
Robert Fourer, Choosing A Solution Strategy For Discrete Quadratic Optimization
INFORMS Annual Meeting, Nashville, 13-16 November 2016 1

Choosing a Solution Strategy 
for Discrete Quadratic Optimization 

Robert Fourer

4er@ampl.com

AMPL Optimization Inc.
www.ampl.com — +1 773-336-AMPL

INFORMS Annual Meeting
Nashville — 13-16 November 2016 — Session TD13
Software and Methodologies for (Nonlinear) Integer Programming



Robert Fourer, Choosing A Solution Strategy For Discrete Quadratic Optimization
INFORMS Annual Meeting, Nashville, 13-16 November 2016 2

Choosing a Solution Strategy 
for Discrete Quadratic Optimization

The combination of integer variables with quadratic 
objectives and constraints is a powerful formulation 
tool. But when it comes to solving the resulting 
optimization problems, there are numerous good 
approaches but no one best way — even in simpler 
cases where the objective is convex or the 
constraints are linear. Both linearization of 
quadratic terms and quadratic generalization of 
linear methods turn out to be preferable in some 
circumstances. This presentation exhibits a variety 
of examples to illustrate the questions that should 
be asked and the decisions that must be made in 
choosing an effective formulation and solver.
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Alternatives
 Linear/quadratic mixed-integer

 CPLEX, Gurobi, Xpress

 Local nonlinear mixed-integer
 Knitro

 Global nonlinear mixed-integer
 BARON

Focus of this talk: 
Linear/quadratic mixed-integer

 Most efficient, due to specialization

 Limited to convex constraints
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Solvers for Discrete Quadratic
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Quadratic objective
 Binary convex

 Binary nonconvex

 Binary × general nonconvex

 Binary logic

 General nonconvex

Convex quadratic constraints
 Conic inequality

 Elliptic inequality

 Disaggregated conic

4

Outline
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General form
 ݔ்ܳݔ ൅ ݔݍ

Convex case
 ܳ positive semi-definite

 Test numerically using elimination on ܳ
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Quadratic Objective
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Binary Convex

Sample model . . .

param n > 0;
param c {1..n} > 0;

var X {1..n} binary;

minimize Obj:
(sum {j in 1..n} c[j]*X[j])^2;

subject to SumX: sum {j in 1..n} j * X[j] >= 50*n+3;

Quadratic Objective
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ampl: solve;

…….

Cover cuts applied:  2
Zero-half cuts applied:  1

…….

Total (root+branch&cut) = 0.42 sec.

CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap; 
objective 29576.27517

286 MIP simplex iterations
102 branch-and-bound nodes

CPLEX 12.5

Binary Convex (cont’d)
Quadratic Objective

(n = 200)
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ampl: solve;

MIP Presolve added 39800 rows and 19900 columns.
Reduced MIP has 39801 rows, 20100 columns, and 79800 nonzeros.
Reduced MIP has 20100 binaries, 0 generals, and 0 indicators.

…….

Cover cuts applied:  8
Zero-half cuts applied:  5218
Gomory fractional cuts applied:  6

…….

Total (root+branch&cut) = 2112.63 sec.

CPLEX 12.6.0: optimal integer solution; objective 29576.27517

474330 MIP simplex iterations
294 branch-and-bound nodes

CPLEX 12.6

Binary Convex (cont’d)
Quadratic Objective
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Quadratic branch-and-bound (CPLEX 12.5)
 Solve a continuous QP at each node

Conversion to linear (CPLEX 12.6)
 Replace each objective term ݔ௜ݔ௝	by binary ݕ௜௝ ൒ ௜ݔ ൅ ௝ݔ െ 1
 Solve a larger continuous LP at each node

. . . option for 12.5 behavior added to 12.6.1

9

Binary Convex Strategies
Quadratic Objective
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Binary Nonconvex
Sample model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;

minimize Obj:
(sum {i in 1..n} c[i]*X[i]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {i in 1..n} j * X[i] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {k in 1..n} (X[k] + Y[k]) = n;

Quadratic Objective
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ampl: solve;

Repairing indefinite Q in the objective.

. . . . . . .

Total (root+branch&cut) = 1264.34 sec.

CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap; 
objective 290.1853405

23890588 MIP simplex iterations
14092725 branch-and-bound nodes

CPLEX 12.5

Binary Nonconvex (cont’d)
Quadratic Objective

(n = 50)
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ampl: solve;

MIP Presolve added 5000 rows and 2500 columns.
Reduced MIP has 5003 rows, 2600 columns, and 10200 nonzeros.
Reduced MIP has 2600 binaries, 0 generals, and 0 indicators.

