Identifying Good Near-Optimal Formulations for Hard Mixed-Integer Programs

Robert Fourer
AMPL Optimization Inc. 4er@ampl.com
7th INFORMS Optimization Society Conference
Denver, CO - 23-25 March 2018
Session SA13: Tutorial

Identifying Good Near-Optimal Formulations for Hard Mixed-Integer Programs

When an exact mixed-integer programming formulation resists attempts at solution, sometimes much better results can be achieved by "cheating" a bit on the formulation. Typically, a judicious choice of reformulation, restriction, or decomposition serves to make the problem easier, in a way not guaranteed to preserve the solution's optimality but highly unlikely to make much of a difference given the model and data of interest. This tutorial illustrates such an approach through a series of case studies. All rely on trial and error, a flexible modeling language, and a good general-purpose solver, and each is seen to be founded on one or two simple ideas that have the potential to be more broadly applied.

Outline

Breaking up

* Work scheduling
* Balanced dinner assignment
* Progressive party assignment

Throwing out

* Roll cutting

Cutting off

* Paint chip cutting
* Balanced team assignment

Reformulating

* Optimization of integer quadratic objectives
* Roll cutting with constraints

Breaking Up 1

Work Scheduling

Cover demands for workers

* Each "shift" requires a certain number of employees
* Each employee works a certain "schedule" of shifts
* If a schedule is used in the solution,
it must be assigned at least a certain minimum number of workers

Minimize total workers needed

* Which schedules are used?
* How many workers are assigned to each schedule?

Breaking Up 1

Work Scheduling

Sets and parameters

```
set SHIFTS; # set of shifts
param Nsched; # number of schedules
param required {SHIFTS} >= 0;
    # number of workers needed for each shift
set SCHED {1..Nsched} within SHIFTS;
    # subset of shifts that make up each schedule
param must_assign >= 0;
    # fewest workers that can be assigned
    # to each schedule that is used
```


Breaking Up 1

Work Scheduling

Test data

```
set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
    Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
    Mon3 Tue3 Wed3 Thu3 Fri3 ;
param required := Mon1 100 Mon2 78 Mon3 52
            Tue1 }100\mathrm{ Tue2 78 Tue3 52
            Wed1 100 Wed2 78 Wed3 52
                            Thu1 100 Thu2 78 Thu3 52
                            Fri1 100 Fri2 78 Fri3 52
                            Sat1 100 Sat2 78 ;
param Nsched := 126 ;
set SCHED[ 1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SCHED[ 2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SCHED[ 3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SCHED[ 4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SCHED[ 5] := Mon1 Tue1 Wed1 Thu1 Sat2 ;
set SCHED[ 6] := Mon1 Tue1 Wed1 Thu2 Fri2 ;
set SCHED[ 7] := Mon1 Tue1 Wed1 Thu2 Fri3 ;
```


Breaking Up 1

Work Scheduling

Model using zero-one variables

```
var Work {1..Nsched} >= 0 integer;
var Use {1..Nsched} >= 0 binary;
minimize Total_Cost:
    sum {j in 1..Nsched} Work[j];
subject to Shift_Needs {i in SHIFTS}:
    sum {j in 1..Nsched: i in SCHED[j]} Work[j] >= required[i];
subject to Least_Use1 {j in 1..Nsched}:
    must_assign * Use[j] <= Work[j];
subject to Least_Use2 {j in 1..Nsched}:
    Work[j] <= (max {i in SCHED[j]} required[i]) * Use[j];
```

Breaking Up 1

Work Scheduling

Branch \& bound (CPLEX)

must_assign	nodes	iterations	seconds
14	3301	19914	<1
15	4269	30559	<1
16	11748	80476	1
17	1499038	9947799	132
18	1332555	9773201	133
19	41545429	345118936	4218
20	45801	251360	5
21	23989	139139	3
22	9944	63943	2
23	16733	102195	2
24	30968	152377	4

Breaking Up 1

Work Scheduling

Branch \& bound (Gurobi)

must_assign	nodes	iterations	seconds
14	435	7019	<1
15	125	2651	<1
16	1507	21529	1
17	310597	21726050	732
18	10187784	205022630	4729
19	11334581	176269773	2824
20	159613	2578818	54
21	180147	3725402	74
22	76365	1566823	31
23	147347	2551751	52
24	141423	3091532	55

Breaking Up 1

Work Scheduling

Branch \& bound (Xpress)

must_assign	nodes	iterations	seconds
14	566		<1
15	31894	6	
16	361328	56	
17	3349425	415	
18	10883479	1702	
19	17317835	2151	
20	342415	40	
21	132047	23	
22	167631	23	
23	85591	14	
24	67609	13	

Breaking Up 1

Work Scheduling

Relaxation optimal values

must_assign	relax all	relax Work	relax none
14	265.6	265.6	266
15	265.6	265.6	266
16	265.6	265.6	266
17	265.6	266.5	267
18	265.6	267.5	268
19	265.6	268.5	269
20	265.6	269	269
21	265.6	269	269
22	265.6	269	269
23	265.6	269	269
24	265.6	269	269

Fractional solution Integer solution

Breaking Up 1

Work Scheduling

Two-step approach

* Step 1: Relax integrality of Work variables

Solve for zero-one Use variables

* Step 2: Fix Use variables

Solve for integer Work variables
. . . not necessarily optimal, but . . .

Breaking Up 1

Work Scheduling

Typical run of indirect approach

```
ampl: model sched1.mod;
ampl: data sched.dat;
ampl: let must_assign := 19;
ampl: option solver cplex;
ampl: let {j in SCHEDS} Work[j].relax := 1;
ampl: solve;
CPLEX 12.8.0.0: optimal integer solution; objective 268.5
31370114 MIP simplex iterations;
1990542 branch-and-cut nodes
ampl: fix {j in SCHEDS} Use[j];
ampl: let {j in SCHEDS} Work[j].relax := 0;
ampl: solve;
CPLEX 12.8.0.0 : optimal solution; objective 269
5 MIP simplex iterations;
O branch-and-cut nodes
```

Breaking Up 1

Work Scheduling

Two-step approach (CPLEX)

must_assign	one-step	two-step
14	<1	<1
15	<1	2
16	1	2
17	132	62
18	133	175
19	4218	298
20	5	2
21	3	2
22	2	2
23	2	3
24	4	3

Breaking Up 2

Balanced Dinner Assignment

Setting

* meeting of employees from around the world at New York offices of a Wall Street firm

Given

* title, location, department, sex, for each of about 1000 people

Assign

* these people to around 25 dinner groups

So that

* the groups are as "diverse" as possible

Breaking Up 2

Minimum "Variation" Model

```
set PEOPLE; # individuals to be assigned
set CATEG;
param type {PEOPLE,CATEG} symbolic;
    # categories by which people are classified;
    # type of each person in each category
param numberGrps integer > 0;
param minInGrp integer > 0;
param maxInGrp integer >= minInGrp;
    # number of groups; bounds on size of groups
var Assign {i in PEOPLE, j in 1..numberGrps} binary;
    # Assign[i,j] is 1 if and only if
    # person i is assigned to group j
```

A similar approach: "Market Sharing: Assigning Retailers to Company Divisions," in: H.P. Williams, Model Building in Mathematical Programming, 3rd edition, Wiley (1990), pp. 259-260. Thanks also to Collette Coullard.

Breaking Up 2

(definition of variation)

```
set TYPES {k in CATEG} := setof {i in PEOPLE} type[i,k];
    # all types found in each category
var MinType {k in CATEG, TYPES[k]};
var MaxType {k in CATEG, TYPES[k]};
    # fewest and most people of each type, over all groups
subj to MinTypeDefn {j in 1..numberGrps, k in CATEG, l in TYPES[k]}:
    MinType[k,l] <= sum {i in PEOPLE: type[i,k] = l} Assign[i,j];
subj to MaxTypeDefn {j in 1..numberGrps, k in CATEG, l in TYPES[k]}:
    MaxType[k,l] >= sum {i in PEOPLE: type[i,k] = l} Assign[i,j];
    # values of MinTypeDefn and MaxTypeDefn variables
    # must be consistent with values of Assign variables
```

Breaking Up 2

(objective, assignment constraints)

```
minimize TotalVariation:
    sum {k in CATEG, l in TYPES[k]} (MaxType[k,l] - MinType[k,l]);
                            # Total variation over all types
subj to AssignAll {i in PEOPLE}:
    sum {j in 1..numberGrps} Assign[i,j] = 1;
                            # Each person must be assigned to one group
subj to GroupSize {j in 1..numberGrps}:
    minInGrp <= sum {i in PEOPLE} Assign[i,j] <= maxInGrp;
            # Each group must have an acceptable size
```

