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About us..

• In the past years, OptiRisk Systems has been 
working closely with AMPL Inc. and has 
developed various products in the AMPL 
ecosystem

– AMPL Studio (graphical interface)

– AMPLCOM (library)

– SPInE and SAMPL (extensions to AMPL)

– FortSP (decomposition based solver)

– AMPLDev (graphical interface)

– AMPL API and AMPL IDE (as contractors)
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Taxonomy of optimisation problems 
under uncertainty revised
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Taxonomy of optimisation problems 
under uncertainty revised

• We concentrate on Two-Stage SP problems, with 
(integrated) chance constraints
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Model classes

• Expected Value • Wait and See

• Here and now
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Chance Constraints

• Algebraic formulation:

– Individual Chance Constraints
𝑃 ℎ𝑖 𝑥, 𝜉 ≥ 0 ≥ 𝑝𝑖 , 𝑖 ∈ 𝐼

– Joint Chance Constraints
𝑃( ℎ𝑖 𝑥, 𝜉 ≥ 0, 𝑖 ∈ 𝐼 ≥ 𝑝

where x and 𝜉 are respectively decisions and random 
vectors, I is a set of indices of constraints in the given 
problem
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Chance Constraints

• Practical Importance

– Chance constraints provide a simple risk measure

– Related to VaR

– Applications in finance, energy production, water 
management, …

• Can be expressed in any AMLs reformulating the 
problem by introducing extra constraints and binary 
variables
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Integrated Chance Constraints

• Expected violation of constraint(s) <= shortfall 𝛽𝑖
• Individual ICC

𝐸𝜔 𝜂𝑖 𝑥, 𝜔
− ≤ 𝛽𝑖 , 𝛽𝑖 ≥ 0, 𝑖 ∈ 𝐼

• Joint ICC
𝐸𝜔 max𝑖∈𝐼 𝜂𝑖 𝑥, 𝜔

− ≤ 𝛽𝑖 , 𝛽𝑖 ≥ 0

where 𝜂𝑖 𝑥, 𝜔
− represents the violation that 

occurs in constraint i under realisation 𝜔
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Integrated Chance Constraints

• Practical Importance

– ICCs represent a risk measure (closely related to 
CVaR or to SSD)

– Computationally more tractable than chance 
constraints

– Applications in finance, e.g. asset-liability 
management, portfolio choice models

• Can be expressed in any AML introducing extra 
constraints and continuous variables
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Our approach to optimisation 
(under uncertainty)

• Maintain separation between the activities in 
optimisation:

– Modelling

– Instance generation 

– Solving

• Benefits

– Easier specification of the algebraic model

– Modularity makes software easier to maintain 

– Specialists can work in their own domain
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Runtime phase

SP Modelling process
Predictive modelling
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Algebraic 
model

Modelling 
System

Instance
representation

Our approach to modelling

AML

• How to 
define the 
model at 
algebraic 
level

AMS

• What 
modelling 
system to 
use

Instance level 
format

• How to 
represent 
the model 
instance
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SP Instance representation

• SP problems have a specific block structure

min 𝑐𝑥 + 𝑐𝑠1𝑦𝑠1 + 𝑐𝑠2𝑦𝑠2
𝐴𝑥 ≤ 𝑏
𝐴𝑠1,1𝑥 + 𝐴𝑠1,2𝑌𝑠1 ≤ 𝑏𝑠1
𝐴𝑠2,1𝑥 + 𝐴𝑠2,2𝑌𝑠2 ≤ 𝑏𝑠2

• When passed to a solver as a deterministic 
equivalent, this structure is lost

Where ҧ𝐴, ത𝑏, ҧ𝑐 and 𝑧 are compositions of the 
respective vectors/matrices

min ҧ𝑐𝑧
ҧ𝐴𝑧 ≤ ത𝑏
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SP Instance Representation
• The structure can be exploited by solution 

algorithms

• At instance level we aim to communicate:

where the tilde submatrices are then separately    

passed, scenario by scenario.