. . . . . . .

Total (root+branch&cut) = 6.05 sec.

CPLEX 12.6.0: optimal integer solution; objective 290.1853405

126643 MIP simplex iterations
1926 branch-and-bound nodes

CPLEX 12.6

Binary Nonconvex (cont’d)
Quadratic Objective
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Conversion to convex quadratic (CPLEX 12.5)
 Add ܯ௝ሺݔ௝ଶ െ ௝ሻݔ to objective as needed to convexify

 Solve a continuous QP at each node

Conversion to linear (CPLEX 12.6)
 Replace each objective term ݔ௜ݔ௝	by binary ݕ௜௝ ൒ ௜ݔ ൅ ௝ݔ െ 1
 Solve a larger continuous LP at each node

. . . algorithms same as before

13

Binary Nonconvex Strategies
Quadratic Objective
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Binary General Nonconvex
Reformulation of sample model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;
var Ysum;

minimize Obj:
(sum {i in 1..n} c[i]*X[i]) * Ysum;

subj to YsumDefn: Ysum = sum {j in 1..n} d[j]*Y[j];

subject to SumX: sum {i in 1..n} j * X[i] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {k in 1..n} (X[k] + Y[k]) = n;

Quadratic Objective
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ampl: solve;

CPLEX 12.5.0: QP Hessian is not positive semi-definite.

CPLEX 12.5

Binary General Nonconvex (cont’d)
Quadratic Objective
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ampl: solve;

MIP Presolve added 100 rows and 50 columns.
Reduced MIP has 104 rows, 151 columns, and 451 nonzeros.
Reduced MIP has 100 binaries, 0 generals, and 0 indicators.
.......

Total (root+branch&cut) = 0.17 sec.

CPLEX 12.6.0: optimal integer solution; objective 290.1853405

7850 MIP simplex iterations
1667 branch-and-bound nodes

CPLEX 12.6

Binary General Nonconvex (cont’d)
Quadratic Objective
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Conversion to binary ൈ general linear
 Replace sum of binaries by general ݕୱ୳୫ ൌ ∑ ௝݀ݕ௝௡

௝ୀଵ

 Replace each objective term ݔ௜ݕୱ୳୫ by
௜ݖ ൒ ௜ݖ ,௜ݔܮ ൒ ୱ୳୫ݕ െ ܷሺ1 െ ܮ ௜ሻ, whereݔ ൑ ୱ୳୫ݕ ൑ ܷ

 Introduce fewer but more complex variables, constraints

Many refinements and generalizations
 F. Glover and E. Woolsey, Further reduction of zero-one polynomial 

programming problems to zero-one linear programming problems (1973)

 F. Glover, Improved linear integer programming formulations of nonlinear 
integer problems.  Management Science 22 (1975) 455-460. 

 M. Oral and O. Kettani, A linearization procedure for quadratic and cubic 
mixed-integer problems.  Operations Research 40 (1992) S109-S116. 

 W.P. Adams and R.J. Forrester, A simple recipe for concise mixed 0-1 
linearizations.  Operations Research Letters 33 (2005) 55-61.

17

Binary General Nonconvex Strategies
Quadratic Objective
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Binary Logic
Underlying conception of sample model . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} binary;
var Y {1..n} binary;
var Z {1..n};

minimize Obj: sum {i in 1..n} Z[i];

subj to ZDefn {i in 1..n}:
X[i] = 1 ==> Z[i] = c[i] * sum {j in 1..n} d[j]*Y[j]

else Z[i] = 0;

subject to SumX: sum {i in 1..n} j * X[i] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {k in 1..n} (X[k] + Y[k]) = n;

Quadratic Objective
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ampl: solve;

Reduced MIP has 53 rows, 200 columns, and 2800 nonzeros.
Reduced MIP has 100 binaries, 0 generals, and 100 indicators.
.......

Total (root+branch&cut) = 5.74 sec.

CPLEX 12.6.0: optimal integer solution within mipgap or absmipgap; 
objective 290.1853405

377548 MIP simplex iterations
95892 branch-and-bound nodes

CPLEX 12.6 handles using linear MIP techniques

Binary Logic (cont’d)
Quadratic Objective
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Reversion to implied logic
 Replace each objective term ሺܿ௜ݔ௜ሻ ∑ ௝݀ݕ௝௡

௝ୀଵ by general ݖ௜
 Add disjunctive conditions

 ௜ݔ ൌ 0 and ݖ௜ ൌ 0
 ௜ݔ ൌ 1 and ݖ௜ ൌ ܿ௜ ∑ ௝݀ݕ௝௡

௝ୀଵ

Solution by branch-and-bound
 Enforce indicator constraints in branch and bound?

