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The Surprisingly Complicated Case of 
Convex Quadratic Optimization

The convex quadratic case sits at the boundary 
between easy (linear, convex) and hard (nonlinear, 
nonconvex) optimization problems.  Perhaps for 
this reason it gives rise to an unexpectedly large 
number of complications in modeling.  It is not 
always clear when a nonlinear problem can be can 
be converted to convex quadratic, when a quadratic 
problem is best transformed to linear, or even when 
a quadratic problem has a convex formulation.  The 
difficulties multiply when one admits conic as well 
as elliptic quadratic constraints, and when discrete 
as well as continuous variables are involved.  This 
presentation surveys a variety of challenges, with 
emphasis on their implications for improved design 
of modeling software.
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Motivation
From my mailbox (1) . . .

I am trying to solve a quadratically constrained quadratic program
that is written in AMPL.

For a particular configuration of the parameters I get this output 
when trying to solve with CPLEX:

The return code is 501 with the description "failure."

Any idea what's going on here?

In my model I have the following:

Qij= Variable to decide the number of products to send from i to j;
Xij = binary variable to decide if I send products from i to j

Max= Qij*Xij;

Because I am multiplying two variables this problem becomes a 
quadratic problem, I would like to know if you could recomend me 
any solver to solve this quadratic problem
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Motivation
From my mailbox (2) . . .

Sorry. I mad mistake. C and f are positive non-integer variables. 
They can't be integer given the problem formulation.

If so. Will I be able to use Cplex to solve this problem 
given this quadratic constraint like f[i]*C[i] <= 1 ??

I have faced with a similar problem but I cannot understand the 
difference between these two options:

1 - This case works fine in ampl as it is defined as a 
predefined var: ...

2 - But if I do the above as a constraint, (I would like to do it 
this way because I can have my constraint working also with glpsol, 
as glpsol doesn't have the predefined var) ampl give the error of 
not convex quadratic: ...

Why would ampl treat these two statements differently?
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Linear
 CPLEX, Gurobi, Xpress, MOSEK, SCIP, CBC, . . .

5

Kinds of Large-Scale Solvers

Nonlinear
 Knitro, MINOS, CONOPT, SNOPT, Ipopt, . . .

Quadratic
 For linear solvers, an extension

 For nonlinear solvers, a special case

Motivation
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Linear
 V + log(q) * sum {j in 1..n} (a[j] + c[j] * X[j])

6

Kinds of Expressions

Quadratic
 sum {j in 1..n} c[j] * X[j]^2

 a[j] * (sum {j in 1..n} c[j] * X[j])^2

 (sum {j in 1..n} X[j]) * (sum {j in 1..n} Y[j])

Nonlinear
 log(V) + sum {j in 1..n} sin(a[j] / c[j] * X[j])

Motivation
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Linear expression mechanism
 coefficient lists

Nonlinear expression mechanism
 expression trees

Quadratic expression mechanism
 coefficient lists extracted from expression trees

7

Conveying Expressions to Solvers
Motivation
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AMPL . . .
 verifies linearity of expressions

 writes lists of nonzero coefficients

AMPL interface . . .
 sends a linear coefficient list to the solver

Solver . . .
 applies a linear algorithm

8

Linear Mechanism
Conveying Expressions
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AMPL . . .
 writes nonlinear expression trees

AMPL-solver interface . . .
 sets up nonlinear function evaluation data structure

 invokes the solver

Solver . . .
 applies a general nonlinear algorithm

 calls back to the AMPL-solver interface
to evaluate functions and derivatives at successive points

. . . some solvers (like MINOS) use both mechanisms

9

Nonlinear Mechanism
Conveying Expressions
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AMPL . . .
 writes nonlinear expression trees

AMPL interface . . .
 verifies quadraticity of expressions

 extracts coefficients of quadratic terms

 sends a coefficient list to the solver

Solver . . .
 analyzes and transforms quadratic functions

 applies an appropriate linear or extended linear algorithm

10

Quadratic Mechanism
Conveying Expressions
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Difficulties of detection
 What kind of optimization problem is this?

Difficulties of transformation
 Can this be transformed to an easier quadratic problem?

 Can this be transformed to an easier linear problem?

Challenges of algorithmic choice
 What algorithmic approach should be applied?

A variety of cases to consider . . .

