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The Evolution of Computationally
Practical Linear Programming

Every student of Operations Research
learns that linear programs can be
solved efficiently. The fascinating story
of how they came to be solved efficiently
is little known, however.

We begin with an account of how a
practicable primal simplex method for
linear programming was first
successfully implemented on primitive
computers, by Dantzig, Orchard-Hays
and others at the RAND Corporation in
the early 1950s. Combining mathematics
and engineering, success emerged from
a series of innovative reorganizations of
the computational steps. One of the key
ideas arose unexpectedly as the by-
product of an ill-advised plan for
avoiding degenerate cycling.

At around the same time, early experts
in linear programming developed a
compact “tableau” scheme for carrying
out the computations as a series of

“pivots” on a matrix. We consider how
the tableau form, impractical for
computer implementations, was adopted
by almost all textbooks, while the
computationally practical form of the
simplex method remained obscure.

The remainder of the presentation
considers how computational practice in
linear programming has continued to
evolve to the present day. In fact the
primal simplex method has become
rarely used. We consider the new
interior-point methods, which can
outperform that simplex method
particularly on very large problems; they
also went through a period of
innovations and false steps before being
made practical. Also we consider how
the dual simplex method, long
considered only a curiosity, has become
the preferred method of linear
programming solvers today.
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1948

Programming of
Interdependent Activities
II: Mathematical Model

<+ George B. Dantzig
< Econometrica 17 (1949)

€« o ° »
Linear Programming
< Formulations & applications
< No algorithm

“It is proposed to solve linear
programming problems . . . by means
of large scale digital computers . . . .
Several computational procedures
have been evolved so far and research

is continuing actively in this field.”

PROGRAMMING OF INTERDEPENDENT ACTIVITIES
II MATHEMATICAL MODEL'

By GeorceE B. Danrzic

Activities (or production processes) are considered as building blocks
out of which a technology is constructed. Postulates are developed by
which activities may be combined. The main part of the paper is con-
cerned with the discrete type model and the use of a linear maximization
function for finding the ‘‘optimum’’ program. The mathematical problem
associated with this approach is developed first in general notation and.
then in terms of a dynamic system of equations expressed in matrix nota-
tion. Typical problems from the fields of inter-industry relations,trans-
portation, nutrition, warehouse storage, and air transport are given in the
last section.

INTRODUCTION

Tre MULTITUDE of activities in which a large organization or a nation
engages can be viewed not only as fixed objects but as representative
building blocks of different kinds that might be recombined in varying
amounts to form new blocks. If a structure can be reared of these blocks
that is mutually self-supporting, the resulting edifice can be thought of
as a technology. Usually the very elementary blocks have a wide variety
of forms and quite irregular characteristics over time. Often they are
combined with other blocks so that they will have “nicer” characteristics
when used to build a complete system. Thus the science of program-
ming, if it may be called a science, is concerned with the adjustment of
the levels of a set of given activities (production processes) so that they
remain mutually consistent and satisfy certain optimum properties.

It is highly desirable to have formal rules by which activities can be
combined to form composite activities and an economy. These rules are
set forth here as a set of postulates regarding reality. Naturally other
postulates are possible; those selected have been chosen with a wide
class of applications in mind and with regard to the limitations of present
day computational techniques. The reader’s attention is drawn to the
last section of this report where a number of applications of the mathe-
matical model are discussed. These are believed to be of sufficient interest
in themselves, and may lend concreteness to the development which
follows:

POSTULATES OF A LINEAR TECHNOLOGY

PosTULATE 1: There exists a set {A} of activities.
PosturaTe 11: All activities take place within a time span 0 to ty.

1 A revision of a paper presented before the Madison Meeting of the Econo-
metric Society on September 9, 1948. This is the second of two papers on this
subject, both appearing in this issue. The first paper, with sub-title “General
Discussion,” will be referred to by Roman numeral I.
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1949

Maximization of a Linear
Function of Variables Subject
to Linear Inequalities

<+ George B. Dantzig
< Activity Analysis of Produc-
tion and Allocation (1951)
“Simplex Method”

< Proof of convergence
<+ No computers

“As a practical computing matter the
iterative procedure of shifting from
one basis to the next is not as

laborious as would first appear . . .”

Crarrer XXI

MAXIMIZATION OF A LINEAR FUNCTION OF VARIABLES
SUBJECT TO LINEAR INEQUALITIES!

By Georce B. Danrtzic

The general problem indicated in the title is easily transformed, by any
one of several methods, to one which maximizes & linear form of non-
negative variables subject to a system of linear equalities. For exam-
ple, consider the linear inequality ax -+ by + ¢ > 0. The linear in-
equality can be replaced by a linear equality in nonnegative variables
by writing, instead, a(z; — z2) + ¥y — y2) + ¢ — z = 0, where z, = 0,
232 0,712 0,92 2 0,22 0. Thebasic problem throughout this ehapter
will be considered in the following form:

ProBLEM: Find the values of Ay, Ag, -+ , A which maximize the linear
form
6y Aier + ooy v Racy
subgect 1o the conditions that
@ 2z0 G=12.,n)
and

Mair + Mgz + o Ml = by,
3) Mazr + Aoy + -+ -+ Mpdan = bg,

Mam1 + Aglma +- -+ Mpmn = b,
where a;j, bi,\ ¢j are constants (1 =1L,2 - ,mj=12 .. :ﬂ')-

1 The author wishes to acknowledge that his work on this subject stemmed from
discussions in the spring of 1947 with Marshall XK. Wood, in connection with Air
Force programming methods. The general nature of the “simplex” approach (as
the method discussed here is known) was stimulated by discussions with Leonid
Hurwics. :

The author is indebted to T. C. K« whose constructive observations
regarding properties of the simplex led directly to a proof of the method in the early
fall of 1947. Emil D. Schell assisted in the preparation of various versions of this
chapter. Jack Laderman has written a set of detailed working instructions and has
tested this and other proposed techniques on several examples.
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1953

An Introduction to
Linear Programming

<+ W.W. Cooper, A. Henderson
< A. Charnes

“Simplex Tableau”
< Symbolic description
< Numerical example

“As far as computations are concerned
it 1s most convenient to arrange the

data at each stage in a ‘simplex

tableau’ as shown in Table 1.12”

“I2A. Orden suggested this efficient
arrangement developed by himself,
Dantzig, and Hoffman.”