Breaking Up 2

Data (210 people)

set PEOPLE :=									
BIW	AJH	FWI	IGN	KWR	KKI	HMN	SML	RSR	TBR
KRS	CAE	MPO	CAR	PSL	BCG	DJA	AJT	JPY	HWG
TLR	MRL	JDS	JAE	TEN	MKA	NMA	PAS	DLD	SCG
VAA	FTR	GCY	OGZ	SME	KKA	MMY	API	ASA	JLN
JRT	SJO	WMS	RLN	WLB	SGA	MRE	SDN	HAN	JSG
AMR	DHY	JMS	AGI	RHE	BLE	SMA	BAN	JAP	HER
MES	DHE	SWS	ACI	RJY	TWD	MMA	JJR	MFR	LHS
JAD	CWU	PMY	CAH	SJH	EGR	JMQ	GGH	MMH	JWR
MJR	EAZ	WAD	LVN	DHR	ABE	LSR	MBT	AJU	SAS
JRS	RFS	TAR	DLT	HJO	SCR	CMY	GDE	MSL	CGS
HCN	JWS	RPR	RCR	RLS	DSF	MNA	MSR	PSY	MET
DAN	RVY	PWS	CTS	KLN	RDN	ANV	LMN	FSM	KWN
CWT	PMO	EJD	AJS	SBK	JWB	SNN	PST	PSZ	AWN
DCN	RGR	CPR	NHI	HKA	VMA	DMN	KRA	CSN	HRR
SWR	LLR	AVI	RHA	KWY	MLE	FJL	ESO	TJY	WHF
TBG	FEE	MTH	RMN	WFS	CEH	SDL	ASO	MDI	RGE
LVO	ADS	CGH	RHD	MBM	MRH	RGF	PSA	TTI	HMG
ECA	CFS	MKN	SBM	RCG	JMA	EGL	UJT	ETN	GWZ
MAI	DBN	HFE	PSO	APT	JMT	RJE	MRZ	MRK	XYF
JCO	PSN	SCS	RDL	TMN	CGY	GMR	SER	RMS	JEN
DWO	REN	DGR	DET	FJT	RJZ	MBY	RSN	REZ	BLW ;

Breaking Up 2

Data (4 categories, 18 types)

```
set CATEG := dept loc rate title ;
param type:
    dept loc rate title :=
BIW NNE Peoria A Assistant
KRS WSW Springfield B Assistant
TLR NNW Peoria B Adjunct
VAA NNW Peoria A Deputy
JRT NNE Springfield A Deputy
AMR SSE Peoria A Deputy
MES NNE Peoria A Consultant
JAD NNE Peoria A Adjunct
MJR NNE Springfield A Assistant
JRS NNE Springfield A Assistant
HCN SSE Peoria A Deputy
DAN NNE Springfield A Adjunct
.......
param numberGrps := 12 ;
param minInGrp := 16 ;
param maxInGrp := 19 ;
```

Breaking Up 2

Solving for Minimum Variation

```
ampl: model BalAssign.mod;
ampl: data BalAssign.dat;
ampl: option solver gurobi;
ampl: option show_stats 1;
ampl: solve;
2556 variables:
    2520 binary variables
    36 linear variables
654 constraints, all linear; 25632 nonzeros
    210 equality constraints
    4 3 2 \text { inequality constraints}
    1 2 \text { range constraints}
1 linear objective; 36 nonzeros.
Gurobi 7.5.0: optimal solution; objective 16
338028 simplex iterations
1751 branch-and-cut nodes
6 6 . 3 4 4 ~ s e c
```

Breaking Up 2

Revised Formulation

```
var MinType {k in CATEG, t in TYPES[k]}
    <= floor (card {i in PEOPLE: type[i,k] = t} / numberGrps);
var MaxType {k in CATEG, t in TYPES[k]
    >= ceil (card {i in PEOPLE: type[i,k] = t} / numberGrps);
```

ampl: include BalAssign+.run
Presolve eliminates 72 constraints.
Gurobi 7.5.0: optimal solution; objective 16
2203 simplex iterations
0.203 sec

Breaking Up 2

Scaling Up

Real model was more complicated

* Rooms hold from 20-25 to 50-55 people
* Must avoid isolating assignments:
* a person is "isolated" in a group that contains no one from the same location with the same or "adjacent" title

Problem was too big

* Aggregate people who match in all categories (986 people, but only 287 different kinds)
* Solve first for title and location only, then for refinement to department and sex
* Stop at first feasible solution to title-location problem

Breaking Up 2

Full "Title-Location" Model

```
set PEOPLE ordered;
param title {PEOPLE} symbolic;
param loc {PEOPLE} symbolic;
set TITLE ordered;
    check {i in PEOPLE}: title[i] in TITLE;
set LOC = setof {i in PEOPLE} loc[i];
set TYPE2 = setof {i in PEOPLE} (title[i],loc[i]);
param number2 {(i1,i2) in TYPE2} =
    card {i in PEOPLE: title[i]=i1 and loc[i]=i2};
set REST ordered;
param loDine {REST} integer > 10;
param hiDine {j in REST} integer >= loDine[j];
param loCap := sum {j in REST} loDine[j];
param hiCap := sum {j in REST} hiDine[j];
param loFudge := ceil ((loCap less card {PEOPLE}) / card {REST});
param hiFudge := ceil ((card {PEOPLE} less hiCap) / card {REST});
```

Breaking Up 2

(variables, objective, assignment constraints)

```
var Assign2 {TYPE2,REST} integer >= 0;
var Dev2Title {TITLE} >= 0;
var Dev2Loc {LOC} >= 0;
minimize Deviation:
    sum {i1 in TITLE} Dev2Title[i1] + sum {i2 in LOC} Dev2Loc[i2];
subject to Assign2Type {(i1,i2) in TYPE2}:
    sum {j in REST} Assign2[i1,i2,j] = number2[i1,i2];
subject to Assign2Rest {j in REST}:
    loDine[j] - loFudge
        <= sum {(i1,i2) in TYPE2} Assign2[i1,i2,j]
            <= hiDine[j] + hiFudge;
```

Breaking Up 2

(parameters for defining "variation")

```
param frac2title {i1 in TITLE}
    = sum {(i1,i2) in TYPE2} number2[i1,i2] / card {PEOPLE};
param frac2loc {i2 in LOC}
    = sum {(i1,i2) in TYPE2} number2[i1,i2] / card {PEOPLE};
param expDine {j in REST}
    = if loFudge > 0 then loDine[j] else
        if hiFudge > 0 then hiDine[j] else (loDine[j] + hiDine[j]) / 2;
param loTargetTitle {i1 in TITLE, j in REST} =
    floor (round (frac2title[i1] * expDine[j], 6));
param hiTargetTitle {i1 in TITLE, j in REST} =
    ceil (round (frac2title[i1] * expDine[j], 6));
param loTargetLoc {i2 in LOC, j in REST} =
    floor (round (frac2loc[i2] * expDine[j], 6));
param hiTargetLoc {i2 in LOC, j in REST} =
    ceil (round (frac2loc[i2] * expDine[j], 6));
```

Breaking Up 2

(constraints defining "variation")

```
subject to Lo2TitleDefn {i1 in TITLE, j in REST}:
    Dev2Title[i1] >=
        loTargetTitle[i1,j] - sum {(i1,i2) in TYPE2} Assign2[i1,i2,j];
subject to Hi2TitleDefn {i1 in TITLE, j in REST}:
    Dev2Title[i1] >=
        sum {(i1,i2) in TYPE2} Assign2[i1,i2,j] - hiTargetTitle[i1,j];
subject to Lo2LocDefn {i2 in LOC, j in REST}:
    Dev2Loc[i2] >=
    loTargetLoc[i2,j] - sum {(i1,i2) in TYPE2} Assign2[i1,i2,j];
subject to Hi2LocDefn {i2 in LOC, j in REST}:
    Dev2Loc[i2] >=
        sum {(i1,i2) in TYPE2} Assign2[i1,i2,j] - hiTargetLoc[i2,j];
```

Breaking Up 2

(parameters for ruling out "isolation")

```
set ADJACENT {i1 in TITLE} =
    (if i1 <> first(TITLE) then {prev(i1)} else {}) union
    (if i1 <> last(TITLE) then {next(i1)} else {});
set ISO = {(i1,i2) in TYPE2: (i2 <> "Unknown") and
    ((number2[i1,i2] >= 2) or
        (number2[i1,i2] = 1 and
            sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2}
                number2[ii1,i2] > 0)) };
param give {ISO} default 2;
param giveTitle {TITLE} default 2;
param giveLoc {LOC} default 2;
param upperbnd {(i1,i2) in ISO, j in REST} =
    min (ceil((number2[i1,i2]/card {PEOPLE}) * hiDine[j]) + give[i1,i2],
        hiTargetTitle[i1,j] + giveTitle[i1],
        hiTargetLoc[i2,j] + giveLoc[i2],
        number2[i1,i2]);
```