 Transform indicator constraints to linear ones?

20

Binary Logic Strategies
Quadratic Objective
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General Nonconvex
Neither integer variable is binary

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} integer >= 0, <= 2;
var Y {1..n} integer >= 0, <= 2;

minimize Obj:
(sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);

subject to SumX: sum {i in 1..n} j * X[i] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to SumXY: sum {k in 1..n} (X[k] + Y[k]) = n;

Quadratic Objective
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ampl: solve;

CPLEX 12.6.3: QP Hessian is not positive semi-definite.

CPLEX default setting

General Nonconvex (cont’d)
Quadratic Objective
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ampl: solve;

CPLEX 12.6.3.0: reqconvex 3
mipdisplay 2
mipinterval 1000

Reduced MIQP has 3 rows, 440 columns, and 80 nonzeros.
Reduced MIQP has 0 binaries, 40 generals, 0 SOSs, and 0 indicators.
Reduced MIQP objective Q matrix has 800 nonzeros.

.......

Total (root+branch&cut) =  758.41 sec.

CPLEX 12.6.3: optimal integer solution within mipgap or absmipgap; 
objective 69.30360303

8447893 MIP simplex iterations
637937 branch-and-bound nodes

absmipgap = 0.00675848, relmipgap = 9.75199e-05

CPLEX setting to request nonconvex solve

General Nonconvex (cont’d)
Quadratic Objective

(n = 20)



Robert Fourer, Choosing A Solution Strategy For Discrete Quadratic Optimization
INFORMS Annual Meeting, Nashville, 13-16 November 2016

ampl: solve;

BARON 16.7.29 (2016.07.29)

This BARON run may utilize the following subsolver(s)
For LP/MIP: CLP/CBC
For NLP: IPOPT, FILTERSD

.......

Wall clock time:             50.69
Total CPU time used:         29.92

BARON 16.7.29 (2016.07.29): 708 iterations, 
optimal within tolerances.

Objective 69.30360303

BARON (general nonlinear global solver)

General Nonconvex (cont’d)
Quadratic Objective
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ampl: solve;

BARON 16.7.29 (2016.07.29): lpsolver cplex

This BARON run may utilize the following subsolver(s)
For LP/MIP: ILOG CPLEX
For NLP: IPOPT, FILTERSD

.......

Wall clock time:             0.41
Total CPU time used:         0.38

BARON 16.7.29 (2016.07.29): 15 iterations, 
optimal within tolerances.

Objective 69.30360303

BARON using CPLEX

General Nonconvex (cont’d)
Quadratic Objective
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Nonconvex extension to quadratic MIP solver

Global nonlinear solver
 Using built-in open source solvers

 Using commercial solvers
 For linear MIP subproblems
 For nonlinear subproblems

26

General Nonconvex Strategies
Quadratic Objective
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Elliptic form
 ݔ்ܳݔ ൅ ݔݍ ൑ ܾ, where ܳ is positive semi-definite

 Tested numerically

Conic form
 .	൅	ଵଶݔ . . 	൅	ݔ௡ଶ	൑ ௡ାଵଶݔ , ௡ାଵ൒ݔ	 0
 .	൅	ଵଶݔ . . 	൅	ݔ௡ଶ	൑	ݔ௡ାଵ ௡ାଵݔ ,௡ାଶݔ ൒ ௡ାଶݔ ,0 ൒ 0
 Detected symbolically

27

Convex Quadratic Constraints
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Conic Constraints

Traffic network model . . .

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Time {ROADS} >= 0;

minimize Avg_Time:
(sum {(i,j) in ROADS} Time[i,j] * Flow[i,j]) / through;

subject to Travel_Time {(i,j) in ROADS}:
Time[i,j] = base[i,j] + (sens[i,j]*Flow[i,j]) / (1-Flow[i,j]/cap[i,j]);

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Convex Quadratic Constraints
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ampl: model trafficQUAD.mod;
ampl: data traffic.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 7.0.0: 
Gurobi can't handle nonquadratic nonlinear constraints

Add data and solve with Gurobi?

Conic Constraints (cont’d)
Convex Quadratic Constraints
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Conic Constraints (cont’d)

Quadratically constrained reformulation

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= (1 - Flow[i,j]/cap[i,j]) * Delay[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Convex Quadratic Constraints
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ampl: model trafficSOC.mod;
ampl: data traffic.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 7.0.0: 
quadratic constraint is not positive definite

Add data and solve with Gurobi?