An
INTRODUCTION
1o
LINEAR
PROGRAMMING

PART I + An Economic Introduction
to Linear Programming

By W. W. COOPER and The Late A. HENDERSON

PART II - Lectures on the
Mathematical Theory
of Linear Programming

By A. CHARNES

NEW YORK - JOHN WILEY & SONS, INC.
LONDON - CHAPMAN & HALL, LIMITED
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Terminology

Linear program
Minimize c¢-x
Subjectto Ax=b

x=0

m constraints on n variables: m < n

Data
b=(bs,...,b,)
c=1(cqy...,Cpn)
A = [a;;], with m rows a' and n columns a;

Variables
X =(X1,...,%Xp)
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Terminology (cont’d)

Basis

< B, IV, sets of basic and nonbasic column indices
X |Bl=m,|N|=n—m
% cg, Xg, corresponding subvectors of c, x

Basis matrix
< B, nonsingular |B| X |B| submatrix of A
% B™! =[z;], with |B| rows z' and |B| columns z
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Tableau Simplex Method

Given a tableau of values
Yij, | €B, j € NV the transformed columns y;
Yio = X;, | € B (the basic solution)
Yoj =dj, j €N (the reduced costs)

Choose an entering variable
peEN:d, <0

Choose a leaving variable
q € B: X4/Yqp = min x;/y;,

Yip>0
Update

<+ One “pivot” step on the tableau

_ p-1,
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Disadvantages

Computational inefficiency

< |B| X |V| = m(n —m) additions & multiplications

< |B| X |V| numbers to write and store

Numerical instability
< Rigid computational rules

Robert Fourer, The Evolution of Computationally Practical LP
AFOR 2017, Kolkata, India — 21-23 December 2017

9




1953

The Generalized Simplex
Method for Minimizing a
Linear Form under Linear
Inequality Restraints

<+ George B. Dantzig,
Alex Orden, Philip Wolfe

< Project RAND Research
Memorandum RM-1264

“Lexicographic Simplex Method”
< Prevent degenerate cycling
<+ Reorganize computations

“The k+1* iterate is closely related
to the kt by simple transformations
that constitute the computational
algorithm [6], . ..”

U.S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

f Notes on Linear Programming: Fari I \

THE GENERALIZED SIMPLEX METHOD
for
MINIMIZING A LINEAR FORM UNDER
LIKEAR 1NEQUALITY RESTRAINTS

George B. Dantzig
Alex Orden
Philip Wolfe
RM=-1264,

ASTIA Document Number AD 114134

\ Reve § April 1954 J

Assigned 1o

This is a working paper. It may be expanded, modified, or w‘nh-
drawn at any time. The views, conclusions, and re:gr{\men‘darnons
expressed herein do not necessarily reflect the official views or
policies of the United States Air Force.

Copyright, 1953
The RAND Corporation
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1953

Computational Algorithm of
the Revised Simplex Method

<+ George B. Dantzig

< Project RAND Research
Memorandum RM-1266

“Revised Simplex Method”

< Break ties for leaving variable
+ Update basis inverse

“The transformation of just the
inverse (rather than the entire matrix
of coefficients with each cycle) has
been developed because it has several
important advantages over the old
method: . . .”

U. S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

/ Notes on Linear Programming — Part III: \
COMPUTATIONAL ALGORITHM

OF THE
REVISED SIMPLEX METHOD

George B. Dantzig

RM-1266
k ASTIA Document Number AD 114136

26 October 1953 /

This is a working paper. It may be expanded, medified, or »\(;Qh—
drawn at any time. The views, conclusions, and recqn_-lmen‘dnnons
expressed herein do not necessarily reflect the official views or
policies of the United States Air Force.

7t RATD s

1700 MALIN ST. » SANTA MONICA « CALIFORNIA

11 Copyright 1953
The RAND Corporation
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Revised Simplex Method

Given a matrix of inverse values
zij, | € B, j € B: the basis inverse B!
Z;o = X;, i € B (the basic solution)
Zo; = m;, | € B (the dual prices)
Choose an entering variable
pEN: dy=cp—m-a,<0
Choose a leaving variable
Yip = z'- a,
q €B: x3/Yqp = min x;/y;,

Yip>0
Update

< One “pivot” step on the inverse
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Advantages

Smaller tableau update

“. . . In the original method (roughly) m x n
new elements have to be recorded each
time. In contrast, the revised method (by
making extensive use of cumulative sums of
products) requires the recording of about

m? elements . . . .”

Sparse operations

“In most practical problems the original
matrix of coefficients is largely composed of
zero elements. . . . The revised method

works with the matrix in its original form

and takes direct advantage of these zeros.”

dpch.—n-ap

Yip = Z" " Qy
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Disadvantages

Inefficiency
% |B| X |B| = m? additions & multiplications
< |B| X |B| numbers to write and store

Instability

< Rigid computational rules

However . . .

“. .. the revised method (by making
extensive use of cumulative sums of
products) requires the recording of about
m? elements (and an alternative method [5]

»

can reduce thistom . . .).
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1953

Alternate Algorithm for the
Revised Simplex Method

o George B. Dal’ltZig,
Wm. Orchard-Hays

< Project RAND Research
Memorandum RM-1268

“Product Form for the Inverse”

+ Fully sparse representation
< Practical computation

“Using the I.B.M. Card Programmed
Calculator, . . . where the inverse
matrix is needed at one stage and its
transpose at another, this is achieved
simply by turning over the deck of

cards representing the inverse.”

U. S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

\

Notes on Linear Programming: Part V
ALTERNATE ALGORITHM FOR = REVISED SIMPLE?
METHGD

Using a Product Form for the Inverse
George B, Dantziz
Wm. Orchard-Hays
RM-1248

ASTIA Documert Nurber AD 11423

\ 16 Novemter 1G53 /

This is @ working paper. It may be expanded, modified, or with-
drawn at any time. The views, conclusions, and recommendations
expressed herein do not necessarily reflect the official views or
policies of the United States Air Force.