• Most of the elements in the sub-blocks are 
repeated -> only changes in respect to the tilde 
matrices are communicated

min 𝑐𝑥 + ǁ𝑐𝑦
𝐴𝑥 ≤ 𝑏
෪𝐴1𝑥 + ෪𝐴2𝑦 ≤ ෨𝑏

ǁ𝑐 = 𝑐𝑠1, 𝑐𝑠2
𝑏 = 𝑏𝑠1, 𝑏𝑠2

෪𝐴1 = 𝐴𝑆1,1, 𝐴𝑆2,1
෪𝐴2 = 𝐴𝑆1,2, 𝐴𝑆2,2
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SP Instance Representation
• A well specified language for instance level 

representation has already been proposed and is 
used (SMPS)

• To be able to generate such format, the 
modelling system must be told the structure of 
the model we wish it to convey

• Following slides show our past and current 
approaches at this
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Algebraic 
model

Modelling 
System

Instance
representation

Our approach to modelling (1)

AML

• Any modelling 
language, no 
specialized 
syntax (DEQ 
formulation)

AMS

• Any modelling 
system for 
linear/non-
linear 
optimisation

MPS

• MPS like 
format (direct 
representation 
of the DEQ 
formulation)

• Replication of 
information

• Loss of 
structure
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Algebraic 
model

Modelling 
System

Instance
representation

Our approach to modelling (2)

SAMPL

• Specialized syntax 
for SP

SPInE

• Preprocessor at 
algebraic 
language level

• Generated a core 
model and the 
needed 
information using 
AMPL as a 
subsystem

• Expressed model 
!= solved model

SMPS

• SMPS like format 
(compact 
representation, 
conveys the 
stochastic 
information 
separately)
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Algebraic 
model

Modelling 
System

Our approach to modelling (3)

SAMPL

• Specialized syntax 
for SP

SAMPL

• Reimplementation 
of AMPL

• Generated model 
efficiently

• Development 
independent from 
AMPL

SMPS

• SMPS like format 
(compact 
representation, 
conveys the 
stochastic 
information 
separately)

Instance
representation
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Algebraic 
model

Modelling 
System

Our approach to modelling (4)

AMPLsp

• AMPL 
formulation 
following some 
guidelines

AMPL + 
smpswriter

• Official AMPL 
interpreter

• Uses the solver 
module 
smpswriter to 
efficiently 
generate smps

SMPS

• SMPS like 
format 
(compact 
representation, 
conveys the 
stochastic 
information 
separately)

Instance
representation



Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

From SAMPL to AMPLsp
• We have been developing SAMPL, an

extended version of AMPL with additional
language constructs and models
communication facilities

• Focus of the language was:

– Easy formulation of the classes of problems
presented (e.g. no artificial variables for
(I)CCP)

– Efficient model instance generation

– Efficient model solution: instances generated
in SMPS-like format, which conveys the model
structure, exploitable by various specialised
algorithms
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From SAMPL to AMPLsp

• SAMPL has always been separated from
AMPL, first implemented as a pre-processor
then as an alternative language interpreter

– Two development teams and efforts

– Not all AMPL facilities were implemented

– Sync with new AMPL features

• SAMPL is discontinued, to be replaced by

– AMPL with an intelligent reuse of existing
constructs

– smpswriter [https://github.com/ampl/mp] (a
new solver interface, able to write SMPS files)

https://github.com/ampl/mp
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Dakota model (deterministic)

set PROD;

set RESOURCE;

param Cost{RESOURCE};

param ProdReq{RESOURCE,PROD};

param Price{PROD};

param Budget;

param Demand{PROD};

var amountbuy{RESOURCE} >=0 ;

var amountprod{PROD}>=0, suffix stage 2;

var amountsell{PROD}>=0, suffix stage 2;

maximize wealth: 

sum{p in PROD} Price[p]*amountsell[p]-

sum{r in RESOURCE} Cost[r]*amountbuy[r];
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Dakota model (deterministic)

subject to

CBudget: sum{r in RESOURCE}

Cost[r]*amountbuy[r] <= Budget;

CBalance{r in RESOURCE}:

amountbuy[r] >= sum{p in PROD} ProdReq[r,p] * 

amountprod[p];

CProduction{p in PROD}: 

amountsell[p] <= amountprod[p];

CSales{p in PROD}: 

amountsell[p] <= Demand[p];
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Dakota model (stochastic)

