Conveying Logical Conditions to MIP Solvers through an Algebraic Modeling Language

Robert Fourer, David M. Gay, Victor Zverovich
[4er, dmg, viz]@ampl.com
AMPL Optimization Inc.
www.ampl.com — + 1 773-336-AMPL

INFORMS Annual Meeting
San Francisco - 9-12 November 2014
Session MC46, Advances in MIP Modeling Systems

Examples

Zero or range restrictions

Interactions between variables

General logical conditions
Piecewise-linear terms

General Approach

What you want to say

* General description
* Combination of words and variables

Ways to say it in AMPL

* Linear formulation
* Using integer variables
* "Not linear" formulation
* Using integer variables and non-arithmetic operators
* Not using integer variables

Transformations performed

* In AMPL before invoking the solver
* In the AMPL-solver interface
* In the solver (if at all)

Example 1: Zero or Range

What you want to say

* If x isn't zero then you want it to be at least L
* where $x \geq 0$ is a variable and $L>0$ is a constant

Ways to say it in AMPL

* Mixed-integer program
* Discontinuous domain
* Implication
* Disjunction

Example 1

Scheduling

Minimize number of workers needed

* How many workers are assigned to each schedule?
* If a schedule is used at all, at least L workers must be assigned to it

Data: shifts in each schedule; least assignment L

```
set SHIFTS;
param Nsched;
set SCHEDS = 1..Nsched;
set SHIFT_LIST {SCHEDS} within SHIFTS;
param rate {SCHEDS} >= 0;
param required {SHIFTS} >= 0;
param least_assign >= 0;
```


Example 1

Case 1: Mixed-Integer Program

Zero-one variables and inequalities

```
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
minimize Total_Cost:
    sum {j in SCHEDS} rate[j] * Work[j];
subject to Shift_Needs {i in SHIFTS}:
    sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];
subject to Least_Use1 {j in SCHEDS}:
    least_assign * Use[j] <= Work[j];
subject to Least_Use2 {j in SCHEDS}:
    Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
```


Example 1

Case 1 (cont'd)

Solved by CPLEX

```
ampl: model sched1.mod;
ampl: data sched.dat;
ampl: option solver cplex;
ampl: let least_assign := 17;
ampl: solve;
Reduced MIP has 269 rows, 252 columns, and 1134 nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 0 indicators.
Total (root+branch&cut) = 563.38 sec. (138138.56 ticks)
CPLEX 12.6.0.0: optimal integer solution; objective 267
24903192 MIP simplex iterations
3816760 branch-and-bound nodes
```


Example 1

Case 2: Discontinuous Domain

Union of a point and an interval

```
var Work {j in SCHEDS} integer in {0} union
    interval[least_assign, max {i in SHIFT_LIST[j]} required[i]];
minimize Total_Cost:
    sum {j in SCHEDS} rate[j] * Work[j];
subject to Shift_Needs {i in SHIFTS}:
    sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];
```


Example 1

Case 2 (cont'd)

Transformed automatically
 * AMPL processor . . .

* adds auxiliary zero-one variables
* generates appropriate constraints

Solved by CPLEX as a MIP

```
Reduced MIP has }269\mathrm{ rows, 252 columns, and 1134 nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 0 indicators.
Total (root+branch&cut) = 342.49 sec. (85757.81 ticks)
CPLEX 12.6.0.0: optimal integer solution; objective 267
15087185 MIP simplex iterations
2306392 branch-and-bound nodes
```


Example 1

Case 2 (cont'd)

Same formulation as case 1

```
ampl: solexpand;
subject to (Work[1]+IUlb):
Work[1] - 17*(Work[1]+b) >= 0;
subject to (Work[1]+IUub):
-Work[1] + 100*(Work[1]+b) >= 0;
subject to (Work[2]+IUlb):
Work[2] - 17*(Work[2]+b) >= 0;
subject to (Work[2]+IUub):
-Work[2] + 100*(Work[2]+b) >= 0;
```


Example 1

Case 3: Implication

CPLEX indicator constraint

```
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
minimize Total_Cost:
    sum {j in SCHEDS} rate[j] * Work[j];
subject to Shift_Needs {i in SHIFTS}:
    sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];
subject to Least_Use {j in SCHEDS}:
    Use[j] = 1 ==> Work[j] >= least_assign else Work[j] = 0;
```


Example 1

Case 3 (cont'd)

Logic passed to solver

* AMPL writes "logical" constraints as expression trees
* AMPL-CPLEX driver "walks" the trees
* detects indicator forms
* converts to CPLEX library calls