74 RI N D g

1%

1700 MAIN ST. » SANTA MONICA + CALIFORNIA
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Product-Form Simplex Method

Given
xg (the basic solution)
B~! = E;'E;}, - E;'E7! (factorization of the basis inverse)

Choose an entering variable
= cgE E Y - E;TET
PEN:c,—m-a,<0

Choose a leaving variable
Yp = B 'ExZy B3 Er ey,
q € B: xq/yqp = yIir;i>n0 Xi/Yip
Update
+ add a factor Ei}, derived from y,

< update basic solution to x3 — (x4/Y4p) ¥p
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Factorization of the Inverse

Form of the factors

< E; is an identity matrix
except for one column

1.7

)

0.5
3.4

(en)
O R O O OO
_ o O O OO

SO O OO
SO O O r o
SO O Rr OO

% ...and sois E;!

Storage of the factors
< nonzeros only of the one column, in (row,value) pairs
+ diagonal element first

Update of the factors

% Ey4q 1s an identity matrix except for y,, in column q
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Practical Simplex Method

Given
xg (the basic solution)
a factorization of B suitable for computation

Choose an entering variable

solve BTm = ¢4
PEN:c¢,—m-a,<0

Choose a leaving variable
solve By,, = a,,
q € B: Xq/Yqp = yll?;iglo Xi/Yip
Update
< update factorization to reflect change of basis

+ update basic solution to xz — (x4/Yqp) ¥p
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1963

Linear Programming
and Extensions

<+ George B. Dantzig

“.. . the simplex algorithm . . . starts
with a canonical form, consists of a
sequence of pivot operations, and
forms the main subroutine of the

simplex method.”

the matrix notation of §8.5 [The
Simplex Algorithm in Matrix Form|]

obscures the computational aspects,

“Because some readers might find that

we have tended to avoid its use here.”

LINEAR
PROGRAMMING AND
EXTENSIONS

by GEORGE B. DANTZIG

THE RAND CORPORATION
and

UNIVERSITY OF CALIFORNIA, BERKELEY

1963
PRINCETON UNIVERSITY PRESS
PRINCETON, NEW JERSEY
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1968

Advanced
Linear-Programming
Computing Techniques

< William Orchard-Hays

“Except for [a few sections], the
contents of the book reflect actual and

extensive experience.”

“I hope that the many users of
mathematical programming systems
implemented on today’s large
computers find the book valuable as
background for the largely
undocumented algorithms embedded
in these systems. If it should also be
found useful as a course text, all

objectives will have been achieved.”

ADVANCED LINEAR-PROGRAMMING
COMPUTING TECHNIQUES

William Orchard-Hays

Vice President, Computer Applications Incorporated
Silver Spring, Maryland

£

McGRAW-HILL BOOK COMPANY g
New York San Francisco Toronto London Sydney
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Tableau Simplex Revisited

Simple
+ No linear algebra
< No matrices & inverses
< All computations in one “pivot” step
<+ Easy to set up for hand calculation

Familiar
< Professors learned it
<+ Textbooks use it
< Proofs use it

But not inevitable . . .

Robert Fourer, The Evolution of Computationally Practical LP
AFOR 2017, Kolkata, India — 21-23 December 2017

21




Essential Simplex Method

Given
xg (the basic solution)
B (the basis)

Choose an entering variable

solve BTm = ¢4
PEN:c¢,—m-a,<0

Choose a leaving variable
solve By,, = a,,
q € B: Xq/Yqp = yll?;iglo Xi/Yip
Update

<+ update basic solution to xz — (x4/Yqp) ¥p
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Essential Simplex Method

Course notes for use in teaching

< Optimization Methods I:
Solving Linear Programs by the Simplex Method

< http://www.4er.org/CourseNotes

Robert Fourer, The Evolution of Computationally Practical LP 23
AFOR 2017, Kolkata, India — 21-23 December 2017




1978

History of Mathematical
Programming Systems

< William Orchard-Hays

< Design and Implementation
of Optimization Software,
H.J. Greenberg, ed.

“Overview of an Era”
<+ Better implementations
< More powerful computers

“One cannot clearly comprehend the
development of mathematical
programming software without

reference to the development of the

computing field itself.”

HISTORY OF MATHEMATICAL PROGRAMMING SYSTEMS

We. Orchard-Hays

International Institute for Applied Systems Analysis,
Laxenburg, Austria

OVERVIEW OF AN ERA

One cannot clearly comprehend the development of mathematical
programming software without reference to the development of the
computing field itself. There are two main reasons, one specific
and one general. First, mathematical programming and computing
have been contemporary in an almost uniquely exact sense. Their
histories parallel each other year by year in a remarkable way.
Furthermore, mathematical programming simply could not have de-
veloped without computers. Although the converse is obviously not
true, still linear programming was one of the important and de-
manding applications for computers from the outset. I will not
try to trace early encouragement for the development of computers
which emanated from influential agencies of the U.S. government
and other quarters concerned with the application of LP and sim-
ilar techniques. I have heard this story from unimpeachable
sources but it antedates my personal experience and I might claim
too much credit for our field. I am aware of later influences on
computer technology for which we perhaps have not received suf-
ficient credit. I will point out two or three of these along the
way.

The second and more general reason for relating the two his-
tories closely is based on the lessons of history itself. It is
easy to find fault with the way things have developed in the past,
whether political, cultural or technological. T predict that some
of you will be tempted to ask during this two weeks, "But why did
you do it that way, who not this way?" While it may be possible
and even interesting to answer such questions——and I will try to
anticipate some--it is largely futile to dwell on what may be
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1978

History of Mathematical
Programming Systems
< William Orchard-Hays

< Design and Implementation
of Optimization Software

First, mathematical programming and
computing have been contemporary in
an almost uniquely exact sense. Their
histories parallel each other year by

year in a remarkable way.

Furthermore, mathematical program-
ming simply could not have developed
without computers. Although the
converse is obviously not true, still
linear programming was one of the
important and demanding applications

for computers from the outset.

