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The Evolution of Computationally 
Practical Linear Programming
Every student of Operations Research 
learns that linear programs can be 
solved efficiently. The fascinating story 
of how they came to be solved efficiently 
is little known, however.

We begin with an account of how a 
practicable primal simplex method for 
linear programming was first 
successfully implemented on primitive 
computers, by Dantzig, Orchard-Hays 
and others at the RAND Corporation in 
the early 1950s. Combining mathematics 
and engineering, success emerged from 
a series of innovative reorganizations of 
the computational steps. One of the key 
ideas arose unexpectedly as the by-
product of an ill-advised plan for 
avoiding degenerate cycling.

At around the same time, early experts 
in linear programming developed a 
compact “tableau” scheme for carrying 
out the computations as a series of 

“pivots” on a matrix. We consider how 
the tableau form, impractical for 
computer implementations, was adopted 
by almost all textbooks, while the 
computationally practical form of the 
simplex method remained obscure.

The remainder of the presentation 
considers how computational practice in 
linear programming has continued to 
evolve to the present day. In fact the 
primal simplex method has become 
rarely used. We consider the new 
interior-point methods, which can 
outperform that simplex method 
particularly on very large problems; they 
also went through a period of 
innovations and false steps before being 
made practical. Also we consider how 
the dual simplex method, long 
considered only a curiosity, has become 
the preferred method of linear 
programming solvers today.
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1948
Programming of 
Interdependent Activities
II: Mathematical Model
 George B. Dantzig

 Econometrica 17 (1949)

“Linear Programming”
 Formulations & applications

 No algorithm

“It is proposed to solve linear 
programming problems . . . by means 
of large scale digital computers . . . .  
Several computational procedures 
have been evolved so far and research 
is continuing actively in this field.”
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1949
Maximization of a Linear 
Function of Variables Subject 
to Linear Inequalities
 George B. Dantzig
 Activity Analysis of Produc-

tion and Allocation (1951)

“Simplex Method”
 Proof of convergence

 No computers

“As a practical computing matter the 
iterative procedure of shifting from 
one basis to the next is not as 
laborious as would first appear . . .”
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1953
An Introduction to
Linear Programming
 W.W. Cooper, A. Henderson

 A. Charnes

“Simplex Tableau”
 Symbolic description

 Numerical example

“As far as computations are concerned 
it is most convenient to arrange the 
data at each stage in a ‘simplex 
tableau’ as shown in Table I.12”

“12A. Orden suggested this efficient 
arrangement developed by himself, 
Dantzig, and Hoffman.”
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Linear program
Minimize ࢉ ∙ ࢞
Subject to ࢞	ܣ ൌ ࢈

࢞  

݉ constraints on ݊ variables: ݉ ൏ ݊
Data

࢈ ൌ ܾଵ, . . . , ܾ
ࢉ ൌ ሺܿଵ, . . . , ܿሻ
ܣ ൌ ሾܽሿ, with ݉ rows ࢇ and ݊ columns ࢇ

Variables
࢞ ൌ ሺݔଵ, . . . , ሻݔ

6

Terminology
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Basis
 ࣜ, ࣨ, sets of basic and nonbasic column indices

 ࣜ ൌ ݉, ࣨ ൌ ݊ െ݉
 ࢞ ,ࢉ corresponding subvectors of ,ࣜ࢞ ,ࣜࢉ

Basis matrix
 ࣜ nonsingular ,ܤ ൈ |ࣜ| submatrix of ܣ
 ଵିܤ ൌ ሾݖሿ, with |ࣜ| rows ࢠ and |ࣜ| columns ࢠ

7

Terminology (cont’d)
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Given a tableau of values
,ݕ ݅ ∈ ࣜ, ݆ ∈ ࣨ: the transformed columns ࢟ ൌ ࢇଵି
ݕ ≡ ,ݔ ݅ ∈ ࣜ (the basic solution)

ݕ ≡ ݀, ݆ ∈ ࣨ (the reduced costs)