Breaking Up 2

(constraints ruling out "isolation")

```
var Lone {(i1,i2) in ISO, j in REST} binary;
subj to Isolation1 {(i1,i2) in ISO, j in REST}:
    Assign2[i1,i2,j] <= upperbnd[i1,i2,j] * Lone[i1,i2,j];
subj to Isolation2a {(i1,i2) in ISO, j in REST}:
    Assign2[i1,i2,j] +
        sum {ii1 in ADJACENT[i1]: (ii1,i2) in TYPE2} Assign2[ii1,i2,j]
            >= 2 * Lone[i1,i2,j];
subj to Isolation2b {(i1,i2) in ISO, j in REST}:
    Assign2[i1,i2,j] >= Lone[i1,i2,j];
```

Breaking Up 2

Original Success

First problem

* using OSL: 128 "supernodes", 6.7 hours
* using CPLEX 2.1: took too long

Second problem

* using CPLEX 2.1: 864 nodes, 3.6 hours
* using OSL: 853 nodes, 4.3 hours

Finish

* Refine to individual assignments: a trivial LP
* Make table of assignments using AMPL printf command
* Ship table to client, who imports to database

Breaking Up 2

Solver Improvements

CPLEX 3.0

* First problem: 1200 nodes, 1.1 hours
* Second problem: 1021 nodes, 1.3 hours

CPLEX 4.0

* First problem: 517 nodes, 5.4 minutes
* Second problem: 1021 nodes, 21.8 minutes

CPLEX 9.0

* First problem: 560 nodes, 83.1 seconds
* Second problem: 0 nodes, 17.9 seconds

Breaking Up 2

Solver Improvements

CPLEX 12.1

* First problem: 0 nodes, 9.5 seconds
* Second problem: 0 nodes, 1.5 seconds

Gurobi 2.0

* First problem: 0 nodes, 13.5 seconds
* Second problem: 0 nodes, 1.6 seconds

Breaking Up 2

Performance Today

CPLEX 12.8

* First problem: 0 nodes, 4.4 seconds
* Second problem: 0 nodes, 0.8 seconds

Gurobi 7.5

* First problem: 0 nodes, 3.8 seconds
* Second problem: 0 nodes, 0.6 seconds

Objective $=$ total deviation from balance

* First problem = 12
* Second problem $=4$
* Total = 16

Breaking Up 2

The Original Problem Today

Gurobi 7.5
Objective values

* 16: 9 seconds
* 15: 54 seconds
* 14: 83 seconds
* 13: 99 seconds

Lower bounds

* 3: 10 seconds
* 10: 60 seconds
* 12: 4517 seconds

Breaking Up 3

Progressive Party Assignment

Setting

* yacht club holding a party
* each boat has a certain crew size \& guest capacity

Decisions

* choose a minimal number yachts as "hosts"
* assign each non-host crew to visit a host yacht
*... in each of 6 periods

Requirements

* no yacht's capacity is exceeded
* no crew visits the same yacht more than once
* no two crews meet more than once

Breaking Up 3

Progressive Party Problem

Parameters \& variables

```
param B > 0, integer;
set BOATS := 1 .. B;
param capacity {BOATS} integer >= 0;
param crew {BOATS} integer > 0;
param guest_cap {i in BOATS} := capacity[i] less crew[i];
param T > 0, integer;
set TIMES := 1..T;
var Host {i in BOATS} binary; # i is a host boat
var Visit {i in BOATS, j in BOATS, t in TIMES: i <> j} binary;
    # crew of j visits party on i at t
var Meet {i in BOATS, j in BOATS, t in TIMES: i < j} >= 0, <= 1;
    # crews of i and j meet at t
```

Erwin Kalvelagen, On Solving the Progressive Party Problem as a MIP.
Computers \& Operations Research 30 (2003) 1713-1726.

Breaking Up 3

Progressive Party Problem

Host objective and constraints

```
minimize TotalHosts: sum {i in BOATS} Host[i];
    # minimize total host boats
set MUST_BE_HOST within BOATS;
subj to MustBeHost {i in MUST_BE_HOST}: Host[i] = 1;
    # some boats are designated host boats
set MUST_BE_GUEST within BOATS;
subj to MustBeGuest {i in MUST_BE_GUEST}: Host[i] = 0;
    # some boats (the virtual boats) are designated guest boats
param mincrew := min {j in BOATS} crew[j];
subj to NeverHost {i in BOATS: guest_cap[i] < mincrew}: Host[i] = 0;
    # boats with very limited guest capacity can never be hosts
```


Breaking Up 3

Progressive Party Problem

Host-Visit constraints

```
subj to PartyHost {i in BOATS, j in BOATS, t in TIMES: i <> j}:
    Visit[i,j,t] <= Host[i];
        # parties must occur on host boats
subj to Cap {i in BOATS, t in TIMES}:
    sum {j in BOATS: j <> i} crew[j] * Visit[i,j,t] <= guest_cap[i] * Host[i];
            # boats may not have more visitors than they can handle
subj to CrewHost {j in BOATS, t in TIMES}:
    Host[j] + sum {i in BOATS: i <> j} Visit[i,j,t] = 1;
        # every crew is either hosting or visiting a party
subj to VisitOnce {i in BOATS, j in BOATS: i <> j}:
    sum {t in TIMES} Visit[i,j,t] <= Host[i];
    # a crew may visit a host at most once
```

Breaking Up 3

Progressive Party Problem

Meet-Visit constraints

```
subj to Link {i in BOATS,
    j in BOATS, jj in BOATS, t in TIMES: i <> j and i <> jj and j < jj}:
    Meet[j,jj,t] >= Visit[i,j,t] + Visit[i,jj,t] - 1;
        # meetings occur when two crews are on same host at same time
subj to MeetOnce {j in BOATS, jj in BOATS: j < jj}:
    sum {t in TIMES} Meet[j,jj,t] <= 1;
    # two crews may meet at most once
```

Breaking Up 3

Progressive Party Problem

Data

```
param B := 42;
param T := 6;
param: capacity crew :=
    1 6 2
        2 8 2
        3 12 2
        4
        5 12 4
        6
        7 12 4
........
        37 6 4
        38 6 5
        39 9
        40 0 2
        41 0 3
        42 0 4;
set MUST_BE_HOST := 1 2 3 ;
set MUST_BE_GUEST := 40 41 42 ;
```

Breaking Up 3

Direct Approach

rounds	variables	constraints	nodes	iterations	seconds	objective
1	1272	983	0	540	<1	13
2	3259	39479	0	2752	5	13
3	5982	59339	0	8389	19	13
4	7964	78458	0	7243	32	13
5	9946	97577	0	26478	158	13
6	11928	116696	0	73796	443	13
7	13910	135815	781	760617	4306	13
8	15892	154934	>1273	>1898720	>25446	14
9	17874	174053				
10	19856	193172				

Breaking Up 3

Multi-Step Approach

Determine hosts

* solve 1-period problem
* fix hosts
* fix $1^{\text {st }}$-period visits

Determine visits: for round $t=2,3, \ldots$
\star solve period- t problem
\therefore fix period $-t$ visits

Breaking Up 3

Multi-Step Script

```
model partyS.mod;
data partyS.dat;
option solver cplex;
# -------
let T := 1;
repeat {
    solve;
    if T = 1 then fix Host;
    if solve_result = "solved" then {
        let T := T + 1;
        fix {i in BOATS, j in BOATS: i <> j} Visit[i,j,T-1];
    }
    else break;
};
```


Breaking Up 3

Multi-Step Run (periods 1 to 3)

```
ampl: include partyM.run
Reduced MIP has }983\mathrm{ rows, 1272 columns, and 4364 nonzeros.
Reduced MIP has 1272 binaries, O generals, O SOSs, and O indicators.
Total (root+branch&cut) = 0.20 sec
CPLEX 12.8.0.0: optimal integer solution; objective 13
540 MIP simplex iterations
O branch-and-bound nodes
Reduced MIP has 138 rows, }329\mathrm{ columns, and 927 nonzeros.
Reduced MIP has 329 binaries, 0 generals, 0 SOSs, and 0 indicators.
Total (root+branch&cut) = 0.02 sec
CPLEX 12.8.0.0: optimal integer solution; objective 13
O MIP simplex iterations
O branch-and-bound nodes
Reduced MIP has 231 rows, }300\mathrm{ columns, and 1082 nonzeros.
Reduced MIP has }300\mathrm{ binaries, 0 generals, 0 SOSs, and 0 indicators.
Total (root+branch&cut) = 0.02 sec
CPLEX 12.8.0.0: optimal integer solution; objective 13
O MIP simplex iterations
O branch-and-bound nodes
```


Breaking Up 3

Multi-Step Run (periods 4 to 6)

```
Reduced MIP has 299 rows, 271 columns, and 1188 nonzeros.
Reduced MIP has 271 binaries, 0 generals, 0 SOSs, and 0 indicators.
Total (root+branch&cut) = 0.02 sec
CPLEX 12.8.0.0: optimal integer solution; objective 13
O MIP simplex iterations
O branch-and-bound nodes
Reduced MIP has }321\mathrm{ rows, }242\mathrm{ columns, and }1199\mathrm{ nonzeros.
Reduced MIP has 242 binaries, 0 generals, O SOSs, and 0 indicators.
Total (root+branch&cut) = 0.02 sec
CPLEX 12.8.0.0: optimal integer solution; objective 13
O MIP simplex iterations
O branch-and-bound nodes
Reduced MIP has }302\mathrm{ rows, }213\mathrm{ columns, and 1120 nonzeros.
Reduced MIP has 213 binaries, 0 generals, O SOSs, and 0 indicators.
Total (root+branch&cut) = 0.02 sec
CPLEX 12.8.0.0: optimal integer solution; objective 13
O MIP simplex iterations
O branch-and-bound nodes
```


