
Model-Based Optimization
DecisionCAMP — 18 September 2019 1

Model-Based Optimization for
Effective and Reliable Decision-Making

Robert Fourer
4er@ampl.com

AMPL Optimization Inc.
www.ampl.com — +1 773-336-2675

DecisionCAMP
Bolzano, Italy — 18 September 2019

Model-Based Optimization
DecisionCAMP — 18 September 2019

Model-Based Optimization for
Effective and Reliable Decision-Making

Optimization originated as an advanced
mathematical technique, but it has become an
accessible and widely used decision-making
tool. A key factor in the spread of successful
optimization applications has been the
adoption of a model-based approach: A
domain expert or operations analyst focuses
on modeling the problem of interest, while
the computation of a solution is left to
general-purpose, off-the-shelf solvers;
powerful yet intuitive modeling software
manages the difficulties of translating

between the human modeler’s formulation
and the solver software’s needs. This talk
introduces model-based optimization by
contrasting it to a method-based approach
that relies on customized implementation of
rules and algorithms. Model-based
implementations are illustrated using the
AMPL modeling language and popular
solvers. The presentation concludes by
surveying the variety of modeling languages
and solvers available for model-based
optimization today.

Dr. Fourer has over 40 years’ experience in
studying, creating, and applying large-scale
optimization software. In collaboration with
colleagues in Computing Science Research at
Bell Laboratories, he initiated the design and
development of AMPL, which has become one
of the most widely used software systems for
modeling and analyzing optimization problems,
with users in hundreds of universities, research

institutes, and corporations worldwide; he is
also author of a popular book on AMPL.
Additionally, he has been a key contributor to the
NEOS Server project and other efforts to make
optimization services available over the Internet,
and has supported development of open-source
software for operations research through his
service on the board of the COIN-OR
Foundation.

Model-Based Optimization
DecisionCAMP — 18 September 2019 3

Model-Based Optimization
DecisionCAMP — 18 September 2019 4

Model-Based Optimization
DecisionCAMP — 18 September 2019 5

Model-Based Optimization
DecisionCAMP — 18 September 2019

Given a recurring need to make many interrelated decisions
 Purchases, production and shipment amounts, assignments, . . .

Consistently make highly desirable choices

By applying ideas from mathematical optimization
 Ways of describing problems (formulations)
 Ways of solving problems (algorithms)

6

Optimization in Practice

Model-Based Optimization
DecisionCAMP — 18 September 2019

Large numbers of decision variables
 Thousands to millions

An objective function

Various constraint types
 10-20 distinct types, though large numbers of each type
 Few variables involved in each constraint

Solved many times with different data
 Can’t characterize all possible solutions in advance

Solvable only by computation
 No manual approaches even in principle

7

Optimization in Practice

Model-Based Optimization
DecisionCAMP — 18 September 20198

Optimization Modeling

Communicate with Client

Build Model or Method

Solve Cases

Analyze Solutions

The Cycle

Report Results

Prepare Scenarios

Model-Based Optimization
DecisionCAMP — 18 September 2019

Goals for the optimization modelers
 Repeat the cycle quickly and reliably

 Get results before client loses interest

 Deploy effectively for application

Goals for optimization software
 Fast prototyping
 Easy integration (with decision systems)
 Successful long-term maintenance

9

The Optimization Modeling Cycle

Model-Based Optimization
DecisionCAMP — 18 September 2019

Optimization
 The optimization modeling cycle
 Model-based vs. method-based approaches

Model-based optimization
 Modeling language vs. programming language approaches

Algebraic modeling languages
 Declarative vs. executable approaches
 Completed example in AMPL

