
AMPL representation and
solution of multiple stochastic

programming formulations
Christian Valente, Victor Zverovich, Gautam Mitra,

Robert Fourer

INFORMS Annual meeting 2016
Nashville, TN

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Agenda

• Classification of problems of interest

• Our approach to modelling

• AMPLsp

• Conclusions

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

About us..

• In the past years, OptiRisk Systems has been
working closely with AMPL Inc. and has
developed various products in the AMPL
ecosystem

– AMPL Studio (graphical interface)

– AMPLCOM (library)

– SPInE and SAMPL (extensions to AMPL)

– FortSP (decomposition based solver)

– AMPLDev (graphical interface)

– AMPL API and AMPL IDE (as contractors)

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Taxonomy of optimisation problems
under uncertainty revised

SP Problems

Distribution
Problems

Wait and See

Expected Value

Recourse
Problems

Two-stage

Multi-stage
Problems with

Chance
Constraints

Problems with
ICC

St
o

ch
as

ti
c

M
ea

su
re

s
(e

.g
. E

V
P

I a
n

d

V
SS

)

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Taxonomy of optimisation problems
under uncertainty revised

• We concentrate on Two-Stage SP problems, with
(integrated) chance constraints

SP Problems

Distribution
Problems

Wait and See

Expected Value

Recourse
Problems

Two-stage

Multi-stage
Problems with

Chance
Constraints

Problems with
ICC

St
o

ch
as

ti
c

M
ea

su
re

s
(e

.g
. E

V
P

I a
n

d

V
SS

)

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Model classes

• Expected Value • Wait and See

• Here and now

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Chance Constraints

• Algebraic formulation:

– Individual Chance Constraints
𝑃 ℎ𝑖 𝑥, 𝜉 ≥ 0 ≥ 𝑝𝑖 , 𝑖 ∈ 𝐼

– Joint Chance Constraints
𝑃(ℎ𝑖 𝑥, 𝜉 ≥ 0, 𝑖 ∈ 𝐼 ≥ 𝑝

where x and 𝜉 are respectively decisions and random
vectors, I is a set of indices of constraints in the given
problem

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Chance Constraints

• Practical Importance

– Chance constraints provide a simple risk measure

– Related to VaR

– Applications in finance, energy production, water
management, …

• Can be expressed in any AMLs reformulating the
problem by introducing extra constraints and binary
variables

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Integrated Chance Constraints

• Expected violation of constraint(s) <= shortfall 𝛽𝑖
• Individual ICC

𝐸𝜔 𝜂𝑖 𝑥, 𝜔
− ≤ 𝛽𝑖 , 𝛽𝑖 ≥ 0, 𝑖 ∈ 𝐼

• Joint ICC
𝐸𝜔 max𝑖∈𝐼 𝜂𝑖 𝑥, 𝜔

− ≤ 𝛽𝑖 , 𝛽𝑖 ≥ 0

where 𝜂𝑖 𝑥, 𝜔
− represents the violation that

occurs in constraint i under realisation 𝜔

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Integrated Chance Constraints

• Practical Importance

– ICCs represent a risk measure (closely related to
CVaR or to SSD)

– Computationally more tractable than chance
constraints

– Applications in finance, e.g. asset-liability
management, portfolio choice models

• Can be expressed in any AML introducing extra
constraints and continuous variables

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Our approach to optimisation
(under uncertainty)

• Maintain separation between the activities in
optimisation:

– Modelling

– Instance generation

– Solving

• Benefits

– Easier specification of the algebraic model

– Modularity makes software easier to maintain

– Specialists can work in their own domain

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Runtime phase

SP Modelling process
Predictive modelling

SG Parameters Algebraic
model

Solver Controls

Scenario
Generator

Modelling
System

Solver

Technical choices

Which scenario generators?

Model(s) of
randomness

Which decision model?

Decision
Model

Which solution method?

Solution algorithm

Modelling language

Standalone vs library

Solver to useProgramming language

Instance
format

Decision modelling Solution algorithms

Instance
data

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Algebraic
model

Modelling
System

Instance
representation

Our approach to modelling

AML

• How to
define the
model at
algebraic
level

AMS

• What
modelling
system to
use

Instance level
format

• How to
represent
the model
instance

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

SP Instance representation

• SP problems have a specific block structure

min 𝑐𝑥 + 𝑐𝑠1𝑦𝑠1 + 𝑐𝑠2𝑦𝑠2
𝐴𝑥 ≤ 𝑏
𝐴𝑠1,1𝑥 + 𝐴𝑠1,2𝑌𝑠1 ≤ 𝑏𝑠1
𝐴𝑠2,1𝑥 + 𝐴𝑠2,2𝑌𝑠2 ≤ 𝑏𝑠2

• When passed to a solver as a deterministic
equivalent, this structure is lost

Where ҧ𝐴, ത𝑏, ҧ𝑐 and 𝑧 are compositions of the
respective vectors/matrices

min ҧ𝑐𝑧
ҧ𝐴𝑧 ≤ ത𝑏

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

SP Instance Representation
• The structure can be exploited by solution

algorithms

• At instance level we aim to communicate:

where the tilde submatrices are then separately

passed, scenario by scenario.

