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About us..

* In the past years, OptiRisk Systems has been
working closely with AMPL Inc. and has
developed various products in the AMPL
ecosystem

— AMPL Studio (graphical interface)

— AMPLCOM (library)

— SPInE and SAMPL (extensions to AMPL)
— FortSP (decomposition based solver)

— AMPLDev (graphical interface)

— AMPL APl and AMPL IDE (as contractors)
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Taxonomy of optimisation problems
under uncertainty revised

Classification Distribution
Our approach to SP Problems

AMPLsp

Conclusions

SP Problems

* We concentrate on Two-Stage SP problems, with
OptRisk (integrated) chance constraints
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Model classes

e Expected Value e Wait and See

Zry € mincx Zywe ¥ E |79

Classification Where X e F

Our approach to SP

where Z® = minc%x

AP and F = {x|4x = b,x = 0}
and x e F¢

Conclusions

e Here and now i -
HY = mingx + E, | Q(x, w)]

= min @
sub]ectto Ax =<
x>0
w
whersbeL s dmeﬂF
DCUyOJ —

OplRisk y® =0
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Chance Constraints

e Algebraic formulation:
Classification — Individual Chance Constraints

Our approach to SP

AMPLsp P(hi(x, 6) = O) = Di, =
concisions — Joint Chance Constraints
P((h;(x,€) =0,i€el)=p

where x and ¢ are respectively decisions and random
vectors, | is a set of indices of constraints in the given

problem
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Chance Constraints

* Practical Importance
— Chance constraints provide a simple risk measure

_ Related to VaR
— Applications in finance, energy production, water
SOREEEEE management, ...

* Can be expressed in any AMLs reformulating the
problem by introducing extra constraints and binary
variables
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Integrated Chance Constraints

* Expected violation of constraint(s) <= shortfall f;
* Individual ICC

Classification Ew [T]i(x’ a))_] < IBi' :Bi = O,l el

Our approach to SP

AMPLsp  Joint ICC
E,lmax;e; n;(x, w)~] < B, p; =0

where n;(x, W)~ represents the violation that
occurs in constraint i under realisation w

SSSSSSS



Integrated Chance Constraints

* Practical Importance

— |CCs represent a risk measure (closely related to

CVaR or to SSD)

— Computationally more tractable than chance
constraints

— Applications in finance, e.g. asset-liability
management, portfolio choice models

* Can be expressed in any AML introducing extra
constraints and continuous variables
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Our approach to optimisation
(under uncertainty)

* Maintain separation between the activities in
optimisation:

Our approach to SP

AMPLsp — Modelling

Conclusions

— Instance generation

— Solving
* Benefits
— Easier specification of the algebraic model
— Modularity makes software easier to maintain
— Specialists can work in their own domain
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Our approach to modelling

_____________

__________

' Instance :
Algebraic Modelling representation

model : System

it

Introduction

Classification

Our approach to SP

AMPLsp | |

Conclusions AML AMS InStance eve

format
e How to e What e How to

define the modelling represent
model at system to the model
algebraic use instance
level
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SP Instance representation

* SP problems have a specific block structure

min cx T Cs1Ys1 T Cs2Ys2

Ax <b
Ag11X + Ag1 Y61 < bsy
Agp X + Ag Y52 < by,

* When passed to a solver as a deterministic
equivalent, this structure is lost
min cz ~
Az <b
Where A, b, ¢ and z are compositions of the
OpliRISK  respective vectors/matrices
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SP Instance Representation

* The structure can be exploited by solution
algorithms

e At instance level we aim to communicate:

min cx + Cy C = Cs1,Cs2
Ax <b ~b = bs1, by
Aix+A,y<b Ay = As 11 As,1

Z; — A51,2, A52,2
where the tilde submatrices are then separately
passed, scenario by scenario.

e Most of the elements in the sub-blocks are

repeated -> only changes in respect to the tilde
matrices are communicated

SSSSSSS



SP Instance Representation

* A well specified language for instance level
representation has already been proposed and is
used (SMPS)

* To be able to generate such format, the
modelling system must be told the structure of
the model we wish it to convey

* Following slides show our past and current
approaches at this
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Our approach to modelling (1)