The quarter century from the late
1940s to the early 1970s constituted
an era, one of the most dynamic in the
history of mankind. Among the many
technological developments of that
period — and indeed of any period —
the computing field has been the most

virulent and astounding.

. . . the nature of the computing
industry, profession, and technology
has by now been determined — all
their essential features have existed for
perhaps five years. One hopes that
some of the more recent
developments will be applied more
widely and effectively but the
technology that now exists is pretty
much what will exist, leaving aside a
few finishing touches to areas already
well developed, such as

minicomputers and networks.
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1984

A New Polynomial-Time
Algorithm for Linear
Programming

% N. Karmarkar

» Proceedings 16" Annual ACM
Symposium on the Theory of
Computing (1984) 302-311.

“Projective Transformations”
<+ Emphasis on theory

“The running-time of this algorithm is
0(n3°L?), as compared to O (n°L?)
for the ellipsoid algorithm.”

A New Polynomial-Time

for Linear P i

N. Karmarkar

AT&T Bell Laboratories
Murray Hill, New Jerscy 07974

ABSTRACT

We present a new polynomial-time algorithm for linear programming. The
running-time of this algorithm is O (a**L?), as compared 10 O(n®L?) for the
¢llipsoid algorithm. We prove that given a polytope P and a strictly interior
point @ € P, there is a projective transformation of the space that maps P. a
0 P, a’ having the following property. The ratio of the radius of the smallest
sphere with center a’, containing ' to the radius of the largest sphere with
center a* contained in P' is O(n). The algorithm consists of repeatcd
application of such projective transformations cach followed by optimization
over an inscribed sphere (o create a sequence of points which converges to the
optimal solution in polynomial-time.

0. Some Comments on the Significance of the Result
0.1 Worst. Bounds on Linear P i

The simplex algorithm for lincar programming has been shown 1o require
an exponential number of steps in the worst-case [1]. A polynomial-time
algorithm for linear programming was published by Khachiyan in 1979 [21.
The complexity of this algorithm is @(n®L?) where n is the dimension of the
problem and L is the number of bits in the input [3]. In this paper we present
a new polynomial-time algorithm for linear programming whose time-
complexity is O (n**L?).

0.2 Polytopes and Projective Geometry

We prove a theorem about polytopes which seems to be interesting in its
own right. Given a polytope P C R” and a strictly interior point a € P, there
is a projective transformation of the space that maps P, a to P", a’ having the
following property: The ratio of the radius of the smallest sphere with center
a’, containing P’ to the radius of the largest sphere with center a’, contained
inP'in O(n).

Our algorithm for linear programming is based on repeated application of
such projective i i

followed by over the inscribed
s which converges to the optimal solution

0.3 Global Analysis v' ‘Optimization Algorithms

While theoretical methods for analyzing local convergence of non-linear
ms are well-developed the state-of-
s is rather unsatisfactory. The
algorithmic and analytical technigues introduced in this paper may turn out to
be valuable in designing geometric algorithms with provably grod global
convergence propertics. Qur method can be thought of as a steepest descent
method with respect to a particular metric space over a simplex defined in
terms of “eross-ratio”, a projective-invariant. The global nature of our result

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
icati i given that copying is by
inery. To copy
otherwise, or to republish, requires a fee and/or specific permi:

® 1984 ACM 0-89791-133-4/84/004/0302 $00.75
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was made possible because any (strictly interior) point in the feasible region
can be mapped 10 any other such point by a transformation that preserves
affine spaces as well as the metric. This metric can be easily generalized 10
arbitrary convex sets with “well-behaved™ boundary and to intersections of
such convex sets. This metric effectively transforms the feasible region so that
the boundary of the region is at infinite distance from the interior points.
F this ion is of the objective function
being optimized. Contrast (his with the pemally function methods which
require an ad hoe mixture of objective function and penalty function, [t is not
clear a priori in what proportion should the two functions be mixed and the
right praportion depends on both the objective function and the feasible region.

0.4 Comments on the factor “L” in running time

Since representing the output of a linear programming problem requires
O(L) bits per variable in the worst case, the factor L must appear in the
worst-case complexity of any algorithm for linear programming.

The factor L? in the complexity of our algorithm comes from (wo sources.
The number of steps of the algorithm is O(nL), each step requires O(n**)
arithmetic operations and each arithmetic operation requires a precision of
O(L) bits.

1f we are interested in finding a solution whose objective function value is
«certain fixed fraction, say 99.99% of the optimum value, then the algorithm
requircs only O'{n) steps thus saving a facter of L. The complexity of finding
an exact solution can be belter expressed in terms of a parameter R which we
call the “discreteness factor™ of the polytope, defined as:

Seas
R = where
Sewin

= Difference between the best and worst values of the objective
function achieved on the vertices of the pelytope.

Smiz ™ Difference between the best and next best value of the objective
function on the vertices of the polytope.

Sman

m is O(n In(R)) which

The actual number of steps required by our algos
can be bounded above by O(aL) because

In(R) = O(L) .

I the scquence of distinct values taken by the objective function o the
vertices of the polytope is uniformly spaced, then the performance of the
simplex algorithm depends lincarly on R. [t is possible to create examples in
which R is exponentially large. Indeed, the examples which cause the simplex
algorithm 1o run exponentially long have this property. Since performance of
our algorithm depends logarithmically on R, we still get a polynomial-time
algorithm,

Regarding the second factor of L, any algorithm — such as the simplex
algorithm — that requires representation of inverse of a submatrix of the
constraint matrix during the course of computation requires at least as much
precision in arithmetic operations as our algorithm, which is ©(L) bits in the
worst case. As compared to ihis worst-case bound, the simplex algorithm
seems to work with much less precision in practice and the same amount of
precision is sufficient for our algorithm, thus saving the second factor of L.

0.5 Performance in Practice

Each step of the algorithm requires optimization of a lincar function over
an cllipsoid or equivalently, solution of a linear system of equatians of the ype
(ADAT)x = b, where A is a fixed matrix and D is a diagonal matrix with
positive entries which changes by small amount from step 10 stcp. We devise
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1990

Interior Point Methods for

Linear Programming: Just Call
Newton, Lagrange, and Fiacco

and McCormick!