• Most of the elements in the sub-blocks are
repeated -> only changes in respect to the tilde
matrices are communicated

min 𝑐𝑥 + ǁ𝑐𝑦
𝐴𝑥 ≤ 𝑏
෪𝐴1𝑥 + ෪𝐴2𝑦 ≤ ෨𝑏

ǁ𝑐 = 𝑐𝑠1, 𝑐𝑠2
𝑏 = 𝑏𝑠1, 𝑏𝑠2

෪𝐴1 = 𝐴𝑆1,1, 𝐴𝑆2,1
෪𝐴2 = 𝐴𝑆1,2, 𝐴𝑆2,2

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

SP Instance Representation
• A well specified language for instance level

representation has already been proposed and is
used (SMPS)

• To be able to generate such format, the
modelling system must be told the structure of
the model we wish it to convey

• Following slides show our past and current
approaches at this

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Algebraic
model

Modelling
System

Instance
representation

Our approach to modelling (1)

AML

• Any modelling
language, no
specialized
syntax (DEQ
formulation)

AMS

• Any modelling
system for
linear/non-
linear
optimisation

MPS

• MPS like
format (direct
representation
of the DEQ
formulation)

• Replication of
information

• Loss of
structure

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Algebraic
model

Modelling
System

Instance
representation

Our approach to modelling (2)

SAMPL

• Specialized syntax
for SP

SPInE

• Preprocessor at
algebraic
language level

• Generated a core
model and the
needed
information using
AMPL as a
subsystem

• Expressed model
!= solved model

SMPS

• SMPS like format
(compact
representation,
conveys the
stochastic
information
separately)

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Algebraic
model

Modelling
System

Our approach to modelling (3)

SAMPL

• Specialized syntax
for SP

SAMPL

• Reimplementation
of AMPL

• Generated model
efficiently

• Development
independent from
AMPL

SMPS

• SMPS like format
(compact
representation,
conveys the
stochastic
information
separately)

Instance
representation

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Algebraic
model

Modelling
System

Our approach to modelling (4)

AMPLsp

• AMPL
formulation
following some
guidelines

AMPL +
smpswriter

• Official AMPL
interpreter

• Uses the solver
module
smpswriter to
efficiently
generate smps

SMPS

• SMPS like
format
(compact
representation,
conveys the
stochastic
information
separately)

Instance
representation

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

From SAMPL to AMPLsp
• We have been developing SAMPL, an

extended version of AMPL with additional
language constructs and models
communication facilities

• Focus of the language was:

– Easy formulation of the classes of problems
presented (e.g. no artificial variables for
(I)CCP)

– Efficient model instance generation

– Efficient model solution: instances generated
in SMPS-like format, which conveys the model
structure, exploitable by various specialised
algorithms

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

From SAMPL to AMPLsp

• SAMPL has always been separated from
AMPL, first implemented as a pre-processor
then as an alternative language interpreter

– Two development teams and efforts

– Not all AMPL facilities were implemented

– Sync with new AMPL features

• SAMPL is discontinued, to be replaced by

– AMPL with an intelligent reuse of existing
constructs

– smpswriter [https://github.com/ampl/mp] (a
new solver interface, able to write SMPS files)

https://github.com/ampl/mp

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Dakota model (deterministic)

set PROD;

set RESOURCE;

param Cost{RESOURCE};

param ProdReq{RESOURCE,PROD};

param Price{PROD};

param Budget;

param Demand{PROD};

var amountbuy{RESOURCE} >=0 ;

var amountprod{PROD}>=0, suffix stage 2;

var amountsell{PROD}>=0, suffix stage 2;

maximize wealth:

sum{p in PROD} Price[p]*amountsell[p]-

sum{r in RESOURCE} Cost[r]*amountbuy[r];

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Dakota model (deterministic)

subject to

CBudget: sum{r in RESOURCE}

Cost[r]*amountbuy[r] <= Budget;

CBalance{r in RESOURCE}:

amountbuy[r] >= sum{p in PROD} ProdReq[r,p] *

amountprod[p];

CProduction{p in PROD}:

amountsell[p] <= amountprod[p];

CSales{p in PROD}:

amountsell[p] <= Demand[p];

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Dakota model (stochastic)

• The implementation is designed to have minimal
impact on AMPL by reusing the representational
power of the nl format and a few conventions

