow out equals flow in at any intersection
$\Sigma_{(e, j) \in A} x_{e j}=T$
Flow into the entrance equals the specified throughput

Traffic Network

AMPL Formulation

Symbolic data

```
set INTERS; # intersections (network nodes)
param EN symbolic; # entrance
param EX symbolic; # exit
    check {EN,EX} not within INTERS;
set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};
    # road links (network arcs)
param base {ROADS} > 0; # base travel times
param sens {ROADS} > 0; # traffic sensitivities
param cap {ROADS} > 0; # capacities
param through > 0; # throughput
```


Traffic Network

AMPL Formulation (cont'd)

Symbolic model

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
    (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
    Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

Traffic Network

AMPL Data

Explicit data independent of symbolic model

```
set INTERS := b c ;
param EN := a ;
param EX := d ;
param: ROADS: base cap sens :=
\begin{tabular}{llll} 
a b & 4 & 10 & .1
\end{tabular}
    a c 1 1 12 .7
    c b 2 20 . }
    b d 1 15 . 5
    c d 6 10 . 1 ;
```

param through := 20 ;

Traffic Network

AMPL Solution

Model + data $=$ problem to solve, using KNITRO

```
ampl: model traffic.mod;
ampl: data traffic.dat;
ampl: option solver knitro;
ampl: solve;
KNITRO 8.1.1: Locally optimal solution.
objective 61.04695019; feasibility error 1.42e-14
9 iterations; 15 function evaluations
ampl: display Flow, Time;
: Flow Time :=
a b 9.55146 25.2948
a c 10.4485 57.5709
b d 11.0044 21.6558
c b 1.45291 3.41006
c d 8.99562 14.9564
;
```

Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using CPLEX?

```
ampl: model traffic.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.5.1.0:
Constraint _scon[1] is not convex quadratic
since it is an equality constraint.
```


Traffic Network

AMPL Solution (cont'd)

Look at the model again . . .

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
    (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
    Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Traffic Network

AMPL Solution (cont'd)

Quadratically constrained reformulation

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]~2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using CPLEX?

```
ampl: model trafficQUAD.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.5.1.0:
QP Hessian is not positive semi-definite.
```


Traffic Network

AMPL Solution (cont'd)

Quadratic reformulation \#2

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];
subject to Slack_Def {(i,j) in ROADS}:
    Slack[i,j] = 1 - Flow[i,j]/cap[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```

Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using CPLEX!

```
ampl: model trafficSOC.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.5.1.O: primal optimal; objective 61.04693968
15 barrier iterations
ampl: display Flow;
Flow :=
a b 9.55175
a c 10.4482
b d 11.0044
c b 1.45264
c d 8.99561
;
```


Detection and Transformation

Where they are done now

* In AMPL
\therefore In the AMPL-solver interface
* In the solver

Where they should be done
How we have extended them

In AMPL

Model instantiated with data

Expression trees written to problem file
$*\left(10.1 x_{2}\right)\left(5.3 y_{5}+1.7 y_{8}\right)$

* (10.1*x[2]) * (5.3*y[5] + $1.7 * y[8])$

In the AMPL-Solver Interface

Quadratic problem detected

* Products of linear terms multiplied out
* Quadraticity test applied by recursive tree walk

Nonzero quadratic coefficients sent to solver

* Coefficients extracted from tree
* Solver-specific routines called

In the Solver

Test for recognized convex quadratics

"Elliptic" case: numerical test
$\left.* \begin{array}{l}\operatorname{Min} x^{T} Q x+q x \\ x^{T} Q x \leq q x+c\end{array}\right\}$ where Q is positive semidefinite
"Conic" case: symbolic test

$$
\begin{aligned}
& * x_{1}^{2}+\ldots+x_{n}^{2} \leq x_{n+1}^{2}, x_{n+1} \geq 0 \\
& * x_{1}^{2}+\ldots+x_{n}^{2} \leq x_{n+1} x_{n+2}, x_{n+1} \geq 0, x_{n+2} \geq 0
\end{aligned}
$$

. . second-order cone programs (SOCPs)

Where Should Detection and Transformation Be Done?

In AMPL?

* Some solution strategies may be ruled out

In the solver?

* Each solver will have its own implementation

In the AMPL-solver interface?