Breaking Up 3

Multi-Step Run (periods 7 to 9)

```
Reduced MIP has 269 rows, 184 columns, and 999 nonzeros.
Reduced MIP has 184 binaries, 0 generals, 0 SOSs, and 0 indicators.
Total (root+branch&cut) = 0.02 sec
CPLEX 12.8.0.0: optimal integer solution; objective 13
O MIP simplex iterations
O branch-and-bound nodes
Reduced MIP has 213 rows, 154 columns, and 793 nonzeros.
Reduced MIP has }154\mathrm{ binaries, 0 generals, O SOSs, and O indicators.
Total (root+branch&cut) = 0.02 sec
CPLEX 12.8.0.0: optimal integer solution; objective 13
O MIP simplex iterations
O branch-and-bound nodes
Reduced MIP has 160 rows, 117 columns, and 564 nonzeros.
Reduced MIP has }117\mathrm{ binaries, 0 generals, 0 SOSs, and O indicators.
Total (root+branch&cut) = 0.05 sec. (28.42 ticks)
CPLEX 12.8.0.0: integer infeasible.
136 MIP simplex iterations
0 branch-and-bound nodes
```


Breaking Up 3

Multi-Step Approach

Is this optimal?

* No
* Solver returns one of many period-1 solutions
* Different period-1 solutions produce different period-2 solutions ...
* Different period 1, 2, 3, . . solutions result in different numbers of feasible stages

Results of 100 runs with different seeds

feasible stages	number of occurrences
7	0
8	4
9	94
10	2
11	0

Throwing Out

Roll Cutting

Cut large "raw" rolls into smaller ones

* All raw rolls the same width
* Various smaller widths ordered, in varied amounts

Minimize total raw rolls cut

* Define cutting patterns
* Choose how many raw rolls to cut with each pattern ...
* generate patterns iteratively based on dual values (the Gilmore-Gomory method)
* enumerate all nondominated patterns in advance

Throwing Out

Roll Cutting

Cutting model

```
set WIDTHS; # set of widths to be cut
param orders {WIDTHS} > 0; # number of each width to be cut
param nPAT integer >= 0; # number of patterns
param nbr {WIDTHS,1..nPAT} integer >= 0; # rolls of width i in pattern j
var Cut {1..nPAT} integer >= 0; # rolls cut using each pattern
minimize Number:
    sum {j in 1..nPAT} Cut[j]; # total raw rolls cut
subject to Fill {i in WIDTHS}:
    sum {j in 1..nPAT} nbr[i,j] * Cut[j] >= orders[i];
    # for each width,
    # rolls cut meet orders
```


Throwing Out

Roll Cutting

Pattern generation model

```
param roll_width > 0;
param price {WIDTHS} default 0.0;
var Use {WIDTHS} integer >= 0;
minimize Reduced_Cost:
    1 - sum {i in WIDTHS} price[i] * Use[i];
subj to Width_Limit:
    sum {i in WIDTHS} i * Use[i] <= roll_width;
```


Throwing Out

Roll Cutting

Pattern generation script

```
repeat {
    solve Cutting_Opt;
    let {i in WIDTHS} price[i] := Fill[i].dual;
    solve Pattern_Gen;
    if Reduced_Cost < -0.00001 then {
        let nPAT := nPAT + 1;
        let {i in WIDTHS} nbr[i,nPAT] := Use[i];
        }
    else break;
    };
```


Throwing Out

Roll Cutting

Pattern enumeration script

```
repeat {
    if curr_sum + curr_width <= roll_width then {
        let pattern[curr_width] := floor((roll_width-curr_sum)/curr_width);
        let curr_sum := curr_sum + pattern[curr_width] * curr_width;
        }
    if curr_width != last(WIDTHS) then
        let curr_width := next(curr_width,WIDTHS);
    else {
        let nPAT := nPAT + 1;
        let {w in WIDTHS} nbr[w,nPAT] := pattern[w];
        let curr_sum := curr_sum - pattern[last(WIDTHS)] * last(WIDTHS);
        let pattern[last(WIDTHS)] := 0;
        let curr_width := min {w in WIDTHS: pattern[w] > 0} w;
        if curr_width < Infinity then {
            let curr_sum := curr_sum - curr_width;
            let pattern[curr_width] := pattern[curr_width] - 1;
            let curr_width := next(curr_width,WIDTHS);
            }
        else break;
        }
    }
```


Throwing Out

Roll Cutting

Sample data

```
param roll_width := 172 ;
param: WIDTHS: orders :=
    25.000 5
    24.750 73
    18.000 14
    17.500 4
    15.500 23
    15.375 5
    13.875 29
    12.500 87
    12.250 9
    12.000 31
    10.250 6
    10.125 14
    10.000 43
    8.750 15
    8.500 21
    7.750 5 ;
```

. . . Robert W. Haessler, "Selection and Design of Heuristic Procedures for Solving Roll Trim Problems"
Management Science 34 (1988) 1460-1471, Table 2

Throwing Out

Roll Cutting

Pattern generation: Gilmore-Gomory approach

ampl: include cutPatGen.run																	
35.36	-1.39e-01	0	6	0	0	0	0	0	1	0	0	0	1	0	0	0	0
33.66	-1.30e-01	6	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0
33.55	-8.33e-02	0	0	0	9	0	0	1	0	0	0	0	0	0	0	0	0
33.52	-6.01e-02	0	0	5	0	0	0	0	1	0	0	0	6	0	1	0	0
33.50	-5.98e-02	0	0	4	0	0	0	0	8	0	0	0	0	0	0	0	0
33.31	-5.88e-02	0	0	0	0	0	0	0	0	0	0	0	16	1	0	0	0
33.30	-5.45e-02	0	0	0	0	0	0	1	11	0	0	2	0	0	0	0	0
33.14	-5.33e-02	0	0	0	0	0	0	0	12	0	1	0	0	1	0	0	0
33.07	-3.25e-02	0	0	0	0	0	0	6	0	0	0	0	0	1	9	0	0
33.02	-2.92e-02	0	0	0	0	0	1	9	0	0	2	0	0	0	0	0	1
32.97	-2.66e-02	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	1
32.96	-2.11e-02	0	0	0	0	0	0	0	0	0	12	1	0	1	0	0	1
32.92	-1.46e-02	0	0	0	0	0	8	0	0	0	1	0	0	2	0	2	0
32.92	-1.18e-02	0	0	0	0	0	0	0	0	0	0	0	0	7	0	12	0
32.90	-1.09e-02	0	0	0	0	0	0	0	0	0	1	0	0	16	0	0	0
32.88	-8.39e-03	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	19
32.88	-7.94e-03	0	1	0	0	9	0	0	0	0	0	0	0	0	0	0	1
32.87	-8.93e-03	0	0	0	0	8	0	0	0	0	4	0	0	0	0	0	0
32.86	-5.04e-03	0	5	0	1	0	0	0	0	0	0	3	0	0	0	0	0
32.85	-4.91e-03	0	5	0	0	0	0	0	0	1	3	0	0	0	0	0	0
32.82	-4.92e-03	0	4	0	1	0	0	4	0	0	0	0	0	0	0	0	0

Throwing Out

Roll Cutting

Pattern generation: Continuous relaxation

Throwing Out

Roll Cutting

Pattern generation: Rounded up to integer

WASTE = 18.01\%

Throwing Out

Roll Cutting

Pattern generation: Integer solution from patterns generated

Best integer: 35 rolls																
Cut	1	1	2	1		4	1	1	1	6	1	2	2	4	3	4
25.00	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0
24.75	0	0	0	0	0	6	0	0	0	0	0	0	1	4	4	5
18.00	9	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
17.50	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
15.50	0	11	0	0	0	0	0	0	0	0	0	0	9	0	0	0
15.38	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
13.88	0	0	0	0	0	0	0	0	1	0	9	0	0	4	2	0
12.50	0	0	0	0	0	1	0	1	11	12	0	0	0	0	0	1
12.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0
12.00	0	0	0	0	0	0	1	0	0	1	2	12	0	0	0	0
10.25	0	0	0	0	0	0	0	0	2	0	0	1	0	0	0	1
10.12	0	0	0	0	0	1	0	6	0	0	0	0	0	0	0	1
10.00	0	0	17	0	0	0	1	0	0	1	0	1	0	0	0	0
8.75	0	0	0	19	0	0	0	1	0	0	0	0	0	0	0	0
8.50	0	0	0	0	20	0	0	0	0	0	0	0	0	0	1	0
7.75	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0
WASTE =	6.	30\%														