• Preliminary declarations/conventions:

• Add scenario set and appropriate indexing to
represent realizations:

function expectation;

function random;

suffix stage IN;

set SCEN;

param Demand{PROD, SCEN};

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Dakota model (stochastic)

• For every occurrence of the random parameter
in the model we pass a placeholder

• Parameter Demand becomes a variable (in the
sense that its value will be determined after
AMPL generates the model instance)

• An AMPL function allows the smpswriter to link
the parameter values to its placeholder
yield: random({p in PROD} (Demand[p],

{s in SCEN} RandomDemand[p,s]));

var RandomDemand{PROD};param Demand{PROD};

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Dakota model (stochastic)

• Stage assignment

• Objective as expectation

var amountbuy{RESOURCE} >=0 ;

var amountprod{PROD}>=0, suffix stage 2;

var amountsell{PROD}>=0, suffix stage 2;

maximize wealth:

expectation(sum{p in PROD} Price[p]*amountsell[p])

- sum{r in RESOURCE} Cost[r]*amountbuy[r];

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Complete model
function expectation;

function random;

suffix stage IN;

set PROD;

set RESOURCE;

set SCEN;

param RandomDemand{PROD, SCEN};

var Demand{PROD};

yield: random({p in PROD} (RandomDemand[p],

{s in SCEN} Demand[p,s]));

param Cost{RESOURCE};

param ProdReq{RESOURCE,PROD};

param Price{PROD};

param Budget;

var amountbuy{RESOURCE} >=0 ;

var amountprod{PROD}>=0, suffix stage 2;

var amountsell{PROD}>=0, suffix stage 2;

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Complete model

maximize wealth :

expectation(sum{p in PROD} Price[p]*amountsell[p])-

sum{r in RESOURCE} Cost[r]*amountbuy[r];

subject to

CBudget: sum{r in RESOURCE}

Cost[r]*amountbuy[r] <= Budget;

CBalance{r in RESOURCE}:

amountbuy[r] >= sum{p in PROD} ProdReq[r,p] *

amountprod[p];

CProduction{p in PROD}:

amountsell[p] <= amountprod[p];

CSales{p in PROD}:

amountsell[p] <= RandomDemand[p];

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Process
Algebraic

Model

AMPL

smpswriter

nl file

smps file

solver

write gmodel;

shell ‘smpswriter model’;

shell ‘fortsp model’;

Reading time = 0.015569 s.

Stage 1 has 1 row(s), 3 column(s), and 3 nonzero(s).

Stage 2 has 9 row(s), 6 column(s), and 21 nonzero(s).

Problem has 2 stage(s) and 3 scenario(s).

Itn Objective Bound Rel.Gap

1 1281.63 4577.78 2.57184

2 1281.63 4120 2.21466

3 1281.63 4120 2.21466

4 1281.63 2589.71 1.02064

5 1580.19 2446.55 0.54826

6 1580.19 2266.71 0.434451

7 1580.19 1790.67 0.133201

8 1580.19 1711.66 0.0831986

9 1580.19 1655.78 0.0478343

10 1580.19 1616.67 0.0230834

11 1616.67 1616.67 -2.81287e-016

Number of iterations = 11.

Master time = 0 s.

Recourse time = 0 s.

Optimal solution found, objective = 1616.67.

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Availability

• Source code is available on github as part of the
project ampl/mp: An open-source library for
mathematical programming

https://github.com/ampl/mp

• Find details in solvers/smpswriter

https://github.com/ampl/mp

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Further developments
• Syntax

– Streamline the initial declarations

– Improve the procedure to define a random
parameter

• Functionalities

– Incoroprate CPPs and ICCPs

• Integration

– Implement the smpswriter as a standard AMPL
solver (no need to system calls)

• Variables

– Allow second stage variables to be indexed over
the scenario set

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

Conclusions
• Formulating SP problems with DEQ does not

scale up

– Spatial complexity

– Computational complexity

• Efficient SP model generation and solution needs
special tools in

– Modelling – generating model instance

– Solving – using specialised algorithms

• New implementation doesn’t suffer of the
inherent problems of the previous

Introduction

Classification

Our approach to SP

AMPLsp

Conclusions

References
• Gay, David M. Hooking your solver to AMPL.

Technical Report 93-10, AT&T Bell Laboratories,
Murray Hill, NJ, 1993, revised, 1997.

• Gassmann, Horand I., and Eithan Schweitzer. "A
comprehensive input format for stochastic linear
programs." Annals of Operations Research 104.1-
4 (2001): 89-125.

• Ellison, Francis, Gautam Mitra, and V. Zverovich.
"FortSP: A stochastic programming solver."
OptiRisk Systems (2010).