* Recognition routines can be shared where appropriate
* Representation details can be different for each solver
* New ideas can be tried out
. . . interface source is open

Example 3: Schittkowski \#255 (err)

```
var x {1..4}>= -20, <= 20;
minimize f:
    100*(x[2] - x[1]~2) + (1-x[1])^2 + 90*(x[4]-x[3]~2) + (1-x[3])~2 +
    10.1*((x[2]-1)~2 + (x[4]-1)~2) + 19.8*(x[2]-1)*(x[4]-1);
```

s255 (err)

AMPL Solution by KNITRO

Starting point 1

```
ampl: model s255.mod;
ampl: let {j in 1..4} x[j] := -1;
ampl: solve;
KNITRO 8.O.O: Locally optimal solution.
objective -75216.1247; feasibility error 0
7 iterations; 8 function evaluations
```

Starting point 2

```
ampl: model s255.mod;
ampl: let {j in 1..4} x[j] := +1;
ampl: solve;
KNITRO 8.0.0: Locally optimal solution.
objective -75376.125; feasibility error 0
iterations; 9 function evaluations
```

> s255 (err)

AMPL Solution by "Linear" Solvers

Rejected by CPLEX

```
ampl: model s255.mod;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.5.1.0: QP Hessian is not positive semi-definite.
```

Solved by Gurobi

```
ampl: model s255.mod;
ampl: option solver gurobi;
ampl: solve;
Gurobi 5.5.0: optimal solution; objective -75376.125
7 barrier iterations
```


Detection and Transformation of SOCP-Equivalent Forms

Theory

* Targets for transformation
* SOCP-equivalent forms

Implementation via recursive tree walks

* Detection
* Transformation

Testing

* Existence of SOCP-equivalent problems
* Performance of "linear" vs. nonlinear solvers

Prospects...

Theory: Conic Constraint Forms

Standard cone

$$
x^{2}+y^{2} \leq z^{2}, z \geq 0
$$

. . . boundary not smooth
Rotated cone

$$
\div x^{2} \leq y z, y \geq 0, z \geq 0, \ldots
$$

Targets for Transformation

Symbolic detection

$$
\begin{aligned}
& * x_{1}^{2}+\ldots+x_{n}^{2} \leq x_{n+1}^{2}, x_{n+1} \geq 0 \\
& * x_{1}^{2}+\ldots+x_{n}^{2} \leq x_{n+1} x_{n+2}, x_{n+1} \geq 0, x_{n+2} \geq 0
\end{aligned}
$$

* implemented through recursive tree walks

Numerical detection

$* \mathbf{x}^{T} \mathbf{Q x}+\mathbf{q x} \leq r$, where \mathbf{Q} has one negative eigenvalue

* see Ashutosh Mahajan and Todd Munson, "Exploiting

Second-Order Cone Structure for Global Optimization"

* not addressed in our work

SOCP-Equivalent Forms

Quadratic

* Constraints
* Objectives

SOC-representable

* Quadratic-linear ratios
* Generalized geometric means
* Generalized p-norms

Other objective functions

* Generalized product-of-powers
* Logarithmic Chebychev

SOCP-equivalent

Quadratic Generalizations

Standard cone constraints

$$
\begin{gathered}
* \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2} \\
a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0 \\
* \sum_{i=1}^{n} v_{i}^{2} \leq v_{n+1}, v_{n+1} \geq 0 \\
* v_{i}=a_{i}^{1 / 2}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right), \quad i=1, \ldots, n+1
\end{gathered}
$$

Rotated cone constraints

$$
\begin{array}{r}
\star \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right) \\
a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0, \mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0
\end{array}
$$

Sum-of-squares objectives
$\%$ Minimize $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}$

* Minimize v

$$
\text { Subject to } \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq v^{2}, v \geq 0
$$

SOCP-equivalent

SOC-Representable

Definition

* Function $s(x)$ is SOC-representable iff . . .
$* s(x) \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)$ is equivalent to some combination of linear and quadratic cone constraints

Minimization property

* Minimize $s(x)$ is SOC-equivalent
* Minimize $\quad v_{n+1}$ Subject to $\quad s(x) \leq v_{n+1}$
Combination properties
$\div a \cdot s(x)$ is SOC-representable for any $a \geq 0$
$\star \sum_{i=1}^{n} s_{i}(x)$ is SOC-representable
* $\max _{i=1}^{n} s_{i}(x)$ is SOC-representable
. . . requires a recursive detection algorithm!