11

Difficulties & Challenges
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Continuous
 Elliptic quadratic objectives and constraints

 Nonconvex quadratic objectives

 Conic quadratic constraints

Discrete
 Integer convex quadratic constraints

 Binary quadratic objectives

12

Survey
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Formulation
 Minimize		ݔ்ܳݔ ൅ ݔݍ
 Subject to ௞ݔ௞்ܳ௞ݔ ൑ ݔ௞ݍ ൅ ܿ௞

Detection (numerical)
 ܳ, ܳ௞ must be positive semi-definite:

numerical test on quadratic coefficients

Optimization
 extension to linear simplex method (objective only)

 extension to linear interior-point method

13

“Elliptic” Quadratics ^
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Formulation
 Minimize		ݔ்ܳݔ ൅ ݔݍ

Detection (numerical)
 ܳ not positive semi-definite

Optimization
 impossible

 local

 global

14

Nonconvex Quadratic Objectives
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Linear Solver
CPLEX Option 1 (default): rejected

ampl: model nonconvquad.mod;

ampl: option solver cplex;

ampl: solve;

CPLEX 12.6.2.0: QP Hessian is not positive semi-definite.

Nonconvex Quadratics

CPLEX Option 2: local optimum

ampl: option cplex_options 'reqconvex 2'; solve;

CPLEX 12.6.2.0: locally optimal solution of indefinite QP; 
objective 12.62598015

164 QP barrier iterations

_solve_elapsed_time = 0.219
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Linear Solver (cont’d)
Nonconvex Quadratics

CPLEX Option 2: local optimum

ampl: option cplex_options 'reqconvex 2'; solve;

CPLEX 12.6.2.0: locally optimal solution of indefinite QP; 
objective 12.62598015

164 QP barrier iterations

_solve_elapsed_time = 0.219

CPLEX Option 3: global optimum

ampl: option cplex_options 'reqconvex 3'; solve;

CPLEX 12.6.2.0: optimal integer solution; 
objective 0.1387763988

479250 MIP simplex iterations
11114 branch-and-bound nodes

_solve_elapsed_time = 352.203
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Local Nonlinear Solver
Nonconvex Quadratics

Knitro (default)

ampl: option solver knitro; solve;

KNITRO 9.1.0: Locally optimal solution.

objective 5.985858772; feasibility error 6.39e-14
45 iterations; 53 function evaluations

_solve_elapsed_time = 0.328

ampl: option knitro_options 
'ms_enable 1 ms_maxsolves 100 par_numthreads 2'; solve;

KNITRO 9.1.0: Locally optimal solution.

objective 0.24752033; feasibility error 2.13e-14
3763 iterations; 4163 function evaluations 

_solve_elapsed_time = 2.484

Knitro multistart: 100 solves
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Knitro multistart: 100 solves

18

Local Nonlinear Solver (cont’d)
Nonconvex Quadratics

ampl: option knitro_options 
'ms_enable 1 ms_maxsolves 100 par_numthreads 2'; solve;

KNITRO 9.1.0: Locally optimal solution.

objective 0.24752033; feasibility error 2.13e-14
3763 iterations; 4163 function evaluations 

_solve_elapsed_time = 2.484

Knitro multistart: 1000 solves

ampl: option knitro_options 
'ms_enable 1 ms_maxsolves 1000 par_numthreads 2'; solve;

KNITRO 9.1.0: Locally optimal solution.

objective 0.1387772422; feasibility error 7.11e-15
39008 iterations; 43208 function evaluations

_solve_elapsed_time = 31.109



Robert Fourer, Surprisingly Complicated Case of Convex Quadratic Optimization
U.S.-Mexico Workshop on Optimization and Its Applications, Mérida, 4-8 January 2016 19

Global Nonlinear Solver
Nonconvex Quadratics

BARON

ampl: option solver baron; solve;

BARON 15.9.22 (2015.09.22): 

1871 iterations, optimal within tolerances.
Objective 0.1387763988

_solve_elapsed_time = 287.484
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Second-order cone formulation
 ,ଵݔ . . . , ௡ݔ ଶ ൑ ௡ାଵݔ

Quadratic formulation
 .	൅	ଵଶݔ . . 	൅	ݔ௡ଶ	൑ ௡ାଵଶݔ , ௡ାଵݔ ൒ 0

20

“Conic” Quadratics^ (SOCPs)
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Geometry
Conic Quadratics

