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In general terms,
 Given a function of some decision variables
 Choose values of the variables to

make the function as large or as small as possible
 Subject to restrictions on the values of the variables

In practice,
 A paradigm for a very broad variety of problems
 A successful approach for finding solutions
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Mathematical Optimization
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Method-based vs. model-based approaches
 Example 1: Unconstrained optimization
 Example 2: Balanced assignment
 Example 3: Linear regression

Modeling languages for model-based optimization
 Executable languages
 Declarative languages

Solvers for model-based optimization
 “Linear” solvers
 “Nonlinear” solvers
 Other solver types
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Outline: Model-Based Optimization
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An example from calculus
 Min/Max 𝑓 𝑥 , . . . , 𝑥

. . . where 𝑓 is a smooth (differentiable) function

Approach #1
 Form 𝛻𝑓 𝑥 , . . . , 𝑥 0
 Find an expression for the solution to these equations

Approach #2
 Choose a starting point 𝐱 𝑥 , . . . , 𝑥

 Iterate 𝐱 𝐱 𝐝,  where 𝛻 𝑓 𝐱 · 𝐝 𝛻𝑓 𝐱
. . . until the iterates converge

What makes these approaches different?
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Example #1: Unconstrained Optimization
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Approach #1:  Method-oriented
 Finding an expression that solves 𝛻𝑓 𝑥 , . . . , 𝑥 0

. . . requires a different “method” for each new form of 𝑓

Approach #2:  Model-oriented
 Choosing 𝑓 to model your problem

. . . the same iteration procedure applies to any 𝑓 and 𝐱

. . . can be implemented by general, off-the-shelf software

Am I leaving something out?
 To solve 𝛻 𝑓 𝐱 · 𝐝 𝛻𝑓 𝐱 ,

you need to form 𝛻 and 𝛻 for the given 𝑓
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Where You Put the Most Effort
What makes these approaches different?
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Modeling
 Describing of 𝑓 as a function of variables

Evaluation
 Computing 𝑓 𝐱 from the description
 Computing 𝛻𝑓 𝐱 , 𝛻 𝑓 𝐱 by automatic differentiation

Solution
 Applying the iterative algorithm

 Computing the iterates
 Testing for convergence

Send to an off-the-shelf solver?
 Choice of excellent smooth constrained nonlinear solvers
 Differentiable unconstrained optimization is a special case

10

No . . . Software Can Handle Everything
Am I leaving something out?



Model-Based Optimization
INFORMS International 2018, Taipei — 18 June 2018

A small test case for solvers
 https://en.wikipedia.org/wiki/Shekel_function
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Example 1a: Shekel Function
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Given
𝑚 number of locally optimal points
𝑛 number of variables

and
𝑎 for each 𝑖 1, . . . , 𝑚 and 𝑗 1, . . . , 𝑛
𝑐 for each 𝑖 1, . . . , 𝑚 

Determine
𝑥𝑗 for each 𝑗 1, . . . , 𝑛

to maximize
∑ 1/ 𝑐 ∑ 𝑥 𝑎
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Mathematical Formulation
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Modeling Language Formulation
Symbolic model (AMPL)

param m integer > 0;
param n integer > 0;

param a {1..m, 1..n};
param c {1..m};

var x {1..n};

maximize objective:
sum {i in 1..m} 1 / (c[i] + sum {j in 1..n} (x[j] - a[i,j])^2);

∑ 1/ 𝑐 ∑ 𝑥 𝑎
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Modeling Language Data
Explicit data (independent of model)

param m := 5 ;
param n := 4 ;

param a:  1   2   3   4  :=
1    4   4   4   4
2    1   1   1   1
3    8   8   8   8
4    6   6   6   6
5    3   7   3   7  ;

param c :=
1   0.1
2   0.2
3   0.2
4   0.4
5   0.4 ;
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Modeling Language Solution
Model + data = problem instance to be solved

ampl: model shekelEX.mod;
ampl: data shekelEX.dat;

ampl: option solver knitro;

ampl: solve;

Knitro 10.3.0: Locally optimal solution.
objective 5.055197729; feasibility error 0
6 iterations; 9 function evaluations

ampl: display x;

x [*] :=
1  1.00013
2  1.00016
3  1.00013
4  1.00016
;
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Modeling Language Solution
. . . again with multistart option 

ampl: model shekelEX.mod;
ampl: data shekelEX.dat;

ampl: option solver knitro;
ampl: option knitro_options 'ms_enable=1 ms_maxsolves=100';

ampl: solve;

Knitro 10.3.0: Locally optimal solution.
objective 10.15319968; feasibility error 0
43 iterations; 268 function evaluations

ampl: display x;

x [*] :=
1  4.00004
2  4.00013
3  4.00004
4  4.00013
;
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Solution (cont’d)
. . . again with a “global” solver

ampl: model shekelEX.mod;
ampl: data shekelEX.dat;

ampl: option solver baron;

ampl: solve;

BARON 17.10.13 (2017.10.13): 
43 iterations, optimal within tolerances.
Objective 10.15319968

ampl: display x;

x [*] :=
1  4.00004
2  4.00013
3  4.00004
4  4.00013
;
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Example 1b: Protein Folding
Objective

 For a given protein molecule,
find the configuration that has lowest energy

 Sum of 6 energy expressions defined in terms of variables

Variables
 Decision variables: positions of atoms
 Variables defined in terms of other variables: 22 kinds

Data
 8 index sets
 30 collections of parameters, indexed over various sets
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Modeling Language Formulation
Problem variables & some defined variables

var x {i in Atoms, j in D3} := x0[i,j];

var aax {i in Angles, j in D3} = x[it[i],j] - x[jt[i],j];
var abx {i in Angles, j in D3} = x[kt[i],j] - x[jt[i],j];

var a_axnorm {i in Angles} = sqrt(sum{j in D3} aax[i,j]^2);
var a_abdot {i in Angles} = sum {j in D3} aax[i,j]*abx[i,j];

.......