<+ Roy Marsten et al.

< Interfaces 20 (July-August
1990) 105-116.

«

nterior Point Methods”

X/

<+ Elementary description
< Practical success

“Interior point methods are the right
way to solve large linear programs.
They are also much easier to derive,
motivate, and understand than they at

first appeared.”

Interior Point Methods for Linear Programming:
Just Call Newton, Lagrange, and Fiacco

and McCormick!

ROy MARSTEN

RADHIKA SUBRAMANIAN
MATTHEW SALTZMAN

IrRvIN LusTIG

DAVID SHANNO

School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332

School of Industrial and Systems Engineering
Georgia Institute of Technology

Department of Mathematical Sciences
Clemson University, Clemson, SC 29631

Deptartment of Civil Engineering and Operations
Research
Princeton University, Princeton, NJ 08544

RUTCOR, Rutgers University
New Brunswick, N 08903

Interior point methods are the right way to solve large linear
programs. They are also much easier to derive, motivate, and
understand than they at first appeared. Lagrange told us how
to convert a minimization with equality constraints into an un-
constrained minimization. Fiacco and McCormick told us how
to convert a minimization with inequality constraints into a se-
quence of unconstrained minimizations. Newton told us how to
solve unconstrained minimizations. Linear programs are
minimizations with equations and inequalities. Voila!

T his Interfaces issue on the current
state of the art in linear programming
could not be complete without a status re-
port on the new interior point methods.
This report will be very up to date (as of
late March 1990) but brief and to the
point. We have been heavily involved in
implementing these methods, but the rapid
progress and constant excitement have
made it difficult to pick a time to pause
and explain things to a wider audience. In-
terfaces, as an informal forum, is ideal for

what is really a dispatch from the battle-
field rather than a scholarly paper.

In 1984, Narendra Karmarkar [1984] be-
gan the “new era of mathematical pro-
gramming” with the publication of his
landmark paper. Shortly thereafter his em-
ployer, AT&T, invited the professional
mathematical programming community to
roll over and die. Speaking as representa-
tives of this community, we took this as
rather a challenge. Some of us proceeded
to make dramatic improvements to the

Copyright © 1990, The Institute of Management Sciences
0091-2102,/90/2004,/0105501.25
This paper was refereed

PROGRAMMING—LINEAR
TUTORIAL

INTERFACES 20: 4 July—August 1990 (pp. 105-116)
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Essential Interior-Point Method

Primal linear program  Dual linear program

¢ Minimize cTx < Maximize b'n
% Subjectto Ax =0b % Subjectto Alm <c
x =0

Optimality conditions
< Primal feasibility: Ax* =b, x =0
% Dual feasibility: A'n*+0*=¢c, 6* >0

+ Complementarity: x;g; = 0 forevery j = 1,...,n

Write X = diag(x), ¥ = diag(o), e = (1,1,...,1)
Then. ..
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Essential Interior-Point Method

Equations to be solved
» Ax =0D>
Alr+o=c
X2e =0
*x=0

Suppose we have some x >0, 3 > 0

Consider a step to x + Ax, T + Am, ¢ + Ao
« A(x+Ax) =b
o AT(@M+An) + (6 +Ao) =c¢
o (X+AX)C+ AX)e =0

Then . ..
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Essential Interior-Point Method

Multiply out, simplify, approximate
o AAx =0
o ATAT+ Ao =0
@ XAo + SAx = —X3Xe

Solve linear equations for Ax, Ar, Ao

e+ A(XSDATAT = b,
a symmetric, positive semi-definite linear system

@ Ax = —x+ (XS HATAr
@ Ao=—-—X13Ax

Then. ..
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Essential Interior-Point Method

Step to a new interior point
S X+O0Ax, 1+0Am, 0+ 6 Ao
< where 6 < 1 is chosen small enough that
X+0Ax>0,0+60Ac >0

Repeat

< until the points converge

Course notes for use in teaching

< Optimization Methods III:
Solving Linear Programs by Interior-Point Methods

< http://www.4er.org/CourseNotes
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Practical Interior-Point Method

Refinements and improvements

< Long steps

+ Fast, parallel solution of the equations
* Exploit sparsity of A(Xx™1)AT
* Handle dense columns specially

+ Infeasible starting points

< Barrier term
* Minimize c'x —pY7_;logx;
* Replace xjo; = 0 by xjo; =
 Let u — 0 as iterations proceed

< Predictor-corrector
% Predictor step with u =0
% Corrector step with u > 0, AXAY added to equation
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1990

Interior Point Methods for

Linear Programming: Just Call
Newton, Lagrange, and Fiacco

and McCormick!

<+ Roy Marsten et al.

< Interfaces 20 (July-August
1990) 105-116.

“Barrier Methods”

Interior Point Methods for Linear Programming:
Just Call Newton, Lagrange, and Fiacco

and McCormick!
ROy MARSTEN

School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332

RADHIKA SUBRAMANIAN School of Industrial and Systems Engineering

Georgia Institute of Technology

MATTHEW SALTZMAN Department of Mathematical Sciences

Clemson University, Clemson, SC 29631

IrRVIN LusTIG Deptartment of Civil Engineering and Operations
Research

Princeton University, Princeton, NJ 08544

DAvVID SHANNO RUTCOR, Rutgers University

New Brunswick, N 08903

Interior point methods are the right way to solve large linear
programs. They are also much easier to derive, motivate, and
understand than they at first appeared. Lagrange told us how
to convert a minimization with equality constraints into an un-
constrained minimization. Fiacco and McCormick told us how
to convert a minimization with inequality constraints into a se-
quence of unconstrained minimizations. Newton told us how to
solve unconstrained minimizations. Linear programs are
minimizations with equations and inequalities. Voila!

what is really a dispatch from the battle-

We now have a robust, reliable, and
efficient implementation of the primal-
dual interior point method for linear
programs. The immediate future holds

the challenge of carrying this new

and integer programming, . . .

methodology into the areas of nonlinear

T his Interfaces issue on the current
state of the art in linear programming
could not be complete without a status re-
port on the new interior point methods.
This report will be very up to date (as of
late March 1990) but brief and to the
point. We have been heavily involved in

implementing these methods, but the rapid

progress and constant excitement have
made it difficult to pick a time to pause
and explain things to a wider audience. In-
terfaces, as an informal forum, is ideal for

field rather than a scholarly paper.

