The Surprising Difficulties of
 Supporting Quadratic Optimization in Algebraic Modeling Languages

Robert Fourer
4er@ampl.com
AMPL Optimization Inc.
www.ampl.com — + 1 773-336-AMPL

INFORMS Annual Meeting
Philadelphia - 1-4 November 2015
Session MC19, Tools for Optimization Modeling

The Surprising Difficulties of Supporting Quadratic Optimization in Algebraic Modeling Languages

Algebraic modeling languages can readily convey quadratic functions to general nonlinear solvers, but support for recent quadratic extensions to mixed-integer linear solvers has proven much more challenging. The difficulty is due in part to the limited range of representations that solvers recognize and in part to the variety of transformations that must be considered. This presentation surveys the principal issues, and their implications for anyone building large-scale convex quadratic models.

Conveying Quadratic Expressions

From a modeling language (AMPL)

```
* sum {j in 1..n} c[j] * X[j] 2
*(sum {j in 1..n} c[j] * X[j])~2
* (sum {j in 1..n} X[j]) * (sum {j in 1..n} Y[j])
. . . in objective and/or constraints
```

To a solver

* General nonlinear solver
* Knitro, MINOS, CONOPT, SNOPT, Ipopt, . . .
* Extended linear solver
* CPLEX, Gurobi, Xpress, . . .

Conveying Quadratics

General Nonlinear Solver

AMPL . . .

* writes nonlinear expression tree

AMPL-solver interface . . .

* sets up function evaluation data structure
* invokes the solver

Solver . . .

* computes a series of iterates converging to optimum

AMPL-solver interface callbacks . . .

* uses data structure to compute function and derivative values at successive iterates

Conveying Quadratics

Extended Linear Solver

AMPL . . .

* writes nonlinear expression tree

AMPL interface . . .

* multiplies out the product of linear terms
* sends a quadratic coefficient list to solver

Solver. . .

* performs structure detection and transformation
* applies a generalized linear algorithm

Difficulties \& Challenges

Difficulties of detection
\div What kind of optimization problem is this?
Difficulties of transformation

* Can this be transformed to an easier quadratic problem?
\therefore Can this be trnasformed to an easier linear problem?
Challenges of algorithmic choice
* What algorithmic approach should be applied?

A variety of cases to consider . . .

Cases

Continuous

* Convex quadratics
* Nonconvex quadratics
* Conic quadratics

Discrete

* Integer convex quadratic constraints
* Binary quadratic objectives

Convex Quadratics

Formulation

* Minimize $x^{T} Q x+q x$
$*$ Subject to $x_{k}^{T} Q_{k} x_{k} \leq q_{k} x+c_{k}$
Detection (numerical)
* Q, Q_{k} must be positive semi-definite: numerical test on quadratic coefficients

Optimization

* extension to linear simplex method (objective only)
* extension to linear interior-point method

Nonconvex Quadratics

Formulation

* Minimize $x^{T} Q x+q x$

Detection (numerical)

* Q not positive semi-definite

Optimization

* local optimum via interior-point method
* global optimum using branch-and-bound framework
. . . nonconvex constraints?

Nonconvex Quadratics

Linear Solver

CPLEX Option 1 (default): rejected

```
ampl: model nonconvquad.mod;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.6.2.0: QP Hessian is not positive semi-definite.
```


CPLEX Option 2: local optimum

```
ampl: option cplex_options 'reqconvex 2'; solve;
CPLEX 12.6.2.0: locally optimal solution of indefinite QP;
    objective 12.62598015
164 QP barrier iterations
_solve_elapsed_time = 0.219
```


Nonconvex Quadratics

Linear Solver (cont'd)
 CPLEX Option 2: local optimum

```
ampl: option cplex_options 'reqconvex 2'; solve;
CPLEX 12.6.2.0: locally optimal solution of indefinite QP;
    objective 12.62598015
164 QP barrier iterations
_solve_elapsed_time = 0.219
```


CPLEX Option 3: global optimum

```
ampl: option cplex_options 'reqconvex 3'; solve;
CPLEX 12.6.2.0: optimal integer solution;
    objective 0.1387763988
4 7 9 2 5 0 ~ M I P ~ s i m p l e x ~ i t e r a t i o n s
1 1 1 1 4 \text { branch-and-bound nodes}
_solve_elapsed_time = 352.203
```