var cosphi {i in Torsions} = (sum{j in D3} ax[i,j]*bx[i,j])
/ sqrt(sum{j in D3} ax[i,j]^2)
/ sqrt(sum{j in D3} bx[i,j]^2);

var term {i in Torsions} = if np[i] == 1 then cosphi[i]
else if np[i] == 2 then 2*cosphi[i]^2 — 1
else 4*cosphi[i]^3 - 3*cosphi[i];
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Modeling Language Formulation
Some more defined variables

var rinv14{i in Pairs14} = 
1. / sqrt( sum{j in D3} (x[i14[i],j] - x[j14[i],j])^2 );

var r614{i in Pairs14} = 
((sigma[i14[i]] + sigma[j14[i]]) * rinv14[i]) ^ 6;

var rinv{i in Pairs} = 
1. / sqrt( sum{j in D3} (x[inb[i],j] - x[jnb[i],j])^2 );

var r6{i in Pairs} = 
((sigma[inb[i]] + sigma[jnb[i]]) * rinv[i]) ^ 6;
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Modeling Language Formulation
Components of total energy

var bond_energy = sum {i in Bonds} fcb[i] *
(sqrt( sum {j in D3} (x[ib[i],j] - x[jb[i],j])^2 ) - b0[i] ) ^ 2

var angle_energy = sum {i in Angles} fct[i] * 
(atan2 (sqrt( sum{j in D3} 

(abx[i,j]*a_axnorm[i] - a_abdot[i]/a_axnorm[i]*aax[i,j])^2),
a_abdot[i] ) - t0[i]) ^ 2

var torsion_energy =
sum {i in Torsions} fcp[i]*(1 + cos(phase[i])*term[i])

var improper_energy =
sum {i in Improper} (fcr[i] * idi[i]^2);
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Modeling Language Formulation
Components of total energy (cont’d)

var pair14_energy =
sum {i in Pairs14} ( 332.1667*q[i14[i]]*q[j14[i]]*rinv14[i]*0.5

+ sqrt(eps[i14[i]]*eps[j14[i]])*(r614[i]^2 - 2*r614[i]) );

var pair_energy =
sum{i in Pairs} ( 332.1667*q[inb[i]]*q[jnb[i]]*rinv[i]

+ sqrt(eps[inb[i]]*eps[jnb[i]])*(r6[i]^2 - 2*r6[i]) );

minimize energy: 
bond_energy + angle_energy + torsion_energy +
improper_energy + pair14_energy + pair_energy;
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Modeling Language Data
Excerpts from parameter tables

param x0: 1                     2                     3           :=
1   0                     0                     0
2 1.0851518862529654    0                     0
3 -0.35807838634224287   1.021365666308466     0
4  -0.36428404194337122  -0.50505976829103794  -0.90115715381950734
5  -0.52386736173121617  -0.69690490803763017   1.2465998798976687
.......

param: ib jb  fcb         b0 :=
1   1  2  340.000000  1.09000000
2   1  3  340.000000  1.09000000
3   1  4  340.000000  1.09000000

.......

param : inb jnb :=
1    1   10
2    1   11
3    1   12

.......
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Solution
Local optimum from Knitro run

ampl: model pfold.mod;
ampl: data pfold3.dat;

ampl: option solver knitro;
ampl: option show_stats 1;

ampl: solve;

Substitution eliminates 762 variables.
Adjusted problem:
66 variables, all nonlinear
0 constraints
1 nonlinear objective; 66 nonzeros.

Knitro 10.3.0: Locally optimal solution.
objective -32.38835099; feasibility error 0
13 iterations; 20 function evaluations
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Solution
Local optimum from Knitro multistart run

ampl: model pfold.mod;
ampl: data pfold3.dat;

ampl: option solver knitro;
ampl: knitro_options 'ms_enable=1 ms_maxsolves=100';

ampl: solve;

Knitro 10.3.0: ms_enable=1
ms_maxsolves=100

Knitro 10.3.0: Locally optimal solution.
objective -32.39148536; feasibility error 0
3349 iterations; 4968 function evaluations
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Solution
Details from Knitro run

Number of nonzeros in Hessian:  2211

Iter       Objective   FeasError    OptError    ||Step||    CGits 
0  -2.777135e+001  0.000e+000
1  -2.874955e+001  0.000e+000  1.034e+001  5.078e-001      142
2  -2.890054e+001  0.000e+000  1.361e+001  1.441e+000        0
...
11  -3.238833e+001  0.000e+000  6.225e-002  9.557e-002        0
12  -3.238835e+001  0.000e+000  8.104e-004  3.341e-003        0
13  -3.238835e+001  0.000e+000  8.645e-009  1.390e-005        0

# of function evaluations           =         20
# of gradient evaluations           =         14
# of Hessian evaluations            =         13

Total program time (secs)           =       0.022
Time spent in evaluations (secs)    =       0.009
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Example #2: Balanced Assignment
Motivation

 meeting of employees from around the world

Given
 several employee categories

(title, location, department, male/female)
 a specified number of project groups

Assign
 each employee to a project group

So that
 the groups have about the same size
 the groups are as “diverse” as possible with respect to all categories

27
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Method-Based Approach
Define an algorithm to build a balanced assignment

 Start with all groups empty
 Make a list of people (employees)
 For each person in the list:

 Add to the group whose resulting “sameness” will be  least

Balanced Assignment

Initialize all groups G = { }

Repeat for each person p
sMin = Infinity

Repeat for each group G
s = total "sameness" in G ∪ {p}

if s < sMin then
sMin = s
GMin = G

Assign person p to group GMin

28
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Method-Based Approach (cont’d)
Define a computable concept of “sameness”

 Sameness of a pair of people:
 Number of categories in which they are the same

 Sameness in a group:
 Sum of the sameness of all pairs of people in the group

Refine the algorithm to get better results
 Reorder the list of people
 Locally improve the initial “greedy” solution

by swapping group members
 Seek further improvement through 

local search metaheuristics
 What are the neighbors of an assignment?
 How can two assignments combine to create a better one?