Choose an entering variable
 ∈ ࣨ: 	݀ ൏ 0

Choose a leaving variable
ݍ ∈ ࣜ: ݔ	 ⁄ݕ ൌ min

௬வ
ݕ/ݔ

Update
 One “pivot” step on the tableau

8

Tableau Simplex Method
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Computational inefficiency
 ࣜ ൈ ࣨ ൌ ݉ሺ݊ െ݉ሻ additions & multiplications

 ࣜ ൈ ࣨ numbers to write and store

Numerical instability
 Rigid computational rules

9

Disadvantages



Robert Fourer, The Evolution of Computationally Practical LP
AFOR 2017, Kolkata, India — 21-23 December 2017 10

1953
The Generalized Simplex 
Method for Minimizing a 
Linear Form under Linear 
Inequality Restraints
 George B. Dantzig,

Alex Orden, Philip Wolfe
 Project RAND Research

Memorandum RM-1264

“Lexicographic Simplex Method”
 Prevent degenerate cycling

 Reorganize computations

“The k+1st iterate is closely related 
to the kth by simple transformations 
that constitute the computational 
algorithm [6],  . . .”
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1953
Computational Algorithm of 
the Revised Simplex Method
 George B. Dantzig
 Project RAND Research

Memorandum RM-1266

“Revised Simplex Method”
 Break ties for leaving variable

 Update basis inverse

“The transformation of just the 
inverse (rather than the entire matrix 
of coefficients with each cycle) has 
been developed because it has several 
important advantages over the old 
method: . . .”
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Given a matrix of inverse values
,ݖ ݅ ∈ ࣜ, ݆ ∈ ࣜ: the basis inverse ିܤଵ

ݖ ≡ ,ݔ ݅ ∈ ࣜ (the basic solution)

ݖ ≡ ,ߨ ݅ ∈ ࣜ (the dual prices)

Choose an entering variable
 ∈ ࣨ:		݀ൌ ܿ െ ࣊ ∙ ൏	ࢇ 0

Choose a leaving variable
ݕ ൌ ࢠ ∙ ࢇ
ݍ ∈ :ܤ ݔ		 ⁄ݕ ൌ min

௬வ
ݕ/ݔ

Update
 One “pivot” step on the inverse

12

Revised Simplex Method
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Smaller tableau update

Sparse operations

13

Advantages

“. . . In the original method (roughly) ݉ ൈ ݊
new elements have to be recorded each 
time.  In contrast, the revised method (by 
making extensive use of cumulative sums of 
products) requires the recording of about 
݉ଶ elements . . . .”

“In most practical problems the original 
matrix of coefficients is largely composed of 
zero elements. . . . The revised method 
works with the matrix in its original form 
and takes direct advantage of these zeros.”

݀ ൌ ܿ െ ࣊ ∙ ࢇ
ݕ ൌ ࢠ ∙ ࢇ
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Inefficiency
 ࣜ ൈ ࣜ ൌ ݉ଶ additions & multiplications

 ࣜ ൈ |ࣜ| numbers to write and store

Instability
 Rigid computational rules

However . . .

14

Disadvantages

“. . . the revised method (by making 
extensive use of cumulative sums of 
products) requires the recording of about 
݉ଶ elements (and an alternative method [5] 
can reduce this to ݉ . . .).”
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1953
Alternate Algorithm for the
Revised Simplex Method
 George B. Dantzig,

Wm. Orchard-Hays
 Project RAND Research

Memorandum RM-1268

“Product Form for the Inverse”
 Fully sparse representation

 Practical computation

“Using the I.B.M. Card Programmed 
Calculator, . . . where the inverse 
matrix is needed at one stage and its 
transpose at another, this is achieved 
simply by turning over the deck of 
cards representing the inverse.”
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Given
ࣜ࢞ (the basic solution)

ଵିܤ ൌ ିଵିଵܧିଵܧ ଵିଵܧଶିଵܧ⋯ (factorization of the basis inverse)