Standard cone

. . . boundary not smooth

Rotated cone
 ଶݔ ൑ ,ݖݕ ݕ ൒ 0, ݖ ൒ 0, . . .

y

z

ଶݔ ൅ ଶݕ ൑ ଶݖ ݖ ൒ 0 ଶݔ ൅ ଶݕ ൑ ,ଶݖ ݖ ൒ 0
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Formulations
 .	൅	ଵଶݔ . . 	൅	ݔ௡ଶ	൑ ௡ାଵଶݔ , ௡ାଵݔ ൒ 0
 .	൅	ଵଶݔ . . 	൅	ݔ௡ଶ	൑ ௡ାଵݔ	 ௡ାଵݔ ,௡ାଶݔ ൒ ௡ାଶݔ ,0 ൒ 0

Detection (symbolic)
 recognized pattern of simple quadratic terms

(details vary by solver)

Optimization
 extension to linear interior-point method

22

“Conic” Quadratics (SOCPs)



Robert Fourer, Surprisingly Complicated Case of Convex Quadratic Optimization
U.S.-Mexico Workshop on Optimization and Its Applications, Mérida, 4-8 January 2016

Given
ܰ Set of nodes representing intersections

݁ Entrance to network

݂ Exit from network

	ܣ ⊆ 	ܰ ∪ ሼ݁ሽ 	ൈ 	ܰ ∪ ሼ݂ሽ
Set of arcs representing road links

and
ܾ݆݅ Base travel time for each road link ሺ݅, ݆ሻ ∈ ܣ
݆݅ݏ Traffic sensitivity for each road link ሺ݅, ݆ሻ ∈ ܣ
݆ܿ݅ Capacity for each road link ሺ݅, ݆ሻ ∈ ܣ
ܶ Desired throughput from ݁ to ݂

23

Example: Traffic Network
Conic Quadratics
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Determine
݆݅ݔ Traffic flow through road link ሺ݅, ݆ሻ ∈ ܣ
݆݅ݐ Actual travel time on road link ሺ݅, ݆ሻ ∈ ܣ

to minimize

Average travel time from e to f

24

Formulation
Traffic Network
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Subject to

25

Formulation (cont’d)

Travel times increase as flow approaches capacity

Flow out equals flow in at any intersection

Flow into the entrance equals the specified throughput

Traffic Network
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AMPL Formulation

Symbolic data

set INTERS;          # intersections (network nodes)

param EN symbolic;   # entrance
param EX symbolic;   # exit

check {EN,EX} not within INTERS;

set ROADS within {INTERS union {EN}} cross {INTERS union {EX}};

# road links (network arcs)

param base {ROADS} > 0;  # base travel times
param sens {ROADS} > 0;  # traffic sensitivities
param cap {ROADS} > 0;   # capacities

param through > 0;       # throughput

Traffic Network
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AMPL Formulation (cont’d)

Symbolic model

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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Example: Traffic Network

AMPL model

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;
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AMPL Data

Explicit data independent of symbolic model

set INTERS := b c ;

param EN := a ;
param EX := d ;

param: ROADS: base cap sens :=
a b    4   10   .1
a c    1   12   .7
c b    2   20   .9
b d    1   15   .5
c d    6   10   .1 ;

param through := 20 ;

Traffic Network

a
c

b
d
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Linear Solver

Model + data = problem to solve, using Gurobi?

ampl: model trafficNL.mod;
ampl: data traffic.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 6.5.0: 
Gurobi can't handle nonquadratic nonlinear constraints.

Traffic Network
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Linear Solver (cont’d)

Look at the model again . . .

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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Linear Solver (cont’d)

Quadratically constrained reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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Linear Solver (cont’d)

Model + data = problem to solve, using Gurobi?

ampl: model trafficQUAD.mod;
ampl: data traffic.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 6.5.0: 
quadratic constraint is not positive definite

Traffic Network
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Linear Solver (cont’d)

Quadratic reformulation #2

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
Slack[i,j] = 1 - Flow[i,j]/cap[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Traffic Network
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Linear Solver (cont’d)

Model + data = problem to solve, using Gurobi!

ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 6.5.0: optimal solution; objective 61.0469834
53 barrier iterations

ampl: display Flow;

Flow :=
a b    9.5521
a c   10.4479
b d   11.0044
c b    1.45228
c d    8.99562
;

Traffic Network
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Local Nonlinear Solver

Model + data = problem to solve, using Knitro

ampl: model trafficNL.mod;
ampl: data traffic.dat;

ampl: option solver knitro;
ampl: solve;

Knitro 10.0.0: Locally optimal solution.
objective 61.04695019; feasibility error 3.18e-09
11 iterations; 21 function evaluations

ampl: display Flow;

Flow :=
a b    9.55146
a c   10.4485
b d   11.0044
c b    1.45291
c d    8.99562
;

Traffic Network
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Global Nonlinear Solver

Model + data = problem to solve, using BARON

ampl: model trafficNL.mod;
ampl: data traffic.dat;

ampl: option solver baron;
ampl: solve;

BARON 15.9.22 (2015.09.22): 
1 iterations, optimal within tolerances.
Objective 61.04695019

ampl: display Flow;

Flow :=
a b    9.55146
a c   10.4485
b d   11.0044
c b    1.45291
c d    8.99562
;

Traffic Network
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Quadratic
 Elliptic

 Conic

SOC-representable
 Quadratic-linear ratios

 Generalized geometric means

 Generalized p-norms

Other objective functions
 Generalized product-of-powers

 Logarithmic Chebychev

Jared Erickson and Robert Fourer, 
Detection and Transformation of Second-Order Cone Programming Problems in a 

General-Purpose Algebraic Modeling Language

38

SOCP-Solvable Forms
Conic Quadratics
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Original constraint formulation
 ௞ݔ௞்ܳ௞ݔ ൑ ݔ௞ݍ ൅ ܿ௞,  ܳ௞ ≽ 0

Conic reformulation
 ௞ݓ௞்ݓ ൑ ௞ݖ௞ݕ
 ௞ݓ ൌ ܳ௞

ଵ/ଶݔ௞
 ௞ݕ ൌ ݔ௞ݍ ൅ ܿ௞
 ௞ݖ ൌ 1

. . . preferred by some solvers (like MOSEK)

39

“Elliptic” Quadratic (1)
SOCP-solvable
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Original objective formulation
 Minimize		ݔ்ܳݔ ൅ ܳ  ,ݔݍ ≽ 0

Conic reformulation
 Minimize  ݒ ൅ ݔݍ
 Subject to  ݔ்ܳݔ ൑ ݒ

. . . then apply the constraint reformulation

40

“Elliptic” Quadratic (2)
SOCP-solvable
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Generalized cone constraints
 ∑ ܽ௜ሺ܎௜ܠ ൅ ݃௜ሻଶ௡

௜ୀଵ ൑ ܽ௡ାଵሺ܎௡ାଵܠ ൅ ݃௡ାଵሻଶ,
ܽଵ, . . . , ܽ௡ାଵ ൒ 0, ܠ௡ାଵ܎ ൅ ݃௡ାଵ ൒ 0

Symbolic detection
 Convert to simpler formulation before sending to solver

 ∑ ௜ଶݕ ൑ ௡ାଵଶ௡ݕ
௜ୀଵ ௡ାଵݕ  , ൒ 0

௜ݕ ൌ ܽ௜
ଵ/ଶሺ܎௜ܠ ൅ ݃௜ሻ,  ݅ ൌ 1, . . . , ݊ ൅ 1

Numerical detection
 Multiply out and send quadratic coefficients to solver

 Apply numerical test in solver to detect conic form

 Practicality uncertain!

Ashutosh Mahajan and Todd Munson, 
“Exploiting Second-Order Cone Structure for Global Optimization”

Conic Quadratic (1)
SOCP-solvable
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Generalized cone constraints
 ∑ ܽ௜ሺ܎௜ܠ ൅ ݃௜ሻଶ௡

௜ୀଵ ൑ ܽ௡ାଵሺ܎௡ାଵܠ ൅ ݃௡ାଵሻଶ,
ܽଵ, . . . , ܽ௡ାଵ ൒ 0, ܠ௡ାଵ܎ ൅ ݃௡ାଵ ൒ 0

Generalized rotated cone constraints
 ∑ ܽ௜ ܠ௜܎ ൅ ݃௜ ଶ௡

௜ୀଵ ൑ ܽ௡ାଵ ܠ௡ାଵ܎ ൅ ݃௡ାଵ ܠ௡ାଶ܎ ൅ ݃௡ାଶ ,
ܽଵ, . . . , ܽ௡ାଵ ൒ 0, ܠ௡ାଵ܎		 ൅ ݃௡ାଵ ൒ ܠ௡ାଶ܎	 ,0 ൅ ݃௡ାଶ ൒ 0

Conic Quadratic (2)
SOCP-solvable
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Definition
 Function ݏ ݔ is SOC-representable iff . . .