Balanced Assignment

29
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Model-Based Approach
Formulate a “minimal sameness” model

 Define decision variables for assignment of people to groups
 𝑥 1 if person 1 assigned to group 𝑗
 𝑥 0 otherwise

 Specify valid assignments through constraints on the variables
 Formulate sameness as an objective to be minimized

 Total sameness = sum of the sameness of all groups

Send to an off-the-shelf solver
 Choice of excellent linear-quadratic mixed-integer solvers
 Zero-one optimization is a special case

Balanced Assignment

30
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Model-Based Formulation
Given

𝑃 set of people
𝐶 set of categories of people
𝑡 type of person 𝑖 within category 𝑘, for all 𝑖 ∈ 𝑃, 𝑘 ∈ 𝐶

and
𝐺 number of groups
𝑔 lower limit on people in a group
𝑔 upper limit on people in a group

Define
𝑠 | 𝑘 ∈ 𝐶: 𝑡 𝑡 |,  for all 𝑖 ∈ 𝑃, 𝑖 ∈ 𝑃

sameness of persons 𝑖 and 𝑖

Balanced Assignment

31
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Determine
𝑥 ∈ 0,1 1 if person 𝑖 is assigned to group 𝑗

0 otherwise, for all 𝑖 ∈ 𝑃, 𝑗 1, . . . , 𝐺

To minimize
∑ ∑ 𝑠  ∑ 𝑥∈ 𝑥∈

total sameness of all pairs of people in all groups

Subject to
∑ 𝑥 1,  for each 𝑖 ∈ 𝑃

each person must be assigned to one group

𝑔 ∑ 𝑥∈ 𝑔 , for each 𝑗 1, . . . , 𝐺
each group must be assigned an acceptable number of people

32

Model-Based Formulation (cont’d)
Balanced Assignment
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Model-Based Solution
Optimize with an off-the-shelf solver

Choose among many alternatives
 Linearize and send to a mixed-integer linear solver

 CPLEX, Gurobi, Xpress; CBC

 Send quadratic formulation to a mixed-integer solver
that automatically linearizes products involving binary variables
 CPLEX, Gurobi, Xpress

 Send quadratic formulation to a nonlinear solver
 Mixed-integer nonlinear: Knitro, BARON
 Continuous nonlinear (might come out integer): MINOS, Ipopt, . . .

Balanced Assignment

33
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Where Is the Work?
Method-based

 Programming an implementation of the method

Model-based
 Constructing a formulation of the model

Balanced Assignment

34
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Complications in Balanced Assignment
“Total Sameness” is problematical

 Hard for client to relate to goal of diversity
 Minimize “total variation” instead

 Sum over all types: most minus least assigned to any group

Client has special requirements
 No employee should be “isolated” within their group

 No group can have exactly one woman
 Every person must have a group-mate

from the same location and of equal or adjacent rank

Room capacities are variable
 Different groups have different size limits
 Minimize “total deviation”

 Sum over all types: greatest violation of target range for any group

35
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Method-Based (cont’d)
Revise or replace the original solution approach

 Total variation is less suitable to a greedy algorithm

Re-think improvement procedures
 Total variation is harder to locally improve
 Client constraints are challenging to enforce

Update or re-implement the method
 Even small changes to the problem can necessitate 

major changes to the method and its implementation

Balanced Assignment

36
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Add variables
𝑦 fewest people of category 𝑘, type 𝑙 in any group,
𝑦 most people of category 𝑘, type 𝑙 in any group,

for each 𝑘 ∈ 𝐶, 𝑙 ∈ 𝑇 ⋃ 𝑡∈  

Add defining constraints
𝑦 ∑ 𝑥∈ : ,  for each 𝑗 1, . . . , 𝐺;  𝑘 ∈ 𝐶, 𝑙 ∈ 𝑇

𝑦 ∑ 𝑥∈ : ,  for each 𝑗 1, . . . , 𝐺;  𝑘 ∈ 𝐶, 𝑙 ∈ 𝑇

Minimize total variation
∑ ∑ 𝑦∈∈ 𝑦 )

. . . generalizes to handle varying group sizes

37

Model-Based (cont’d)
Balanced Assignment
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Model-Based (cont’d)
To express client requirement for women in a group, let

𝑄 𝑖 ∈ 𝑃: 𝑡 , ⁄ female

Add constraints
∑ 𝑥 0∈ or  ∑ 𝑥 2∈ ,  for each 𝑗 1, . . . , 𝐺

Balanced Assignment

38
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Model-Based (cont’d)
To express client requirement for women in a group, let

𝑄 𝑖 ∈ 𝑃: 𝑡 , ⁄ female

Define logic variables
𝑧 ∈ 0,1 1 if any women assigned to group 𝑗

0 otherwise, for all 𝑗 1, . . . , 𝐺

Add constraints relating logic to assignment variables
2𝑧 ∑ 𝑥 𝑄  𝑧∈ ,  for each 𝑗 1, . . . , 𝐺

Balanced Assignment

39
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Model-Based (cont’d)
To express client requirements for group-mates, let

𝑃 𝑖 ∈ 𝑃: 𝑡 , 𝑙 , 𝑡 , 𝑙 ,  for all 𝑙 ∈ 𝑇 , 𝑙 ∈ 𝑇

𝐴 ⊆ 𝑇 ranks adjacent to rank 𝑙, for all 𝑙 ∈ 𝑇

Add constraints
∑ 𝑥 0∈ or  ∑ 𝑥 ∑ ∑ 𝑥 2∈∈∈ ,

for each 𝑙 ∈ 𝑇 , 𝑙 ∈ 𝑇 ,  𝑗 1, . . . , 𝐺

Balanced Assignment

40
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Model-Based (cont’d)
To express client requirements for group-mates, let

𝑃 𝑖 ∈ 𝑃: 𝑡 , 𝑙 , 𝑡 , 𝑙 ,  for all 𝑙 ∈ 𝑇 , 𝑙 ∈ 𝑇

𝐴 ⊆ 𝑇 ranks adjacent to rank 𝑙, for all 𝑙 ∈ 𝑇

Define logic variables
𝑤 ∈ 0,1 1 if group 𝑗 has anyone from  location 𝑙 of rank 𝑙

0 otherwise,  for all 𝑙 ∈ 𝑇 , 𝑙 ∈ 𝑇 ,  𝑗 1, . . . , 𝐺

Add constraints relating logic to assignment variables

𝑤 ∑ 𝑥 𝑃  𝑤∈ ,  

∑ 𝑥 ∑ ∑ 𝑥 2𝑤∈∈∈ ,

for each 𝑙 ∈ 𝑇 , 𝑙 ∈ 𝑇 ,  𝑗 1, . . . , 𝐺

Balanced Assignment

41
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Given
 Observed vector 𝐲
 Regressor vectors 𝐱 , 𝐱 , . . . , 𝐱

Choose multipliers 𝛽 , 𝛽 , . . . , 𝛽 to . . .
 Approximate 𝐲 by ∑ 𝐱 𝛽
 Explain 𝐲 convincingly

42

Example #3: Linear Regression
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Iteratively improve choice of regressors
 Repeat

 Solve a minimum-error problem using a subset of the regressors
 Remove and re-add regressors as suggested by results

 Until remaining regressors are judged satisfactory

Results are varied
 Depends on interpretation and judgement of results
 “As much an art as a science”

43

Method-Based (traditional)
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Define a “best” choice of regressors
 Build a mixed-integer optimization model

 Objective function minimizes error
 Constraints specify desired properties of the regressor set 

Optimize with an off-the-shelf solver
 Many excellent choices available

 Linear-quadratic mixed-integer
 General nonlinear mixed-integer

44

Model-Based

Dimitris Bertsimas and Angela King, 
“An Algorithmic Approach to Linear Regression.” 

