
ISMP 2018, Bordeaux, 2–6 July 2018 and

EURO 2018, Valencia, 8–11 July 2018

Adding Functions to AMPL

David M. Gay

AMPL Optimization, Inc.

Albuquerque, New Mexico, U.S.A.

dmg@ampl.com

http://www.ampl.com

1

A Language for Mathematical Programming

AMPL is a language for expressing mathematical

programming problems involving finitely many

constraints and objectives over finitely many

continuous or discrete variables. Model entities include

• sets

•• parameters

• variables

• constraints and objectives

• functions

2

Small nonlinear example using a function

ampl: var x; s.t. c: sin(x) = .5;

ampl: solve;

MINOS 5.51: optimal solution found.

...

ampl: print x; print asin(.5);

0.5235987755982988

0.5235987755982989

ampl: display x - asin(.5);

x - asin(0.5) = -1.11022e-16

3

Load Library

When the builtin functions do not suffice, AMPL’s

load command can introduce libraries of “imported”

functions that have been compiled from suitable

programming languages, such as C, C++, and Fortran.

For example, the GNU Scientific Library, compiled for

use with load, is available from https://ampl.com/

resources/extended-function-library .

More generally,

https://ampl.com/netlib/ampl/solvers/funclink

provides details for compiling your own function

library.

4

Load library example

Example: gsl log1p(x) computes log(1 + x), avoiding

the roundoff error that would occur in computing 1 + x

for small |x|.

ampl: load amplgsl.dll;

ampl: function gsl log1p;

ampl: display log(1 + 5e-16), gsl log1p(5e-16);

log(1 + 5e-16) = 4.44089e-16

gsl log1p(5e-16) = 5e-16

ampl: print log(1 + 1.2e-17), gsl log1p(1.2e-17);

0 1.2e-17

5

Out args

An imported function can have “out args”, arguments

to which the function provides values. For example, if

file foo contains

load swap.dll;

param a; param b;

data; param a := 1.2; param b := 3.4;

function swap(INOUT, INOUT);

display a, b;

display swap(a,b); ## or "call swap(a,b);"

display a, b;

then invoking “ampl foo” produces the output...

6

Output from “ampl foo”

a = 1.2

b = 3.4

swap(a, b) = 1

a = 3.4

b = 1.2

7

Why should functions be expressed in AMPL?

• Many MIP solvers permit “callback” functions to

influence their solution algorithms. Introducing

functions expressed in AMPL would permit

making better interfaces to such solvers.

•• AMPL functions might simplify some scripts.

• AMPL functions might help express some

nonlinear problems.

8

AMPL function “swap”

Syntax for “swap” in AMPL:

function swap(param a INOUT, param b INOUT)

returns ()

{ param t;

let t := a;

let a := b;

let b := t;

}

Use:

call swap(x,y);

9

cleaner AMPL function “swap”

Syntax for a cleaner “swap” in AMPL:

function swap2(a, b) returns(param,param)

{ return (b,a); }

Use:

let (x,y) := swap2(x,y);

Obvious alternative:

let (x,y) := (y,x);

10

Returning sets and tuples

Sometimes it is useful to return sets...

set S; set T;

param p{S};

...

let T := argmaxset(p);

T = {t in S: p[t] == max{i in S} p[i]}

or tuples of values and sets

let (t,T) := argmax(p);

T = {t in S: p[t] == max{i in S} p[i]}

and t = p[s] for s in T

11

Contexts

A function body must be a new context: it would make

no sense for names used locally in the function to be

visible outside the function. But it is convenient to let

functions access values from the surrounding context:

param a;

function foo(b) { return a + b; }

12

Declarations in contexts

While extending AMPL to accept function

declarations, it is only a small step further to allow

declarations within a context generally. Such

declarations disappear when the context ends. For

example ... (next slide)

13

Inner context declaration example

param a := 1.23;

{ # new context

param a := 4.56;

display a;

} # end of context

display a;

produces output

a = 4.56

a = 1.23

14

Parsing challenge with domains

AMPL function declarations have long been allowed to

specify a domain for each argument, e.g.,

function hypot(Reals,Reals);

It is nice to allow

function foo(a,b) { return a + 2*b; }

which is easy to handle if the arguments are unbound

symbols. The argument list of an AMPL function

should be a new context, but for imported functions

we must allow set expressions for domains. Various

remedies are possible; for now, new keyword “new”

indicates that a parameter name has a new meaning.
15

Example of “new”

param a; param b;

function foo(a,b) { return a + 2*b; }

produces a syntax error message, but

param a; param b;

function foo(new a,b) { return a + 2*b; }

is fine; “new” is only needed before the first argument.