• The implementation is designed to have minimal 
impact on AMPL by reusing the representational 
power of the nl format and a few conventions

• Preliminary declarations/conventions:

• Add scenario set and appropriate indexing to 
represent realizations:

function expectation;

function random;

suffix stage IN;

set SCEN;

param Demand{PROD, SCEN};
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Dakota model (stochastic)

• For every occurrence of the random parameter 
in the model we pass a placeholder

• Parameter Demand becomes a variable (in the 
sense that its value will be determined after 
AMPL generates the model instance)

• An AMPL function allows the smpswriter to link 
the parameter values to its placeholder
yield: random({p in PROD} (Demand[p], 

{s in SCEN} RandomDemand[p,s]));

var RandomDemand{PROD};param Demand{PROD};
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Dakota model (stochastic)

• Stage assignment

• Objective as expectation

var amountbuy{RESOURCE} >=0 ;

var amountprod{PROD}>=0, suffix stage 2;

var amountsell{PROD}>=0, suffix stage 2;

maximize wealth: 

expectation(sum{p in PROD} Price[p]*amountsell[p])

- sum{r in RESOURCE} Cost[r]*amountbuy[r];



Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Complete model
function expectation;

function random;

suffix stage IN;

set PROD;

set RESOURCE;

set SCEN;

param RandomDemand{PROD, SCEN};

var Demand{PROD};

yield: random({p in PROD} (RandomDemand[p],

{s in SCEN} Demand[p,s]));

param Cost{RESOURCE};

param ProdReq{RESOURCE,PROD};

param Price{PROD};

param Budget;

var amountbuy{RESOURCE} >=0 ;

var amountprod{PROD}>=0, suffix stage 2;

var amountsell{PROD}>=0, suffix stage 2;
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Complete model

maximize wealth : 

expectation(sum{p in PROD} Price[p]*amountsell[p])-

sum{r in RESOURCE} Cost[r]*amountbuy[r];

subject to

CBudget: sum{r in RESOURCE}

Cost[r]*amountbuy[r] <= Budget;

CBalance{r in RESOURCE}:

amountbuy[r] >= sum{p in PROD} ProdReq[r,p] * 

amountprod[p];

CProduction{p in PROD}: 

amountsell[p] <= amountprod[p];

CSales{p in PROD}: 

amountsell[p] <= RandomDemand[p];
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Process
Algebraic 

Model

AMPL

smpswriter

nl file

smps file

solver

write gmodel;

shell ‘smpswriter model’;

shell ‘fortsp model’;

Reading time = 0.015569 s.

Stage 1 has 1 row(s), 3 column(s), and 3 nonzero(s).

Stage 2 has 9 row(s), 6 column(s), and 21 nonzero(s).

Problem has 2 stage(s) and 3 scenario(s).

Itn Objective          Bound        Rel.Gap

1        1281.63        4577.78        2.57184

2        1281.63           4120        2.21466

3        1281.63           4120        2.21466

4        1281.63        2589.71        1.02064

5        1580.19        2446.55        0.54826

6        1580.19        2266.71       0.434451

7        1580.19        1790.67       0.133201

8        1580.19        1711.66      0.0831986

9        1580.19        1655.78      0.0478343

10        1580.19        1616.67      0.0230834

11        1616.67        1616.67  -2.81287e-016

Number of iterations = 11.

Master time = 0 s.

Recourse time = 0 s.

Optimal solution found, objective = 1616.67.
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Availability

• Source code is available on github as part of the 
project ampl/mp: An open-source library for 
mathematical programming

https://github.com/ampl/mp

• Find details in solvers/smpswriter

https://github.com/ampl/mp
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Further developments 
• Syntax

– Streamline the initial declarations 

– Improve the procedure to define a random 
parameter

• Functionalities

– Incoroprate CPPs and ICCPs

• Integration

– Implement the smpswriter as a standard AMPL 
solver (no need to system calls)

• Variables

– Allow second stage variables to be indexed over 
the scenario set
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Conclusions
• Formulating SP problems with DEQ does not 

scale up

– Spatial complexity

– Computational complexity

• Efficient SP model generation and solution needs 
special tools in

– Modelling – generating model instance

– Solving – using specialised algorithms

• New implementation doesn’t suffer of the 
inherent problems of the previous
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