Operations Research 64 (2016) 2–16.
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Given
𝑚 number of observations
𝑛 number of regressors

and
𝑦 observations, for each 𝑖 1, . . . , 𝑚
𝑥 regressor values corresponding to observation 𝑖, 

for each 𝑗 1, . . . , 𝑛 and 𝑖 1, . . . , 𝑚

45

Algebraic Formulation
Linear Regression
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Determine
𝛽 Multiplier for regressor 𝑗, for each 𝑗 1, . . . , 𝑛
𝑧 1 if 𝛽 0: regressor 𝑗 is used,

0 if 𝛽 0: regressor 𝑗 is not used, for each 𝑗 1, . . . , 𝑛

to minimize

∑ 𝑦 ∑ 𝑥 𝛽  Γ ∑ 𝛽

Sum of squared errors 
plus “lasso” term for regularization and robustness

46

Algebraic Formulation
Linear Regression
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Subject to
𝑀𝑧 𝛽 𝑀𝑧 for all 𝑗 1, . . . , 𝑛

If the 𝑗 regressor is used then 𝑧 1
(where 𝑀 is a reasonable bound on 𝛽 )

∑ 𝑧 𝑘

At most 𝑘 regressors may be used

𝑧  . . . 𝑧 for 𝑗 , . . . , 𝑗 ∈ 𝒢𝒮 , 𝑝 1, . . . , 𝑛𝒢𝒮

All regressors in each group sparsity set 𝒢𝒮
are either used or not used

𝑧 𝑧 1 for all 𝑗 , 𝑗 ∈ ℋ𝒞

For any pair of highly collinear regressors,
only one may be used

47

Algebraic Formulation
Linear Regression
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Subject to
∑ 𝑧 1∈𝒯 for all 𝑝 1, . . . , 𝑛𝒯

For a regressor and any of its transformations,
only one may be used

𝑧 1 for all 𝑗 ∈ ℐ
Specified regressors must be used

∑ 𝑧 𝒮 1∈ for all 𝑝 1, . . . , 𝑛

Exclude previous solutions using 𝛽 , 𝑗 ∈ 𝑆

48

Algebraic Formulation
Linear Regression
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Problems hard to formulate for off-the-shelf solvers
 “Logic” constraints

 sequencing, scheduling, cutting, packing

 “Black box” functions
 simulations, approximations

Large, specialized applications
 Routing delivery trucks nationwide
 Finding shortest routes in mapping apps

Metaheuristic schemes
 Evolutionary methods, simulated annealing, . . .

Artificial intelligence and related computer science
 Constraint programming
 Training deep neural networks

49

Method-Based Remains Popular for . . .
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Diverse application areas
 Operations research & management science
 Business analytics
 Engineering & science
 Economics & finance

Diverse kinds of users
 Anyone who took an “optimization” class
 Anyone else with a technical background
 Newcomers to optimization

These have in common . . .
 Good algebraic formulations for off-the-shelf solvers
 Users focused on modeling

50

Model-Based Has Become Standard for . . .



Model-Based Optimization
INFORMS International 2018, Taipei — 18 June 2018

Off-the-shelf solvers keep improving
 Solve the same problems faster and faster
 Handle broader problem classes
 Recognize special cases automatically

Optimization has become more model-based
 Off-the-shelf solvers for constraint programming
 Model-based metaheuristics (“Matheuristics”)

Hybrid approaches have become easier to build
 Model-based APIs for solvers
 APIs for algebraic modeling systems
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Background
 The modeling lifecycle
 Matrix generators
 Modeling languages

Algebraic modeling languages
 Design approaches: declarative, executable
 Example: AMPL vs. gurobipy
 Survey of available software

Balanced assignment model in AMPL
 Formulation
 Solution
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Modeling Languages
for Model-Based Optimization
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The Optimization Modeling Lifecycle

Communicate with Client

Build Model

Generate Optimization Problem

Submit Problem to Solver

Report & Analyze Results

Prepare Data
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Goals for optimization software
 Repeat the cycle quickly and reliably
 Get results before client loses interest
 Deploy for application

Complication: two forms of an optimization problem
 Modeler’s form

 Mathematical description, easy for people to work with

 Solver’s form
 Explicit data structure, easy for solvers to compute with

Challenge: translate between these two forms
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Managing the Modeling Lifecycle
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Write a program to generate the solver’s form
 Read data and compute objective & constraint coefficients
 Communicate with the solver via its API
 Convert the solver’s solution for viewing or processing

Some attractions
 Ease of embedding into larger systems
 Access to advanced solver features

Serious disadvantages
 Difficult environment for modeling

 program does not resemble the modeler’s form
 model is not separate from data

 Very slow modeling cycle
 hard to check the program for correctness
 hard to distinguish modeling from programming errors
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[1980] Over the past seven years we have perceived that the size 
distribution of general structure LP problems being run on commercial LP 
codes has remained about stable. . . .  A 3000 constraint LP model is still 
considered large and very few LP problems larger than 6000 rows are being 
solved on a production basis.  . . .  That this distribution has not noticeably 
changed despite a massive change in solution economics is unexpected.

We do not feel that the linear programming user’s most pressing need over the 
next few years is for a new optimizer that runs twice as fast on a machine that 
costs half as much (although this will probably happen).  Cost of optimization 
is just not the dominant barrier to LP model implementation. The process 
required to manage the data, formulate and build the model, report on and 
analyze the results costs far more, and is much more of a barrier to effective 
use of LP, than the cost/performance of the optimizer.