Keyword “new” also applies to inner contexts, affecting

whether a redefinition warning or error is issued,

depending on the (new) option hidewarn setting.

16

Closures

For use in callbacks, our plan is to convey “closures”

with functions in .nl files. This will permit the

functions to access values from outer contexts.

Whether changes to these values are communicated

back to the AMPL session will be governed by a new

option, just as option send suffixes determines

whether suffix values in .sol files are returned to the

AMPL session.

17

Restrictions on AMPL functions

AMPL functions visible to solvers, whether in

callbacks or nonlinear expressions, will not be allowed

to declare variables or execute commands other than

let, return, and flow-of-control commands. In

addition, functions in nonlinear expressions will not be

allowed to have OUT args.

18

AD for AMPL functions

AMPL itself (aside from imported functions) has been

a primitive recursive language. For example, .nl files

do not contain loops — all loops have been expanded

by the AMPL processor before it writes the .nl file.

This allows the AMPL/solver interface library (ASL)

to set up structures needed for automatic

differentiation in the course of reading the .nl file.

Imported functions participate by providing first and

possibly second partial derivatives for their numeric

arguments.

19

AD for AMPL functions (cont’d)

AMPL functions appearing in objectives and

constraints could be fully (and mutually) recursive,

which will require the ASL to use techniques commonly

used in various AD packages (such as ADOL-C and

Sacado) to store partials and other details in

dynamically allocated arrays. This is more general but

also somewhat slower and takes more memory.

20

Recursive functions versus recursive sets and params

AMPL has long allowed recursive set and parameter

definitions, such as

param factorial{i in integer[0, Infinity)}

= if i < 2 then i else i*factorial[i-1];

Recursive set and parameter definitions effectively

cache their computed values, so are automatically

efficient. A purely recursive function may be much less

efficient.

21

Function arguments in AMPL scripts

Imported functions (made available with load

commands) can presently only be called with numeric

or string arguments. Given the declarations

set S; param p{S};

function foo;

imported function foo could only be provided all of

param p by a call of the form

call foo(card(S), {i in S} p[i]);

(next slide)

22

Function arguments in AMPL scripts (cont’d)

But an AMPL function foo, declared with

function foo(param p{dimen 1});

or

function foo(param p{dimen 1}) { ... }

or

set S; # ...

function foo(param p{S}) { ... }

could simply be called by

call foo(p);

23

Function arguments in AMPL scripts (cont’d)

Within foo, p’s declared and actual indexing sets could

be accessed by the (provisionally named) new builtin

functions dind and indx, as in

dind(p)

and

indx(p)

so

sum{i in indx(p)} p[i]

would be the sum of all components of p.

24

Function arguments in AMPL scripts (cont’d)

Also allowed as arguments to and return values from

AMPL functions will be sets, indexed collections of

sets, and functions. Later we may add tuples as atoms,

allowing sets to contain any of the possible argument

types. Other possible atoms include complex, rational,

and complex rational numbers. (Other long-intended

extensions, such as variables in subscripts, may happen

first.)

25

Aside on dind and indx

Given the AMPL input

set S; param p{S};

data; set S := a b c;

param p := a 1 c 2.5;

we would have

indx(p) = {’a’, ’c’}

dind(p) = {’a’, ’b’, ’c’}

26

Declaring function arguments

Arguments can be declared immediately:

function foo(set S, param p{S})

or first listed, then declared:

function foo(p, S; set S; param p{S})

either of which could restrict the indexing set of p in

the body of foo, in which

indx(p) = S.

S would have to be a subset of the indexing set of the

var or param passed as p.

27

Status

AMPL functions are mostly implemented and should

be working soon. We intend to make 64-bit “beta”

binaries for Linux, MacOSX, and MS Windows

available from the AMPL web site,

https://ampl.com. The “beta” binaries will use the

usual AMPL licensing mechanism and will work with

current AMPL licenses. Initially AMPL functions will

only work in AMPL scripts. Extensions to the

solver-interface library (ASL) are further in the future.

28

Some references

The AMPL web site

https://ampl.com

has more on AMPL, including pointers to papers on

AMPL and on the AMPL/solver interface library

(ASL). When available, pointers to beta copies of

AMPL with function extensions will appear on the

AMPL web site.

For more on AD (automatic differentiation), see

http://www.autodiff.org

29