Throwing Out

Roll Cutting

Pattern enumeration: All non-dominated patterns

ampl: include cutPatEnum100.run																
10000	4	0	0	0	1	0	0	0	0	0	0	0	1	0	1	4
20000	3	1	1	2	0	0	0	0	0	0	0	0	0	0	2	0
30000	3	1	0	0	0	0	2	0	0	0	3	0	1	0	0	0
40000	3	0	2	0	0	0	0	1	0	0	4	0	0	0	0	0
50000	3	0	1	0	1	0	0	0	2	1	0	0	1	1	0	1
60000	3	0	1	0	0	0	0	2	0	0	0	2	0	2	0	2
70000	3	0	0	2	0	0	0	1	0	0	0	0	0	3	0	3
27270000	0	0	0	0	0	0	0	0	0	2	6	1	4	4	0	0
27280000	0	0	0	0	0	0	0	0	0	2	1	0	3	1	11	0
27290000	0	0	0	0	0	0	0	0	0	1	4	2	0	4	2	6
27300000	0	0	0	0	0	0	0	0	0	1	1	1	4	4	0	8
27310000	0	0	0	0	0	0	0	0	0	0	7	0	4	3	2	2
27320000	0	0	0	0	0	0	0	0	0	0	3	0	1	7	8	0
27330000	0	0	0	0	0	0	0	0	0	0	1	0	4	6	3	5

. . . too many columns for my computer

Throwing Out

Roll Cutting

Pattern enumeration: Every 100 ${ }^{\text {th }}$ non-dominated pattern

ampl: include cutPatEnum100.run																
10000	4	0	0	0	1	0	0	0	0	0	0	0	1	0	1	4
20000	3	1	1	2	0	0	0	0	0	0	0	0	0	0	2	0
30000	3	1	0	0	0	0	2	0	0	0	3	0	1	0	0	0
40000	3	0	2	0	0	0	0	1	0	0	4	0	0	0	0	0
50000	3	0	1	0	1	0	0	0	2	1	0	0	1	1	0	1
60000	3	0	1	0	0	0	0	2	0	0	0	2	0	2	0	2
70000	3	0	0	2	0	0	0	1	0	0	0	0	0	3	0	3
27270000	0	0	0	0	0	0	0	0	0	2	6	1	4	4	0	0
27280000	0	0	0	0	0	0	0	0	0	2	,	0	3	1	11	0
27290000	0	0	0	0	0	0	0	0	0	1	4	2	0	4	2	6
27300000	0	0	0	0	0	0	0	0	0	1	1	1	4	4	0	8
27310000	0	0	0	0	0	0	0	0	0	0	7	0	4	3	2	2
27320000	0	0	0	0	0	0	0	0	0	0	3	0	1	7	8	0
27330000	0	0	0	0	0	0	0	0	0	0	1	0	4	6	3	5
Gurobi 7.5.0: outlev 1 Optimize a model with 16 rows, 273380 columns and 2024052 nonzeros Variable types: 0 continuous, 273380 integer (0 binary)																

Throwing Out

Roll Cutting

Pattern enumeration: Every 100 th (cont'd)

Starting sifting (using dual simplex for sub-problems)	\ldots			
Iter	Pivots	Primal Obj	Dual Obj	Time
0	0	infinity	$0.0000000 \mathrm{e}+00$	3 s
1	22	$1.1474445 \mathrm{e}+02$	$1.2283242 \mathrm{e}+01$	3 s
2	58	$4.2188397 \mathrm{e}+01$	$2.1998550 \mathrm{e}+01$	3 s
3	95	$3.5002421 \mathrm{e}+01$	$2.4861376 \mathrm{e}+01$	3 s
4	145	$3.3538200 \mathrm{e}+01$	$3.1080827 \mathrm{e}+01$	3 s
5	180	$3.2923675 \mathrm{e}+01$	$3.2599109 \mathrm{e}+01$	3 s
6	242	$3.2802177 \mathrm{e}+01$	$3.2746499 \mathrm{e}+01$	3 s
7	283	$3.2796512 \mathrm{e}+01$	$3.2796512 \mathrm{e}+01$	3 s

Root relaxation: objective $3.279651 \mathrm{e}+01$, 283 iterations, 0.52 seconds
Nodes | Current Node | Objective Bounds | Work Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

	0	0	32.79651	0	15	343.00000	32.79651	90.4%	-
H	0	0			35.0000000	32.79651	6.30%	-	4 s
H	0	0			34.0000000	32.79651	3.54%	-	5 s
H	0	0			33.0000000	32.79651	0.62%	-	10 s

Gurobi 7.5.0: optimal solution; objective 33
362 simplex iterations
1 branch-and-cut nodes

Cutting Off 1

Paint Chip Cutting

Produce paint chips from rolls of material

* Several "groups" (types) of chips
* Various numbers of "colors" per group
* Numerous "patterns" of groups on rolls

Costs proportional to numbers of

* Patterns cut
* Pattern changes
* Width changes

Cutting Off 1

Chip Cutting

Model (variables \& objective)

```
var Cut {1..nPats} > = 0, integer; # number of each pattern cut
var PatternChange {1..nPats} binary; # 1 iff a pattern is used
var WebChange {WIDTHS} binary; # 1 iff a width is used
minimize Total_Cost:
    sum {j in 1..nPats} cut_cost[j] * Cut[j] +
    pattern_changeover_factor *
    sum {j in 1..nPats} change_cost[j] * PatternChange[j] +
    web_change_factor *
    sum {w in WIDTHS} (coat_change_cost + slit_change_cost) WebChange[w];
```

Cutting Off 1

Chip Cutting

Model (constraints)

```
subject to SatisfyDemand {g in GROUPS}:
    sum {j in 1..nPats} number_of [g,j] * Cut[j] >= ncolors[g];
subject to DefinePatternChange {j in 1..nPats}:
    Cut[j] <= maxuse[j] * PatternChange[j];
subject to DefineWebChange {j in 1..nPats}:
    PatternChange[j] <= WebChange[width[j]];
```

param maxuse $\{j$ in 1..nPats $\}:=$
$\max \{\mathrm{g}$ in GROUPS: number_of $[\mathrm{g}, \mathrm{j}]>0\}$ ncolors $[\mathrm{g}] /$ number_of $[\mathrm{g}, \mathrm{j}]$;
\# upper limit on Cut[j]

Cutting Off 1

Chip Cutting

Model (restricted)

```
subject to DefinePatternChange {j in 1..nPats}:
    Cut[j] <= maxuse[j] * PatternChange[j];
subject to MinPatternUse {j in 1..nPats}:
    Cut[j] >= ceil(minuse[j]) * PatternChange[j];
```

```
param minuse {j in 1..nPats} :=
    min {g in GROUPS: number_of [g,j] > 0} ncolors[g] / number_of [g,j];
    # if you use a pattern at all,
    # use it to cut all colors of at least one group
```

. . . not necessarily optimal, but . . .

Cutting Off 1

Chip Cutting

Sample data

param:	GROUP		slitwi	cutoff	paint	finish	subs	trate :=
	grp1	8	3.8125	1.75	latex	flat	P40	
	grp2	3	3.9375	1.75	latex	flat	P40	
	grp3	32	1.6875	1.00	latex	flat	P40	
	grp4	4	1.8125	1.00	latex	flat	P40	
	grp5	3	1.75	1.00	latex	flat	P40	
	grp6	2	1.75	1.00	latex	semi_gloss	P40	
	grp7	3	1.875	1.00	latex	flat	P40	
	grp8	1	1.875	1.00	latex	gloss	P40	;
param orderqty := 588500;								

Cutting Off 1

Results (distant past)

Without restriction

* 1812 rows, 1807 columns, 5976 nonzeros
* 7,115,951 simplex iterations
* 221,368 branch-and-bound nodes
- 14,620.4 seconds

With restriction

* 2402 rows, 1656 columns, 7091 nonzeros
* 230,667 simplex iterations
* 9,892 branch-and-bound nodes
* 501.55 seconds

Objective value

* Same in both cases

Cutting Off 1

Results (past)

Without restriction

* 1724 rows, 1719 columns, 5800 nonzeros
* 49,831 simplex iterations
* 3,157 branch-and-bound nodes
* 4.867 seconds

With restriction

* 2344 rows, 1598 columns, 6982 nonzeros
* 21,598 simplex iterations
* 568 branch-and-bound nodes
* 2.872 seconds
(Gurobi 1.1.3, 8 processors)

Cutting Off 1

Results (today)

Without restriction

* 1724 rows, 1719 columns, 5800 nonzeros
* 7,924 simplex iterations
* 159 branch-and-bound nodes
* 1.64 seconds

With restriction

* 2344 rows, 1598 columns, 6975 nonzeros
* 5,336 simplex iterations
* 121 branch-and-bound nodes
* 0.83 seconds
(Gurobi 7.5, 4 threads, 2 processors)

Cutting Off 2

Balanced Team Assignment

Same assignment idea

* Partition people into groups
* diversity measured by several characteristics
* each characteristic has several values
* Make groups as diverse as possible

Different formulation

* Overlap of a person with another person is the number of characteristics for which they have the same value
* Total overlap of a person is the sum of their overlaps with all the other people assigned to the same group
\therefore Minimize the sum of total overlap over all people

Cutting Off 2

Balanced Team Assignment

Small example where branching takes "forever"

* 26 people
* 4 characteristics ($4,4,4,2$ values)
* 5 groups

```
CPLEX 12.8.0.0:
Reduced MIP has }161\mathrm{ rows, 265 columns, and 3725 nonzeros.
Reduced MIP has }130\mathrm{ binaries, O generals, O SOSs, and O indicators.
Clique table members: 26.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 4 threads.
Root relaxation solution time = 0.00 sec. (2.05 ticks)
```


Cutting Off 2

Balanced Team Assignment

Active start . . .