In 1984, Narendra Karmarkar [1984] be-
gan the “new era of mathematical pro-
gramming” with the publication of his
landmark paper. Shortly thereafter his em-
ployer, AT&T, invited the professional
mathematical programming community to
roll over and die. Speaking as representa-
tives of this community, we took this as
rather a challenge. Some of us proceeded
to make dramatic improvements to the

Copyright © 1990, The Institute of Management Sciences
0091-2102,/90/2004,/0105501.25
This paper was refereed

PROGRAMMING—LINEAR
TUTORIAL

INTERFACES 20: 4 July—August 1990 (pp. 105-116)

Robert Fourer, The Evolution of Computationally Practical LP
AFOR 2017, Kolkata, India — 21-23 December 2017

34




Mixed-Integer Programming

More general model class
< Linear with some (or all) integer-valued variables
<+ Some convex quadratic extensions

More powerful modeling paradigm
<+ Model indivisible quantities with integer variables
+ Model logic with binary (zero-one) variables

Until 1990, mostly too hard to solve

< Computers too limited in
speed, number of processors, memory, storage

< Implementations too simple

But then it became practical . . .
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1999

MIP: Theory and Practice —
Closing the Gap
<+ Robert E. Bixby et al.

< System Modelling and
Optimization: Methods and
Applications, 19-49

One important consequence of this
work is that for large models barrier
algorithms are no longer dominant; each
of primal and dual simplex, and barrier
is now the winning choice in a

significant number of cases.

MIP: THEORY AND PRACTICE -
CLOSING THE GAP

Robert E. Bixby

ILOG CPLEX Division

889 Alder Avenue

Incline Village, NV 89451, USA

and

Department of Computational and Applied Mathematics
Rice University

Houston, TX 77005-1892, USA

bibxy@caam.rice.edu

Mary Fenelon

ILOG CPLEX Diuision

889 Alder Avenue

Incline Village, NV 89451, USA

Zonghao Gu

As above

Ed Rothberg

As above

Roland Wunderling

As above

1. INTRODUCTION

For many years the principal solution technique used in the practice
of mixed-integer programming has remained largely unchanged: Linear
programming based branch-and-bound, introduced by Land and Doig
(1960). This, in spite of the fact that there has been significant progress

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35514-6_15

M.I.D. Powell and S. Scholtes (Eds.), System Modelling and Optimization: Methods, Theory and
Applications. © 2000 IFIP International Federation for Information Processing.
Published by Kluwer Academic Publish All rights reserved.
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Mixed-Integer Programming

The most successful solver category

< Multi-strategy approach
% Presolve routines to reduce size, improve formulation
% Feasibility heuristics for better upper bounds
% Constraint (“cut”) generators for better lower bounds
% Multi-processor branching search

< Solve times reduced by many orders of magnitude
% Better algorithmic ideas and implementations
% Faster computers with more processors, memory, storage

< Continuing improvements for 25 years!

Dominated by commercial solvers
<+ CPLEX
< Gurobi
< Xpress
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Mixed-Integer Programming

The main source of linear programs
< Solve continuous relaxation

< Re-solve with added constraints
% Variables fixed or bounded
% Cuts added

+ Still have an optimal but not feasible basis

Need an algorithm for re-solving quickly
< Simplex must regain feasibility, then optimize

+ Barrier needs “well centered” start —
cannot make good use of a previous solution

+ Dual simplex is most effective
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Dual Terminology

Primal linear program
Minimize c¢-x
Subjectto Ax=b

x=0

Dual linear program
Maximize m-b
Subjectto mA <c

Simplex methods
< Primal simplex method works on the primal LP
< Dual simplex method works on the dual LP
< Different forms of LP imply different computations
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Dual Geometry

Basic solution
< A < c is n inequalities on m < n variables

< Pick any m inequalities corresponding to
linearly independent rows of A, and make them tight

< Solve the resulting equations T B = cg

Vertex (basic feasible) solution
% Also T - a; < ¢; for all of the other n — m inequalities

Edge
< Relax one basic constraint g to become < instead of =
« ThenmB =cz—0e%,0 >0
<« Or,mr =1 — 6p? where piB = e4
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Essential Dual Simplex Method

Given
1t (a dual basic solution)
B (the basis)

Choose a tight equation to relax
solve Bxg = b
qEB: x4 <0

Choose a new equation to become tight
solve p?B = e1
pEN: b6,/pla, =

Update

< update dual slacks by
8 « 6p/pla, and §; « §; — ((Sp/pqap) : (pqaj) forall j € v

min

Ipla. = ¢ — TTa
jEN:pqajzodl/p a; where §; = ¢; — ma,
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Practical Dual Simplex Method

Refinements and improvements

< Store A also by row to speed
computation of p?a; for typically sparse p? and q;

+ Step along “steepest edge” to reduce number of iterations

% Only one extra linear system solve per iteration
to update edge steepness values

% Less than primal simplex which also
requires one extra set of a; inner products per iteration

< Get further benefits when variables are bounded
* All basic solutions are dual-feasible
% Simplex method can take longer steps
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What’s Most Widely Used?

Dual simplex
<+ Especially when there are integer variables
<+ Excellent results for continuous LPs as well

Concurrent dual simplex, primal simplex, barrier
< Run all 3 on different cores
+ Stop when the first one finishes
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1980

The APEX Systems: Past and
Future

< C.B. Krabek, R.J. Sjoquist
and D.C. Sommer

% SIGMAP Bulletin 29 (April 1980)
3-23.

Over the past seven years we have
perceived that the size distribution of
general structure LP problems being run
on commercial LP codes has remained
about stable. ... That this distribution
has not noticeably changed despite a
massive change in solution economics is

unexpected.