_____________

; N Instance
} Algebraic Modelling | representation
|

model : System

Classification

Our approach to SP A M S
AMPLsp
ConCisions e Any modelling e Any modelling e MPS like
language, no system for format (direct
specialized linear/non- representation
syntax (DEQ linear of the DEQ
formulation) optimisation formulation)
e Replication of
information
e Loss of
structure
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Our approach to modelling (2)

e : { Instance !
) Algebraic | Modelling | representation {
i model : System i :
Classification
Our approach to SP SAMPL
AMPLs 1 :
. e Specialized syntax e Preprocessor at e SMPS like format
lusi :
conclusions for SP algebraic (compact
language level representation,

* Generated a core conveys the
model and the stochastic
needed information
information using separately)
AMPL as a
subsystem

e Expressed model
I= solved model

OphiRisk
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Our approach to modelling (3)

o Y f/ Instance \}
 Algebraic Modelling | representation {
E model : System E E
Introduction SN p
Classification
o) hto SP
AMPLsp
Conclusions * Specialized syntax e Reimplementation ¢ SMPS like format
for SP of AMPL (compact
e Generated model representation,
efficiently conveys .the
e Development stochastic
independent from information
AMPL separately)
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Our approach to modelling (4)

---------- ; !
i' Alf]it;?lic E MS?I(:fe“ri:g i replrr(]esst;r?t;iion .E .............
Classification
AMPLsp
Conclusions e AMPL e Official AMPL e SMPS like
formulation interpreter format
following some e Uses the solver (compact
guidelines module representation,
smpswriter to conveys the
efficiently stochastic
generate smps information

separately)
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From SAMPL to AMPLsp

 We have been developing SAMPL, an
extended version of AMPL with additional
language constructs and models
communication facilities

* Focus of the language was:

— Easy formulation of the classes of problems
presented (e.g. no artificial variables for

(1)CCP)
— Efficient model instance generation

— Efficient model solution: instances generated
in SMPS-like format, which conveys the model
structure, exploitable by various specialised
algorithms
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From SAMPL to AMPLsp

e SAMPL has always been separated from
AMPL, first implemented as a pre-processor
then as an alternative language interpreter

— Two development teams and efforts
— Not all AMPL facilities were implemented
— Sync with new AMPL features

« SAMPL is discontinued, to be replaced by

— AMPL with an intelligent reuse of existing
constructs

— smpswriter [https://github.com/ampl/mp] (a
new solver interface, able to write SMPS files)
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https://github.com/ampl/mp

Dakota model (deterministic)

set PROD;
set RESOURCE;

Classification param Cost{RESOURCE} ;

Sl ble param ProdReq{RESOURCE, PROD} ;
AMPLsp

param Price{PROD};

Conclusions

param Budget;
param Demand{PROD};

var amountbuy{RESOURCE} >=0 ;
var amountprod{PROD}>=0, suffix stage 2;
var amountsell {PROD}>=0, suffix stage 2;

maximize wealth:
sum{p in PROD} Price([p] *amountsell[p]-
EM]HFHE%( sum{r in RESOURCE} Cost[r]*amountbuy[r];

SYSTEMS



Dakota model (deterministic)

subject to

CBudget: sum{r in RESOURCE}
Classification Cost[r] *amountbuy[r] <= Budget;

Sl CBalance{r in RESOURCE} :
AMPLsp

amountbuy[r] >= sum{p in PROD} ProdReq[r,p] *
amountprod[p];

CProduction{p in PROD}:

amountsell [p] <= amountprod[p];
CSales{p in PROD}:

amountsell [p] <= Demand[p];

Conclusions

OplhiRisk

SYSTEMS



Dakota model (stochastic)

* The implementation is desighed to have minimal
impact on AMPL by reusing the representational
power of the n/ format and a few conventions

“Uito | * Preliminary declarations/conventions:

function expectation;
function random;

suffix stage INj;

* Add scenario set and appropriate indexing to

represent realizations:
set SCEN;

param Demand{PROD, SCEN};
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Dakota model (stochastic)

* For every occurrence of the random parameter
in the model we pass a placeholder