Solved by CPLEX with MIP extensions

```
Reduced MIP has 143 rows, 252 columns, and }882\mathrm{ nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 126 indicators.
Total (root+branch&cut) = 5936.45 sec. (1533625.65 ticks)
CPLEX 12.6.0.0: optimal integer solution; objective 267
250228203 MIP simplex iterations
29437722 branch-and-bound nodes
```


Example 1

Case 4: Disjunction

Logical constraint using "or" operator

```
var Work {j in SCHEDS} >= 0 integer;
minimize Total_Cost:
    sum {j in SCHEDS} rate[j] * Work[j];
subject to Shift_Needs {i in SHIFTS}:
    sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];
subject to Least_Use {j in SCHEDS}:
    Work[j] = 0 or Work[j] >= least_assign;
```

```
subject to Least_Use {j in SCHEDS}:
    Work[j] = 0 or
    least_assign <= Work[j] <= max {i in SHIFT_LIST[j]} required[i];
```


Example 1

Case 4 (cont'd)

Logic passed to solver

* AMPL writes "logical" constraints as expression trees
* AMPL-CPLEX driver "walks" the trees
* looks for indicator forms

Rejected by CPLEX

```
ampl: option solver cplex;
ampl: solve;
CPLEX 12.5.0.1: logical constraint not indicator constraint.
```


Example 1

Case 4 (cont'd)

Logic passed to solver

* AMPL writes "logical" constraints as expression trees
* AMPL-CPLEX driver "walks" the trees
* passes constraints as written to C++ "Concert" interface

Accepted and transformed to MIP by CPLEX

```
ampl: option solver ilogcp;
ampl: option ilogcp_options 'optimizer cplex mipdisplay 2';
ampl: solve;
Reduced MIP has 269 rows, 252 columns, and 1134 nonzeros.
Reduced MIP has 126 binaries, 126 generals, and 252 indicators.
<BREAK> (ilogcp)
Total (root+branch&cut) = 95272.30 sec. (23592380.69 ticks)
CPLEX 12.6.0.0: aborted, integer solution exists; objective 267
2.89e+009 MIP simplex iterations
351291725 branch-and-bound nodes
```


Example 1

Case 4 (cont'd)

Logic passed to a non-MIP solver

* AMPL writes "logical" constraints as expression trees
* AMPL-LocalSolver driver "walks" the trees

Accepted by LocalSolver

```
ampl: option solver localsolver;
ampl: option localsolver_options 'timelimit 20';
ampl: solve;
LocalSolver 4.5: feasible solution
running time = 20 sec, nb iterations = 8566191, nb moves = 17132449
accepted = 9279 (0.0541604%), improving = 3949 (0.0230498%)
rejected = 17123170 (99.9458%), infeasible = 16367220 (95.5335%)
objective 269
```


Example 1

Transformations Performed

Discontinuous domain

* Transformed to MIP in AMPL
* Solver's semicontinuous option missed

Implication

* Passed through to MIP solver

Disjunction

* Transformed to MIP in solver
* Passed through to non-MIP solver

Example 2: Variable Interactions

What you want to say

* When two conditions both hold, there is a cost

Ways to say it in AMPL

* Forms involving X[i] * Y[j]
* Case 1: where X, Y are binary (zero-one) variables
* Case 2: where X is binary and Y is any variable
* Forms involving $\mathrm{X}[i]=1$ ==> . . else . .
* Case 3: where X is binary and . . . are constraints

Example 2
 Case 1

Sample model...

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} binary;
var Y {1..n} binary;
minimize Obj:
    (sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);
subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;
subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;
```


Example 2

Case 1 (cont'd)

Transformed in stages

* AMPL . .
* writes nonlinear expression tree
* AMPL interface . .
* multiplies out the product of linear terms
* sends quadratic coefficient list to solver
* Solver . . .

Example 2

Case 1 (cont'd)

CPLEX 12.5 transforms to quadratic MIP

```
ampl: solve;
Repairing indefinite Q in the objective.
Total (root+branch&cut) = 1264.34 sec.
CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap;
objective 290.1853405
23890588 MIP simplex iterations
14092725 branch-and-bound nodes
```

$$
(n=50)
$$

Example 2

Case 1 (cont'd)

CPLEX 12.6 transforms to linear binary IP

```
ampl: solve;
MIP Presolve added }5000\mathrm{ rows and 2500 columns.
Reduced MIP has }5003\mathrm{ rows, 2600 columns, and 10200 nonzeros.
Reduced MIP has 2600 binaries, O generals, and O indicators.
Total (root+branch&cut) = 6.05 sec.
CPLEX 12.6.0: optimal integer solution; objective 290.1853405
126643 MIP simplex iterations
1926 branch-and-bound nodes
```


Example 2
 Case 1a

Sample convex model . . .

