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The Surprising Difficulties of 
Supporting Quadratic Optimization 
in Algebraic Modeling Languages

Algebraic modeling languages can readily convey 
quadratic functions to general nonlinear solvers, 
but support for recent quadratic extensions to 
mixed-integer linear solvers has proven much more 
challenging. The difficulty is due in part to the 
limited range of representations that solvers 
recognize and in part to the variety of 
transformations that must be considered. This 
presentation surveys the principal issues, and their 
implications for anyone building large-scale convex 
quadratic models.
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From a modeling language (AMPL)
 sum {j in 1..n} c[j] * X[j]^2

 (sum {j in 1..n} c[j] * X[j])^2

 (sum {j in 1..n} X[j]) * (sum {j in 1..n} Y[j])

. . . in objective and/or constraints

To a solver
 General nonlinear solver

 Knitro, MINOS, CONOPT, SNOPT, Ipopt, . . .

 Extended linear solver
 CPLEX, Gurobi, Xpress, . . .
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Conveying Quadratic Expressions
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AMPL . . .
 writes nonlinear expression tree

AMPL-solver interface . . .
 sets up function evaluation data structure

 invokes the solver

Solver . . .
 computes a series of iterates converging to optimum

AMPL-solver interface callbacks . . .
 uses data structure to compute

function and derivative values at successive iterates
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General Nonlinear Solver
Conveying Quadratics
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AMPL . . .
 writes nonlinear expression tree

AMPL interface . . .
 multiplies out the product of linear terms

 sends a quadratic coefficient list to solver

Solver . . .
 performs structure detection and transformation

 applies a generalized linear algorithm
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Extended Linear Solver
Conveying Quadratics
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Difficulties of detection
 What kind of optimization problem is this?

Difficulties of transformation
 Can this be transformed to an easier quadratic problem?

 Can this be trnasformed to an easier linear problem?

Challenges of algorithmic choice
 What algorithmic approach should be applied?

A variety of cases to consider . . .

6

Difficulties & Challenges
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Continuous
 Convex quadratics

 Nonconvex quadratics

 Conic quadratics

Discrete
 Integer convex quadratic constraints

 Binary quadratic objectives

7

Cases
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Formulation
 Minimize

 Subject to

Detection (numerical)
 , must be positive semi-definite:

numerical test on quadratic coefficients

Optimization
 extension to linear simplex method (objective only)

 extension to linear interior-point method

8

Convex Quadratics 
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Formulation
 Minimize		

Detection (numerical)
 not positive semi-definite

Optimization
 local optimum via interior-point method

 global optimum using branch-and-bound framework

. . . nonconvex constraints?
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Nonconvex Quadratics
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Linear Solver
CPLEX Option 1 (default): rejected

ampl: model nonconvquad.mod;

ampl: option solver cplex;

ampl: solve;

CPLEX 12.6.2.0: QP Hessian is not positive semi-definite.

Nonconvex Quadratics

CPLEX Option 2: local optimum

ampl: option cplex_options 'reqconvex 2'; solve;

CPLEX 12.6.2.0: locally optimal solution of indefinite QP; 
objective 12.62598015

164 QP barrier iterations

_solve_elapsed_time = 0.219
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Linear Solver (cont’d)
Nonconvex Quadratics

CPLEX Option 2: local optimum

ampl: option cplex_options 'reqconvex 2'; solve;

CPLEX 12.6.2.0: locally optimal solution of indefinite QP; 
objective 12.62598015

164 QP barrier iterations

_solve_elapsed_time = 0.219

CPLEX Option 3: global optimum

ampl: option cplex_options 'reqconvex 3'; solve;

CPLEX 12.6.2.0: optimal integer solution; 
objective 0.1387763988

479250 MIP simplex iterations
11114 branch-and-bound nodes

_solve_elapsed_time = 352.203
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Local Nonlinear Solver
Nonconvex Quadratics

Knitro (default)

ampl: option solver knitro; solve;

KNITRO 9.1.0: Locally optimal solution.

objective 5.985858772; feasibility error 6.39e-14
45 iterations; 53 function evaluations

_solve_elapsed_time = 0.328

ampl: option knitro_options 
'ms_enable 1 ms_maxsolves 100 par_numthreads 2'; solve;

KNITRO 9.1.0: Locally optimal solution.