Nonconvex Quadratics

Local Nonlinear Solver

Knitro (default)

```
ampl: option solver knitro; solve;
KNITRO 9.1.0: Locally optimal solution.
objective 5.985858772; feasibility error 6.39e-14
45 iterations; 53 function evaluations
_solve_elapsed_time = 0.328
```


Knitro multistart: 100 solves

```
ampl: option knitro_options
    'ms_enable 1 ms_maxsolves 100 par_numthreads 2'; solve;
KNITRO 9.1.0: Locally optimal solution.
objective 0.24752033; feasibility error 2.13e-14
3763 iterations; 4163 function evaluations
_solve_elapsed_time = 2.484
```


Nonconvex Quadratics

Local Nonlinear Solver (cont'd)

Knitro multistart: 100 solves

```
ampl: option knitro_options
    'ms_enable 1 ms_maxsolves 100 par_numthreads 2'; solve;
KNITRO 9.1.0: Locally optimal solution.
objective 0.24752033; feasibility error 2.13e-14
3763 iterations; 4163 function evaluations
_solve_elapsed_time = 2.484
```


Knitro multistart: 1000 solves

```
ampl: option knitro_options
    'ms_enable 1 ms_maxsolves 1000 par_numthreads 2'; solve;
KNITRO 9.1.0: Locally optimal solution.
objective 0.1387772422; feasibility error 7.11e-15
39008 iterations; 43208 function evaluations
_solve_elapsed_time = 31.109
```


Nonconvex Quadratics

Global Nonlinear Solver

BARON

```
ampl: option solver baron; solve;
BARON 15.9.22 (2015.09.22):
1871 iterations, optimal within tolerances.
Objective O.1387763988
_solve_elapsed_time = 287.484
```


Convex
 Conic Quadratics

Formulation

* Subject to $x_{1}^{2}+\ldots+x_{n}^{2} \leq x_{n+1}^{2}, x_{n+1} \geq 0$
* Subject to $x_{1}^{2}+\ldots+x_{n}^{2} \leq x_{n+1} x_{n+2}, x_{n+1} \geq 0, x_{n+2} \geq 0$

Detection (symbolic)

* quadratic terms must have recognized pattern (details vary by solver)

Optimization

* extension to linear interior-point method

Conic Quadratics

Geometry

Standard cone

. . . boundary not smooth

Rotated cone

$$
\% x^{2} \leq y z, y \geq 0, z \geq 0, \ldots
$$

Conic Quadratics

Example: Traffic Network

Given

N Set of nodes representing intersections
e Entrance to network
f Exit from network

$$
A \subseteq N \cup\{e\} \times N \cup\{f\}
$$

Set of arcs representing road links

and

$b_{i j}$ Base travel time for each road link $(i, j) \in A$
$s_{i j}$ Traffic sensitivity for each road link $(i, j) \in A$
$c_{i j}$ Capacity for each road link $(i, j) \in A$
T Desired throughput from e to f

Traffic Network

Formulation

Determine

$x_{i j} \quad$ Traffic flow through road link $(i, j) \in A$
$t_{i j}$ Actual travel time on road link $(i, j) \in A$
to minimize

$$
\Sigma_{(i, j) \in A} t_{i j} x_{i j} / T
$$

Average travel time from e to f

Traffic Network

Formulation (cont'd)

Subject to

$t_{i j}=b_{i j}+\frac{s_{i j} x_{i j}}{1-x_{i j} / c_{i j}} \quad$ for all $(i, j) \in A$
Travel times increase as flow approaches capacity
$\Sigma_{(i, j) \in A} x_{i j}=\Sigma_{(j, i) \in A} x_{j i}$ for all $i \in N$
Flow out equals flow in at any intersection
$\Sigma_{(e, j) \in A} x_{e j}=T$
Flow into the entrance equals the specified throughput

Traffic Network

AMPL Formulation

Symbolic data

```
set INTERS; # intersections (network nodes)
param EN symbolic; # entrance
param EX symbolic; # exit
    check {EN,EX} not within INTERS;
set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};
    # road links (network arcs)
param base {ROADS} > 0; # base travel times
param sens {ROADS} > 0; # traffic sensitivities
param cap {ROADS} > 0; # capacities
param through > 0; # throughput
```


Traffic Network

AMPL Formulation (cont'd)

Symbolic model

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
    (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
    Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Traffic Network

AMPL Data

Explicit data independent of symbolic model

```
set INTERS := b c ;
param EN := a ;
param EX := d ;
param: ROADS: base cap sens :=
\begin{tabular}{llll} 
a b & 4 & 10 & .1
\end{tabular}
    a c 1 12 12 .7
    c b 2 20 . }
    b d 1 15 . 5
    c d 6 10 . 1 ;
```

param through := 20 ;

Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using Gurobi?

```
ampl: model trafficNL.mod;
ampl: data traffic.dat;
ampl: option solver gurobi;
ampl: solve;
Gurobi 6.5.0:
Gurobi can't handle nonquadratic nonlinear constraints.
```


Traffic Network

AMPL Solution (cont'd)

Look at the model again . . .