Why aren’t more larger models being run? It is not because they could not be 
useful; it is because we are not successful in using them.  . . .  They become 
unmanageable. LP technology has reached the point where anything that can 
be formulated and understood can be optimized at a relatively modest cost.

C.B. Krabek, R.J. Sjoquist and D.C. Sommer, The APEX Systems: Past and Future.  
SIGMAP Bulletin 29 (April 1980) 3–23.
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Describe your model
 Write your symbolic model in a

computer-readable modeler’s form
 Prepare data for the model
 Let computer translate to & from the solver’s form

Limited drawbacks
 Need to learn a new language
 Incur overhead in translation
 Make formulations clearer and hence easier to steal?

Great advantages
 Faster modeling cycles
 More reliable modeling
 More maintainable applications

57

Modeling Languages



Model-Based Optimization
INFORMS International 2018, Taipei — 18 June 2018

[1982] The aim of this system is to provide one representation of a model 
which is easily understood by both humans and machines. . . .  With such a 
notation, the information content of the model representation is such that a 
machine can not only check for algebraic correctness and completeness, but 
also interface automatically with solution algorithms and report writers.

. . . a significant portion of total resources in a modeling exercise . . . is spent 
on the generation, manipulation and reporting of models.  It is evident that this 
must be reduced greatly if models are to become effective tools in planning 
and decision making.

The heart of it all is the fact that solution algorithms need a data structure 
which, for all practical purposes, is impossible to comprehend by humans, 
while, at the same time, meaningful problem representations for humans are 
not acceptable to machines. We feel that the two translation processes 
required (to and from the machine) can be identified as the main source of 
difficulties and errors.  GAMS is a system that is designed to eliminate these 
two translation processes, thereby lifting a technical barrier to effective 
modeling . . .

J. Bisschop and A. Meeraus, On the Development of a General Algebraic Modeling System in 
a Strategic Planning Environment. Mathematical Programming Study 20 (1982) 1–29.
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[1983] These two forms of a linear program — the modeler’s form 
and the algorithm’s form — are not much alike, and yet neither can be 
done without.  Thus any application of linear optimization involves 
translating the one form to the other.  This process of translation has long 
been recognized as a difficult and expensive task of practical linear 
programming.

In the traditional approach to translation, the work is divided between 
modeler and machine.  . . .

There is also a quite different approach to translation, in which as much 
work as possible is left to the machine.  The central feature of this 
alternative approach is a modeling language that is written by the modeler 
and translated by the computer.  A modeling language is not a 
programming language; rather, it is a declarative language that expresses 
the modeler’s form of a linear program in a notation that a computer 
system can interpret.

R. Fourer, Modeling Languages Versus Matrix Generators for Linear Programming.  
ACM Transactions on Mathematical Software 9 (1983) 143–183.
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Designed for a model-based approach
 Define data in terms of sets & parameters

 Analogous to database keys & records

 Define decision variables
 Minimize or maximize a function of decision variables
 Subject to equations or inequalities

that constrain the values of the variables

Advantages
 Familiar
 Powerful
 Proven
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Algebraic Modeling Languages



Model-Based Optimization
INFORMS International 2018, Taipei — 18 June 2018

Design alternatives
 Executable: object libraries for programming languages
 Declarative: specialized optimization languages

Design comparison
 Executable versus declarative using one simple example

Survey
 Solver-independent vs. solver-specific
 Proprietary vs. free
 Notable specific features
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Algebraic Modeling Languages



Model-Based Optimization
INFORMS International 2018, Taipei — 18 June 2018

Concept
 Create an algebraic modeling language

inside a general-purpose programming language
 Redefine operators like + and <= 

to return constraint objects rather than simple values

Advantages
 Ready integration with applications
 Good access to advanced solver features

Disadvantages
 Programming issues complicate description of the model
 Modeling and programming bugs are hard to separate
 Efficiency issues are more of a concern
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Algebraic Modeling Languages
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Concept
 Design a language specifically for optimization modeling

 Resembles mathematical notation as much as possible

 Extend to command scripts and database links
 Connect to external applications via APIs

Disadvantages
 Adds a system between application and solver
 Does not have a full object-oriented programming framework

Advantages
 Streamlines model development
 Promotes validation and maintenance of models
 Works with many popular programming languages
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Algebraic Modeling Languages
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Two representative widely used systems
 Executable: gurobipy

 Python modeling interface for Gurobi solver
 http://gurobi.com

 Declarative: AMPL
 Specialized modeling language with multi-solver support
 http://ampl.com
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Comparison: Executable vs. Declarative
Algebraic Modeling Languages
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Data
gurobipy
 Assign values to Python

lists and dictionaries

commodities = ['Pencils', 'Pens']

nodes = ['Detroit', 'Denver',
'Boston', 'New York', 'Seattle']

arcs, capacity = multidict({
('Detroit', 'Boston'): 100,
('Detroit', 'New York’): 80,
('Detroit', 'Seattle’): 120,
('Denver’, 'Boston'): 120,
('Denver’, 'New York'): 120,
('Denver’, 'Seattle’): 120 })

Comparison

AMPL
 Define symbolic model 

sets and parameters

set COMMODITIES := Pencils Pens ;

set NODES := Detroit Denver
Boston 'New York' Seattle ;

param: ARCS: capacity:
Boston 'New York' Seattle :=

Detroit   100      80    120
Denver    120     120    120 ;

set COMMODITIES;
set NODES;

set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

 Provide data later
in a separate file 
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Data (cont’d)
gurobipy

inflow = {
('Pencils', 'Detroit'): 50,
('Pencils', 'Denver'): 60,
('Pencils', 'Boston'): -50,
('Pencils', 'New York'): -50,
('Pencils', 'Seattle'): -10,
('Pens', 'Detroit'): 60,
('Pens', 'Denver'): 40,
('Pens', 'Boston'): -40,
('Pens', 'New York'): -30,
('Pens', 'Seattle'): -30 }