objective 0.24752033; feasibility error 2.13e-14
3763 iterations; 4163 function evaluations 

_solve_elapsed_time = 2.484

Knitro multistart: 100 solves



Robert Fourer, Surprising Difficulties of Quadratic Optimization in Algebraic Modeling Languages
INFORMS Philadelphia — 1-4 Nov 2015 — MC19 Tools for Optimization Modeling

Knitro multistart: 100 solves
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Local Nonlinear Solver (cont’d)
Nonconvex Quadratics

ampl: option knitro_options 
'ms_enable 1 ms_maxsolves 100 par_numthreads 2'; solve;

KNITRO 9.1.0: Locally optimal solution.

objective 0.24752033; feasibility error 2.13e-14
3763 iterations; 4163 function evaluations 

_solve_elapsed_time = 2.484

Knitro multistart: 1000 solves

ampl: option knitro_options 
'ms_enable 1 ms_maxsolves 1000 par_numthreads 2'; solve;

KNITRO 9.1.0: Locally optimal solution.

objective 0.1387772422; feasibility error 7.11e-15
39008 iterations; 43208 function evaluations

_solve_elapsed_time = 31.109
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Global Nonlinear Solver
Nonconvex Quadratics

BARON

ampl: option solver baron; solve;

BARON 15.9.22 (2015.09.22): 

1871 iterations, optimal within tolerances.
Objective 0.1387763988

_solve_elapsed_time = 287.484
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Formulation
 Subject to  	 	. . . 	 	 	 , 0
 Subject to  	 	. . . 	 	 	 	 , 0, 0

Detection (symbolic)
 quadratic terms must have recognized pattern

(details vary by solver)

Optimization
 extension to linear interior-point method

15

Conic Quadratics
Convex

^
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Geometry
Conic Quadratics

Standard cone

. . . boundary not smooth

Rotated cone
 , 0, 0, . . .

y

z

0 , 0
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Given
Set of nodes representing intersections

Entrance to network

Exit from network

	 ⊆ 	 ∪ 	 	 ∪
Set of arcs representing road links

and
Base travel time for each road link , ∈
Traffic sensitivity for each road link , ∈
Capacity for each road link , ∈
Desired throughput from to 
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Example: Traffic Network
Conic Quadratics
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Determine
Traffic flow through road link , ∈
Actual travel time on road link , ∈

to minimize

Average travel time from e to f

18

Formulation
Traffic Network



Robert Fourer, Surprising Difficulties of Quadratic Optimization in Algebraic Modeling Languages
INFORMS Philadelphia — 1-4 Nov 2015 — MC19 Tools for Optimization Modeling

Subject to

19

Formulation (cont’d)

Travel times increase as flow approaches capacity

Flow out equals flow in at any intersection

Flow into the entrance equals the specified throughput

Traffic Network



Robert Fourer, Surprising Difficulties of Quadratic Optimization in Algebraic Modeling Languages
INFORMS Philadelphia — 1-4 Nov 2015 — MC19 Tools for Optimization Modeling 20

AMPL Formulation

Symbolic data

set INTERS;          # intersections (network nodes)

param EN symbolic;   # entrance
param EX symbolic;   # exit

check {EN,EX} not within INTERS;

set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};

# road links (network arcs)

param base {ROADS} > 0;  # base travel times
param sens {ROADS} > 0;  # traffic sensitivities
param cap {ROADS} > 0;   # capacities

param through > 0;       # throughput

Traffic Network
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AMPL Formulation (cont’d)

Symbolic model

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Data

Explicit data independent of symbolic model

set INTERS := b c ;

param EN := a ;
param EX := d ;

param: ROADS: base cap sens :=
a b    4   10   .1
a c    1   12   .7
c b    2   20   .9
b d    1   15   .5
c d    6   10   .1 ;

param through := 20 ;

Traffic Network

a
c

b
d
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AMPL Solution (cont’d)

Model + data = problem to solve, using Gurobi?

ampl: model trafficNL.mod;
ampl: data traffic.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 6.5.0: 
Gurobi can't handle nonquadratic nonlinear constraints.

Traffic Network
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AMPL Solution (cont’d)

Look at the model again . . .