Nodes				Cuts/				
	Node	Left	Objective	IInf	Best Integer	Best Node	ItCnt	Gap
*	0+	+ 0			7040.0000	0.0000		100.00\%
*	0+	+ 0			5350.0000	0.0000		100.00\%
*	0+	+ 0			3663.0000	0.0000		100.00\%
*	$0+$	$+0$			2046.0000	0.0000		100.00\%
	0	0	0.0000	59	2046.0000	0.0000	96	100.00\%
	0	0	0.0000	61	2046.0000	Cuts: 53	160	100.00\%
	0	0	0.0000	58	2046.0000	Cuts: 43	198	100.00\%
	0	0	0.0000	59	2046.0000	Cuts: 46	239	100.00\%
*	0+	$+0$			250.0000	0.0000		100.00\%
*	0+	+ 0			214.0000	0.0000		100.00\%
	0	2	0.0000	59	214.0000	0.0000	239	100.00\%
Elapsed time $=0.22 \mathrm{sec} .(119.41$ ticks, tree $=0.01 \mathrm{MB}$)								
	400	313	146.6960	36	214.0000	8.1151	7686	96.21\%
	1560	1382	0.0000	58	214.0000	13.1250	24013	93.87\%
	2897	1009	94.3370	44	214.0000	19.5907	36284	90.85\%
	5964	3822	123.6801	34	214.0000	29.8294	62569	86.06\%
	9387	6483	189.0373	31	214.0000	34.5987	85532	83.83\%
	13094	9402	182.9750	25	214.0000	37.4645	113694	82.49\%
	16884	13240	65.0250	48	214.0000	39.4557	150255	81.56\%

Cutting Off 2

Balanced Team Assignment

. . . but after a day, the tree is still growing . . .

NodeNodes Left	Objective	IInf	Best Integer	Cuts/ Best Node	ItCnt	Gap
239571977208155760	139.9859	49	212.0000	131.3092	$1.84 \mathrm{e}+09$	38.06\%
239710829208285367	204.9129	20	212.0000	131.3145	$1.85 \mathrm{e}+09$	38.06\%
239843771208395047	137.6135	42	212.0000	131.3193	$1.85 \mathrm{e}+09$	38.06\%
239955358208492610	145.4060	44	212.0000	131.3234	$1.85 \mathrm{e}+09$	38.06\%
240087477208609769	171.3730	28	212.0000	131.3282	$1.85 \mathrm{e}+09$	38.05\%
240195933208699779	172.5904	39	212.0000	131.3322	$1.85 \mathrm{e}+09$	38.05\%
240314799208804386	190.5755	30	212.0000	131.3364	$1.85 \mathrm{e}+09$	38.05\%
240409481208885021	197.7286	36	212.0000	131.3400	$1.85 \mathrm{e}+09$	38.05\%
240533493208992546	173.2190	36	212.0000	131.3443	$1.85 \mathrm{e}+09$	38.05\%
Elapsed time $=92376.55 \mathrm{sec} .(44895207.38$ ticks, tree $=102570.01 \mathrm{MB})$ Nodefile size $=100522.01 \mathrm{MB}$ (50524.20 MB after compression)						
240665098209102490	cutoff		212.0000	131.3490	$1.85 \mathrm{e}+09$	38.04\%
240767864209195103	180.6965	30	212.0000	131.3528	$1.85 \mathrm{e}+09$	38.04\%
240872761209278303	156.8931	34	212.0000	131.3566	$1.85 \mathrm{e}+09$	38.04\%
240969723209369979	197.2533	23	212.0000	131.3600	$1.85 \mathrm{e}+09$	38.04\%
241071358209456164	173.0975	36	212.0000	131.3639	$1.85 \mathrm{e}+09$	38.04\%
<BREAK> (cplex)						

Cutting Off 2

Balanced Team Assignment

Definition of overlap for person i

```
minimize TotalOverlap:
    sum {i in PEOPLE} Overlap[i];
subj to OverlapDefn {i in PEOPLE, j in 1..numberGrps}:
    Overlap[i] >=
        sum {i2 in PEOPLE diff {i}: title[i2] = title[i]} Assign[i2,j] +
        sum {i2 in PEOPLE diff {i}: loc[i2] = loc[i]} Assign[i2,j] +
        sum {i2 in PEOPLE diff {i}: dept[i2] = dept[i]} Assign[i2,j] +
        sum {i2 in PEOPLE diff {i}: sex[i2] = sex[i]} Assign[i2,j]
            - maxOverlap[i] * (1 - Assign[i,j]);
```

* maxOverlap[i] must be \geq greatest overlap possible
* Smaller values give stronger lower bounds
* theoretically correct: $4 *$ (maxInGrp-1) $\rightarrow 0.0$
* empirically justified: 1 * (maxInGrp-1) $\rightarrow 160.5$

Cutting Off 2

Balanced Team Assignment

Group size limits

```
subj to GroupSize {j in 1..numberGrps}:
    minInGrp <= sum {i in PEOPLE} Assign[i,j] <= maxInGrp;
```

* minInGrp must be smaller than group size average
* maxInGrp must be larger than group size average
* Tighter limits give stronger lower bounds

```
* floor(card(PEOPLE)/numberGrps) - 1
        ceil (card(PEOPLE)/numberGrps) + 1 -> 160.5
* floor(card(PEOPLE)/numberGrps)
        ceil (card(PEOPLE)/numberGrps) }\quad->\quad179.
```

Cutting Off 2

Balanced Team Assignment

Group sizes

```
param minInGrp := floor (card(PEOPLE)/numberGrps);
param nMinInGrp := numberGrps - card{PEOPLE} mod numberGrps;
subj to GroupSizeMin {j in 1..nMinInGrp}:
    sum {i in PEOPLE} Assign[i,j] = minInGrp;
subj to GroupSizeMax {j in nMinInGrp+1..numberGrps}:
    sum {i in PEOPLE} Assign[i,j] = minInGrp + 1;
```

* Specify exact sizes of all groups
* Exact sizes give stronger lower bounds
$*$ tightened limits on group sizes $\quad \rightarrow \quad 179.6$
* exact sizes $\quad \rightarrow \quad 183.4$

Cutting Off 2

Balanced Team Assignment

Incorporating enhancements . . .

```
ampl: model gs1f.mod;
ampl: data gs1b.dat;
ampl: option solver cplex;
ampl: solve;
MIP Presolve eliminated 54 rows and O columns.
MIP Presolve modified 2636 coefficients.
Reduced MIP has }197\mathrm{ rows, 156 columns, and 2585 nonzeros.
Reduced MIP has }130\mathrm{ binaries, 0 generals, 0 SOSs, and 0 indicators.
Clique table members: 62.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 4 threads.
Root relaxation solution time = 0.00 sec. (7.44 ticks)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Nodes} & \multicolumn{5}{|c|}{Cuts/} \\
\hline & Node & & Objective & IInf & Best Integer & Best Node & ItCnt & Gap \\
\hline * & 0+ & 0 & & & 252.0000 & 67.0000 & & 73.41\% \\
\hline & 0 & 0 & 183.3626 & 134 & 252.0000 & 183.3626 & 221 & 27.24\% \\
\hline
\end{tabular}
```

Cutting Off 2

Balanced Team Assignment

Much more promising start . . .