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;
minimize Avg_Time:
    (sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;
subject to Travel_Time {(i,j) in ROADS}:
    Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Traffic Network

AMPL Solution (cont'd)

Quadratically constrained reformulation

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]~2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using Gurobi?

```
ampl: model trafficQUAD.mod;
ampl: data traffic.dat;
ampl: option solver gurobi;
ampl: solve;
Gurobi 6.5.0:
quadratic constraint is not positive definite
```


Traffic Network

AMPL Solution (cont'd)

Quadratic reformulation \#2

```
var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;
minimize Avg_Time:
    sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;
subject to Delay_Def {(i,j) in ROADS}:
    sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];
subject to Slack_Def {(i,j) in ROADS}:
    Slack[i,j] = 1 - Flow[i,j]/cap[i,j];
subject to Balance_Node {i in INTERS}:
    sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];
subject to Balance_Enter:
    sum{(EN,j) in ROADS} Flow[EN,j] = through;
```


Traffic Network

AMPL Solution (cont'd)

Model + data $=$ problem to solve, using Gurobi!

```
ampl: model trafficSOC.mod;
ampl: data traffic.dat;
ampl: option solver gurobi;
ampl: solve;
Gurobi 6.5.0: optimal solution; objective 61.0469834
53 barrier iterations
ampl: display Flow;
Flow :=
a b 9.5521
a c 10.4479
b d 11.0044
c b 1.45228
c d 8.99562
;
```


Traffic Network

AMPL Solution

Model + data = problem to solve, using Knitro

```
ampl: model trafficNL.mod;
ampl: data traffic.dat;
ampl: option solver knitro;
ampl: solve;
Knitro 10.0.0: Locally optimal solution.
objective 61.04695019; feasibility error 3.18e-09
11 iterations; 21 function evaluations
ampl: display Flow;
Flow :=
a b 9.55146
a c 10.4485
b d 11.0044
c b 1.45291
c d 8.99562
;
```


Traffic Network

AMPL Solution

Model + data $=$ problem to solve, using BARON

```
ampl: model trafficNL.mod;
ampl: data traffic.dat;
ampl: option solver baron;
ampl: solve;
BARON 15.9.22 (2015.09.22):
1 iterations, optimal within tolerances.
Objective 61.04695019
ampl: display Flow;
Flow :=
a b 9.55146
a c 10.4485
b d 11.0044
c b 1.45291
c d 8.99562
;
```


Conic

SOCP-Solvable Forms

Quadratic

* Constraints
* Objectives

SOC-representable

* Quadratic-linear ratios
* Generalized geometric means
* Generalized p-norms

Other objective functions

* Generalized product-of-powers
* Logarithmic Chebychev

Jared Erickson and Robert Fourer,
Detection and Transformation of Second-Order Cone Programming
Problems in a General-Purpose Algebraic Modeling Language

SOCP-solvable

Quadratic

Standard cone constraints

$$
\begin{gathered}
* \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2} \\
a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0
\end{gathered}
$$

Rotated cone constraints

$$
\begin{array}{r}
\div \sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right) \\
\quad a_{1}, \ldots, a_{n+1} \geq 0, \mathbf{f}_{n+1} \mathbf{x}+g_{n+1} \geq 0, \mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0
\end{array}
$$

Sum-of-squares objectives
$*$ Minimize $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}$

* Minimize v

Subject to $\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq v^{2}, v \geq 0$

SOCP-solvable

SOC-Representable

Definition

* Function $s(x)$ is SOC-representable iff . . .
* $s(x) \leq a_{n}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)$ is equivalent to some combination of linear and quadratic cone constraints

Minimization property

* Minimize $s(x)$ is SOC-solvable
* Minimize $\quad v_{n+1}$ Subject to $\quad s(x) \leq v_{n+1}$
Combination properties
$\div a \cdot s(x)$ is SOC-representable for any $a \geq 0$
$\star \sum_{i=1}^{n} s_{i}(x)$ is SOC-representable
* $\max _{i=1}^{n} s_{i}(x)$ is SOC-representable
. . . requires a recursive detection algorithm!