Comparison

AMPL

param inflow {COMMODITIES,NODES};

param inflow (tr):
Pencils  Pens :=

Detroit       50     60
Denver        60     40
Boston       -50    -40

'New York'    -50    -30
Seattle      -10    -30 ;
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Data (cont’d)
gurobipy

cost = {
('Pencils', 'Detroit', 'Boston'):   10,
('Pencils', 'Detroit', 'New York'): 20,
('Pencils', 'Detroit', 'Seattle'):  60,
('Pencils', 'Denver',  'Boston'):   40,
('Pencils', 'Denver',  'New York'): 40,
('Pencils', 'Denver',  'Seattle'):  30,
('Pens',    'Detroit', 'Boston'):   20,
('Pens',    'Detroit', 'New York'): 20,
('Pens',    'Detroit', 'Seattle'):  80,
('Pens',    'Denver',  'Boston'):   60,
('Pens',    'Denver',  'New York'): 70,
('Pens',    'Denver',  'Seattle'):  30 } 

Comparison



Model-Based Optimization
INFORMS International 2018, Taipei — 18 June 2018 68

Data (cont’d)
AMPL

param cost {COMMODITIES,ARCS} >= 0;

Comparison

param cost

[Pencils,*,*] (tr) Detroit  Denver :=
Boston           10      40
'New York'        20      40
Seattle         60      30

[Pens,*,*]    (tr) Detroit  Denver :=
Boston           20      60
'New York'        20      70
Seattle         80      30   ; 
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Model
gurobipy

m = Model('netflow')

flow = m.addVars(commodities, arcs, obj=cost, name="flow")

m.addConstrs(
(flow.sum('*',i,j) <= capacity[i,j] for i,j in arcs), "cap")

m.addConstrs(
(flow.sum(h,'*',j) + inflow[h,j] == flow.sum(h,j,'*')

for h in commodities for j in nodes), "node")

Comparison

for i,j in arcs: 
m.addConstr(sum(flow[h,i,j] for h in commodities) <= capacity[i,j], 

"cap[%s,%s]" % (i,j)) 

m.addConstrs( 
(quicksum(flow[h,i,j] for i,j in arcs.select('*',j)) + inflow[h,j] == 
quicksum(flow[h,j,k] for j,k in arcs.select(j,'*')) 

for h in commodities for j in nodes), "node") al
te

rn
at

iv
es
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(Note on Summations)
gurobipy quicksum

m.addConstrs( 
(quicksum(flow[h,i,j] for i,j in arcs.select('*',j)) + inflow[h,j] == 
quicksum(flow[h,j,k] for j,k in arcs.select(j,'*')) 

for h in commodities for j in nodes), "node") 

Comparison
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Model (cont’d)
AMPL

var Flow {COMMODITIES,ARCS} >= 0;

minimize TotalCost:
sum {h in COMMODITIES, (i,j) in ARCS} cost[h,i,j] * Flow[h,i,j];

subject to Capacity {(i,j) in ARCS}:
sum {h in COMMODITIES} Flow[h,i,j] <= capacity[i,j];

subject to Conservation {h in COMMODITIES, j in NODES}:
sum {(i,j) in ARCS} Flow[h,i,j] + inflow[h,j] =
sum {(j,i) in ARCS} Flow[h,j,i];

Comparison
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Solution
gurobipy

m.optimize() 

if m.status == GRB.Status.OPTIMAL: 
solution = m.getAttr('x', flow) 

for h in commodities: 
print('\nOptimal flows for %s:' % h) 
for i,j in arcs: 

if solution[h,i,j] > 0: 
print('%s -> %s: %g' % (i, j, solution[h,i,j])) 

Comparison
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Solution (cont’d)
AMPL

ampl: solve;
Gurobi 8.0.0: optimal solution; objective 5500
2 simplex iterations

ampl: display Flow;

Flow [Pencils,*,*]
:       Boston 'New York' Seattle    :=
Denver      0       50       10
Detroit    50        0        0

[Pens,*,*]
:       Boston 'New York' Seattle    :=
Denver     10        0       30
Detroit    30       30        0
;

Comparison
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gurobipy
 Works closely with the Gurobi solver:

callbacks during optimization, fast re-solves after problem changes
 Offers convenient extended expressions:

min/max, and/or, if-then-else

AMPL
 Supports all popular solvers
 Extends to general nonlinear and logic expressions

 Connects to nonlinear function libraries and user-defined functions

 Automatically computes nonlinear function derivatives
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Integration with Solvers
Comparison
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gurobipy
 Everything can be developed in Python

 Extensive data, visualization, deployment tools available

 Limited modeling features also in C++, C#, Java

AMPL
 Modeling language extended with loops, tests, assignments
 Application programming interfaces (APIs) for calling AMPL

from C++, C#, Java, MATLAB, Python, R
 Efficient methods for data interchange

 Add-ons for streamlined deployment
 QuanDec by Cassotis
 Opalytics Cloud Platform
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Integration with Applications
Comparison
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Solver-specific
 Associated with popular commercial solvers
 Executable and declarative alternatives

Solver-independent
 Support multiple solvers and solver types
 Mostly commercial/declarative and free/executable
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Software Survey
Algebraic Modeling Languages
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Declarative, commercial
 OPL for CPLEX (IBM)
 MOSEL* for Xpress (FICO)
 OPTMODEL for SAS/OR (SAS)

Executable, commercial
 Concert Technology C++ for CPLEX
 gurobipy for Gurobi
 sasoptpy for SAS Optimization
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Solver-Specific
Survey
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Declarative, commercial
 AIMMS
 AMPL
 GAMS
 MPL

Declarative, free
 CMPL
 GMPL / MathProg

Executable, free
 PuLP; Pyomo / Python
 YALMIP; CVX / MATLAB
 JuMP / Julia
 FLOPC++ / C++
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Solver-Independent
Survey
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Commercial, declarative modeling systems
 Established lineup of solver-independent modeling systems

that represent decades of development and support
 Continuing trend toward integration with

popular programming languages and data science tools

Commercial, executable modeling systems
 Increasingly essential to commercial solver offerings
 Becoming the recommended APIs for solvers

Free, executable modeling systems
 A major current focus 

of free optimization software development
 Interesting new executable modeling languages

have become easier to develop than interesting new solvers
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Trends
Algebraic Modeling Languages
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Notable cases not detailed earlier . . .
 AIMMS (solver-independent, commercial, declarative)

has extensive application development tools built in
 CMPL (solver-independent, free, declarative)

has an IDE, Python and Java APIs, and remote server support
 GMPL/MathProg (solver-independent, free, declarative)

is a free implementation of mainly a subset of AMPL
 JuMP (solver-independent, free, executable) claims greater 

efficiency through use of a new programming language, Julia
 MOSEL for Xpress (solver-specific, commercial)

a hybrid of declarative and executable, 
has recently been made free and may accept other solvers
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Special Notes
Algebraic Modeling Languages
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Balanced Assignment Revisited in AMPL
Sets, parameters, variables (for people)

set PEOPLE;   # individuals to be assigned

set CATEG;
param type {PEOPLE,CATEG} symbolic;