 ݏ ݔ ൑ ܽ௡ሺ܎௡ାଵܠ ൅ ݃௡ାଵሻ	is equivalent to some 
combination of linear and quadratic cone constraints

Minimization property
 Minimize ݏ ݔ is SOC-solvable

 Minimize ௡ାଵݒ
Subject to ሻݔሺݏ ൑ ௡ାଵݒ

Combination properties
 ܽ ∙ ݏ ݔ is SOC-representable for any ܽ ൒ 0
 ∑ ௜ݏ ௡ݔ

௜ୀଵ is SOC-representable

 ௜ୀଵ௡ݔܽ݉ ௜ݏ	 ݔ is SOC-representable
. . . requires a recursive detection algorithm!
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SOC-Representable (1)
Vector norm

 ܉ ∙ ܠ۴ ൅ ܏ ൌ ∑ ܽ௜ଶ ܠ௜܎ ൅ ݃௜ ଶ௡
௜ୀଵ ൑ ܽ௡ାଵ ܠ௡ାଵ܎ ൅ ݃௡ାଵ

 square both sides to get standard SOC
∑ ܽ௜ଶ ܠ௜܎ ൅ ݃௜ ଶ௡
௜ୀଵ ൑ ܽ௡ାଵଶ ܠ௡ାଵ܎ ൅ ݃௡ାଵ ଶ

Quadratic-linear ratio


∑ ௔೔ ௚೔	ା	ܠ೔܎ మ
೙
೔సభ
௚೙శమ	ା	ܠ೙శమ܎

൑ ܽ௡ାଵ ܠ௡ାଵ܎ ൅ ݃௡ାଵ

 where ܎௡ାଶܠ ൅ ݃௡ାଶ ൒ 0

 multiply by denominator to get rotated SOC
∑ ܽ௜	 ܠ௜܎ ൅ ݃௜ ଶ௡
௜ୀଵ ൑ ܽ௡ାଵ	 ܠ௡ାଵ܎ ൅ ݃௡ାଵ ܠ௡ାଶ܎ ൅ ݃௡ାଶ
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SOC-Representable (2)
Negative geometric mean

 െ∏ ܠ௜܎ ൅ ݃௜ ଵ ௣⁄௣
௜ୀଵ ൑ ܠ௡ାଵ܎ ൅ ݃௡ାଵ,  ݌ ∈ Ժା

 െݔଵ
ଵ/ସݔଶ

ଵ/ସݔଷ
ଵ/ସݔସ

ଵ/ସ ൑ െݔହ becomes rotated SOCs:

ହଶݔ ൑ ଵଶݒ ,ଶݒଵݒ ൑ ଶଶݒ ,ଶݔଵݔ ൑ ସݔଷݔ
 apply recursively logଶ ݌ times

Generalizations
 െ∏ ܠ௜܎ ൅ ݃௜ ఈ೔௡

௜ୀଵ ൑ ܽ௡ାଵ ܠ௡ାଵ܎ ൅ ݃௡ାଵ :		∑ ௜ߙ ൑ 1௡
௜ୀଵ ௜ߙ , ∈ ℚା

 ∏ ܠ௜܎ ൅ ݃௜ ିఈ೔௡
௜ୀଵ ൑ ܽ௡ାଵ ܠ௡ାଵ܎ ൅ ݃௡ାଵ ௜ߙ	 , ∈ ℚା

 all require ܎௜ܠ ൅ ݃௜	to	have	proper	sign

45

SOCP-solvable



Robert Fourer, Surprisingly Complicated Case of Convex Quadratic Optimization
U.S.-Mexico Workshop on Optimization and Its Applications, Mérida, 4-8 January 2016