Conic Constraints (cont’d)
Convex Quadratic Constraints
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Conic Constraints (cont’d)

Quadratically constrained reformulation #2

var Flow {(i,j) in ROADS} >= 0, <= .9999 * cap[i,j];
var Delay {ROADS} >= 0;
var Slack {ROADS} >= 0;

minimize Avg_Time:
sum {(i,j) in ROADS} (base[i,j]*Flow[i,j] + Delay[i,j]) / through;

subject to Delay_Def {(i,j) in ROADS}:
sens[i,j] * Flow[i,j]^2 <= Slack[i,j] * Delay[i,j];

subject to Slack_Def {(i,j) in ROADS}:
Slack[i,j] = 1 - Flow[i,j]/cap[i,j];

subject to Balance_Node {i in INTERS}:
sum{(i,j) in ROADS} Flow[i,j] = sum{(j,i) in ROADS} Flow[j,i];

subject to Balance_Enter:
sum{(EN,j) in ROADS} Flow[EN,j] = through;

Convex Quadratic Constraints



Robert Fourer, Choosing A Solution Strategy For Discrete Quadratic Optimization
INFORMS Annual Meeting, Nashville, 13-16 November 2016

ampl: model trafficSOCint.mod;
ampl: data traffic.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 7.0.0: optimal solution; objective 76.26375
10 simplex iterations

ampl: display Flow;

Flow :=
a b    9
a c   11
b d   11
c b    2
c d    9
;

Add data and solve with Gurobi!

Conic Constraints (cont’d)
Convex Quadratic Constraints
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Solve with general nonlinear solver (not shown)
 Local mixed-integer nonlinear solver (Knitro)

 Global solver (BARON)

Transform to conic problem
 Many transformations known

 Could be done automatically
 Jared Erickson and Robert Fourer, 

Detection and Transformation of Second-Order Cone Programming 
Problems in a General-Purpose Algebraic Modeling Language

34

Conic Constraint Strategies
Convex Quadratic Constraints
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Elliptic Constraints

Portfolio model . . .

set A; # asset categories
set T := {1973..1994};   # years

param R {T,A};           # returns on asset categories
param mu default 2;      # weight on variance

param mean {j in A} := (sum{i in T} R[i,j])/card(T);

param Rtilde {i in T, j in A} := R[i,j] - mean[j];

var Share {A} integer >= 0, <= 20;
var Frac {j in A} = Share[j] / 20; 

maximize Reward: sum {j in A} mean[j] * Frac[j];;

subject to TotalOne: sum {j in A} Frac[j] = 1;

Convex Quadratic Constraints
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Elliptic Constraints (cont’d)

Portfolio model restrictions on solution

var RestrictVariance {T} binary;

subject to mostVar {i in T}:
(sum {j in A} Rtilde[i,j]*Frac[j])^2 

<= maxVarT + (1-RestrictVariance[i]);

subject to RestrictDefn:
sum {i in T} RestrictVariance[i] >= minRestrVar;

# -------

var Use {A} binary;

subject to UseDefn {j in A}:
Frac[j] <= mostFrac * Use[j];

subject to LeastFrac {j in A}:
Frac[j] >= leastFrac * Use[j];

subject to LeastUse:
sum {j in A} Use[j] >= leastUse;

Convex Quadratic Constraints
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Gurobi 7.0.0: premiqcpform=0
miqcpmethod=0

Presolved: 76 rows, 92 columns, 314 nonzeros
Presolved model has 19 second-order cone constraints

Gurobi 7.0.0: optimal solution; objective 1.126943182
1208 barrier iterations
236 branch-and-cut nodes

_solve_elapsed_time = 2.516

Gurobi (0,0)

Elliptic Constraints (cont’d)
Convex Quadratic Constraints
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Gurobi 7.0.0: premiqcpform=0
miqcpmethod=1

Presolved: 19 rows, 35 columns, 67 nonzeros
Variable types: 0 continuous, 35 integer (27 binary) 

Gurobi 7.0.0: optimal solution; objective 1.126943182
134 simplex iterations
25 branch-and-cut nodes

_solve_elapsed_time = 0.093

Gurobi (0,1)

Elliptic Constraints (cont’d)
Convex Quadratic Constraints
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Gurobi 7.0.0: premiqcpform=1
miqcpmethod=0

Presolved: 109 rows, 88 columns, 336 nonzeros
Presolved model has 18 second-order cone constraints

Gurobi 7.0.0: optimal solution; objective 1.126943177
815 barrier iterations
139 branch-and-cut nodes

13 integer variables rounded to integers; maxerr = 2.30058e-06

_solve_elapsed_time = 1.172

Gurobi (1,0)