SOCP-equivalent

SOC-Representable (1)

Vector norm

$$
\star\|\mathbf{a} \cdot(\mathbf{F} \mathbf{x}+\mathbf{g})\|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)
$$

* square both sides to get standard SOC

$$
\sum_{i=1}^{n} a_{i}^{2}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}^{2}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2}
$$

Quadratic-linear ratio

* $\frac{\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}}{\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)$
$*$ where $\mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0$
* multiply by denominator to get rotated SOC

$$
\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right)
$$

SOCP-equivalent

SOC-Representable (2)

Negative geometric mean

$$
\begin{aligned}
& -\prod_{i=1}^{p}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{1 / p} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, p \in \mathbb{Z}^{+} \\
& *-x_{1}^{1 / 4} x_{2}^{1 / 4} x_{3}^{1 / 4} x_{4}^{1 / 4} \leq-x_{5} \text { becomes rotated SOCs: } \\
& \quad x_{5}^{2} \leq v_{1} v_{2}, v_{1}^{2} \leq x_{1} x_{2}, v_{2}^{2} \leq x_{3} x_{4} \\
& * \text { apply recursively }\left\lceil\log _{2} p\right\rceil \text { times }
\end{aligned}
$$

Generalizations

$$
\begin{aligned}
& *-\prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{\alpha_{i}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right): \sum_{i=1}^{n} \alpha_{i} \leq 1, \alpha_{i} \in \mathbb{Q}^{+} \\
& * \prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{-\alpha_{i}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right), \alpha_{i} \in \mathbb{Q}^{+} \\
& \quad * \text { all require } \mathbf{f}_{i} \mathbf{x}+g_{i} \text { to have proper sign }
\end{aligned}
$$

SOCP-equivalent

SOC-Representable (3)

p-norm

$$
\nLeftarrow\left(\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{p}\right)^{1 / p} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, p \in \mathbb{Q}^{+}, p \geq 1
$$

* $\left(\left|x_{1}\right|^{5}+\left|x_{2}\right|^{5}\right)^{1 / 5} \leq x_{3}$ can be written $\left|x_{1}\right|^{5} / x_{3}^{4}+\left|x_{2}\right|^{5} / x_{3}^{4} \leq x_{3}$ which becomes

$$
v_{1}+v_{2} \leq x_{3} \text { with }-v_{1}^{1 / 5} x_{3}^{4 / 5} \leq \pm x_{1},-v_{1}^{1 / 5} x_{3}^{4 / 5} \leq \pm x_{2}
$$

* reduces to product of powers

Generalizations

* $\left(\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}}\right)^{1 / \alpha_{0}} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, \alpha_{i} \in \mathbb{Q}^{+}, \alpha_{i} \geq \alpha_{0} \geq 1$
$* \sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}} \leq\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{\alpha_{0}}$
* Minimize $\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}}$
. . . standard SOCP has $\alpha_{i} \equiv 2$

SOCP-equivalent

Other Objective Functions

Unrestricted product of powers

* Minimize $-\prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{\alpha_{i}}$ for any $\alpha_{i} \in \mathbb{Q}^{+}$

Logarithmic Chebychev approximation
\because Minimize $\max _{i=1}^{n}\left|\log \left(\mathbf{f}_{i} \mathbf{x}\right)-\log \left(g_{i}\right)\right|$
Why no constraint versions?

* Not SOC-representable
* Transformation changes objective value (but not solution)

Implementation

Principles

* Representation of expressions by trees
* Recursive tree-walk functions
* isLinear(), isQuadratic(), buildLinear()

Example: Sum of norms

Principles

Representation

Expression

```
base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j])
```

Expression tree

. . . actually a DAG

Principles

Detection: isQuadr()

```
boolean isQuadr (Node);
case of Node {
    PLUS:
    MINUS: return( isQuadr(Node.left) and isQuadr(Node.right) );
    TIMES: return( isLinear(Node.left) and isLinear(Node.right) or
        isQuadr(Node.left) and isConst(Node.right) or
        isConst(Node.left) and isQuadr(Node.right) );
    POWER: return( isLinear(Node.left) and
        isConst(Node.right) and value(Node.right) == 2 );
    VAR: return( TRUE );
    CONST: return( TRUE );
}
```


Principles

Detection: isLinear()

```
boolean isLinear (Node);
case of Node {
    PLUS:
    MINUS: return( isLinear(Node.left) and isLinear(Node.right) );
    TIMES: return( isConst(Node.left) and isLinear(Node.right) or
        isLinear(Node.left) and isConst(Node.right) );
    DIV: return( isLinear(Node.left) and isConst(Node.right) );
    VAR: return( TRUE );
    CONST: return( TRUE );
}
```