Choose an entering variable
࣊ ൌ ିଵିଵܧିଵܧࣜࢉ ଵିଵܧଶିଵܧ⋯
 ∈ ࣨ: 	ܿ െ ࣊ ∙ ൏	ࢇ 0

Choose a leaving variable
࢟ ൌ ିଵିଵܧିଵܧ ࢇଵିଵܧଶିଵܧ⋯
ݍ ∈ ࣜ: ݔ	 ⁄ݕ ൌ min

௬வ
ݕ/ݔ

Update
 add a factor ܧାଵିଵ derived from ࢟
 update basic solution to ࣜ࢞ െ ሺݔ/ݕሻ	࢟

16

Product-Form Simplex Method
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Form of the factors
 ܧ is an identity matrix 

except for one column

 . . . and so is ܧିଵ

Storage of the factors
 nonzeros only of the one column, in (row,value) pairs

 diagonal element first

Update of the factors
 ାଵܧ is an identity matrix except for ࢟ in column ݍ

17

Factorization of the Inverse

1 0 0
0 1 0
0 0 1

1.7 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0.5 0 0
3.4 1 0
0 0 1
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Given
ࣜ࢞ (the basic solution)

a factorization of ܤ suitable for computation

Choose an entering variable
solve ࣊ࢀܤ ൌ ࣜࢉ
 ∈ ࣨ: 	ܿ െ ࣊ ∙ ൏	ࢇ 0

Choose a leaving variable
solve ࢟ܤ ൌ ࢇ
ݍ ∈ ࣜ: ݔ	 ⁄ݕ ൌ min

௬வ
ݕ/ݔ

Update
 update factorization to reflect change of basis

 update basic solution to ࣜ࢞ െ ሺݔ/ݕሻ	࢟

18

Practical Simplex Method



Robert Fourer, The Evolution of Computationally Practical LP
AFOR 2017, Kolkata, India — 21-23 December 2017 19

1963
Linear Programming
and Extensions
 George B. Dantzig

“Because some readers might find that 
the matrix notation of §8.5 [The 
Simplex Algorithm in Matrix Form] 
obscures the computational aspects, 
we have tended to avoid its use here.”

“. . . the simplex algorithm . . . starts 
with a canonical form, consists of a 
sequence of pivot operations, and 
forms the main subroutine of the 
simplex method.”
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1968
Advanced 
Linear-Programming 
Computing Techniques
 William Orchard-Hays

“I hope that the many users of 
mathematical programming systems 
implemented on today’s large 
computers find the book valuable as 
background for the largely 
undocumented algorithms embedded 
in these systems. If it should also be 
found useful as a course text, all 
objectives will have been achieved.”

“Except for [a few sections], the 
contents of the book reflect actual and 
extensive experience.”
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Simple
 No linear algebra

 No matrices & inverses

 All computations in one “pivot” step

 Easy to set up for hand calculation

Familiar
 Professors learned it

 Textbooks use it

 Proofs use it

But not inevitable . . .

21

Tableau Simplex Revisited
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Given
ࣜ࢞ (the basic solution)

ܤ (the basis)

Choose an entering variable
solve ࣊ࢀܤ ൌ ࣜࢉ
 ∈ ࣨ: 	ܿ െ ࣊ ∙ ൏	ࢇ 0

Choose a leaving variable
solve ࢟ܤ ൌ ࢇ
ݍ ∈ ࣜ: ݔ	 ⁄ݕ ൌ min

௬வ
ݕ/ݔ

Update
 update basic solution to ࣜ࢞ െ ሺݔ/ݕሻ	࢟

22

Essential Simplex Method
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Course notes for use in teaching
 Optimization Methods I:

Solving Linear Programs by the Simplex Method

 http://www.4er.org/CourseNotes

23

Essential Simplex Method
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1978
History of Mathematical 
Programming Systems
 William Orchard-Hays

 Design and Implementation 
of Optimization Software,
H.J. Greenberg, ed.

“Overview of an Era”
 Better implementations

 More powerful computers

“One cannot clearly comprehend the 
development of mathematical 
programming software without 
reference to the development of the 
computing field itself.”