Elliptic Constraints (cont’d)
Convex Quadratic Constraints
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Gurobi 7.0.0: premiqcpform=1
miqcpmethod=1

Presolved: 76 rows, 92 columns, 314 nonzeros
Variable types: 57 continuous, 35 integer (27 binary) 

Gurobi 7.0.0: optimal solution; objective 1.126943182
801 simplex iterations
300 branch-and-cut nodes

_solve_elapsed_time = 0.156

Gurobi (1,1)

Elliptic Constraints (cont’d)
Convex Quadratic Constraints
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Type of relaxation
 Quadratic

 Linear (outer approximation)

Type of quadratic constraint
 Original elliptic constraint

 Transformation to conic constraint

41

Elliptic Constraint Strategies
Convex Quadratic Constraints
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Disaggregated Conics

Model with conic constraints . . .

param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;

var X {1..n} integer >= 0, <= 2;
var Y {1..n} integer >= 0, <= 2;

minimize Obj:
sum {j in 1..n} (X[j] + Y[j]);

subject to SumX: sum {j in 1..n} j * X[j] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;

subject to Conic {i in 1..n}: 
sum {j in 1..n} c[j]*X[j]^2 <= Y[i]^2;

Convex Quadratic Constraints
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Gurobi 7.0.0: premiqcpform=0
miqcpmethod=1

Presolved: 2 rows, 136 columns, 136 nonzeros
Variable types: 0 continuous, 136 integer (28 binary)

Gurobi 7.0.0: optimal solution; objective 103
24141 simplex iterations
8372 branch-and-cut nodes

_solve_elapsed_time = 15.922

Gurobi (0,1)

Disaggregated Conics (cont’d)
Convex Quadratic Constraints

(n = 100)
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Gurobi 7.0.0: premiqcpform=1
miqcpmethod=1

Presolved: 3702 rows, 3836 columns, 7536 nonzeros
Variable types: 3600 continuous, 236 integer (28 binary)

Gurobi 7.0.0: optimal solution; objective 103
23205 simplex iterations
4245 branch-and-cut nodes

_solve_elapsed_time = 7.235

Gurobi (1,1)

Disaggregated Conics (cont’d)
Convex Quadratic Constraints
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Gurobi 7.0.0: premiqcpform=2
miqcpmethod=1

Solve qcp for cone disaggregation ...
Presolve removed 0 rows and 64 columns

Presolved: 3802 rows, 7436 columns, 11236 nonzeros
Variable types: 7200 continuous, 236 integer (28 binary)

Gurobi 7.0.0: optimal solution; objective 103
294892 simplex iterations
2657 branch-and-cut nodes

_solve_elapsed_time = 168.297

Gurobi (2,1)

Disaggregated Conics (cont’d)
Convex Quadratic Constraints
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Disaggregated Conic Strategies
One conic constraint with n terms

 .	൅	ଵଶݔ . . 	൅	ݔ௡ଶ	൑ ௡ାଵଶݔ , ௡ାଵݔ ൒ 0

Transformations
 ଵݔ ௡ାଵݔ/ଵݔ 	൅	. . . 	൅	ݔ௡ ௡ାଵݔ/௡ݔ ൑ ௡ାଵݔ
 .	൅	ଵݕ . . ൅ ௡ݕ ൑ ௡ାଵݔ
ଵݔ ௡ାଵݔ/ଵݔ ൑ ,ଵݕ ௡ݔ , . . . ௡ାଵݔ/௡ݔ ൑ ௡ݕ

n conic constraints with one term each
 .	൅	ଵݕ . . ൅ ௡ݕ ൑ ௡ାଵݔ
ଵଶݔ ൑ ,ଵݕ௡ାଵݔ ௡ଶݔ , . . . ൑ ௡ݕ௡ାଵݔ
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Disaggregated Conic Strategies (cont’d)

One conic constraint with n terms
 .	൅	ଵଶݔ . . 	൅	ݔ௡ଶ	൑ ௡ାଵଶݔ , ௡ାଵݔ ൒ 0

n conic constraints with one term each
 .	൅	ଵݕ . . ൅ ௡ݕ ൑ ௡ାଵݔ
ଵଶݔ ൑ ,ଵݕ௡ାଵݔ ௡ଶݔ , . . . ൑ ௡ݕ௡ାଵݔ

Advantageous when . . .
 Some variables are integral

 Branch-and-bound uses linear relaxations

 Conic constraints are “long enough”

. . . automated by some solvers (like CPLEX, Gurobi)
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Extended Formulations in Mixed Integer Conic Quadratic 
Programming. J. P. Vielma, I. Dunning, J. Huchette and M. Lubin