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Solution (cont’d)

Quadratically constrained reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Solution (cont’d)

Model + data = problem to solve, using Gurobi?

ampl: model trafficQUAD.mod;
ampl: data traffic.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 6.5.0: 
quadratic constraint is not positive definite

Traffic Network
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AMPL Solution (cont’d)

Quadratic reformulation #2

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
Slack[i,j] = 1 - Flow[i,j]/cap[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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AMPL Solution (cont’d)

Model + data = problem to solve, using Gurobi!

ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 6.5.0: optimal solution; objective 61.0469834
53 barrier iterations

ampl: display Flow;

Flow :=
a b    9.5521
a c   10.4479
b d   11.0044
c b    1.45228
c d    8.99562
;

Traffic Network
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AMPL Solution

Model + data = problem to solve, using Knitro

ampl: model trafficNL.mod;
ampl: data traffic.dat;

ampl: option solver knitro;
ampl: solve;

Knitro 10.0.0: Locally optimal solution.
objective 61.04695019; feasibility error 3.18e-09
11 iterations; 21 function evaluations

ampl: display Flow;

Flow :=
a b    9.55146
a c   10.4485
b d   11.0044
c b    1.45291
c d    8.99562
;

Traffic Network
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AMPL Solution

Model + data = problem to solve, using BARON

ampl: model trafficNL.mod;
ampl: data traffic.dat;

ampl: option solver baron;
ampl: solve;

BARON 15.9.22 (2015.09.22): 
1 iterations, optimal within tolerances.
Objective 61.04695019

ampl: display Flow;

Flow :=
a b    9.55146
a c   10.4485
b d   11.0044
c b    1.45291
c d    8.99562
;

Traffic Network
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Quadratic
 Constraints

 Objectives

SOC-representable
 Quadratic-linear ratios

 Generalized geometric means

 Generalized p-norms

Other objective functions
 Generalized product-of-powers

 Logarithmic Chebychev

Jared Erickson and Robert Fourer, 
Detection and Transformation of Second-Order Cone Programming 

Problems in a General-Purpose Algebraic Modeling Language

31

SOCP-Solvable Forms
Conic
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Standard cone constraints
 ∑ ,

, . . . , 0, 0

Rotated cone constraints
 ∑ ,

, . . . , 0, 		 0, 	 0

Sum-of-squares objectives
 Minimize  ∑

 Minimize
Subject to ∑ ,  0

Quadratic
SOCP-solvable
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Definition
 Function is SOC-representable iff . . .

 	is equivalent to some 
combination of linear and quadratic cone constraints

Minimization property
 Minimize is SOC-solvable

 Minimize
Subject to

Combination properties
 ∙ is SOC-representable for any 0
 ∑ is SOC-representable

 	 is SOC-representable
. . . requires a recursive detection algorithm!

33

SOC-Representable
SOCP-solvable
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SOC-Representable (1)
Vector norm

 ∙ ∑

 square both sides to get standard SOC
∑

Quadratic-linear ratio


∑ 	 	

	 	

 where 0

 multiply by denominator to get rotated SOC
∑ 	 	

34

SOCP-solvable
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SOC-Representable (2)
Negative geometric mean

 ∏ ⁄ ,  ∈


/ / / / becomes rotated SOCs:

, , 

 apply recursively log times

Generalizations
 ∏ :		∑ 1, ∈ ℚ

 ∏ , 	 ∈ ℚ

 all require 	to	have	proper	sign

35

SOCP-solvable
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SOC-Representable (3)
p-norm

 ∑ ⁄ ,  ∈ ℚ ,  1

 ⁄ can be written

⁄ ⁄ 	 which becomes

with  ⁄ ⁄ , ⁄ ⁄

 reduces to product of powers

Generalizations
 ∑ ⁄ ,  α ∈ ℚ ,  	 1

 ∑

 Minimize  ∑

. . . standard SOCP has ≡

36

SOCP-solvable
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Other Objective Functions
Unrestricted product of powers

 Minimize  ∏ for any ∈ ℚ

Logarithmic Chebychev approximation
 Minimize  max log log	 	

Why no constraint versions?
 Not SOC-representable

 Transformation changes objective value (but not solution)

37

SOCP-solvable
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Formulation
 Linear objective

 Convex quadratic constraints

Detection
 Integer variables in quadratic constraints

Optimization
 branch-and-bound with quadratic subproblems

 branch-and-bound with linear subproblems
(outer approximation)

38

Integer Convex Quadratic Constraints
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Integer Solution (cont’d)

CPLEX with quadratic subproblems

ampl: model trafficSOCint.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: option cplex_options 'miqcpstrat 1';
ampl: solve;

CPLEX 12.6.2.0: optimal (non-)integer solution; objective 76.26375004

20 MIP simplex iterations
0 branch-and-bound nodes

3 integer variables rounded (maxerr = 1.92609e-06).
Assigning integrality = 1e-06 might help.
Currently integrality = 1e-05.