We do not feel that the linear
programming user’s most pressing
need over the next few years is for a
new optimizer that runs twice as fast
on a machine that costs half as much
(although this will probably happen).
Cost of optimization is just not the
dominant barrier to LP model

implementation.

Why aren’t more larger models being
run? It is not because they could not
be useful; it is because we are not
successful in using them. ... They
become unmanageable. LP
technology has reached the point
where anything that can be formulated
and understood can be optimized at a

relatively modest cost.
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1982

On the Development of a
General Algebraic Modeling
System in a Strategic Planning

Environment

< J. Bisschop and A. Meeraus

< Mathematical Programming
Study 20 (1982) 1-29.

The heart of it all is the fact that solu-
tion algorithms need a data structure
which . . . is impossible to comprehend
by humans, while, at the same time,
meaningful problem representations for
humans are not acceptable to machines.
We feel that the two translation
processes required (to and from the
machine) can be identified as the main

source of difficulties and errors.

Mathematical Programming Study 20 (1982) i-29
North-Holland Pubiishing Company

ON THE DEVELOPMENT OF A GENERAL ALGEBRAIC
MODELING SYSTEM IN A STRATEGIC PLANNING
ENVIRONMENT*

Johannes BISSCHOP** and Alexander MEERAUS
Development Research Center, The World Bank, Washington, DC 20433, U.S.A.

Received 18 March 1980
Revised manuscript received 8 May 1981

Modeling activities at the World Bank are highlighted and typified. Requirements for
uccessful modeling applications in such a strategic planning environment are examined. The
resulting development of a General Algebraic Modeling System (GAMS) is described. The data
structure of this system is analyzed in some detail, and comparisons 10 other modeling
systems are made. Selected aspects of the | are pr d. The paper ludes with a
case study of the Egyptian Fertilizer Sector in which GAMS has been used as a modeling tool.

Key words: Algebraic Modeling System, Modeling Language, Strategic Planning, Ap-
plications.

1. Introduction

The first portion of this paper focuses on the dynamics of modeling activities
in a strategic planning environment such as the World Bank. This environment is
broadly characterized by long-term, often ill-defined and poorly understood
issues, which require near immediate decision making. It is the long-term impact
of the decisions that make them important. Government planning agencies and
corporate planning offices are other examples of a strategic planning environ-
ment. Mathematical models are a potentially powerful tool during the process of
making good plans and decisions in such an environment, but their effective use
has often been limited. This is not only due to the extensive resource require-
ments in terms of technical skills, money and time, but also because of such
intangible issues as the low reliability of model generators, and the extensive
communication problems that occur during the dissemination of models and
their resuits.

The second portion of the paper focuses on our efforts to eliminate some of
the current barriers to successful- modeling applications, namely the develop-
ment of a General Algebraic Modeling System (GAMS). The aim of this system

* The views and interpretations in this document are those of the authors and should not be attributed
to the World Bank, to its affiliated organizations or te any individual acting in their behalf.
** Presently at Shell Research, Amsterdam, The Netherlands.
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1983

Modeling Languages versus
Matrix Generators for Linear
Programming

< Robert Fourer

% ACM Transactions on
Mathematical Software 9
(1983) 143-183.

People and computers see linear
optimization in different ways. . . .
These two forms of a linear program —
the modeler’s form and the algorithm’s
form — are not much alike, and yet
neither can be done without. Thus any
application of linear optimization
involves translating the one form to the

other.

Modeling Languages Versus Matrix
Generators for Linear Programming

ROBERT FOURER
Northwestern University

Linear optmmzation problems (linear programs) are expressed m one kind of form for human
modelers, but m a quite different form for computer algonthms, Translation from the modeler’s form
to the algorithm'’s form 1s thus an unavoidable task in linear programming. Traditionally, this task of
translation has been divided between human and computer, through the writing of computer programs
known as matrix generators

An alternative approach leaves almost all of the work of translation to the computer. Central to

such an approach s a ¢« dabls deling lai that expresses a linear program in much
the same way that a modeler does It 1s argued that modeling languages should lead to more reliable
pplication of linear progr at lower overall cost

Categories and Subject Descriptors D.24 [Software Engineering] Program Verification—reli-
abutty, validation; D 3.2 [Progr ing Languages]- 1 Classificati licative lan-
guages, nonprocedural languages; G 16 [Numerical Analysis]: Optimization—linear program-
ming

Rehahl

General Terms D ation, L F y, Verification

Additional Key Words and Phrases- Modehng 1. matrix g tors

1. INTRODUCTION

People and computers see linear optimization in different ways. For the human
modeler, a linear program is an abstract representation to be analyzed and
understood; for the computer algorithm, a linear program is a concrete problem
to be solved. Thus modelers describe linear programs in a readable and symbolic
form, such as the familiar algebraic notation for variables, constraints, and
objectives. Algorithms, on the other hand, require a convenient and explicit form,
typically a variable-by-variable list of nonzero coefficients.

These two forms of a linear program—the modeler’s form and the algorithm’s
form—are not much alike, and yet neither can be done without. Thus any
application of linear optimization involves translating the one form to the other.

Research for this paper was initially supported by National Science Foundation Grant MCS 76-01311
to the National Bureau of Economic Research and the M L.T. Center for Computational Research in
Economics and M S
Author's address Department of Industrial Engineering and Management Sciences, Northwestern
University, Evanston, 1L 60201
Permussion to copy without fee all or part of this matenial 1s granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice 1s given that copying 1s by permission of the Association
for Computing Machinery To copy otherwise, or to republish, requires a fee and/or specific
permission
© 1983 ACM 0098-3500/83/0600-0143 $00 75

ACM Tra on M 1 Vol 9, No. 2, June 1983, Pages 143-183.
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Modeler’s Form: Multicommodity

Given
O Set of origins (factories)
D Set of destinations (stores)
P Set of products

a;, Amount available, for eachi € 0 andp € P
bj, Amount required, for each j € D and p € P
[, Limit on total shipments, for eachi € 0 andj € D

c;.. Shipping cost per unit, foreachi € 0,jeD,p€eP
d,; Fixed cost for shipping any amount fromi € Otoj € D

s Minimum total size of any shipment
n Maximum number of destinations served by any origin
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Multicommodity Transportation