. . . to detect, test isLinear (root)

Principles

Transformation: buildLinear()

```
(coeff,const) = buildLinear (Node);
if Node.L then (coefL,consL) = buildLinear(Node.L);
if Node.R then (coefR,consR) = buildLinear(Node.R);
case of Node {
    PLUS: coeff = mergeLists( coefL, coefR );
        const = consL + consR;
    TIMES: ...
    DIV: coeff = coefL / consR;
        const = consL / consR;
    VAR: coeff = makeList( 1, Node.index );
        const = 0;
    CONST: coeff = makeList( );
        const = Node.value;
}
```

. . . to transform, call buildLinear (root)

Example: Sum-of-Norms Objective

Given

* Minimize $\sum_{i=1}^{m} a_{i} \sqrt{\sum_{j=1}^{n_{i}}\left(\mathbf{f}_{i j} \mathbf{x}+g_{i j}\right)^{2}}$

Transform to
$*$ Minimize $\sum_{i=1}^{m} a_{i} y_{i}$
$* \sum_{j=1}^{n_{i}} z_{i j}^{2} \leq y_{i}^{2}, y_{i} \geq 0, \quad i=1, \ldots, m$
$* z_{i j}=\mathbf{f}_{i j} \mathbf{x}+g_{i j}, \quad i=1, \ldots, m, j=1, \ldots, n_{i}$
Two steps

* Detection
* Transformation

Sum of Norms

Detection

SumOfNorms

Sum: $e_{1}+e_{2}$ is SumOfNorms if e_{1}, e_{2} are SumOfNorms
Product: $e_{1} e_{2}$ is SumOFNorms if
e_{1} is SumOFNorms and e_{2} is PosConstant or
e_{2} is SumOfNorms and e_{1} is PosConstant
Square root: \sqrt{e} is SumOfNorms if e is SumOfSouares

SumOfSquares

Sum: $e_{1}+e_{2}$ is SumOfSouares if e_{1}, e_{2} are SumOfSouares
Product: $e_{1} e_{2}$ is SumOFSounRes if
e_{1} is SumOfSQuares and e_{2} is PosConstant or
e_{2} is SumOfSouares and e_{1} is PosConstant
Square: e^{2} is SumOfSouares if e is Linear
Constant: c is SumOfSouares if c is PosConstant

Sum of Norms

Detection Issues

Mathematical

\div Minimize $\sum_{i=1}^{m} a_{i} \sqrt{\sum_{j=1}^{n_{i}}\left(\mathbf{f}_{i j} \mathbf{x}+g_{i j}\right)^{2}}$

Practical

* Constant multiples inside any sum
* Recursive nesting of constant multiples \& sums
* Constant as a special case of a square

$$
* \sqrt{3\left(4 x_{1}+7\left(x_{2}+2 x_{3}\right)+6\right)^{2}+\left(x_{4}+x_{5}\right)^{2}+17}
$$

Sum of Norms

Transformation

TransformSumOfNorms (Expr e, Obj o, real k)
Sum: e1 + e2 where e1, e2 are SumOFNorms
TransformSumOfNorms (e1, o,k)
TransformSumOfNorms (e2,o,k)
Product: e1 * c2 where e1 is SumOFNorms and c2 is PosConstant
TRANSFORMSUMOFNORMS (e1, o, c2*k)
Product: c1 $*$ e2 where e2 is SumOFNorms and c1 is PosConstant
TransformSumOFNORMS (e2, $0, c 1 * k$)
Square root: sqrt(e) where e is SumOFSQUARES
yi := NEWNONNEGVAR(); o +=k $*$ yi
qi := NEWLECON(); qi += -yi^2
TransformSumOfSquares (e, qi, 1)

Sum of Norms

Transformation (cont'd)

TransformSumOfSQuares (Expr e, LeCon qi, real k)
Sum: e1 +e2 where e1, e2 are SumOfSouares
TransformSumOfSouares (e1,o,k)
TransformSumOfSouares (e2, o, k)
Product: e1 * c2 where e1 is SumOfSouares and c2 is PosConstant TransformSumOfSouares (e1,o,c2*k)
Product: c1 * e2 where e2 is SumOfSouares and c1 is PosConstant
TransformSumOfSouares (e2,o, c1*k)
Square: sqr(zij) where zij is Variable
qi += k * zij^2