* Parameter Demand becomes a variable (in the

JUity o sense that its value will be determined after
AMPL generates the model instance)

param Demand{PROD}; var RandomDemand{PROD};

* An AMPL function allows the smpswriter to link
the parameter values to its placeholder

yield: random({p in PROD} (Demand|[p],
{s 1n SCEN} RandomDemand[p,s])):
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Dakota model (stochastic)

e Stage assignment

var amountbuy{RESOURCE} >=0 ;
var amountprod{PROD}>=0, suffix stage 2;

Classification
Our approach to SP var amountsell {PROD} >=( ’ suffix Stage 2,'

* Objective as expectation

AMPLsp

Conclusions

maximize wealth:

expectation (sum{p 1in PROD} Price[p]*amountsell[p])
— sum{r 1n RESOURCE} Cost[r]*amountbuy|[r];

OplhiRisk
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Complete model

function expectation;
function random;
suffix stage IN;

set PROD;

set RESOURCE;

set SCEN;

param RandomDemand{PROD, SCEN} ;

var Demand{PROD} ;

yield: random({p in PROD} (RandomDemand|[p],
{s in SCEN} Demand[p,s])):

param Cost{RESOURCE};

param ProdReqg{RESOURCE, PROD};

param Price{PROD};

Our approach to SP

AMPLsp

Conclusions

param Budget;

var amountbuy{RESOURCE} >=0 ;
var amountprod{PROD}>=0, suffix stage 2;
DDI_|R|S|'< var amountsell {PROD}>=0, suffix stage 2;

SYSTEMS



Complete model

maximize wealth
expectation (sum{p 1n PROD} Pricel[p]*amountsell[p]) -
sum{r in RESOURCE} Cost[r]*amountbuyl[r];

Classification

Our approach to SP SUbj ect to

AMPLsp CBudget: sum{r in RESOURCE}

Conclusions Cost[r] *amountbuy[r] <= Budget;
CBalance{r in RESOURCE}:

amountbuy[r] >= sum{p in PROD} ProdReqglr,p] *
amountprod[p];

CProduction{p in PROD}:

amountsell [p] <= amountprod[p];
CSales{p in PROD}:
amountsell [p] <= RandomDemand[p]:;
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Process

Algebralc Reading time = 0.015569 s.
Model Stage 1 has 1 row(s), 3 column(s), and 3 nonzero(s).
Stage 2 has 9 row(s), 6 column(s), and 21 nonzero(s).
Problem has 2 stage(s) and 3 scenario(s).
Itn Objective Bound Rel.Gap
1 1281.63 4577.78 2.57184
Classification AMPL 2 1281.63 4120 2.21466
1281.63 4120 2.21466
Sulipien l Mrlte gr@desl ; 2589.71 1.02064
AMPLsp 5 1580.19 2446.55 0.54826
Conclusions nl flle 6 1580.19 2266.71 0.434451
7 1580.19 1790.67 0.133201
8 1580.19 1711.66 0.0831986
9 1580.19 1655.78 0.0478343
J 10 1580.19 1616.67 0.0230834
) 11 1616.67 1616.67 -2.81287e-016
Smpswrlter Number of iterations = 11.
Master time = 0 s.
Rec e time =
oo BB Lo STRSHEAL S5 BRARL. 616,67,
v
smps file
l shell ‘fortsp model’;

OpliRisk solver

SYSTEMS




Availability

* Source code is available on github as part of the
project ampl/mp: An open-source library for
mathematical programming

W https://qgithub.com/ampl/mp

Conclusions

* Find details in solvers/smpswriter
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https://github.com/ampl/mp

Further developments

* Syntax
— Streamline the initial declarations

— Improve the procedure to define a random
parameter

e o Functionalities
— Incoroprate CPPs and ICCPs
* |ntegration

— Implement the smpswriter as a standard AMPL
solver (no need to system calls)

e Variables

— Allow second stage variables to be indexed over
the scenario set
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Conclusions

* Formulating SP problems with DEQ does not
scale up

— Spatial complexity
— Computational complexity

 Efficient SP model generation and solution needs
special tools in

— Modelling — generating model instance
— Solving — using specialised algorithms

* New implementation doesn’t suffer of the
inherent problems of the previous
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