Robert Fourer, The Evolution of Computationally Practical LP
AFOR 2017, Kolkata, India — 21-23 December 2017 25

1978
History of Mathematical 
Programming Systems
 William Orchard-Hays

 Design and Implementation 
of Optimization Software

First, mathematical programming and 
computing have been contemporary in 
an almost uniquely exact sense. Their 
histories parallel each other year by 
year in a remarkable way.

Furthermore, mathematical program-
ming simply could not have developed 
without computers. Although the 
converse is obviously not true, still 
linear programming was one of the 
important and demanding applications 
for computers from the outset.

The quarter century from the late 
1940s to the early 1970s constituted 
an era, one of the most dynamic in the 
history of mankind.  Among the many 
technological developments of that 
period — and indeed of any period —
the computing field has been the most 
virulent and astounding.

. . . the nature of the computing 
industry, profession, and technology 
has by now been determined — all 
their essential features have existed for 
perhaps five years.  One hopes that 
some of the more recent 
developments will be applied more 
widely and effectively but the 
technology that now exists is pretty 
much what will exist, leaving aside a 
few finishing touches to areas already 
well developed, such as 
minicomputers and networks.
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1984

“The running-time of this algorithm is 
ܱሺ݊ଷ.ହܮଶሻ, as compared to ܱሺ݊ܮଶሻ
for the ellipsoid algorithm.”

A New Polynomial-Time 
Algorithm for Linear 
Programming
 N. Karmarkar
 Proceedings 16th Annual ACM 

Symposium on the Theory of 
Computing (1984) 302-311.

“Projective Transformations”
 Emphasis on theory
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1990
Interior Point Methods for 
Linear Programming: Just Call 
Newton, Lagrange, and Fiacco 
and McCormick!
 Roy Marsten et al.

 Interfaces 20 (July-August 
1990) 105-116.

“Interior Point Methods”
 Elementary description

 Practical success

“Interior point methods are the right 
way to solve large linear programs. 
They are also much easier to derive, 
motivate, and understand than they at 
first appeared.”
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Primal linear program Dual linear program
 Minimize ݔ்ܿ  Maximize ߨ்ܾ
 Subject to ݔܣ ൌ ܾ  Subject to ߨ்ܣ  ܿ

ݔ  0

Optimality conditions
 Primal feasibility: ∗ݔܣ ൌ ݔ  ,ܾ  0
 Dual feasibility: ∗ߨ்ܣ  ∗ߪ ൌ ∗ߪ  ,ܿ  0
 Complementarity: ∗ߪ∗ݔ ൌ 0 for every ݆ ൌ 1, . . . , ݊

Write ܺ ൌ diagሺݔሻ, Σ ൌ diagሺߪሻ, ݁ ൌ ሺ1, 1, . . . , 1ሻ

Then . . .

29

Essential Interior-Point Method
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Equations to be solved
 ݔܣ ൌ ܾ
ߨ்ܣ  ߪ ൌ ܿ
ܺΣ݁ ൌ 0

 ݔ  0
ߪ  0

Suppose we have some ̅ݔ  തߪ ,0  0

Consider a step to ̅ݔ  Δߨ ,ݔത  Δߪ ,ߨത  Δߪ
 ܣ ݔ̅  Δݔ ൌ ܾ
 തߨሺ்ܣ  Δߨሻ  ሺߪത  Δߪሻ ൌ ܿ
 ሺ തܺ  ΔܺሻሺΣത  ΔΣሻ݁ ൌ 0

Then . . .

30

Essential Interior-Point Method
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Multiply out, simplify, approximate
 ݔΔܣ ൌ 0
 ߨΔ்ܣ  Δߪ ൌ 0
 തܺΔߪ  ΣതΔݔ ൌ െ തܺΣത݁ െ ΔܺΔΣ݁

Solve linear equations for Δݔ, Δߨ, Δߪ
 ܣ തܺΣതିଵ ߨΔ்ܣ ൌ ܾ,

a symmetric, positive semi-definite linear system

 Δݔ ൌ െ̅ݔ  തܺΣതିଵ ߨΔ்ܣ
 Δߪ ൌ െߪത െ തܺିଵ	Σത	Δݔ

Then . . .