```
param n > 0;
param c {1..n} > 0;
var X {1..n} binary;
minimize Obj:
    (sum {j in 1..n} c[j]*X[j])~2;
subject to SumX: sum {j in 1..n} j * X[j] >= 50*n+3;
```


Example 2

Case 1a (cont'd)

CPLEX 12.5 solves as quadratic MIP

```
ampl: solve;
Cover cuts applied: 2
Zero-half cuts applied: 1
Total (root+branch&cut) = 0.42 sec.
CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap;
objective 29576.27517
286 MIP simplex iterations
102 branch-and-bound nodes
```

$$
(n=200)
$$

Example 2

Case 1a (cont'd)

CPLEX 12.6 transforms to linear binary IP

```
ampl: solve;
MIP Presolve added 39800 rows and 19900 columns.
Reduced MIP has }39801\mathrm{ rows, }20100\mathrm{ columns, and }79800\mathrm{ nonzeros.
Reduced MIP has 20100 binaries, O generals, and O indicators.
Cover cuts applied: 8
Zero-half cuts applied: 5218
Gomory fractional cuts applied: 6
Total (root+branch&cut) = 2112.63 sec.
CPLEX 12.6.0: optimal integer solution; objective 29576.27517
4 7 4 3 3 0 ~ M I P ~ s i m p l e x ~ i t e r a t i o n s
294 branch-and-bound nodes
```


Example 2

Case 1: Transformations Performed

Convex quadratic binary
\therefore Add $M_{j}\left(x_{j}^{2}-x_{j}\right)$ to objective as needed to convexify * done by CPLEX

Linear binary

* Define a (binary) variable for each term $x_{i} y_{j}$
* Introduce $O\left(n^{2}\right)$ new binary variables and constraints * done by CPLEX

Linear mixed

* Go to Case $2 .$.

Example 2

Case 2

Alternative quadratic model . . .

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} binary;
var Y {1..n} binary;
var Ysum;
minimize Obj:
    (sum {j in 1..n} c[j]*X[j]) * Ysum;
subj to YsumDefn: Ysum = sum {j in 1..n} d[j]*Y[j];
subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;
subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;
```


Example 2

Case 2 (cont'd)

CPLEX 12.5 rejects as nonconvex

```
ampl: solve;
CPLEX 12.5.0: QP Hessian is not positive semi-definite.
```


Example 2

Case 2 (cont'd)

CPLEX 12.6 transforms to linear MIP

```
ampl: solve;
MIP Presolve added 100 rows and 50 columns.
Reduced MIP has }104\mathrm{ rows, 151 columns, and 451 nonzeros.
Reduced MIP has }100\mathrm{ binaries, 0 generals, and 0 indicators.
Total (root+branch&cut) = 0.17 sec.
CPLEX 12.6.0: optimal integer solution; objective 290.1853405
7850 MIP simplex iterations
1667 branch-and-bound nodes
```


Example 2

Case 2: Transformations Performed

Linear mixed

* Introduce a (general) variable $y_{\text {sum }}=\sum_{j=1}^{n} d_{j} y_{j}$
* Define a (general) variable for each term $x_{i} y_{\text {sum }}$
* Introduce $O(n)$ new variables and constraints * done by CPLEX with help from the modeler

Example 2

Case 2: Well-Known Approach

Many refinements and generalizations

* F. Glover and E. Woolsey, Further reduction of zero-one polynomial programming problems to zero-one linear programming problems. Operations Research 21 (1973) 156-161.
* F. Glover, Improved linear integer programming formulations of nonlinear integer problems. Management Science 22 (1975) 455-460.
* M. Oral and O. Kettani, A linearization procedure for quadratic and cubic mixed-integer problems. Operations Research 40 (1992) S109-S116.
* W.P. Adams and R.J. Forrester, A simple recipe for concise mixed 0-1 linearizations. Operations Research Letters 33 (2005) 55-61.

Example 2

Case 3

Model with "indicator" constraints . . .