Traffic Network
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Integer Solution (cont’d)

CPLEX with linear subproblems

ampl: model trafficSOCint.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: option cplex_options 'miqcpstrat 2';
ampl: solve;

CPLEX 12.6.2.0: optimal integer solution within mipgap or absmipgap; 
objective 76.26375017

19 MIP simplex iterations
0 branch-and-bound nodes

absmipgap = 4.74295e-07, relmipgap = 6.21914e-09

ampl: display Flow;

:   b   c    d
a   9   11   .
b   .   .    11
c   2   .     9

Traffic Network



Robert Fourer, Surprising Difficulties of Quadratic Optimization in Algebraic Modeling Languages
INFORMS Philadelphia — 1-4 Nov 2015 — MC19 Tools for Optimization Modeling

Formulation
 Minimize
 Subject to linear constraints

Detection
 Variables are binary:  ∈ 0,1

Optimization
 if convex,

branch-and-bound with convex quadratic subproblems

 conversion to linear followed by
branch-and-bound with linear subproblems

. . . ⟺ 	 and 

41

Binary Quadratic Objective
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Case 1: Convex
Sample model . . .

param n > 0;
param c {1..n} > 0;

var X {1..n} binary;

minimize Obj:
(sum {j in 1..n} c[j]*X[j])^2;

subject to SumX: sum {j in 1..n} j * X[j] >= 50*n+3;

Binary Quadratic
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ampl: solve;

…….

Cover cuts applied:  2
Zero-half cuts applied:  1

…….

Total (root+branch&cut) = 0.42 sec.

CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap; 
objective 29576.27517

286 MIP simplex iterations
102 branch-and-bound nodes

CPLEX 12.5

Case 1 (cont’d)
Binary Quadratic

(n = 200)
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ampl: solve;

MIP Presolve added 39800 rows and 19900 columns.
Reduced MIP has 39801 rows, 20100 columns, and 79800 nonzeros.
Reduced MIP has 20100 binaries, 0 generals, and 0 indicators.

…….

Cover cuts applied:  8
Zero-half cuts applied:  5218
Gomory fractional cuts applied:  6

…….

Total (root+branch&cut) = 2112.63 sec.

CPLEX 12.6.0: optimal integer solution; objective 29576.27517

474330 MIP simplex iterations
294 branch-and-bound nodes

CPLEX 12.6

Case 1 (cont’d)
Binary Quadratic
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CPLEX 12.5
 None needed

CPLEX 12.6
 Define a (binary) variable for each term 

 Introduce new binary variables and constraints

. . . option for 12.5 behavior added to 12.6.1

45

Case 1: Transformations Performed
Binary Quadratic
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Case 2: Nonconvex
Sample model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;

minimize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Binary Quadratic
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ampl: solve;

Repairing indefinite Q in the objective.

. . . . . . .

Total (root+branch&cut) = 1264.34 sec.

CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap; 
objective 290.1853405

23890588 MIP simplex iterations
14092725 branch-and-bound nodes

CPLEX 12.5

Case 2 (cont’d)
Binary Quadratic

(n = 50)
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ampl: solve;

MIP Presolve added 5000 rows and 2500 columns.
Reduced MIP has 5003 rows, 2600 columns, and 10200 nonzeros.
Reduced MIP has 2600 binaries, 0 generals, and 0 indicators.

. . . . . . .

Total (root+branch&cut) = 6.05 sec.

CPLEX 12.6.0: optimal integer solution; objective 290.1853405

126643 MIP simplex iterations
1926 branch-and-bound nodes

CPLEX 12.6

Case 2 (cont’d)
Binary Quadratic
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CPLEX 12.5
 Add to objective as needed to convexify

CPLEX 12.6
 Define a (binary) variable for each term 

 Introduce new binary variables and constraints
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Case 2: Transformations Performed
Binary Quadratic
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Case 3: Nonconvex
Alternative quadratic model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;
var Ysum;

minimize Obj:
(sum {j in 1..n} c[j]*X[j]) * Ysum;

subj to YsumDefn: Ysum = sum {j in 1..n} d[j]*Y[j];

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Binary Quadratic
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ampl: solve;

CPLEX 12.5.0: QP Hessian is not positive semi-definite.