Modeler’s Form

Determine
X, Amount of each p € P to be shipped fromi € O to j € D

Y, 1lifany product is shipped fromi € Otoj €D
0 otherwise
to minimize
Diico 2jep 2ipep Cijp Xijp + Qieo Ljep dij

Total variable cost plus total fixed cost

Yij

Robert Fourer, The Evolution of Computationally Practical LP 48
AFOR 2017, Kolkata, India — 21-23 December 2017




Multicommodity Transportation

Modeler’s Form

Subject to
Yjep Xijp < ajp foralli€e 0,p€eP

Total shipments of product p out of origin i
must not exceed availability

YicoXijp=bjp foralljeD,peP
Total shipments of product p into destination j
must satisfy requirements

Zperijp Sll]Yl] for alliEO,jED

When there are shipments from origin i to destination j,
the total may not exceed the limit, and Y;; must be 1
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Multicommodity Transportation

Modeler’s Form

Subject to

Ypep Xijp = SY; foralli€e0,j €D

When there are shipments from origin i to destination j,
the total amount of shipments must be at least s

QijepYij=n foralli € O

Number of destinations served by origin i
must be as most n
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Special Features of Modeler’s Form

Symbolic

General
<+ Independent of data for particular cases

Concise

< Length of description depends on
complexity of the model, not size of the linear program

Understandable
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Multicommodity Transportation

Same in a Modeling Language (AMPL)

Symbolic data

param
param
param

param
param

param
param

set ORIG; # origins
set DEST; # destinations
set PROD; # products

supply {ORIG,PROD} >= 0;
demand {DEST,PROD} >= 0;
limit {ORIG,DEST} >= 0;

vcost {ORIG,DEST,PROD} >= 0O; # variable shipment cost

fcost {ORIG,DEST} > O;

minload >= 0;
maxserve integer > 0;

# availabilities at origins
# requirements at destinations
# capacities of links

# fixed usage cost

# minimum shipment size
# maximum destinations served
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Multicommodity Transportation

AMPL Formulation

Symbolic model: variables and objective

var Trans {0ORIG,DEST,PROD} >= 0; # actual units to be shipped
var Use {ORIG, DEST} binary; # 1 if link used, O otherwise

minimize Total_Cost:
sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Tramsl[i,j,p]
+ sum {i in ORIG, j in DEST} fcostl[i,j] * Useli,jl;

Zieo ZjeD ZpEP Cijp Xijp + ZiEO ZjeD dij Yij
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Multicommodity Transportation

AMPL Formulation

Symbolic model: constraints

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Tramsl[i,j,p] <= supplyli,p];

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trams[i,j,p] = demand[j,p];

subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Useli,jl;

subject to Min_Ship {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] >= minload * Useli,j];

subject to Max_Serve {i in ORIG}:

sum {j in DEST} Useli,j] <= maxserve;
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Multicommodity Transportation

AMPL Formulation

Explicit data independent of symbolic model

set ORIG := GARY CLEV PITT ;

set DEST := FRA DET LAN WIN STL FRE LAF ;

set PROD := bands coils plate ;

param supply (tr): GARY CLEV
bands 400 700
coils 800 1600
plate 200 300

param demand (tr):
FRA DET LAN
bands 300 300 100
coils 500 750 400
plate 100 100 0

param limit default 625 ;

param minload := 375 ;
param maxserve := 5 ;

WIN
75
250
50

PITT :

800
1800

300 ;

STL
650
950
200

b

FRE
225
850
100

LAF :=
250
500
250 ;
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Multicommodity Transportation

AMPL Formulation

Explicit data (continued)

param vcost :=

[*,*,bands]: FRA DET LAN WIN STL FRE LAF :=
GARY 30 10 8 10 11 71 6
CLEV 22 7 10 7 21 82 13
PITT 19 11 12 10 25 83 15

[*,*,coils]: FRA DET LAN WIN STL FRE LAF :=
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 9 17
PITT 24 14 17 13 28 99 20

[*,*x,plate]: FRA DET LAN WIN STL FRE LAF :=
GARY 41 15 12 16 17 86 8
CLEV 29 9 13 9 28 99 18
PITT 26 14 17 13 31 104 20 ;

param fcost: FRA DET LAN WIN STL FRE LAF :=
GARY 3000 1200 1200 1200 2500 3500 2500
CLEV 2000 1000 1500 1200 2500 3000 2200
PITT 2000 1200 1500 1500 2500 3500 2200 ;
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Multicommodity Transportation

AMPL Solution

Model + data = problem instance to be solved

ampl: model multmip3.mod;
ampl: data multmip3.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 7.0.0: optimal solution; objective 235625
332 simplex iterations
23 branch-and-cut nodes

ampl: display Use;
Use [*,*]

: DET FRA FRE LAF LAN STL WIN :=
CLEV 1 1 1 0 1 1 O
GARY 0 O O 1 o0 1 1
PITT 1 1 1 i 0 1 O

L
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Multicommodity Transportation

AMPL Solution

Solver choice independent of model and data

ampl: model multmip3.mod;
ampl: data multmip3.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.7.0.0: optimal integer solution; objective 235625
135 MIP simplex iterations
0 branch-and-bound nodes

ampl: display Use;
Use [*,*]

: DET FRA FRE LAF LAN STL WIN :=
CLEV 1 1 1 0 1 1 O
GARY 0 O O 1 o0 1 1
PITT 1 1 1 i 0 1 O
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Multicommodity Transportation

AMPL Solution

Solver choice independent of model and data

ampl: model multmip3.mod;
ampl: data multmip3.dat;

ampl: option solver xpress;
ampl: solve;

XPRESS 29.01: Global search complete
Best integer solution found 235625
4 integer solutions have been found, 7 branch and bound nodes

ampl: display Use;
Use [*,*]

: DET FRA FRE LAF LAN STL WIN :=
CLEV 1 1 1 0 1 1 O
GARY 0 O O 1 o0 1 1
PITT 1 1 1 i 0 1 O

L
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