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} binary;
var Y {1..n} binary;
var Z {1..n};
minimize Obj: sum {i in 1..n} Z[i];
subj to ZDefn {i in 1..n}:
    X[i] = 1 ==> Z[i] = c[i] * sum {j in 1..n} d[j]*Y[j]
        else Z[i] = 0;
subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;
subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;
```


Example 2

Case 3 (cont'd)

CPLEX 12.6 transforms to linear MIP

```
ampl: solve;
Reduced MIP has }53\mathrm{ rows, 200 columns, and 2800 nonzeros.
Reduced MIP has }100\mathrm{ binaries, O generals, and 100 indicators.
Total (root+branch&cut) = 5.74 sec.
CPLEX 12.6.0: optimal integer solution within mipgap or absmipgap;
    objective 290.1853405
3 7 7 5 4 8 ~ M I P ~ s i m p l e x ~ i t e r a t i o n s
95892 branch-and-bound nodes
```


Example 2

Case 3: Transformations Performed

Linear mixed

* Define a (general) variable for each term $x_{i} \sum_{j=1}^{n} d_{j} y_{j}$
* Introduce $O(n)$ new variables
* Introduce $O(n)$ new indicator constraints
* no actual transformation required

Example 3: General Logic

What you want to express

* Conditions involving disjunction, implication, etc.
* Conditions jointly involving many variables
* Nonstandard numerical relations and functions

Ways to say it in AMPL

* and, or, not, ==>, <==>
* alldiff, numberof
* <, >, floor, round, count, atmost

Example 3

Optimal Arrangement

Maximize adjacency preferences satisfied

```
param nPeople integer > 0;
set PREFS within {i1 in 1..nPeople, i2 in 1..nPeople: i1 <> i2};
var Sat {PREFS} binary;
var Pos {1..nPeople} integer >= 1, <= nPeople;
maximize NumSat: sum {(i1,i2) in PREFS} Sat[i1,i2];
subject to OnePersonPerPos:
    alldiff {i in 1..nPeople} Pos[i];
subject to SatDefn {(i1,i2) in PREFS}:
    Sat[i1,i2] = 1 <==> Pos[i1]-Pos[i2] = 1 or Pos[i2]-Pos[i1] = 1;
subject to SymmBreaking:
    Pos[1] < Pos[2];
```


Example 3

Case 1

CP solvers handle this directly

```
ampl: model photo.mod;
ampl: data photo11.dat;
ampl: option solver ilogcp;
ampl: solve;
ilogcp 12.6.0: optimizer cp
ilogcp 12.6.0: optimal solution
Solution time = 57.880664s
8837525 choice points, }8432821 fails, objective 12
ampl: option solver gecode;
ampl: solve;
gecode 3.7.3: optimal solution
589206448 nodes, 294603205 fails, objective 12
```

(11 people, 20 preferences)

Example 3

Case 1 (cont'd)

CPLEX won't transform to MIP

```
ampl: model photo.mod;
ampl: data photo11.dat;
ampl: option solver ilogcp;
ampl: option ilogcp_options 'optimizer cplex';
ampl: solve;
ilogcp 12.6.0: optimizer cplex
Error: unsupported expression: IloAllDiffI (34)
```


Example 3

Case 2

Alternative formulation

```
param nPeople integer > 0;
set PREFS within {i1 in 1..nPeople, i2 in 1..nPeople: i1 <> i2};
var Sat {PREFS} binary;
var Pos {1..nPeople} integer >= 1, <= nPeople;
maximize NumSat: sum {(i1,i2) in PREFS} Sat[i1,i2];
subject to OnePersonPerPos {i in 1..nPeople, j in i+1..nPeople}:
    Pos[i] != Pos[j];
subject to SatDefn {(i1,i2) in PREFS}:
    Sat[i1,i2] = 1 <==> Pos[i1]-Pos[i2] = 1 or Pos[i2]-Pos[i1] = 1;
subject to SymmBreaking:
    Pos[1] <= Pos[2] - 1;
```


Example 3

Case 2 (cont'd)

CPLEX transforms to linear IP

```
ampl: model photo.mod;
ampl: data photo11IP.dat;
ampl: option solver ilogcp;
ampl: option ilogcp_options 'optimizer cplex';
ampl: solve;
ilogcp 12.6.0: optimizer cplex
Reduced MIP has }253\mathrm{ rows, }209\mathrm{ columns, and }614\mathrm{ nonzeros.
Reduced MIP has }144\mathrm{ binaries, }65\mathrm{ generals, and 220 indicators.
Total (root+branch&cut) = 3.12 sec.
optimal solution
7822 nodes, }102980\mathrm{ iterations, objective 12
```


Example 3

Transformations Performed

All-different, less-than

* Passed through to CP solver

Not-equal, less-than-or-equal

* Transformed to IP in solver

Example 4: Piecewise-Linear

What you want to say

* Costs are linear but with changing slopes

How to say it in AMPL * <<breakpoints; slopes>> variable

Example 4

Transportation with Concave Costs

Supplies, demands, cost parameters