Solvers
 Linear/quadratic, nonlinear, global, constraint-based

Applications
 Range of AMPL users
 Case studies

10

Outline

Model-Based Optimization
DecisionCAMP — 18 September 2019

Where is the Work in Optimization?
It depends on the approach that you take

Method-based approach
 Programming a method (algorithm) for computing solutions

Model-based approach
 Formulating a description (model) of the desired solutions

Which should you prefer?
 For simple problems, any approach can be easy
 But real optimization problems have complications . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Motivation
 Ship products efficiently

to meet demands

Context
 a transportation network

 nodes representing cities
 arcs representing roads

 supplies at nodes
 demands at nodes
 capacities on arcs
 shipping costs on arcs

Example:
Multi-Product Optimal Network Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Multi-Product Network Flow
Decide

 how much of each product to ship on each arc

So that
 shipping costs are kept low
 shipments on each arc respect capacity of the arc
 supplies, demands, and shipments are in balance at each node

Two approaches . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Method-Based Approach
Program a method to build a shipping plan

 “method”: says how to compute a solution

Order-driven
 Develop rules for how each order should be met

 Given some demand and given available capacity,
determine where to ship it from and which route to use

 Fill orders one by one, according to the rules
 Decrement capacity as each one is filled

Route-driven
 Repeat until all demands are met

 Choose a shipping route and a product
 Add as much flow as possible of that product along that route

without exceeding supply, demand, or capacity

Program refinements to the method to get better results . . .

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Method-Based Refinements
Develop rules for choosing good routes

 Generate batches of routes
 Apply routes in some systematic order

Improve the initial solution
 Local optimization: swaps and other simple improvements
 Local-search metaheuristics:

simulated annealing, tabu search, GRASP
 Population-based metaheuristics:

evolutionary methods, particle swarm optimization

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Model-Based Approach
Formulate a minimum shipping cost model

 “model”: says what a solution should satisfy
 Identify amounts shipped

as the decisions of the model (variables)
 Specify feasible shipment amounts

by writing equations that the variables must satisfy (constraints)
 Write total shipping cost

as a summation over the variables (objective)
 Collect costs, capacities, supplies, demands (data)

Send to a solver that computes optimal solutions
 Handles broad problem classes efficiently

 Ex: Linear constraints and objective, continuous or integer variables

 Recognizes and exploits special cases
 Available ready to run, without programming

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Given
𝑃 set of products
𝑁 set of network nodes
𝐴 ⊆ 𝑁 𝑁 set of arcs connecting nodes

and
𝑢 capacity of arc from 𝑖 to 𝑗, for each 𝑖, 𝑗 ∈ 𝐴

𝑠 supply/demand of product 𝑝 at node 𝑗, for each 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
> 0 implies supply, < 0 implies demand

𝑐 cost per unit to ship product 𝑝 on arc 𝑖, 𝑗 ,
for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

17

Model-Based Formulation
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped from node 𝑖 to node 𝑗,

for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

to minimize
∑ ∑ 𝑐 𝑋, ∈∈

total cost of shipping

subject to
∑ 𝑋∈ 𝑢 , for all 𝑖, 𝑗 ∈ 𝐴

on each arc, total shipped must not exceed capacity

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

at each node, shipments in plus
supply/demand must equal shipments out

18

Model-Based Formulation (cont’d)
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Additional restrictions imposed by the user
 Cost has fixed and variable parts

 Each arc incurs a cost if it is used for shipping

 Shipments cannot be too small
 Not too many arcs can be used

Additional data for the problem
𝑑 fixed cost for using the arc from 𝑖 to 𝑗, for each 𝑖, 𝑗 ∈ 𝐴

𝑚 smallest total that may be shipped on any arc used

𝑛 largest number of arcs that may be used

Example:
Complications in Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Method-Based (cont’d)
What has to be done?

 Revise or re-think the solution approach
 Update or re-implement the algorithm

What are the challenges?
 In this example,

 Shipments have become more interdependent
 Good routes are harder to identify
 Improvements are harder to find

 In general,
 Even small changes to a problem can necessitate

major changes to the method and its implementation
 Each problem change requires more method development

. . . and problem changes are frequent!

Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

What has to be done?
 Update the objective expression
 Formulate additional constraint equations
 Send back to the solver

What are the challenges?
 In this example,

 New variables and expressions to represent fixed costs
 New constraints to impose shipment and arc-use limits

 In general,
 The formulation tends to get more complicated
 A new solver type or solver options may be needed

. . . but it’s easier to update formulations than methods
. . . and a few solver types handle most cases

21

Model-Based (cont’d)
Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped on arc 𝑖, 𝑗 ,

for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴
𝑌𝑖𝑗 1 if any amount is shipped from node 𝑖 to node 𝑗,

0 otherwise, for each 𝑖, 𝑗 ∈ 𝐴

to minimize
∑ ∑ 𝑐 𝑋, ∈∈ ∑ 𝑑 𝑌, ∈

total cost of shipments

22

Model-Based Formulation (revised)
Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

Subject to
∑ 𝑋∈ 𝑢 𝑌 , for all 𝑖, 𝑗 ∈ 𝐴

when the arc from node 𝑖 to node 𝑗 is used for shipping,
total shipments must not exceed capacity, and 𝑌 must be 1

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

shipments in plus supply/demand must equal shipments out

∑ 𝑋∈ 𝑚𝑌 , for all 𝑖, 𝑗 ∈ 𝐴

when the arc from node 𝑖 to node 𝑗 is used for shipping,
total shipments from 𝑖 to 𝑗 must be at least 𝑚

∑ 𝑌, ∈ 𝑛

At most 𝑛 arcs can be used

23

Model-Based Formulation (revised)
Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

Applications of heuristic methods
 Simple heuristics

 Greedy algorithms, local improvement methods

 Metaheuristics
 Evolutionary methods, simulated annealing, tabu search, GRASP, . . .

Situations hard to formulate mathematically
 Difficult combinatorial constraints
 Black-box objectives and constraints

Very large, intensive applications
 Routing huge fleets of delivery trucks
 Finding shortest routes in mapping apps
 Training huge neural networks

. . . and it appeals to programmers

24

Method-Based Remains Popular for . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Diverse industries
 Manufacturing, distribution, supply-chain management
 Air and rail operations, trucking, delivery services
 Medicine, medical services
 Refining, electric power flow, gas pipelines, hydropower
 Finance, e-commerce, . . .

25

Model-Based Has Been Adopted in . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Diverse industries

Diverse fields
 Operations research & management science
 Business analytics
 Engineering & science
 Economics & finance

26

Model-Based Has Been Adopted in . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Diverse industries

Diverse fields

Diverse kinds of users
 Anyone who took an “optimization” class
 Anyone else with a technical background
 Newcomers to optimization

These have in common . . .
 Analysts inclined toward modeling; focus is

 more on what should be solved
 less on how it should be solved

 Good algebraic formulations for off-the-shelf solvers
 Emphasis on fast prototyping and long-term maintenance

27

Model-Based Has Been Adopted by . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Where is the Work in
Model-Based Optimization?
Translating between two forms of the problem

 Modeler’s form
 Mathematical description, easy for people to work with

 Solver’s form
 Explicit data structure, easy for solvers to compute with

Programming language approach
 Write a program to generate the solver’s form

Modeling language approach
 Write the model formulation

in a language that a computer can read and translate

Model-Based Optimization
DecisionCAMP — 18 September 2019

Write a program to generate the solver’s form
 Read data and compute objective & constraint coefficients
 Send the solver the data structures it needs
 Receive solution data structure for viewing or processing

Some attractions
 Ease of embedding into larger systems
 Access to advanced solver features

Serious disadvantages
 Difficult environment for modeling

 program does not resemble the modeler’s form
 model is not separate from data

 Very slow modeling cycle
 hard to check the program for correctness
 hard to distinguish modeling from programming errors

29

Programming Language Approach

Model-Based Optimization
DecisionCAMP — 18 September 2019

Use a computer language to describe the modeler’s form
 Write your model
 Prepare data for the model
 Let the computer translate to & from the solver’s form

Limited drawbacks
 Need to learn a new language
 Incur overhead in translation
 Make formulations clearer and hence easier to steal?