Nodes			Cuts/				
Node	Left	Objective	IInf	Best Integer	Best Node	ItCnt	Gap
0	0	188.5842	101	252.0000	Fract: 6	312	25.16\%
0	0	190.3775	102	252.0000	Cuts: 34	661	24.45\%
0	0	190.4360	102	252.0000	Cuts: 34	718	24.43\%
* 0+	0			213.0000	190.4360		10.59\%
0	0	190.4566	108	213.0000	Cuts: 21	742	10.58\%
0	0	190.4836	106	213.0000	ZeroHalf: 6	762	10.57\%
0	0	190.4996	109	213.0000	Cuts: 8	896	10.56\%
0	0	190.4996	108	213.0000	Cuts: 6	966	10.56\%
0	0	190.5034	103	213.0000	ZeroHalf: 5	1114	10.56\%
* 0+	+ 0			212.0000	190.5034		10.14\%
0	2	191.1850	96	212.0000	191.2729	1114	9.78\%
time $=0.45 \mathrm{sec} .(223.73$ ticks, tree $=0.01 \mathrm{MB})$							
400	217	196.0433	84	212.0000	192.1349	15455	9.37\%
1066	837	194.3365	83	212.0000	192.9949	46312	8.96\%
2125	1634	204.7708	61	212.0000	193.8977	79334	8.54\%
2563	2144	193.6414	85	212.0000	194.3378	103542	8.33\%
2937	252	cutoff		212.0000	194.8663	114249	8.08\%
3980	1077	198.4457	54	212.0000	196.0000	139800	7.55\%

Cutting Off 2

Balanced Team Assignment

. . . leads to successful conclusion, in about an hour

Node	Nodes Left	Objective	IInf	Best Integer	Cuts/ Best Node	ItCnt	Gap
9667211	250649	cutoff		212.0000	210.6795	$1.41 \mathrm{e}+08$	0.62\%
9692898	226492	cutoff		212.0000	210.7083	$1.41 \mathrm{e}+08$	0.61\%
Elapsed time $=4110.01 \mathrm{sec} .(2381795.04$ ticks, tree $=231.60 \mathrm{MB})$							
9718729	201471	cutoff		212.0000	210.7384	$1.41 \mathrm{e}+08$	0.60\%
9745282	176469	cutoff		212.0000	210.7647	$1.41 \mathrm{e}+08$	0.58\%
9772348	151900	210.8483	28	212.0000	210.8000	$1.41 \mathrm{e}+08$	0.57\%
9799557	124671	cutoff		212.0000	210.8333	$1.41 \mathrm{e}+08$	0.55\%
9827583	95183	cutoff		212.0000	210.8765	$1.41 \mathrm{e}+08$	0.53\%
9856180	69947	cutoff		212.0000	210.9271	$1.41 \mathrm{e}+08$	0.51\%
9885302	43185	cutoff		212.0000	211.0000	$1.42 \mathrm{e}+08$	0.47\%
9911861	19735	cutoff		212.0000	211.0000	$1.42 \mathrm{e}+08$	0.47\%
Mixed integer rounding cuts applied: 948							
Zero-half cuts applied: 16							
Lift and project cuts applied: 19							
Gomory fractional cuts applied: 5							
CPLEX 12.8.0.0: optimal integer solution; objective 212141832373 MIP simplex iterations							
9931504 branch-and-bound nodes							

Reformulating 1

Integer Quadratic Objectives

General form
\therefore Minimize $x^{T} Q x+q x$
Convex case

* Q positive semi-definite
* Test numerically using elimination on Q

Reformulating 1

Binary Convex

Sample model...

```
param n > 0;
param c {1..n} > 0;
var X {1..n} binary;
minimize Obj:
    (sum {j in 1..n} c[j]*X[j])~2;
subject to SumX: sum {j in 1..n} j * X[j] >= 50*n+3;
```

Reformulating 1

Binary Convex (cont'd)

CPLEX 12.5

```
ampl: solve;
Cover cuts applied: 2
Zero-half cuts applied: 1
Total (root+branch&cut) = 0.42 sec.
CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap;
objective 29576.27517
286 MIP simplex iterations
102 branch-and-bound nodes
```

$$
(n=200)
$$

Reformulating 1

Binary Convex (cont'd)

CPLEX 12.6

```
ampl: solve;
MIP Presolve added 39800 rows and 19900 columns.
Reduced MIP has }39801\mathrm{ rows, }20100\mathrm{ columns, and }79800\mathrm{ nonzeros.
Reduced MIP has 20100 binaries, O generals, and O indicators.
Cover cuts applied: 8
Zero-half cuts applied: 5218
Gomory fractional cuts applied: 6
Total (root+branch&cut) = 2112.63 sec.
CPLEX 12.6.0: optimal integer solution; objective 29576.27517
4 7 4 3 3 0 ~ M I P ~ s i m p l e x ~ i t e r a t i o n s
294 branch-and-bound nodes
```

Reformulating 1

Binary Convex Strategies

Quadratic branch-and-bound (CPLEX 12.5)

* Solve a continuous QP at each node

Conversion to linear (CPLEX 12.6)

* Replace each objective term $x_{i} x_{j}$ by binary $y_{i j} \geq x_{i}+x_{j}-1$
* Solve a larger continuous LP at each node
. . . option for 12.5 behavior added to 12.6.1

Reformulating 1

Binary Nonconvex

Sample model...

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} binary;
var Y {1..n} binary;
minimize Obj:
    (sum {i in 1..n} c[i]*X[i]) * (sum {j in 1..n} d[j]*Y[j]);
subject to SumX: sum {i in 1..n} j * X[i] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;
subject to SumXY: sum {k in 1..n} (X[k] + Y[k]) = n;
```

Reformulating 1

Binary Nonconvex (cont'd)

CPLEX 12.5

```
ampl: solve;
Repairing indefinite Q in the objective.
Total (root+branch&cut) = 1264.34 sec.
CPLEX 12.5.0: optimal integer solution within mipgap or absmipgap;
objective 290.1853405
23890588 MIP simplex iterations
14092725 branch-and-bound nodes
```

$$
(n=50)
$$

Reformulating 1

Binary Nonconvex (cont'd)

CPLEX 12.6

```
ampl: solve;
MIP Presolve added }5000\mathrm{ rows and 2500 columns.
Reduced MIP has }5003\mathrm{ rows, }2600\mathrm{ columns, and 10200 nonzeros.
Reduced MIP has 2600 binaries, O generals, and O indicators.
Total (root+branch&cut) = 6.05 sec.
CPLEX 12.6.0: optimal integer solution; objective 290.1853405
126643 MIP simplex iterations
1926 branch-and-bound nodes
```

Reformulating 1

Binary Nonconvex Strategies

Conversion to convex quadratic (CPLEX 12.5)

* Add $M_{j}\left(x_{j}^{2}-x_{j}\right)$ to objective as needed to convexify
* Solve a continuous QP at each node

Conversion to linear (CPLEX 12.6)

* Replace each objective term $x_{i} x_{j}$ by binary $y_{i j} \geq x_{i}+x_{j}-1$
* Solve a larger continuous LP at each node
. . . algorithms same as before

Reformulating 1

Binary \times General Nonconvex

Reformulation of sample model . . .

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} binary;
var Y {1..n} binary;
var Ysum;
# minimize Obj:
# (sum {i in 1..n} c[i]*X[i]) * (sum {j in 1..n} d[j]*Y[j]);
minimize Obj:
    (sum {i in 1..n} c[i]*X[i]) * Ysum;
subj to YsumDefn: Ysum = sum {j in 1..n} d[j]*Y[j];
subject to SumX: sum {i in 1..n} j * X[i] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;
subject to SumXY: sum {k in 1..n} (X[k] + Y[k]) = n;
```

Reformulating 1

Binary \times General Nonconvex (cont'd)
 CPLEX 12.5

```
ampl: solve;
CPLEX 12.5.0: QP Hessian is not positive semi-definite.
```

Reformulating 1

Binary \times General Nonconvex (cont'd)
 CPLEX 12.6

```
ampl: solve;
MIP Presolve added }100\mathrm{ rows and }50\mathrm{ columns.
Reduced MIP has }104\mathrm{ rows, }151\mathrm{ columns, and 451 nonzeros.
Reduced MIP has }100\mathrm{ binaries, 0 generals, and 0 indicators.
Total (root+branch&cut) = 0.17 sec.
CPLEX 12.6.0: optimal integer solution; objective 290.1853405
7850 MIP simplex iterations
1667 branch-and-bound nodes
```

Reformulating 1

Binary \times General Nonconvex Strategies

Conversion to binary \times general linear
$*$ Replace sum of binaries by general $y_{\text {sum }}=\sum_{j=1}^{n} d_{j} y_{j}$

* Replace each objective term $x_{i} y_{\text {sum }}$ by $z_{i} \geq L x_{i}, z_{i} \geq y_{\text {sum }}-U\left(1-x_{i}\right)$, where $L \leq y_{\text {sum }} \leq U$
* Introduce fewer but more complex variables, constraints

Many refinements and generalizations

* F. Glover and E. Woolsey, Further reduction of zero-one polynomial programming problems to zero-one linear programming problems (1973)
* F. Glover, Improved linear integer programming formulations of nonlinear integer problems. Management Science 22 (1975) 455-460.
* M. Oral and O. Kettani, A linearization procedure for quadratic and cubic mixedinteger problems. Operations Research 40 (1992) S109-S116.
* W.P. Adams and R.J. Forrester, A simple recipe for concise mixed 0-1 linearizations. Operations Research Letters 33 (2005) 55-61.

