INFORMS Annual meeting 2016
Nashville, TN

AMPL representation and
solution of multiple stochastic
programming formulations

Christian Valente, Victor Zverovich, Gautam Mitra,
Robert Fourer

SSSSSSS

Agenda

* Classification of problems of interest
v e Our approach to modelling

Classification

Our approach to SP A M P LS p

AMPLsp

Conclusions

Conclusions

SSSSSSS

About us..

* In the past years, OptiRisk Systems has been
working closely with AMPL Inc. and has
developed various products in the AMPL
ecosystem

— AMPL Studio (graphical interface)

— AMPLCOM (library)

— SPInE and SAMPL (extensions to AMPL)
— FortSP (decomposition based solver)

— AMPLDev (graphical interface)

— AMPL APl and AMPL IDE (as contractors)

SSSSSSS

Taxonomy of optimisation problems
under uncertainty revised

Wait and See

Introduction

Classification Distri but|on :
Expected Value
Our approach to SP Problems
SP Problems

AMPLsp

Conclusions

Problems with

Recourse Two-stage
Problems < 8

Chance
Constralnts

Multl stage

o
C
©

o

=>

Ll
e

=
(%)
()
—
>
(%)
©

=

e

)
(7]
©

<
O
(@]

4+

(0p)

Problems with
ICC

OphiRisk

SYSTEMS

Taxonomy of optimisation problems
under uncertainty revised

Classification Distribution
Our approach to SP Problems

AMPLsp

Conclusions

SP Problems

* We concentrate on Two-Stage SP problems, with
OptRisk (integrated) chance constraints

SSSSSSS

Model classes

e Expected Value e Wait and See

Zry € mincx Zywe ¥ E |79

Classification Where X e F

Our approach to SP

where Z® = minc%x

AP and F = {x|4x = b,x = 0}
and x e F¢

Conclusions

e Here and now i -
HY = mingx + E, | Q(x, w)]

= min @
sub]ectto Ax =<
x>0
w
whersbeL s dmeﬂF
DCUyOJ —

OplRisk y® =0

SSSSSSS

Chance Constraints

e Algebraic formulation:
Classification — Individual Chance Constraints

Our approach to SP

AMPLsp P(hi(x, 6) = O) = Di, =
concisions — Joint Chance Constraints
P((h;(x,€) =0,i€el)=p

where x and ¢ are respectively decisions and random
vectors, | is a set of indices of constraints in the given

problem

SSSSSSS

Chance Constraints

* Practical Importance
— Chance constraints provide a simple risk measure

_ Related to VaR
— Applications in finance, energy production, water
SOREEEEE management, ...

* Can be expressed in any AMLs reformulating the
problem by introducing extra constraints and binary
variables

SSSSSSS

Integrated Chance Constraints

* Expected violation of constraint(s) <= shortfall f;
* Individual ICC

Classification Ew [T]i(x’ a))_] < IBi' :Bi = O,l el

Our approach to SP

AMPLsp Joint ICC
E,lmax;e; n;(x, w)~] < B, p; =0

where n;(x, W)~ represents the violation that
occurs in constraint i under realisation w

SSSSSSS

Integrated Chance Constraints

* Practical Importance

— |CCs represent a risk measure (closely related to

CVaR or to SSD)

— Computationally more tractable than chance
constraints

— Applications in finance, e.g. asset-liability
management, portfolio choice models

* Can be expressed in any AML introducing extra
constraints and continuous variables

SSSSSSS

Our approach to optimisation
(under uncertainty)

* Maintain separation between the activities in
optimisation:

Our approach to SP

AMPLsp — Modelling

Conclusions

— Instance generation

— Solving
* Benefits
— Easier specification of the algebraic model
— Modularity makes software easier to maintain
— Specialists can work in their own domain

SSSSSSS

i

\ Model(s) of \ Decision Solution algorithm \
o randomness \ Model \\ %
Classification & & \\\\\ V\N\{\\\Nv\\
[

Our approach to SP |

Modelling >
System

AMPLs .
- Scenario Solver

Conclusions Generator

:‘k\\mw\\&\\\ - \&\& \\\\\&’\\\%@

Risias
. L\ . \
Programming language N &"ﬁ&&& Solver to use
N
)

-

Modelling language

o

SSSSSSS

Our approach to modelling

' Instance :
Algebraic Modelling representation

model : System

it

Introduction

Classification

Our approach to SP

AMPLsp | |

Conclusions AML AMS InStance eve

format
e How to e What e How to

define the modelling represent
model at system to the model
algebraic use instance
level

OphiRisk

SYSTEMS

SP Instance representation

* SP problems have a specific block structure

min cx T Cs1Ys1 T Cs2Ys2

Ax <b
Ag11X + Ag1 Y61 < bsy
Agp X + Ag Y52 < by,

* When passed to a solver as a deterministic
equivalent, this structure is lost
min cz ~
Az <b
Where A, b, ¢ and z are compositions of the
OpliRISK respective vectors/matrices