31

Essential Interior-Point Method
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Step to a new interior point
 ݔ̅  തߨ ,ݔΔ	ߠ  തߪ ,ߨΔ	ߠ  ߪΔ	ߠ
 where ߠ  1 is chosen small enough that
ݔ̅  ݔΔ	ߠ  തߪ ,0  ߪΔ	ߠ  0

Repeat
 until the points converge

Course notes for use in teaching
 Optimization Methods III:

Solving Linear Programs by Interior-Point Methods

 http://www.4er.org/CourseNotes

32

Essential Interior-Point Method
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Refinements and improvements
 Long steps

 Fast, parallel solution of the equations
 Exploit sparsity of ܣ തܺΣതିଵ ்ܣ

 Handle dense columns specially

 Infeasible starting points

 Barrier term
 Minimize  ்ܿݔ െ ߤ ∑ log ݔ

ୀଵ

 Replace	ݔ∗ߪ∗ ൌ 0 by ݔ∗ߪ∗ ൌ ߤ
 Let ߤ → 0 as iterations proceed

 Predictor-corrector
 Predictor step with ߤ ൌ 0
 Corrector step with ߤ  0, ΔܺΔΣ added to equation

33

Practical Interior-Point Method
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1990
Interior Point Methods for 
Linear Programming: Just Call 
Newton, Lagrange, and Fiacco 
and McCormick!
 Roy Marsten et al.

 Interfaces 20 (July-August 
1990) 105-116.

“Barrier Methods”

We now have a robust, reliable, and 
efficient implementation of the primal-
dual interior point method for linear 
programs. The immediate future holds 
the challenge of carrying this new 
methodology into the areas of nonlinear 
and integer programming, . . .
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More general model class
 Linear with some (or all) integer-valued variables

 Some convex quadratic extensions

More powerful modeling paradigm
 Model indivisible quantities with integer variables

 Model logic with binary (zero-one) variables

Until 1990, mostly too hard to solve
 Computers too limited in

speed, number of processors, memory, storage

 Implementations too simple

But then it became practical . . .

35

Mixed-Integer Programming
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1999
MIP: Theory and Practice —
Closing the Gap
 Robert E. Bixby et al.

 System Modelling and 
Optimization: Methods and 
Applications, 19-49

One important consequence of this 
work is that for large models barrier 
algorithms are no longer dominant; each 
of primal and dual simplex, and barrier 
is now the winning choice in a 
significant number of cases.
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The most successful solver category
 Multi-strategy approach

 Presolve routines to reduce size, improve formulation
 Feasibility heuristics for better upper bounds
 Constraint (“cut”) generators for better lower bounds
 Multi-processor branching search

 Solve times reduced by many orders of magnitude
 Better algorithmic ideas and implementations
 Faster computers with more processors, memory, storage

 Continuing improvements for 25 years!

Dominated by commercial solvers
 CPLEX

 Gurobi

 Xpress

37

Mixed-Integer Programming
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The main source of linear programs
 Solve continuous relaxation

 Re-solve with added constraints
 Variables fixed or bounded
 Cuts added

 Still have an optimal but not feasible basis

Need an algorithm for re-solving quickly
 Simplex must regain feasibility, then optimize

 Barrier needs “well centered” start —
cannot make good use of a previous solution

 Dual simplex is most effective

38

Mixed-Integer Programming
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Primal linear program
Minimize ࢉ ∙ ࢞
Subject to ࢞	ܣ ൌ ࢈

࢞  

Dual linear program
Maximize ࣊ ∙ ࢈
Subject to ܣ	࣊  ࢉ

Simplex methods
 Primal simplex method works on the primal LP

 Dual simplex method works on the dual LP

 Different forms of LP imply different computations

39

Dual Terminology
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Basic solution
 ܣ	࣊  ࢉ is ݊ inequalities on ݉ ൏ ݊ variables