# categories by which people are classified;
# type of each person in each category

param numberGrps integer > 0;
param minInGrp integer > 0;
param maxInGrp integer >= minInGrp;

# number of groups; bounds on size of groups

var Assign {i in PEOPLE, j in 1..numberGrps} binary;

# Assign[i,j] is 1 if and only if
# person i is assigned to group j
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Modeling Language Formulation
Variables, constraints (for variation)

set TYPES {k in CATEG} := setof {i in PEOPLE} type[i,k];

# all types found in each category

var MinType {k in CATEG, TYPES[k]};
var MaxType {k in CATEG, TYPES[k]};

# fewest and most people of each type, over all groups

subj to MinTypeDefn {j in 1..numberGrps, k in CATEG, l in TYPES[k]}:
MinType[k,l] <= sum {i in PEOPLE: type[i,k] = l} Assign[i,j];

subj to MaxTypeDefn {j in 1..numberGrps, k in CATEG, l in TYPES[k]}:
MaxType[k,l] >= sum {i in PEOPLE: type[i,k] = l} Assign[i,j];

# values of MinTypeDefn and MaxTypeDefn variables
# must be consistent with values of Assign variables

𝑦 ∑ 𝑥∈ : ,  for each 𝑗 1, . . . , 𝐺;  𝑘 ∈ 𝐶, 𝑙 ∈ 𝑇

Balanced Assignment
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Modeling Language Formulation
Objective, constraints (for assignment)

minimize TotalVariation:
sum {k in CATEG, l in TYPES[k]} (MaxType[k,l] - MinType[k,l]);

# Total variation over all types

subj to AssignAll {i in PEOPLE}:
sum {j in 1..numberGrps} Assign[i,j] = 1;

# Each person must be assigned to one group

subj to GroupSize {j in 1..numberGrps}:
minInGrp <= sum {i in PEOPLE} Assign[i,j] <= maxInGrp;

# Each group must have an acceptable size

𝑔 ∑ 𝑥∈ 𝑔 , for each 𝑗 1, . . . , 𝐺

Balanced Assignment
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Modeling Language Data
210 people
set PEOPLE :=

BIW   AJH   FWI   IGN   KWR   KKI   HMN   SML   RSR   TBR
KRS   CAE   MPO   CAR   PSL   BCG   DJA   AJT   JPY   HWG
TLR   MRL   JDS   JAE   TEN   MKA   NMA   PAS   DLD   SCG
VAA   FTR   GCY   OGZ   SME   KKA   MMY   API   ASA   JLN
JRT   SJO   WMS   RLN   WLB   SGA   MRE   SDN   HAN   JSG
AMR   DHY   JMS   AGI   RHE   BLE   SMA   BAN   JAP   HER
MES   DHE   SWS   ACI   RJY   TWD   MMA   JJR   MFR   LHS
JAD   CWU   PMY   CAH   SJH   EGR   JMQ   GGH   MMH   JWR
MJR   EAZ   WAD   LVN   DHR   ABE   LSR   MBT   AJU   SAS
JRS   RFS   TAR   DLT   HJO   SCR   CMY   GDE   MSL   CGS
HCN   JWS   RPR   RCR   RLS   DSF   MNA   MSR   PSY   MET
DAN   RVY   PWS   CTS   KLN   RDN   ANV   LMN   FSM   KWN
CWT   PMO   EJD   AJS   SBK   JWB   SNN   PST   PSZ   AWN
DCN   RGR   CPR   NHI   HKA   VMA   DMN   KRA   CSN   HRR
SWR   LLR   AVI   RHA   KWY   MLE   FJL   ESO   TJY   WHF
TBG   FEE   MTH   RMN   WFS   CEH   SOL   ASO   MDI   RGE
LVO   ADS   CGH   RHD   MBM   MRH   RGF   PSA   TTI   HMG
ECA   CFS   MKN   SBM   RCG   JMA   EGL   UJT   ETN   GWZ
MAI   DBN   HFE   PSO   APT   JMT   RJE   MRZ   MRK   XYF
JCO   PSN   SCS   RDL   TMN   CGY   GMR   SER   RMS   JEN
DWO   REN   DGR   DET   FJT   RJZ   MBY   RSN   REZ   BLW ;

Balanced Assignment
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Modeling Language Data
4 categories, 18 types
set CATEG := dept loc rate title ;

param type:

dept       loc     rate    title   :=

BIW   NNE   Peoria        A   Assistant
KRS   WSW   Springfield   B   Assistant
TLR   NNW   Peoria        B   Adjunct
VAA   NNW   Peoria        A   Deputy
JRT   NNE   Springfield   A   Deputy
AMR   SSE   Peoria        A   Deputy
MES   NNE   Peoria        A   Consultant
JAD   NNE   Peoria        A   Adjunct
MJR   NNE   Springfield   A   Assistant
JRS   NNE   Springfield   A   Assistant
HCN   SSE   Peoria        A   Deputy
DAN   NNE   Springfield   A   Adjunct

.......

param numberGrps := 12 ;
param minInGrp := 16 ;
param maxInGrp := 19 ;

Balanced Assignment
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Modeling Language Solution
Model + data = problem instance to be solved (CPLEX)

ampl: model BalAssign.mod;
ampl: data BalAssign.dat;

ampl: option solver cplex;
ampl: option show_stats 1;
ampl: solve;

2556 variables:
2520 binary variables
36 linear variables

654 constraints, all linear; 25632 nonzeros
210 equality constraints
432 inequality constraints
12 range constraints

1 linear objective; 36 nonzeros.

CPLEX 12.8.0.0: optimal integer solution; objective 16
59597 MIP simplex iterations
387 branch-and-bound nodes 8.063 sec

Balanced Assignment
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Modeling Language Solution
Model + data = problem instance to be solved (Gurobi)

ampl: model BalAssign.mod;
ampl: data BalAssign.dat;

ampl: option solver gurobi;
ampl: option show_stats 1;
ampl: solve;

2556 variables:
2520 binary variables
36 linear variables

654 constraints, all linear; 25632 nonzeros
210 equality constraints
432 inequality constraints
12 range constraints

1 linear objective; 36 nonzeros.