SOC-Representable (3)
p-norm

 ∑ ܠ௜܎ ൅ ݃௜ ௣௡
௜ୀଵ

ଵ ௣⁄ ൑ ܠ௡ାଵ܎ ൅ ݃௡ାଵ,  ݌ ∈ ℚା,  ݌ ൒ 1

 ଵݔ ହ ൅ ଶݔ ହ ଵ ହ⁄ ൑ ଷݔ can be written

ଵݔ ହ ⁄ଷସݔ ൅ ଶݔ ହ ⁄ଷସݔ 	൑ ଷݔ which becomes

ଵݒ ൅ ଶݒ ൑ ଷݔ with  െݒଵ
ଵ ହ⁄ ଷݔ

ସ ହ⁄ ൑ േݔଵ, െݒଵ
ଵ ହ⁄ ଷݔ

ସ ହ⁄ ൑ േݔଶ
 reduces to product of powers

Generalizations
 ∑ ܠ௜܎ ൅ ݃௜ ఈ೔௡

௜ୀଵ
ଵ ఈబ⁄ ൑ ܠ௡ାଵ܎ ൅ ݃௡ାଵ,  α௜ ∈ ℚା,  ߙ௜ ൒ ଴ߙ	 ൒ 1

 ∑ ܠ௜܎ ൅ ݃௜ ఈ೔௡
௜ୀଵ ൑ ܠ௡ାଵ܎ ൅ ݃௡ାଵ ఈబ

 Minimize  ∑ ܠ௜܎ ൅ ݃௜ ఈ೔௡
௜ୀଵ

. . . standard SOCP has ࢏ࢻ ≡ ૛
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Other Objective Functions
Unrestricted product of powers

 Minimize  െ∏ ܠ௜܎ ൅ ݃௜ ఈ೔௡
௜ୀଵ for any ߙ௜ ∈ ℚା

Logarithmic Chebychev approximation
 Minimize  max௜ୀଵ௡ log ܠ௜܎ െ log	ሺ݃௜ሻ 	

Why no constraint versions?
 Not SOC-representable

 Transformation changes objective value (but not solution)
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Formulation
 Linear objective

 Conic quadratic constraints

 Some integer-valued variables

Detection
 Check for conic quadratic & look for integer variables

Optimization
 branch-and-bound with quadratic relaxations

 outer approximation:
branch-and-bound with linear relaxations
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Linear Integer Solver

CPLEX with quadratic relaxations

ampl: model trafficSOCint.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: option cplex_options 'miqcpstrat 1';
ampl: solve;

CPLEX 12.6.2.0: optimal (non-)integer solution; objective 76.26375004

20 MIP simplex iterations
0 branch-and-bound nodes

3 integer variables rounded (maxerr = 1.92609e-06).
Assigning integrality = 1e-06 might help.
Currently integrality = 1e-05.

Traffic Network
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Linear Integer Solver (cont’d)

CPLEX with linear relaxations

ampl: model trafficSOCint.mod;
ampl: data traffic.dat;

ampl: option solver cplex;
ampl: option cplex_options 'miqcpstrat 2';
ampl: solve;

CPLEX 12.6.2.0: optimal integer solution within mipgap or absmipgap; 
objective 76.26375017

19 MIP simplex iterations
0 branch-and-bound nodes

absmipgap = 4.74295e-07, relmipgap = 6.21914e-09

ampl: display Flow;

:   b   c    d
a   9   11   .
b   .   .    11
c   2   .     9

Traffic Network
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Disaggregation
One conic constraint with n terms

 .	൅	ଵଶݔ . . 	൅	ݔ௡ଶ	൑ ௡ାଵଶݔ , ௡ାଵݔ ൒ 0

Transformations
 ଵݔ ௡ାଵݔ/ଵݔ 	൅	. . . 	൅	ݔ௡ ௡ାଵݔ/௡ݔ ൑ ௡ାଵݔ
 .	൅	ଵݕ . . ൅ ௡ݕ ൑ ௡ାଵݔ
ଵݔ ௡ାଵݔ/ଵݔ ൑ ,ଵݕ ௡ݔ , . . . ௡ାଵݔ/௡ݔ ൑ ௡ݕ

n conic constraints with one term each
 .	൅	ଵݕ . . ൅ ௡ݕ ൑ ௡ାଵݔ
ଵଶݔ ൑ ,ଵݕ௡ାଵݔ ௡ଶݔ , . . . ൑ ௡ݕ௡ାଵݔ
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Disaggregation
One conic constraint with n terms

 .	൅	ଵଶݔ . . 	൅	ݔ௡ଶ	൑ ௡ାଵଶݔ , ௡ାଵݔ ൒ 0

n conic constraints with one term each
 .	൅	ଵݕ . . ൅ ௡ݕ ൑ ௡ାଵݔ
ଵଶݔ ൑ ,ଵݕ௡ାଵݔ ௡ଶݔ , . . . ൑ ௡ݕ௡ାଵݔ