 Pick any ݉ inequalities corresponding to
linearly independent rows of ܣ, and make them tight

 Solve the resulting equations ࣊ഥ	ܤ ൌ ࣜࢉ

Vertex (basic feasible) solution
 Also ࣊ഥ ∙ ࢇ  ܿ for all of the other ݊ െ ݉ inequalities

Edge
 Relax one basic constraint ݍ to become ൏ instead of ൌ
 Then ࣊	ܤ ൌ ࣜࢉ െ ߠ ,ࢋߠ  0
 Or, ࣊ ൌ ഥ࣊ െ ࣋ߠ where  ࣋ܤ ൌ ࢋ

40

Dual Geometry
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Given
࣊ (a dual basic solution)

ܤ (the basis)

Choose a tight equation to relax
solve ࣜ࢞ܤ ൌ ࢈
ݍ ∈ ࣜ: ࢞	 ൏ 0

Choose a new equation to become tight
solve ࣋ܤ ൌ ࢋ

 ∈ ࢇ࣋/ߜ		:ࣨ ൌ ୫୧୬
∈ࣨ:࣋ࢇೕஹ

ࢇ࣋/ߜ where ߜ ൌ ܿ െ ࢇ࣊

Update
 update dual slacks by
ߜ ࢇ࣋/ߜ		← and ߜ ← ߜ െ ࢇ࣋/ߜ ∙ ࢇ࣋ for all ݆ ∈ ࣨ

41

Essential Dual Simplex Method
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Refinements and improvements
 Store ܣ also by row to speed

computation of ࣋ࢇ for typically sparse ࣋ and ࢇ
 Step along “steepest edge” to reduce number of iterations

 Only one extra linear system solve per iteration
to update edge steepness values

 Less than primal simplex which also
requires one extra set of ࢇ	inner products per iteration

 Get further benefits when variables are bounded
 All basic solutions are dual-feasible
 Simplex method can take longer steps

42

Practical Dual Simplex Method
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Dual simplex
 Especially when there are integer variables

 Excellent results for continuous LPs as well

Concurrent dual simplex, primal simplex, barrier
 Run all 3 on different cores

 Stop when the first one finishes

43

What’s Most Widely Used?
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1980
The APEX Systems: Past and 
Future
 C.B. Krabek, R.J. Sjoquist 

and D.C. Sommer
 SIGMAP Bulletin 29 (April 1980) 

3–23.

Over the past seven years we have 
perceived that the size distribution of 
general structure LP problems being run 
on commercial LP codes has remained 
about stable. . . .  That this distribution 
has not noticeably changed despite a 
massive change in solution economics is 
unexpected.

We do not feel that the linear 
programming user’s most pressing 
need over the next few years is for a 
new optimizer that runs twice as fast 
on a machine that costs half as much 
(although this will probably happen). 
Cost of optimization is just not the 
dominant barrier to LP model 
implementation.

Why aren’t more larger models being 
run? It is not because they could not 
be useful; it is because we are not 
successful in using them.  . . .  They 
become unmanageable. LP 
technology has reached the point 
where anything that can be formulated 
and understood can be optimized at a 
relatively modest cost.
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1982
On the Development of a 
General Algebraic Modeling 
System in a Strategic Planning 
Environment
 J. Bisschop and A. Meeraus

 Mathematical Programming 
Study 20 (1982) 1-29.

The heart of it all is the fact that solu-
tion algorithms need a data structure 
which . . . is impossible to comprehend 
by humans, while, at the same time, 
meaningful problem representations for 
humans are not acceptable to machines. 
We feel that the two translation 
processes required (to and from the 
machine) can be identified as the main 
source of difficulties and errors.
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1983
Modeling Languages versus 
Matrix Generators for Linear 
Programming
 Robert Fourer

 ACM Transactions on 
Mathematical Software 9
(1983) 143-183.