Gurobi 7.5.0: optimal solution; objective 16
338028 simplex iterations
1751 branch-and-cut nodes 66.344 sec

Balanced Assignment
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Modeling Language Solution
Model + data = problem instance to be solved (Xpress)

ampl: model BalAssign.mod;
ampl: data BalAssign.dat;

ampl: option solver xpress;
ampl: option show_stats 1;
ampl: solve;

2556 variables:
2520 binary variables
36 linear variables

654 constraints, all linear; 25632 nonzeros
210 equality constraints
432 inequality constraints
12 range constraints

1 linear objective; 36 nonzeros.

XPRESS 8.4(32.01.08): Global search complete
Best integer solution found 16
6447 branch and bound nodes 61.125 sec

Balanced Assignment
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Modeling Language Formulation (revised)
Add bounds on variables

var MinType {k in CATEG, t in TYPES[k]}
<= floor (card {i in PEOPLE: type[i,k] = t} / numberGrps);

var MaxType {k in CATEG, t in TYPES[k]
>= ceil (card {i in PEOPLE: type[i,k] = t} / numberGrps);

ampl: include BalAssign+.run

Presolve eliminates 72 constraints.
...

Gurobi 7.5.0: optimal solution; objective 16
2203 simplex iterations 0.203 sec

Balanced Assignment
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Off-the-shelf solvers for broad problem classes

Two main problem classes
 “Linear” solvers
 “Nonlinear” solvers

Other useful classes
 “Constraint” programming solvers
 “Global” optimization solvers
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Solvers for Model-Based Optimization
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Algorithms
 Provisions for integer-valued variables
 Extensions of the technology to related problem classes
 Parallel implementation on multiple processor cores

Support for . . .
 Model-based optimization
 Application deployment
 Cloud-based services

 Optimization on demand
 Server clusters
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Typical Enhancements
Off-the-Shelf Solvers
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Benchmarks
Prof. Hans Mittelmann’s benchmark website

Off-the-Shelf Solvers
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Benchmarks
By problem type and test set

Off-the-Shelf Solvers
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Benchmarks
Documentation, summaries, links to detailed results

Off-the-Shelf Solvers
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Linear objective and constraints
 Continuous variables

 Primal simplex, dual simplex, interior-point

 Integer (including zero-one) variables
 Branch-and-bound + feasibility heuristics + cut generation
 Automatic transformations to integer:

piecewise-linear, discrete variable domains, indicator constraints
 “Callbacks” to permit problem-specific algorithmic extensions

Quadratic extensions
 Convex elliptic objectives and constraints
 Convex conic constraints
 Variable binary in objective

 Transformed to linear (or to convex if binary binary)
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“Linear” Solvers
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CPLEX, Gurobi, Xpress
 Dominant commercial solvers
 Similar features
 Supported by many modeling systems

SAS Optimization, MATLAB intlinprog
 Components of widely used commercial analytics packages
 SAS performance within 2x of the “big three”

MOSEK
 Commercial solver strongest for conic problems

CBC, MIPCL, SCIP
 Fastest noncommercial solvers
 Effective alternatives for easy to moderately difficult problems
 MIPCL within 7x on some benchmarks
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Special abilities of certain solvers . . .
 CPLEX has an option to handle nonconvex quadratic objectives
 MOSEK extends to general semidefinite optimization problems
 SCIP extends to certain logical constraints

98

Special Notes
“Linear” Solvers
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Continuous variables
 Smooth objective and constraint functions
 Locally optimal solutions
 Variety of methods

 Interior-point, sequential quadratic, reduced gradient

Extension to integer variables
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Knitro
 Most extensive commercial nonlinear solver
 Choice of methods; automatic choice of multiple starting points
 Parallel runs and parallel computations within methods
 Continuous and integer variables

CONOPT, LOQO, MINOS, SNOPT
 Highly regarded commercial solvers for continuous variables
 Implement a variety of methods

Bonmin, Ipopt
 Highly regarded free solvers

 Ipopt for continuous problems via interior-point methods
 Bonmin extends to integer variables
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“Nonlinear” Solvers
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Nonlinear + global optimality
 Substantially harder than local optimality
 Smooth nonlinear objective and constraint functions
 Continuous and integer variables

BARON
 Dominant commercial global solver

Couenne
 Highly regarded noncommercial global solver

LGO
 High-quality solutions, may be global
 Objective and constraint functions may be nonsmooth
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“Global” Solvers
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Motivated by “constraint programming”
 Logic directly in constraints using and, or, not operators
 Range of other nonsmooth and logic operators
 “All different” and other special constraints
 Variables in subscripts to other variables and parameter
 Encoding of logic in binary variables not necessary

Alternative solvers employed
 Globally optimal solutions

 Branching search like other “integer” solvers

 Not originally model-based,
but trend has been toward model-based implementations

 More general modeling languages needed
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“Constraint” Solvers



Model-Based Optimization
INFORMS International 2018, Taipei — 18 June 2018

IBM ILOG CP
 Established commercial constraint programming solver
 Solver-specific modeling language support

 C++ API combining model-based and method-based approaches
 C++ “Concert Technology” executable modeling language
 OPL declarative modeling language

 Some support from solver-independent languages

Gecode, JaCoP
 Notable noncommercial solvers
 Limited modeling language support
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“Constraint” Solvers
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Curious? Try Them Out on NEOS!
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Solver & Language Listing
NEOS Server
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Input Page for CPLEX using AMPL
NEOS Server
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Input Page (cont’d)
NEOS Server
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Queue Page
NEOS Server
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Output Page
NEOS Server
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Output Page (cont’d)
NEOS Server
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Solvers
 18 categories, 60+ solvers
 Commercial and noncommercial choices
 Almost all of the most popular ones

Inputs
 AMPL, GAMS, and others
 MPS, LP, and other lower-level problem formats

Interfaces
 Web browser
 Special solver (“Kestrel”) for AMPL and GAMS
 Python API
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Limits
 8 hours
 3 GBytes

Operation
 Requests queued centrally,

distributed to various servers for solving
 650,000+ requests served in the past year,

about 1800 per day or 75 per hour
 17,296 requests on peak day (15 March 2018)
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About the NEOS Server (cont’d)