Advantageous when . . .
 Some variables are integral

 Branch-and-bound uses linear relaxations

 Conic constraints are “long enough”

. . . automated by some solvers (like CPLEX, Gurobi)
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Formulation
 Minimize ݔ்ܳݔ ൅ ݔݍ
 Subject to linear constraints

Detection
 Variables are binary:  ݔ௝ ∈ ሼ0,1ሽ

Optimization
 if convex,

branch-and-bound with convex quadratic subproblems

 conversion to linear followed by
branch-and-bound with linear subproblems

. . . replace ࢞࢐࢞࢏	࢟࢈	࢐࢏࢟ ൒ ࢏࢞ ൅ ࢞࢐ െ ૚
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Case 1: Convex
Sample model . . .

param n > 0;
param c {1..n} > 0;

var X {1..n} binary;

minimize Obj:
(sum {j in 1..n} c[j]*X[j])^2;

subject to SumX: sum {j in 1..n} j * X[j] >= 50*n+3;

Binary Quadratic
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ampl: solve;

…….

Cover cuts applied:  2
Zero-half cuts applied:  1

…….

Total (root+branch&cut) = 0.42 sec.

CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap; 
objective 29576.27517

286 MIP simplex iterations
102 branch-and-bound nodes

CPLEX 12.5

Case 1 (cont’d)
Binary Quadratic

(n = 200)
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ampl: solve;

MIP Presolve added 39800 rows and 19900 columns.
Reduced MIP has 39801 rows, 20100 columns, and 79800 nonzeros.
Reduced MIP has 20100 binaries, 0 generals, and 0 indicators.

…….

Cover cuts applied:  8
Zero-half cuts applied:  5218
Gomory fractional cuts applied:  6

…….

Total (root+branch&cut) = 2112.63 sec.

CPLEX 12.6.0: optimal integer solution; objective 29576.27517

474330 MIP simplex iterations
294 branch-and-bound nodes

CPLEX 12.6

Case 1 (cont’d)
Binary Quadratic
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CPLEX 12.5
 None needed

CPLEX 12.6
 Define a (binary) variable for each term ݔ௜ݔ௝
 Introduce ܱሺ݊ଶሻ new variables and constraints

. . . option for 12.5 behavior added to 12.6.1
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Case 1: Transformations Performed
Binary Quadratic
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Case 2: Nonconvex
Sample model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;

minimize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Binary Quadratic
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ampl: solve;

Repairing indefinite Q in the objective.

. . . . . . .

Total (root+branch&cut) = 1264.34 sec.

CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap; 
objective 290.1853405

23890588 MIP simplex iterations
14092725 branch-and-bound nodes

CPLEX 12.5

Case 2 (cont’d)
Binary Quadratic

(n = 50)
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ampl: solve;

MIP Presolve added 5000 rows and 2500 columns.
Reduced MIP has 5003 rows, 2600 columns, and 10200 nonzeros.
Reduced MIP has 2600 binaries, 0 generals, and 0 indicators.

. . . . . . .

Total (root+branch&cut) = 6.05 sec.

CPLEX 12.6.0: optimal integer solution; objective 290.1853405

126643 MIP simplex iterations
1926 branch-and-bound nodes

CPLEX 12.6

Case 2 (cont’d)
Binary Quadratic
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CPLEX 12.5
 Add ܯ௝ሺݔ௝ଶ െ ௝ሻݔ to objective as needed to convexify

CPLEX 12.6
 Define a (binary) variable for each term ݔ௜ݕ௝
 Introduce ܱሺ݊ଶሻ new variables and constraints

61

Case 2: Transformations Performed
Binary Quadratic
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Case 3: Nonconvex revisited
Alternative quadratic model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;
var Ysum;

minimize Obj:
(sum {j in 1..n} c[j]*X[j]) * Ysum;

subj to YsumDefn: Ysum = sum {j in 1..n} d[j]*Y[j];

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Binary Quadratic
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ampl: solve;

CPLEX 12.5.0: QP Hessian is not positive semi-definite.