SOCP-solvable

SOC-Representable (1)

Vector norm

$$
\star\|\mathbf{a} \cdot(\mathbf{F} \mathbf{x}+\mathbf{g})\|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)
$$

* square both sides to get standard SOC

$$
\sum_{i=1}^{n} a_{i}^{2}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}^{2}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{2}
$$

Quadratic-linear ratio

$$
\frac{\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2}}{\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)
$$

* where $\mathbf{f}_{n+2} \mathbf{x}+g_{n+2} \geq 0$
* multiply by denominator to get rotated SOC

$$
\sum_{i=1}^{n} a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{2} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)\left(\mathbf{f}_{n+2} \mathbf{x}+g_{n+2}\right)
$$

SOCP-solvable

SOC-Representable (2)

Negative geometric mean

$$
\begin{aligned}
& -\prod_{i=1}^{p}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{1 / p} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, p \in \mathbb{Z}^{+} \\
& *-x_{1}^{1 / 4} x_{2}^{1 / 4} x_{3}^{1 / 4} x_{4}^{1 / 4} \leq-x_{5} \text { becomes rotated SOCs: } \\
& \quad x_{5}^{2} \leq v_{1} v_{2}, v_{1}^{2} \leq x_{1} x_{2}, v_{2}^{2} \leq x_{3} x_{4} \\
& * \text { apply recursively }\left\lceil\log _{2} p\right\rceil \text { times }
\end{aligned}
$$

Generalizations

$-\prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{\alpha_{i}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right): \sum_{i=1}^{n} \alpha_{i} \leq 1, \alpha_{i} \in \mathbb{Q}^{+}$
$* \prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{-\alpha_{i}} \leq a_{n+1}\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right), \alpha_{i} \in \mathbb{Q}^{+}$
$*$ all require $\mathbf{f}_{i} \mathbf{x}+g_{i}$ to have proper sign

SOCP-solvable

SOC-Representable (3)

p-norm

$$
\nLeftarrow\left(\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{p}\right)^{1 / p} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, p \in \mathbb{Q}^{+}, p \geq 1
$$

* $\left(\left|x_{1}\right|^{5}+\left|x_{2}\right|^{5}\right)^{1 / 5} \leq x_{3}$ can be written $\left|x_{1}\right|^{5} / x_{3}^{4}+\left|x_{2}\right|^{5} / x_{3}^{4} \leq x_{3}$ which becomes

$$
v_{1}+v_{2} \leq x_{3} \text { with }-v_{1}^{1 / 5} x_{3}^{4 / 5} \leq \pm x_{1},-v_{1}^{1 / 5} x_{3}^{4 / 5} \leq \pm x_{2}
$$

* reduces to product of powers

Generalizations

$*\left(\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}}\right)^{1 / \alpha_{0}} \leq \mathbf{f}_{n+1} \mathbf{x}+g_{n+1}, \alpha_{i} \in \mathbb{Q}^{+}, \alpha_{i} \geq \alpha_{0} \geq 1$
$\star \sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}} \leq\left(\mathbf{f}_{n+1} \mathbf{x}+g_{n+1}\right)^{\alpha_{0}}$

* Minimize $\sum_{i=1}^{n}\left|\mathbf{f}_{i} \mathbf{x}+g_{i}\right|^{\alpha_{i}}$
. . . standard SOCP has $\alpha_{i} \equiv 2$

SOCP-solvable

Other Objective Functions

Unrestricted product of powers

* Minimize $-\prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{\alpha_{i}}$ for any $\alpha_{i} \in \mathbb{Q}^{+}$

Logarithmic Chebychev approximation

* Minimize $\max _{i=1}^{n}\left|\log \left(\mathbf{f}_{i} \mathbf{x}\right)-\log \left(g_{i}\right)\right|$

Why no constraint versions?