People and computers see linear 
optimization in different ways. . . .  
These two forms of a linear program —
the modeler’s form and the algorithm’s 
form — are not much alike, and yet 
neither can be done without. Thus any 
application of linear optimization 
involves translating  the one form to the 
other.
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Given
ܱ Set of origins (factories)
ܦ Set of destinations (stores)
ܲ Set of products

and
ܽ Amount available, for each ݅ ∈ ܱ and  ∈ ܲ
ܾ Amount required, for each ݆ ∈ ܦ and  ∈ ܲ	
݈݆݅ Limit on total shipments, for each ݅ ∈ ܱ and ݆ ∈ ܦ

݆݅ܿ Shipping cost per unit, for each ݅ ∈ ܱ, ݆ ∈ ,ܦ  ∈ ܲ
݆݀݅ Fixed cost for shipping any amount from ݅ ∈ ܱ	to ݆ ∈ ܦ

ݏ Minimum total size of any shipment
݊ Maximum number of destinations served by any origin

47

Modeler’s Form: Multicommodity
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Determine
݆݅ܺ Amount of each  ∈ ܲ to be shipped from ݅ ∈ ܱ	to ݆ ∈ ܦ
ܻ݆݅ 1 if any product is shipped from ݅ ∈ ܱ	to ݆ ∈ ܦ

0 otherwise

to minimize
∑ ∑ ∑ ܿ∈∈ ܺ∈ை 	∑ ∑ ݀∈ ܻ∈ை

Total variable cost plus total fixed cost
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Modeler’s Form
Multicommodity Transportation
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Subject to
∑ ܺ∈  ܽ for all ݅ ∈ ܱ,  ∈ ܲ

Total shipments of product  out of origin ݅
must not exceed availability

∑ ܺ∈ை ൌ ܾ for all ݆ ∈  ,ܦ ∈ ܲ

Total shipments of product	 into destination ݆
must satisfy requirements

∑ ܺ∈  ݈ ܻ for all ݅ ∈ ܱ, ݆ ∈ ܦ

When there are shipments from origin ݅ to destination ݆,
the total may not exceed the limit, and ܻ must be 1

49

Modeler’s Form
Multicommodity Transportation
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Subject to

∑ ܺ∈  ݏ ܻ for all ݅ ∈ ܱ, ݆ ∈ ܦ

When there are shipments from origin ݅ to destination ݆, 
the total amount of shipments must be at least ݏ

∑ ܻ∈  ݊ for all ݅ ∈ ܱ

Number of destinations served by origin ݅
must be as most ݊
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Modeler’s Form
Multicommodity Transportation
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Symbolic

General
 Independent of data for particular cases

Concise
 Length of description depends on 

complexity of the model, not size of the linear program

Understandable

51

Special Features of Modeler’s Form
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Same in a Modeling Language (AMPL)

Symbolic data

set ORIG;   # origins
set DEST;   # destinations
set PROD;   # products

param supply {ORIG,PROD} >= 0;  # availabilities at origins
param demand {DEST,PROD} >= 0;  # requirements at destinations
param limit {ORIG,DEST} >= 0;   # capacities of links

param vcost {ORIG,DEST,PROD} >= 0; # variable shipment cost
param fcost {ORIG,DEST} > 0;      # fixed usage cost

param minload >= 0;             # minimum shipment size
param maxserve integer > 0;     # maximum destinations served

Multicommodity Transportation
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AMPL Formulation

Symbolic model: variables and objective

var Trans {ORIG,DEST,PROD} >= 0;   # actual units to be shipped

var Use {ORIG, DEST} binary;       # 1 if link used, 0 otherwise

minimize Total_Cost:

sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p]

+ sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];

Multicommodity Transportation

∑ ∑ ∑ ܿ∈∈ ܺ∈ை 	∑ ∑ ݀∈ ܻ∈ை
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AMPL Formulation