SSSSSSS

SP Instance Representation

* The structure can be exploited by solution
algorithms

e At instance level we aim to communicate:

min cx + Cy C = Cs1,Cs2
Ax <b ~b = bs1, by
Aix+A,y<b Ay = As 11 As,1

Z; — A51,2, A52,2
where the tilde submatrices are then separately
passed, scenario by scenario.

e Most of the elements in the sub-blocks are

repeated -> only changes in respect to the tilde
matrices are communicated

SSSSSSS

SP Instance Representation

* A well specified language for instance level
representation has already been proposed and is
used (SMPS)

* To be able to generate such format, the
modelling system must be told the structure of
the model we wish it to convey

* Following slides show our past and current
approaches at this

SSSSSSS

Our approach to modelling (1)

; N Instance
} Algebraic Modelling | representation
|

model : System

Classification

Our approach to SP A M S
AMPLsp
ConCisions e Any modelling e Any modelling e MPS like
language, no system for format (direct
specialized linear/non- representation
syntax (DEQ linear of the DEQ
formulation) optimisation formulation)
e Replication of
information
e Loss of
structure

OphiRisk

SYSTEMS

Our approach to modelling (2)

e : { Instance !
) Algebraic | Modelling | representation {
i model : System i :
Classification
Our approach to SP SAMPL
AMPLs 1 :
. e Specialized syntax e Preprocessor at e SMPS like format
lusi :
conclusions for SP algebraic (compact
language level representation,

* Generated a core conveys the
model and the stochastic
needed information
information using separately)
AMPL as a
subsystem

e Expressed model
I= solved model

OphiRisk

SYSTEMS

Our approach to modelling (3)

o Y f/ Instance \}
 Algebraic Modelling | representation {
E model : System E E
Introduction SN p
Classification
o) hto SP
AMPLsp
Conclusions * Specialized syntax e Reimplementation ¢ SMPS like format
for SP of AMPL (compact
e Generated model representation,
efficiently conveys .the
e Development stochastic
independent from information
AMPL separately)

OphiRisk

SYSTEMS

Our approach to modelling (4)

---------- ; !
i' Alf]it;?lic E MS?I(:fe“ri:g i replrr(]esst;r?t;iion .E
Classification
AMPLsp
Conclusions e AMPL e Official AMPL e SMPS like
formulation interpreter format
following some e Uses the solver (compact
guidelines module representation,
smpswriter to conveys the
efficiently stochastic
generate smps information

separately)

OphiRisk

SYSTEMS

From SAMPL to AMPLsp

 We have been developing SAMPL, an
extended version of AMPL with additional
language constructs and models
communication facilities

* Focus of the language was:

— Easy formulation of the classes of problems
presented (e.g. no artificial variables for

(1)CCP)
— Efficient model instance generation

— Efficient model solution: instances generated
in SMPS-like format, which conveys the model
structure, exploitable by various specialised
algorithms

SSSSSSS

From SAMPL to AMPLsp

e SAMPL has always been separated from
AMPL, first implemented as a pre-processor
then as an alternative language interpreter

— Two development teams and efforts
— Not all AMPL facilities were implemented
— Sync with new AMPL features

« SAMPL is discontinued, to be replaced by

— AMPL with an intelligent reuse of existing
constructs

— smpswriter [https://github.com/ampl/mp] (a
new solver interface, able to write SMPS files)

SSSSSSS

https://github.com/ampl/mp

Dakota model (deterministic)

set PROD;
set RESOURCE;

Classification param Cost{RESOURCE} ;

Sl ble param ProdReq{RESOURCE, PROD} ;
AMPLsp

param Price{PROD};

Conclusions

param Budget;
param Demand{PROD};

var amountbuy{RESOURCE} >=0 ;
var amountprod{PROD}>=0, suffix stage 2;
var amountsell {PROD}>=0, suffix stage 2;

maximize wealth:
sum{p in PROD} Price([p] *amountsell[p]-
EM]HFHE%(sum{r in RESOURCE} Cost[r]*amountbuy[r];

SYSTEMS

Dakota model (deterministic)

subject to

CBudget: sum{r in RESOURCE}
Classification Cost[r] *amountbuy[r] <= Budget;

Sl CBalance{r in RESOURCE} :
AMPLsp

amountbuy[r] >= sum{p in PROD} ProdReq[r,p] *
amountprod[p];

CProduction{p in PROD}:

amountsell [p] <= amountprod[p];
CSales{p in PROD}:

amountsell [p] <= Demand[p];

Conclusions

OplhiRisk

SYSTEMS

Dakota model (stochastic)

* The implementation is desighed to have minimal
impact on AMPL by reusing the representational
power of the n/ format and a few conventions

“Uito | * Preliminary declarations/conventions:

function expectation;
function random;

suffix stage INj;

* Add scenario set and appropriate indexing to

represent realizations:
set SCEN;

param Demand{PROD, SCEN};

SSSSSSS

Dakota model (stochastic)