Square: $\operatorname{sqr}(\mathrm{e})$ where e is LINEAR

$$
\text { zij }:=\text { NEWVAR(); qi +=k } * z i j^{\wedge} 2
$$

lij := NEWEQCON(); lij += zij - e
Constant: c is PosConstant
zij:= NewVar(); qi +=k * zij^2
lij:= NewEoCon(); lij += zij-sqrt(c)

Sum of Norms

Transformation Issues

Mathematical

* Minimize $\sum_{i=1}^{m} a_{i} y_{i}$
$* \sum_{j=1}^{n_{i}} z_{i j}^{2} \leq y_{i}^{2}, \quad y_{i} \geq 0$
$\therefore z_{i j}=\mathbf{f}_{i j} \mathbf{x}+g_{i j}$

Practical

* Generalization: handle all previously mentioned
* Efficiency: don't define $z_{i j}$ when $\mathbf{f}_{i j} \mathbf{x}+g_{i j}$ is a single variable
* Trigger by calling TransformSumOfNorms (e,o,k) with
* e the root node
* o an empty objective
* $\mathrm{k}=1$

Challenges

Extending to all cases previously cited

* All prove amenable to recursive tree-walk
* Details much harder to work out

Checking nonnegativity of linear expressions

* Heuristic catches many non-obvious instances

Assessing usefulness . . .

Testing

Survey of nonlinear test problems
Comparison of performance

Survey of Test Problems (1)

12% of 1238 nonlinear problems were SOC-solvable!

* not counting QPs with sum-of-squares objectives
* from Vanderbei's CUTE \& non-CUTE, and netlib/ampl

A variety of forms detected
$\dot{\mathrm{hs} 064}$ has $4 / x_{1}+32 / x_{2}+120 / x_{3} \leq 1$

* hs036 minimizes $-x_{1} x_{2} x_{3}$
$*$ hs073 has $1.645 \sqrt{0.28 x_{1}^{2}+0.19 x_{2}^{2}+20.5 x_{3}^{2}+0.62 x_{4}^{2}} \leq \ldots$
* polak4 is a max of sums of squares
\div hs049 minimizes $\left(x_{1}-x_{2}\right)^{2}+\left(x_{3}-1\right)^{2}+\left(x_{4}-1\right)^{4}+\left(x_{5}-1\right)^{6}$
* emfl_nonconvex has $\sum_{k=1}^{2}\left(x_{j k}-a_{i k}\right)^{2} \leq s_{i j}^{2}$

Survey of Test Problems (2)

Counted number of test problems . . .

* Solvable already by a "linear" solver
* Detected as SOCP-equivalent by our routines

Comparison of Performance

SOCP-equivalent with nonsmooth functions

```
var x {1..5} integer;
var y {1..5} >= 0;
minimize obj: sum {i in 1..5} (
    sqrt( (x[i]+2)~2 + (y[i]+1)^2 ) + sqrt( (x[i]+y[i])^2 ) + y[3]^2 );
subj to xsum: sum {i in 1..5} x[i] <= -12;
subj to ysum: sum {i in 1..5} y[i] >= 10;
subj to socprep:
    max {i in 1..5} ( (x[i]^2 + 1)/(i+y[i]) + y[i]^3 ) <= 30;
```


Comparison (cont'd)

General nonlinear solver (integer)
KNITRO 8.0.0: Convergence to an infeasible point.
Problem may be locally infeasible.
General nonlinear solver (continuous relaxation)

```
KNITRO 8.0.0:
--- ERROR evaluating objective gradient.
--- ERROR evaluating constraint gradients.
Evaluation error.
objective 17.14615551; feasibility error 0
233 iterations; 1325 function evaluations
```


Comparison

Convex quadratic solver (integer)

```
CPLEX 12.4.0
Total time (root+branch&cut) = 0.21 sec.
Solution value = 17.246212
: x y
1 -3 3
2 -2 1.99993
3 -2 0.000300084
4
5 -2 1.99993
;
```


Comparison

Convex quadratic solver (continuous relaxation)

```
CPLEX 12.4.0
Total time = 0.04 sec.
Solution value = 17.141355
: x y
1 -2.49707 2.49707
2 -2.49707 2.49707
3 -2.01171 0.011716
4 -2.49707 2.49707
5 -2.49707 2.49707
;
```


Prospects

Robust implementation needed

* Focus on forms most likely to be worthwhile
* Modularize to work with varied solver interfaces

Value will be established gradually

* Teach users about convex quadratic features
* Collect experience with new models