CPLEX 12.5

Case 3 (cont’d)
Binary Quadratic



Robert Fourer, Surprising Difficulties of Quadratic Optimization in Algebraic Modeling Languages
INFORMS Philadelphia — 1-4 Nov 2015 — MC19 Tools for Optimization Modeling

ampl: solve;

MIP Presolve added 100 rows and 50 columns.
Reduced MIP has 104 rows, 151 columns, and 451 nonzeros.
Reduced MIP has 100 binaries, 0 generals, and 0 indicators.
.......

Total (root+branch&cut) = 0.17 sec.

CPLEX 12.6.0: optimal integer solution; objective 290.1853405

7850 MIP simplex iterations
1667 branch-and-bound nodes

CPLEX 12.6

Case 3 (cont’d)
Binary Quadratic
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Human modeler
 Introduce a (general) variable  ∑

CPLEX 12.5
 Reject problem as nonconvex

CPLEX 12.6
 Define a (general) variable for each term 	
 Introduce new variables and constraints
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Case 3: Transformations Performed
Binary Quadratic
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Many refinements and generalizations
 F. Glover and E. Woolsey, Further reduction of zero-one 

polynomial programming problems to zero-one linear 
programming problems.  Operations Research 21 (1973) 
156-161. 

 F. Glover, Improved linear integer programming 
formulations of nonlinear integer problems.  Management 
Science 22 (1975) 455-460. 

 M. Oral and O. Kettani, A linearization procedure for 
quadratic and cubic mixed-integer problems.  Operations 
Research 40 (1992) S109-S116. 

 W.P. Adams and R.J. Forrester, A simple recipe for concise 
mixed 0-1 linearizations.  Operations Research Letters 33 
(2005) 55-61.
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Case 3: Well-Known Approach
Binary Quadratic
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Case 4
Model with “indicator” constraints . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;
var Z {1..n};

minimize Obj: sum {i in 1..n} Z[i];

subj to ZDefn {i in 1..n}:
X[i] = 1 ==> Z[i] = c[i] * sum {j in 1..n} d[j]*Y[j]

else Z[i] = 0;

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Binary Quadratic



Robert Fourer, Surprising Difficulties of Quadratic Optimization in Algebraic Modeling Languages
INFORMS Philadelphia — 1-4 Nov 2015 — MC19 Tools for Optimization Modeling

ampl: solve;

Reduced MIP has 53 rows, 200 columns, and 2800 nonzeros.
Reduced MIP has 100 binaries, 0 generals, and 100 indicators.
.......

Total (root+branch&cut) = 5.74 sec.

CPLEX 12.6.0: optimal integer solution within mipgap or absmipgap; 
objective 290.1853405

377548 MIP simplex iterations
95892 branch-and-bound nodes

CPLEX 12.6 transforms to linear MIP

Case 4 (cont’d)
Binary Quadratic
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Human modeler
 Define a (general) variable for each term ∑
 Introduce new variables
 Introduce new indicator constraints

CPLEX 12.6
 Enforce indicator constraints in branch and bound?

 Transform indicator constraints to linear ones?
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Case 4: Transformations Performed
Binary Quadratic
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The AMPL user

The AMPL processor

The AMPL-solver interface

The solver

58

Who Should Transform It?
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Advantages
 Can exploit special knowledge of the problem

 Doesn’t have to be programmed

Disadvantages
 May not know the best way to transform

 May have better ways to use the time

 Can make mistakes
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The AMPL User
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Advantages
 Makes the same transformation available to all solvers

 Has a high-level view of the problem

Disadvantages
 Is a very complicated program

 Can’t take advantage of special solver features
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The AMPL Processor
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Advantages
 Works on simplified problem instances

 Can use same ideas for many solvers, but also

 Can tailor transformation to solver features

Disadvantages
 Creates an extra layer of complication
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The AMPL-Solver Interface
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Advantages
 Ought to know what’s best for it

 Can integrate transformation with other activities

Disadvantages
 May not incorporate best practices

 Is complicated enough already
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The Solver