Great advantages
 Faster modeling cycles
 More reliable modeling
 More maintainable applications

30

Modeling Language Approach

Model-Based Optimization
DecisionCAMP — 18 September 2019

Most popular today
 Computer language based on algebraic formulations

as seen in our model-based examples

Executable approach
 Create an algebraic modeling language

inside a general-purpose programming language
 Redefine operators like + and <=

to return constraint objects rather than simple values

Declarative approach
 Design a language specifically for optimization modeling
 Extend with basic programming concepts: loops, tests, assignments
 Access from popular programming languages via APIs

31

Algebraic Modeling Languages

Model-Based Optimization
DecisionCAMP — 18 September 2019

Example:
Multi-Product Optimal Network Flow
Executable approach: gurobipy

 Based on the Python programming language
 Generates problems for the Gurobi solver

Declarative approach:
 Based on algebraic notation (like our sample formulation)
 Designed specifically for optimization
 Generates problems for Gurobi and other solvers

Model-Based Optimization
DecisionCAMP — 18 September 2019

Given
𝑃 set of products
𝑁 set of network nodes
𝐴 ⊆ 𝑁 𝑁 set of arcs connecting nodes

and
𝑢 capacity of arc from 𝑖 to 𝑗, for each 𝑖, 𝑗 ∈ 𝐴

𝑠 supply/demand of product 𝑝 at node 𝑗, for each 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
> 0 implies supply, < 0 implies demand

𝑐 cost per unit to ship product 𝑝 on arc 𝑖, 𝑗 ,
for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

33

Formulation: Data
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 34

Statements: Data
gurobipy
 Assign values to Python

lists and dictionaries

products = ['Pencils', 'Pens']

nodes = ['Detroit', 'Denver',
'Boston', 'New York', 'Seattle']

arcs, capacity = multidict({
('Detroit', 'Boston'): 100,
('Detroit', 'New York’): 80,
('Detroit', 'Seattle’): 120,
('Denver', 'Boston'): 120,
('Denver', 'New York'): 120,
('Denver', 'Seattle’): 120 })

Multi-Product Flow

AMPL
 Define symbolic model

sets and parameters

set PRODUCTS := Pencils Pens ;

set NODES := Detroit Denver
Boston 'New York' Seattle ;

param: ARCS: capacity:
Boston 'New York' Seattle :=

Detroit 100 80 120
Denver 120 120 120 ;

set PRODUCTS;
set NODES;

set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

 Provide data later
in a separate file

Model-Based Optimization
DecisionCAMP — 18 September 2019 35

Statements: Data (cont’d)
gurobipy

inflow = {
('Pencils', 'Detroit'): 50,
('Pencils', 'Denver'): 60,
('Pencils', 'Boston'): -50,
('Pencils', 'New York'): -50,
('Pencils', 'Seattle'): -10,
('Pens', 'Detroit'): 60,
('Pens', 'Denver'): 40,
('Pens', 'Boston'): -40,
('Pens', 'New York'): -30,
('Pens', 'Seattle'): -30 }

Multi-Product Flow

AMPL

param inflow {COMMODITIES,NODES};

param inflow (tr):
Pencils Pens :=

Detroit 50 60
Denver 60 40
Boston -50 -40

'New York' -50 -30
Seattle -10 -30 ;

Model-Based Optimization
DecisionCAMP — 18 September 2019 36

Statements: Data (cont’d)
gurobipy

cost = {
('Pencils', 'Detroit', 'Boston'): 10,
('Pencils', 'Detroit', 'New York'): 20,
('Pencils', 'Detroit', 'Seattle'): 60,
('Pencils', 'Denver', 'Boston'): 40,
('Pencils', 'Denver', 'New York'): 40,
('Pencils', 'Denver', 'Seattle'): 30,
('Pens', 'Detroit', 'Boston'): 20,
('Pens', 'Detroit', 'New York'): 20,
('Pens', 'Detroit', 'Seattle'): 80,
('Pens', 'Denver', 'Boston'): 60,
('Pens', 'Denver', 'New York'): 70,
('Pens', 'Denver', 'Seattle'): 30 }

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 37

Statements: Data (cont’d)
AMPL

param cost {COMMODITIES,ARCS} >= 0;