Symbolic model: constraints

subject to Supply {i in ORIG, p in PROD}:

sum {j in DEST} Trans[i,j,p] <= supply[i,p];

subject to Demand {j in DEST, p in PROD}:

sum {i in ORIG} Trans[i,j,p] = demand[j,p];

subject to Multi {i in ORIG, j in DEST}:

sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];

subject to Min_Ship {i in ORIG, j in DEST}:

sum {p in PROD} Trans[i,j,p] >= minload * Use[i,j];

subject to Max_Serve {i in ORIG}:

sum {j in DEST} Use[i,j] <= maxserve;

Multicommodity Transportation
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AMPL Formulation

Explicit data independent of symbolic model

set ORIG := GARY CLEV PITT ;
set DEST := FRA DET LAN WIN STL FRE LAF ;
set PROD := bands coils plate ;

param supply (tr):  GARY   CLEV   PITT :=
bands    400    700    800
coils    800   1600   1800
plate    200    300    300 ;

param demand (tr):
FRA   DET   LAN   WIN   STL   FRE   LAF :=

bands   300   300   100    75   650   225   250
coils   500   750   400   250   950   850   500
plate   100   100     0    50   200   100   250 ;

param limit default 625 ;

param minload := 375 ;
param maxserve := 5 ;

Multicommodity Transportation
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AMPL Formulation

Explicit data (continued)

param vcost :=

[*,*,bands]:  FRA  DET  LAN  WIN  STL  FRE  LAF :=
GARY    30   10    8   10   11   71    6
CLEV    22    7   10    7   21   82   13
PITT    19   11   12   10   25   83   15

[*,*,coils]:  FRA  DET  LAN  WIN  STL  FRE  LAF :=
GARY    39   14   11   14   16   82    8
CLEV    27    9   12    9   26   95   17
PITT    24   14   17   13   28   99   20

[*,*,plate]:  FRA  DET  LAN  WIN  STL  FRE  LAF :=
GARY    41   15   12   16   17   86    8
CLEV    29    9   13    9   28   99   18
PITT    26   14   17   13   31  104   20 ;

param fcost:   FRA  DET  LAN  WIN  STL  FRE  LAF :=
GARY  3000 1200 1200 1200 2500 3500 2500
CLEV  2000 1000 1500 1200 2500 3000 2200
PITT  2000 1200 1500 1500 2500 3500 2200 ;

Multicommodity Transportation
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AMPL Solution

Model + data = problem instance to be solved

ampl: model multmip3.mod;
ampl: data multmip3.dat;

ampl: option solver gurobi;

ampl: solve;

Gurobi 7.0.0: optimal solution; objective 235625
332 simplex iterations
23 branch-and-cut nodes

ampl: display Use;

Use [*,*]

:    DET FRA FRE LAF LAN STL WIN  :=
CLEV   1   1   1   0   1   1   0
GARY   0   0   0   1   0   1   1
PITT   1   1   1   1   0   1   0
;

Multicommodity Transportation
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AMPL Solution

Solver choice independent of model and data

ampl: model multmip3.mod;
ampl: data multmip3.dat;

ampl: option solver cplex;

ampl: solve;

CPLEX 12.7.0.0: optimal integer solution; objective 235625
135 MIP simplex iterations
0 branch-and-bound nodes

ampl: display Use;

Use [*,*]

:    DET FRA FRE LAF LAN STL WIN  :=
CLEV   1   1   1   0   1   1   0
GARY   0   0   0   1   0   1   1
PITT   1   1   1   1   0   1   0
;

Multicommodity Transportation
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AMPL Solution

Solver choice independent of model and data

ampl: model multmip3.mod;
ampl: data multmip3.dat;

ampl: option solver xpress;

ampl: solve;

XPRESS 29.01: Global search complete
Best integer solution found 235625
4 integer solutions have been found, 7 branch and bound nodes

ampl: display Use;

Use [*,*]

:    DET FRA FRE LAF LAN STL WIN  :=
CLEV   1   1   1   0   1   1   0
GARY   0   0   0   1   0   1   1
PITT   1   1   1   1   0   1   0
;

Multicommodity Transportation