Reformulating 1

General Nonconvex

Neither integer variable is binary

```
param n > 0;
param c {1..n} > 0;
param d {1..n} > 0;
var X {1..n} integer >= 0, <= 2;
var Y {1..n} integer >= 0, <= 2;
minimize Obj:
    (sum {j in 1..n} c[j]*X[j]) * (sum {j in 1..n} d[j]*Y[j]);
subject to SumX: sum {i in 1..n} j * X[i] >= 2*n+3;
subject to SumY: sum {j in 1..n} j * Y[j] >= 2*n+3;
subject to SumXY: sum {k in 1..n} (X[k] + Y[k]) = n;
```

Reformulating 1

General Nonconvex (cont'd)

CPLEX default setting

```
ampl: solve;
```

CPLEX 12.6.3: QP Hessian is not positive semi-definite.

Reformulating 1

General Nonconvex (cont'd)

CPLEX setting to request nonconvex solve

```
ampl: solve;
CPLEX 12.6.3.0: reqconvex 3
mipdisplay 2
mipinterval }100
Reduced MIQP has }3\mathrm{ rows, }440\mathrm{ columns, and }80\mathrm{ nonzeros.
Reduced MIQP has O binaries, 40 generals, O SOSs, and O indicators.
Reduced MIQP objective Q matrix has }800\mathrm{ nonzeros.
Total (root+branch&cut) = 758.41 sec.
CPLEX 12.6.3: optimal integer solution within mipgap or absmipgap;
    objective 69.30360303
8447893 MIP simplex iterations
6 3 7 9 3 7 \text { branch-and-bound nodes}
absmipgap = 0.00675848, relmipgap = 9.75199e-05
```

Reformulating 1

General Nonconvex (cont'd)

BARON (general nonlinear global solver)

```
ampl: solve;
BARON 16.7.29 (2016.07.29)
This BARON run may utilize the following subsolver(s)
For LP/MIP: CLP/CBC
For NLP: IPOPT, FILTERSD
Wall clock time: }50.6
Total CPU time used: 29.92
BARON 16.7.29 (2016.07.29): 708 iterations,
    optimal within tolerances.
Objective 69.30360303
```

Reformulating 1

General Nonconvex (cont'd)

BARON using CPLEX

```
ampl: solve;
BARON 16.7.29 (2016.07.29): lpsolver cplex
This BARON run may utilize the following subsolver(s)
For LP/MIP: ILOG CPLEX
For NLP: IPOPT, FILTERSD
Wall clock time: 0.41
Total CPU time used: 0.38
BARON 16.7.29 (2016.07.29): 15 iterations,
    optimal within tolerances.
Objective 69.30360303
```

Reformulating 1

General Nonconvex (cont'd)

Knitro

```
ampl: solve;
Times (seconds):
Input = 0
Solve = 0.046875
Output = 0
Knitro 10.3.0: Locally optimal solution.
objective 69.30360303; integrality gap -29.8
7 nodes; 14 subproblem solves; feasibility error 0
O iterations; 161 function evaluations
```

Reformulating 1

General Nonconvex Strategies

Nonconvex extension to quadratic MIP solver

Global nonlinear solver

* Using built-in open source solvers
* Using commercial solvers
* For linear MIP subproblems
* For nonlinear subproblems

Local nonlinear solver

* Solving once from default initial values
* Solving many times from generated initial values

Reformulating 2

Constrained Roll Cutting

Additional restrictions on cutting solution

* No overage (fill all orders exactly)
* . . and also at most 2% waste per pattern
* At most 8 widths per pattern
* . . . and also at most 10% waste per pattern

Reformulating 2

Constrained Roll Cutting

Sample data

```
param roll_width := 349 ;
param: WIDTHS: orders :=
\(28.75 \quad 7\)
    33.75 23
    34.75 23
    37.75 31
    38.75 10
    39.75 39
    40.75 58
    41.75 47
    42.25 19
    4 4 . 7 5 ~ 1 3
    45.75 26 ;
```

. . . Zeger Degraeve and Linus Schrage, "Optimal Integer Solutions to Industrial Cutting Stock Problems" INFORMS Journal on Computing 11 (1999) 406-419, Table VIII

Reformulating 2

Constrained Roll Cutting (CPLEX)

Pattern generation

* 33.78 rolls in continuous relaxation
* 40 rolls rounded up to integer
* 35 rolls solving IP using generated patterns

Pattern enumeration

* 54,508 non-dominated patterns
* 34 rolls solving IP using enumerated patterns
* 778 branch-and-bound nodes

No overage: change $>=t o=$

* 34 rolls solving IP using enumerated patterns
* 0 branch-and-bound nodes
. . . all subsequent tests include this condition

Reformulating 2

Constrained Roll Cutting (Gurobi)

Pattern generation

* 33.78 rolls in continuous relaxation
* 40 rolls rounded up to integer
* 35 rolls solving IP using generated patterns

Pattern enumeration

* 54,508 non-dominated patterns
* 34 rolls solving IP using enumerated patterns
* 0 branch-and-bound nodes

No overage: change $>=t o=$

* 34 rolls solving IP using enumerated patterns
* 1198 branch-and-bound nodes
. . . all subsequent tests include this condition

Reformulating 2

Roll Ordering with Side Constraints

At most 2% waste in any pattern

* 16,362 non-dominated patterns
* CPLEX: No feasible solution???

```
CPLEX 12.8.0.0: mipdisplay 2
Reduced MIP has }11\mathrm{ rows, 16280 columns, and 85544 nonzeros.
Reduced MIP has 1619 binaries, 14661 generals, O SOSs, and O indicators.
    Nodes Cuts/
Node Left Objective IInf Best Integer Best Bound ItCnt Gap
    0 0 33.7825 11 33.7825 130
    0 0 33.8056 11 Cuts: 14 138
\begin{tabular}{lllll}
2975980 & 2609535 & 33.8039 & 6 & 33.8889 \\
2980187 & 7368912 \\
2612999 & 33.7831 & 8 & 33.8889 & 7378677
\end{tabular}
Elapsed time = 5754.84 sec. (2808509.95 ticks, tree = 36829.29 MB)
Nodefile size = 34781.51 MB (3761.09 MB after compression)
\begin{tabular}{lrlrl}
29842572614892 & 33.7896 & 6 & 33.8889 & 7383663 \\
29883102617413 & 33.7913 & 6 & 33.8889 & 7391068 \\
2992415 & 2621640 & 33.8100 & 7 & 33.8889 \\
2996658 & 2627718 & 33.8039 & 6 & 33.8889 \\
30007492630289 & infeasible & & 7420016 \\
& & & 33.8889 & 7426966
\end{tabular}
```

Reformulating 2

Roll Ordering with Side Constraints

At most 2% waste in any pattern

* 16,362 non-dominated patterns
* Gurobi: Feasible solution eventually ...

```
Gurobi 7.5.0: outlev 1
Optimize a model with }11\mathrm{ rows, }16280\mathrm{ columns and }85544\mathrm{ nonzeros
Variable types: 0 continuous, }16280\mathrm{ integer (1619 binary)
    Nodes | Current Node | Objective Bounds | Work
    Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
```



```
        0 0 33.78247 0 13 - < 33.78247 - - 1s
        63086 42651 33.79214 492 9 - 33.78355 - 3.5 170s
        65932 45329 33.80299 513 8 - 33.78355 - 3.4 177s
        67710 46954 33.80000 313 5 - 33.78355 - 3.4 180s
        70780 49741 33.80187 488 9 - 33.78355 - 3.4 185s
H71489 13 34.0000000 33.78355 0.64% 3.4 186s
Gurobi 7.5.0: optimal solution; objective 34
245585 simplex iterations
71587 branch-and-cut nodes
```

Reformulating 2

Roll Ordering with Side Constraints

At most 2% waste in any pattern

* Minimize total cut rolls instead

```
minimize RawRollsCut:
    sum {j in 1..nPAT} Cut[j];
minimize OrderedWidthsCut:
    sum {j in 1..nPAT} (sum {i in WIDTHS} nbr[i,j]) * Cut[j];
```

* 296 cut rolls (= 296 orders) in optimal solution
* 34 raw rolls in that solution

Solution times

	CPLEX	Gurobi
RawRollsCut (=)	>5000	187
OrderedWidthsCut (=)	1	19
OrderedWidthsCut (>=)	261	<1

Roll Ordering with Side Constraints

At most 8 widths in any pattern

* 13,877 non-dominated patterns having at most 8 widths
* 312 cut rolls (>296 orders) in optimal solution
* 39 raw rolls in that solution
* all feasible solutions have overage!

Allow more patterns

* generate 9 -width patterns with one width removed
* 200,186 patterns, some dominated
* 296 cut rolls ($=296$ orders) in optimal solution
* 37 raw rolls in that solution
* 2 seconds solution time, solved at root node

Roll Ordering with Side Constraints

At most 8 widths and 10% waste in any pattern

* 21,098 patterns, some dominated
* 296 cut rolls (= 296 orders) in optimal solution
* 37 raw rolls in that solution
* < 1 second solution time, solved at root node