* Not SOC-representable
* Transformation changes objective value (but not solution)

Integer Convex Quadratic Constraints

Formulation

* Linear objective
* Convex quadratic constraints

Detection

* Integer variables in quadratic constraints

Optimization

* branch-and-bound with quadratic subproblems
* branch-and-bound with linear subproblems (outer approximation)

Traffic Network

Integer Solution (cont'd)

CPLEX with quadratic subproblems

```
ampl: model trafficSOCint.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: option cplex_options 'miqcpstrat 1';
ampl: solve;
CPLEX 12.6.2.0: optimal (non-)integer solution; objective 76.26375004
20 MIP simplex iterations
O branch-and-bound nodes
3 integer variables rounded (maxerr = 1.92609e-06).
Assigning integrality = 1e-06 might help.
Currently integrality = 1e-05.
```


Traffic Network

Integer Solution (cont'd)

CPLEX with linear subproblems

```
ampl: model trafficSOCint.mod;
ampl: data traffic.dat;
ampl: option solver cplex;
ampl: option cplex_options 'miqcpstrat 2';
ampl: solve;
CPLEX 12.6.2.0: optimal integer solution within mipgap or absmipgap;
    objective 76.26375017
19 MIP simplex iterations
O branch-and-bound nodes
absmipgap = 4.74295e-07, relmipgap = 6.21914e-09
ampl: display Flow;
: b c d
a 9 11 .
b . . 11
C 2 . }
```


Binary Quadratic Objective

Formulation

\therefore Minimize $x^{T} Q x+q x$

* Subject to linear constraints

Detection

* Variables are binary: $x_{j} \in\{0,1\}$

Optimization

* if convex,
branch-and-bound with convex quadratic subproblems
* conversion to linear followed by branch-and-bound with linear subproblems

$$
\ldots x_{i} x_{j}=1 \Leftrightarrow x_{i}=1 \text { and } x_{j}=1
$$

Binary Quadratic

Case 1: Convex

Sample model...

```
param n > 0;
param c {1..n} > 0;
var X {1..n} binary;
minimize Obj:
    (sum {j in 1..n} c[j]*X[j])~2;
subject to SumX: sum {j in 1..n} j * X[j] >= 50*n+3;
```


Binary Quadratic

Case 1 (cont'd)

CPLEX 12.5

```
ampl: solve;
Cover cuts applied: 2
Zero-half cuts applied: 1
Total (root+branch&cut) = 0.42 sec.
CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap;
objective 29576.27517
286 MIP simplex iterations
1 0 2 \text { branch-and-bound nodes}
```

$$
(n=200)
$$

Binary Quadratic

Case 1 (cont'd)

CPLEX 12.6

```
ampl: solve;
MIP Presolve added 39800 rows and 19900 columns.
Reduced MIP has }39801\mathrm{ rows, }20100\mathrm{ columns, and }79800\mathrm{ nonzeros.
Reduced MIP has 20100 binaries, O generals, and O indicators.
Cover cuts applied: 8
Zero-half cuts applied: 5218
Gomory fractional cuts applied: 6
Total (root+branch&cut) = 2112.63 sec.
CPLEX 12.6.0: optimal integer solution; objective 29576.27517
4 7 4 3 3 0 ~ M I P ~ s i m p l e x ~ i t e r a t i o n s
294 branch-and-bound nodes
```


Binary Quadratic

Case 1: Transformations Performed

CPLEX 12.5

* None needed

CPLEX 12.6

* Define a (binary) variable for each term $x_{i} x_{j}$
* Introduce $O\left(n^{2}\right)$ new binary variables and constraints
. . . option for 12.5 behavior added to 12.6 .1

Binary Quadratic

Case 2: Nonconvex

Sample model . . .

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} binary;
var Y {1..n} binary;
minimize Obj:
    (sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);
subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;
subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;
```


Binary Quadratic

Case 2 (cont'd)

CPLEX 12.5

```
ampl: solve;
Repairing indefinite Q in the objective.
Total (root+branch&cut) = 1264.34 sec.
CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap;
objective 290.1853405
23890588 MIP simplex iterations
14092725 branch-and-bound nodes
```

$$
(n=50)
$$

Binary Quadratic

Case 2 (cont'd)

CPLEX 12.6

```
ampl: solve;
MIP Presolve added }5000\mathrm{ rows and 2500 columns.
Reduced MIP has }5003\mathrm{ rows, 2600 columns, and 10200 nonzeros.
Reduced MIP has 2600 binaries, O generals, and O indicators.
Total (root+branch&cut) = 6.05 sec.
CPLEX 12.6.0: optimal integer solution; objective 290.1853405
126643 MIP simplex iterations
1926 branch-and-bound nodes
```


Binary Quadratic

Case 2: Transformations Performed

CPLEX 12.5

* Add $M_{j}\left(x_{j}^{2}-x_{j}\right)$ to objective as needed to convexify

CPLEX 12.6

* Define a (binary) variable for each term $x_{i} y_{j}$
* Introduce $O\left(n^{2}\right)$ new binary variables and constraints

Binary Quadratic

Case 3: Nonconvex

Alternative quadratic model . . .

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} binary;
var Y {1..n} binary;
var Ysum;
minimize Obj:
    (sum {j in 1..n} c[j]*X[j]) * Ysum;
subj to YsumDefn: Ysum = sum {j in 1..n} d[j]*Y[j];
subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;
subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;
```