```
set ORIG; # origins
set DEST; # destinations
param supply {ORIG} >= 0; # availabilities at origins
param demand {DEST} >= 0; # requirements at destinations
param limit1 {i in ORIG, j in DEST} >= 0; # breakpoints
param limit2 {i in ORIG, j in DEST} >= limit1[i,j];
param rate1 {i in ORIG, j in DEST} >= 0; # slopes
param rate2 {i in ORIG, j in DEST} <= rate1[i,j];
param rate3 {i in ORIG, j in DEST} <= rate2[i,j];
```


Example 4

Transportation with Concave Costs

Piecewise-linear objective

```
var Trans {ORIG,DEST} >= 0;
minimize Total_Cost:
    sum {i in ORIG, j in DEST}
        <<limit1[i,j], limit2[i,j];
        rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];
subject to Supply {i in ORIG}:
    sum {j in DEST} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
    sum {i in ORIG} Trans[i,j] = demand[j];
```


Example 4
 Case 1

AMPL transforms . . .

```
ampl: option solver cplex;
ampl: solve;
Substitution eliminates 18 variables.|
21 piecewise-linear terms replaced by }87\mathrm{ variables and }87\mathrm{ constraints.
Adjusted problem:
90 variables:
    4 1 ~ b i n a r y ~ v a r i a b l e s
    49 linear variables
79 constraints, all linear; 251 nonzeros
    33 equality constraints
    46 inequality constraints
1 linear objective; 49 nonzeros.
```

(3 origins, 7 destinations)

Example 4

Case 1 (cont'd)

AMPL-CPLEX interface transforms . . .

```
Reduced MIP has }15\mathrm{ rows, 49 columns, and 108 nonzeros.
Reduced MIP has 0 binaries, O generals, 18 SOSs, and O indicators.
Total (root+branch&cut) = 0.13 sec.
CPLEX 12.6.0: optimal integer solution; objective 256100
501 MIP simplex iterations
388 branch-and-bound nodes
```


Example 4

Case 1 (cont'd)

. . . with SOS type 2 markers in output file

```
S0 87 sos
    316
49 18
    416
5018
S1 64 sos
10 19
11 18
12 18
14 35
S4 46 sosref
3-501
4751
5 -501
6 500 ...
```


Example 4
 Case 2

AMPL sends untransformed representation

```
ampl: option pl_linearize 0;
ampl: option solver ilogcp;
ampl: option ilogcp_options 'optimizer cplex';
ampl: solve;
21 variables:
    18 nonlinear variables
    3 linear variables
10 constraints, all linear; 42 nonzeros
    10 equality constraints
1 nonlinear objective; 21 nonzeros.
```


Example 4

Case 2 (cont'd)

CPLEX handles piecewise-linear terms directly

```
Reduced MIP has }58\mathrm{ rows, }79\mathrm{ columns, and 187 nonzeros.
Reduced MIP has 13 binaries, O generals, 5 SOSs, and 26 indicators.
Total (root+branch&cut) = 0.03 sec.
Ilogcp 12.6.0: optimal solution
O nodes, 35 iterations, objective 256100
```


Example 4

Transformations Performed

pl_linearize = 1

* AMPL converts to general MIP formulation
* Interface converts to SOS2 formulation
* Solver's built-in piecewise-linear features missed
pl_linearize $=0$
* AMPL conveys as nonlinear expression tree
* Interface passes piecewise-linearities to solver

Who Should Transform It?

The AMPL user
The AMPL processor
The AMPL-solver interface
The solver

The AMPL User

Advantages

* Can exploit special knowledge of the problem
* Doesn't have to be programmed

Disadvantages

* May not know the best way to transform
* May have better ways to use the time
* Can make mistakes

The AMPL Processor

Advantages

* Makes the same transformation available to all solvers
* Has a high-level view of the problem

Disadvantages

* Is a very complicated program
* Can't take advantage of special solver features

The AMPL-Solver Interface

Advantages

* Works on simplified problem instances
* Can use same ideas for many solvers, but also
* Can tailor transformation to solver features

Disadvantages

* Creates an extra layer of complication

The Solver

Advantages

* Ought to know what's best for it
* Can integrate transformation with other activities

Disadvantages

* May not incorporate best practices
* Is complicated enough already