Multi-Product Flow

param cost

[Pencils,*,*] (tr) Detroit Denver :=
Boston 10 40
'New York' 20 40
Seattle 60 30

[Pens,*,*] (tr) Detroit Denver :=
Boston 20 60
'New York' 20 70
Seattle 80 30 ;

Model-Based Optimization
DecisionCAMP — 18 September 2019

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped from node 𝑖 to node 𝑗,

for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

to minimize
∑ ∑ 𝑐 𝑋, ∈∈

total cost of shipping

subject to
∑ 𝑋∈ 𝑢 , for all 𝑖, 𝑗 ∈ 𝐴

total shipped on each arc must not exceed capacity

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

shipments in plus supply/demand must equal shipments out

38

Formulation: Model
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 39

Statements: Model
gurobipy

m = Model('netflow')

flow = m.addVars(products, arcs, obj=cost, name="flow")

m.addConstrs(
(flow.sum('*',i,j) <= capacity[i,j] for i,j in arcs), "cap")

m.addConstrs(
(flow.sum(p,'*',j) + inflow[p,j] == flow.sum(p,j,'*')

for p in products for j in nodes), "node")

Multi-Product Flow

for i,j in arcs:
m.addConstr(sum(flow[p,i,j] for p in products) <= capacity[i,j],

"cap[%s,%s]" % (i,j))

m.addConstrs(
(quicksum(flow[p,i,j] for i,j in arcs.select('*',j)) + inflow[p,j] ==
quicksum(flow[p,j,k] for j,k in arcs.select(j,'*'))

for p in products for j in nodes), "node") al
te

rn
at

iv
es

Model-Based Optimization
DecisionCAMP — 18 September 2019 40

(Note on Summations)
gurobipy quicksum

m.addConstrs(
(quicksum(flow[p,i,j] for i,j in arcs.select('*',j)) + inflow[p,j] ==
quicksum(flow[p,j,k] for j,k in arcs.select(j,'*'))

for p in commodities for j in nodes), "node")

Model-Based Optimization
DecisionCAMP — 18 September 2019 41

Statements: Model (cont’d)
AMPL

var Flow {PRODUCTS,ARCS} >= 0;

minimize TotalCost:
sum {p in PRODUCTS, (i,j) in ARCS} cost[p,i,j] * Flow[p,i,j];

subject to Capacity {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];

subject to Conservation {p in PRODUCTS, j in NODES}:
sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
sum {(j,i) in ARCS} Flow[p,j,i];

Multi-Product Flow

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

Model-Based Optimization
DecisionCAMP — 18 September 2019 42

Solution
gurobipy

m.optimize()

if m.status == GRB.Status.OPTIMAL:
solution = m.getAttr('x', flow)

for p in products:
print('\nOptimal flows for %s:’ % p)
for i,j in arcs:

if solution[p,i,j] > 0:
print('%s -> %s: %g' % (i, j, solution[p,i,j]))

Multi-Product Flow

Solved in 0 iterations and 0.00 seconds
Optimal objective 5.500000000e+03

Optimal flows for Pencils:
Detroit -> Boston: 50
Denver -> New York: 50
Denver -> Seattle: 10

Optimal flows for Pens: ...

Model-Based Optimization
DecisionCAMP — 18 September 2019 43

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

option solver gurobi;
ampl: solve;

Gurobi 8.1.0: optimal solution; objective 5500
2 simplex iterations

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 44

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

option solver cplex;
ampl: solve;

CPLEX 12.9.0.0: optimal solution; objective 5500
0 dual simplex iterations (0 in phase I)

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

gurobipy
 Everything can be developed in Python

 Extensive data, visualization, deployment tools available

 Limited modeling features also in C++, C#, Java

AMPL
 Modeling language extended with loops, tests, assignments
 Application programming interfaces (APIs) for calling AMPL

from C++, C#, Java, MATLAB, Python, R
 Efficient methods for data interchange

45

Integration with Applications
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

gurobipy
 Works closely with the Gurobi solver:

callbacks during optimization, fast re-solves after problem changes
 Supports Gurobi’s extended expressions:

min/max, and/or, if-then-else

AMPL
 Supports all popular solvers
 Extends to general nonlinear and logic expressions

 Connects to nonlinear function libraries and user-defined functions
 Automatically computes nonlinear function derivatives
 Connects to global optimization and constraint programming solvers

46

Integration with Solvers
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Easily accommodated
 Add variables to the model
 Add a term to the objective
 Update one constraint and add two
 Send to the same solver

See live example . . .