CPLEX 12.5

Case 3 (cont’d)
Binary Quadratic
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ampl: solve;

MIP Presolve added 100 rows and 50 columns.
Reduced MIP has 104 rows, 151 columns, and 451 nonzeros.
Reduced MIP has 100 binaries, 0 generals, and 0 indicators.
.......

Total (root+branch&cut) = 0.17 sec.

CPLEX 12.6.0: optimal integer solution; objective 290.1853405

7850 MIP simplex iterations
1667 branch-and-bound nodes

CPLEX 12.6

Case 3 (cont’d)
Binary Quadratic



Robert Fourer, Surprisingly Complicated Case of Convex Quadratic Optimization
U.S.-Mexico Workshop on Optimization and Its Applications, Mérida, 4-8 January 2016

Human modeler
 Introduce a (general) variable  ݕୱ୳୫ ൌ ∑ ௝݀ݕ௝௡

௝ୀଵ

CPLEX 12.5
 Reject problem as nonconvex

CPLEX 12.6
 Define a (general integer) variable for each term ݔ௜	ݕୱ୳୫
 Introduce ܱሺ݊ሻ new variables and constraints

65

Case 3: Transformations Performed
Binary Quadratic

F. Glover and E. Woolsey, 
Further reduction of zero-one polynomial programming 

problems to zero-one linear programming problems (1973)
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Many refinements and generalizations
 F. Glover and E. Woolsey, Further reduction of zero-one 

polynomial programming problems to zero-one linear 
programming problems.  Operations Research 21 (1973) 
156-161. 

 F. Glover, Improved linear integer programming 
formulations of nonlinear integer problems.  Management 
Science 22 (1975) 455-460. 

 M. Oral and O. Kettani, A linearization procedure for 
quadratic and cubic mixed-integer problems.  Operations 
Research 40 (1992) S109-S116. 

 W.P. Adams and R.J. Forrester, A simple recipe for concise 
mixed 0-1 linearizations.  Operations Research Letters 33 
(2005) 55-61.
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Case 3: Well-Known Approach
Binary Quadratic
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Case 4: Nonconvex reconsidered
Model with “indicator” constraints . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;
var Z {1..n};

minimize Obj: sum {i in 1..n} Z[i];

subj to ZDefn {i in 1..n}:
X[i] = 1 ==> Z[i] = c[i] * sum {j in 1..n} d[j]*Y[j]

else Z[i] = 0;

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {j in 1..n} (X[j] + Y[j]) = n;

Binary Quadratic
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ampl: solve;

Reduced MIP has 53 rows, 200 columns, and 2800 nonzeros.
Reduced MIP has 100 binaries, 0 generals, and 100 indicators.
.......

Total (root+branch&cut) = 5.74 sec.

CPLEX 12.6.0: optimal integer solution within mipgap or absmipgap; 
objective 290.1853405

377548 MIP simplex iterations
95892 branch-and-bound nodes

CPLEX 12.6 transforms to linear MIP

Case 4 (cont’d)
Binary Quadratic
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Human modeler
 Define a (general) variable for each term ݔ௜ ∑ ௝݀ݕ௝௡

௝ୀଵ

 Introduce ܱሺ݊ሻ new variables
 Introduce ܱሺ݊ሻ new indicator constraints

CPLEX 12.6
 Enforce indicator constraints in branch and bound?

 Transform indicator constraints to linear ones?

69

Case 4: Transformations Performed
Binary Quadratic
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Handle quadratics more automatically
 Given a quadratic problem and a solver choice

 Decide how best to solve

Suggest appropriate solvers
 Given a quadratic problem

 Identify appropriate solvers to try

70

Goals
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The modeler

The modeling language processor

The solver interface

The solver

71

Who Should Do the Work?
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Advantages
 Can exploit special knowledge of the problem

 Doesn’t have to be programmed

Disadvantages
 May not know the best way to transform

 May have better ways to use the time

 Can make mistakes

72

The Modeler
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Advantages
 Makes the same transformation available to all solvers

 Has a high-level view of the problem

Disadvantages
 Is a very complicated program

 Can’t take advantage of special solver features

73

The Modeling Language Processor
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Advantages
 Works on simplified problem instances

 Can use same ideas for many solvers, but also

 Can tailor transformation to solver features

Disadvantages
 Creates an extra layer of complication

74

The Solver Interface
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Advantages
 Ought to know what’s best for it

 Can integrate transformation with other activities

Disadvantages
 May not incorporate best practices

 Is complicated enough already
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The Solver