* For every occurrence of the random parameter
in the model we pass a placeholder

* Parameter Demand becomes a variable (in the

JUity o sense that its value will be determined after
AMPL generates the model instance)

param Demand{PROD}; var RandomDemand{PROD};

* An AMPL function allows the smpswriter to link
the parameter values to its placeholder

yield: random({p in PROD} (Demand|[p],
{s 1n SCEN} RandomDemand[p,s])):

SSSSSSS

Dakota model (stochastic)

e Stage assignment

var amountbuy{RESOURCE} >=0 ;
var amountprod{PROD}>=0, suffix stage 2;

Classification
Our approach to SP var amountsell {PROD} >=(’ suffix Stage 2,'

* Objective as expectation

AMPLsp

Conclusions

maximize wealth:

expectation (sum{p 1in PROD} Price[p]*amountsell[p])
— sum{r 1n RESOURCE} Cost[r]*amountbuy|[r];

OplhiRisk

SYSTEMS

Complete model

function expectation;
function random;
suffix stage IN;

set PROD;

set RESOURCE;

set SCEN;

param RandomDemand{PROD, SCEN} ;

var Demand{PROD} ;

yield: random({p in PROD} (RandomDemand|[p],
{s in SCEN} Demand[p,s])):

param Cost{RESOURCE};

param ProdReqg{RESOURCE, PROD};

param Price{PROD};

Our approach to SP

AMPLsp

Conclusions

param Budget;

var amountbuy{RESOURCE} >=0 ;
var amountprod{PROD}>=0, suffix stage 2;
DDI_|R|S|'< var amountsell {PROD}>=0, suffix stage 2;

SYSTEMS

Complete model

maximize wealth
expectation (sum{p 1n PROD} Pricel[p]*amountsell[p]) -
sum{r in RESOURCE} Cost[r]*amountbuyl[r];

Classification

Our approach to SP SUbj ect to

AMPLsp CBudget: sum{r in RESOURCE}

Conclusions Cost[r] *amountbuy[r] <= Budget;
CBalance{r in RESOURCE}:

amountbuy[r] >= sum{p in PROD} ProdReqglr,p] *
amountprod[p];

CProduction{p in PROD}:

amountsell [p] <= amountprod[p];
CSales{p in PROD}:
amountsell [p] <= RandomDemand[p]:;

OplhiRisk

SYSTEMS

Process

Algebralc Reading time = 0.015569 s.
Model Stage 1 has 1 row(s), 3 column(s), and 3 nonzero(s).
Stage 2 has 9 row(s), 6 column(s), and 21 nonzero(s).
Problem has 2 stage(s) and 3 scenario(s).
Itn Objective Bound Rel.Gap
1 1281.63 4577.78 2.57184
Classification AMPL 2 1281.63 4120 2.21466
1281.63 4120 2.21466
Sulipien l Mrlte gr@desl ; 2589.71 1.02064
AMPLsp 5 1580.19 2446.55 0.54826
Conclusions nl flle 6 1580.19 2266.71 0.434451
7 1580.19 1790.67 0.133201
8 1580.19 1711.66 0.0831986
9 1580.19 1655.78 0.0478343
J 10 1580.19 1616.67 0.0230834
) 11 1616.67 1616.67 -2.81287e-016
Smpswrlter Number of iterations = 11.
Master time = 0 s.
Rec e time =
oo BB Lo STRSHEAL S5 BRARL. 616,67,
v
smps file
l shell ‘fortsp model’;

OpliRisk solver

SYSTEMS

Availability

* Source code is available on github as part of the
project ampl/mp: An open-source library for
mathematical programming

W https://qgithub.com/ampl/mp

Conclusions

* Find details in solvers/smpswriter

SSSSSSS

https://github.com/ampl/mp

Further developments

* Syntax
— Streamline the initial declarations

— Improve the procedure to define a random
parameter

e o Functionalities
— Incoroprate CPPs and ICCPs
* |ntegration

— Implement the smpswriter as a standard AMPL
solver (no need to system calls)

e Variables

— Allow second stage variables to be indexed over
the scenario set

SSSSSSS

Conclusions

* Formulating SP problems with DEQ does not
scale up

— Spatial complexity
— Computational complexity

 Efficient SP model generation and solution needs
special tools in

— Modelling — generating model instance
— Solving — using specialised algorithms

* New implementation doesn’t suffer of the
inherent problems of the previous

SSSSSSS

References

* Gay, David M. Hooking your solver to AMPL.
Technical Report 93-10, AT&T Bell Laboratories,
Murray Hill, NJ, 1993, revised, 1997.

e Gassmann, Horand I., and Eithan Schweitzer. "A
comprehensive input format for stochastic linear
programs." Annals of Operations Research 104.1-
4 (2001): 89-125.

* Ellison, Francis, Gautam Mitra, and V. Zverovich.
"FortSP: A stochastic programming solver."
OptiRisk Systems (2010).

SSSSSSS