Binary Quadratic

Case 3 (cont'd)

CPLEX 12.5

```
ampl: solve;
CPLEX 12.5.0: QP Hessian is not positive semi-definite.
```


Binary Quadratic

Case 3 (cont'd)

CPLEX 12.6

```
ampl: solve;
MIP Presolve added 100 rows and 50 columns.
Reduced MIP has }104\mathrm{ rows, 151 columns, and 451 nonzeros.
Reduced MIP has }100\mathrm{ binaries, 0 generals, and 0 indicators.
Total (root+branch&cut) = 0.17 sec.
CPLEX 12.6.0: optimal integer solution; objective 290.1853405
7850 MIP simplex iterations
1667 branch-and-bound nodes
```


Binary Quadratic

Case 3: Transformations Performed

Human modeler

* Introduce a (general) variable $y_{\text {sum }}=\sum_{j=1}^{n} d_{j} y_{j}$

CPLEX 12.5

* Reject problem as nonconvex

CPLEX 12.6

* Define a (general) variable for each term $x_{i} y_{\text {sum }}$
\star Introduce $O(n)$ new variables and constraints

Binary Quadratic

Case 3: Well-Known Approach

Many refinements and generalizations

* F. Glover and E. Woolsey, Further reduction of zero-one polynomial programming problems to zero-one linear programming problems. Operations Research 21 (1973) 156-161.
* F. Glover, Improved linear integer programming formulations of nonlinear integer problems. Management Science 22 (1975) 455-460.
* M. Oral and O. Kettani, A linearization procedure for quadratic and cubic mixed-integer problems. Operations Research 40 (1992) S109-S116.
* W.P. Adams and R.J. Forrester, A simple recipe for concise mixed 0-1 linearizations. Operations Research Letters 33 (2005) 55-61.

Binary Quadratic

Case 4

Model with "indicator" constraints . . .

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} binary;
var Y {1..n} binary;
var Z {1..n};
minimize Obj: sum {i in 1..n} Z[i];
subj to ZDefn {i in 1..n}:
    X[i] = 1 ==> Z[i] = c[i] * sum {j in 1..n} d[j]*Y[j]
        else Z[i] = 0;
subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;
subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;
```


Binary Quadratic

Case 4 (cont'd)

CPLEX 12.6 transforms to linear MIP

```
ampl: solve;
Reduced MIP has }53\mathrm{ rows, 200 columns, and 2800 nonzeros.
Reduced MIP has }100\mathrm{ binaries, O generals, and 100 indicators.
Total (root+branch&cut) = 5.74 sec.
CPLEX 12.6.0: optimal integer solution within mipgap or absmipgap;
    objective 290.1853405
3 7 7 5 4 8 ~ M I P ~ s i m p l e x ~ i t e r a t i o n s
95892 branch-and-bound nodes
```


Binary Quadratic

Case 4: Transformations Performed

Human modeler
$*$ Define a (general) variable for each term $x_{i} \sum_{j=1}^{n} d_{j} y_{j}$

* Introduce $O(n)$ new variables
* Introduce $O(n)$ new indicator constraints

CPLEX 12.6

* Enforce indicator constraints in branch and bound?
* Transform indicator constraints to linear ones?

Who Should Transform It?

The AMPL user
The AMPL processor
The AMPL-solver interface
The solver

The AMPL User

Advantages

* Can exploit special knowledge of the problem
* Doesn't have to be programmed

Disadvantages

* May not know the best way to transform
* May have better ways to use the time
* Can make mistakes

The AMPL Processor

Advantages

* Makes the same transformation available to all solvers
* Has a high-level view of the problem

Disadvantages

* Is a very complicated program
* Can't take advantage of special solver features

The AMPL-Solver Interface

Advantages

* Works on simplified problem instances
* Can use same ideas for many solvers, but also
* Can tailor transformation to solver features

Disadvantages

* Creates an extra layer of complication

The Solver

Advantages

* Ought to know what's best for it
* Can integrate transformation with other activities

Disadvantages

* May not incorporate best practices
* Is complicated enough already