47

Complications
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Solver-specific
 Associated with popular commercial solvers

 IBM CPLEX, Gurobi, FICO Xpress

 Executable and declarative alternatives

Solver-independent
 Support multiple solvers and solver types
 Commercial options are mainly declarative

 AIMMS, AMPL, GAMS
 include APIs for popular programming languages

 Open-source options are mainly executable
 CVX/MATLAB, FLOPC++/C++, JuMP/Julia,

Pyomo/Python, YALMIP/MATLAB,

48

Algebraic Modeling Language Software
Survey

Model-Based Optimization
DecisionCAMP — 18 September 2019

Off-the-shelf solvers for broad problem classes
 Based on optimal algorithms
 Implemented as complex methods + heuristics
 Adapted to special cases

49

Solver Software
Survey

Model-Based Optimization
DecisionCAMP — 18 September 2019

Off-the-shelf solvers for broad problem classes

Many difficult problems solved regularly
 Millions of variables and constraints
 Hard problems of 10-20 years ago are now easy

50

Solver Software
Survey

Model-Based Optimization
DecisionCAMP — 18 September 2019

Off-the-shelf solvers for broad problem classes

Many difficult problems solved regularly

Commercial + open source examples
 “Linear/Quadratic”:

CPLEX, Gurobi, Xpress, MOSEK + SCIP, CBC, MIPCL
 “Nonlinear”:

CONOPT, Knitro, LOQO, MINOS, SNOPT + Ipopt, Bonmin
 “Global”:

BARON, LINDO Global + Couenne
 “Constraint”:

IBM ILOG CP + Gecode, JaCoP

51

Solver Software
Survey

Model-Based Optimization
DecisionCAMP — 18 September 2019

Curious? Try Them Out on NEOS!

52

Model-Based Optimization
DecisionCAMP — 18 September 2019

Solver & Language Listing
NEOS Server

53

Model-Based Optimization
DecisionCAMP — 18 September 2019

Range of AMPL users
Case studies

 Power grid management
 Passenger flow management
 Sales representative assignment

54

Applications

Model-Based Optimization
DecisionCAMP — 18 September 2019

Energy and Utilities
 power networks, gas pipelines, hydroelectric power, water distribution

Industry
 mining, steel, chemicals, oil refining, forestry and paper
 cars & trucks, paper products, processed foods

Transportation
 airlines, trucking, package delivery

Services
 supply chain, hospitals & medicine, construction management

Communications
 telecommunications, professional networking, file hosting

Finance
 software tools, investment management, commodity management

Advanced Technologies
 artificial intelligence, distributed computing, biotechnology

55

Range of AMPL Users

Model-Based Optimization
DecisionCAMP — 18 September 2019

Case: ABB
Power Grid Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Case: ABB
Power Grid Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Power Grid Management
Situation

 A power grid operator providing electrical service
 Two kinds of decisions

 Unit commitment: When to turn power plants on and off
 Network flow: How to transmit power over the grid to meet demand

Goal
 Simulate optimal decisions to support planning

 Transmission network expansion
 Plant addition and retirement
 Integration of renewable energy sources

Model-Based Optimization
DecisionCAMP — 18 September 2019

Evaluation
Approaches considered

 C++ for entire GridView system
 Modeling language for optimization, C++ for user interfaces

Choice of AMPL
 Ease of modeling

 ABB can formulate complex and powerful models
 Customers can understand the AMPL formulations
 Customers can customize models for their particular situations

 Ease of embedding
 AMPL has an API (application programming interface) for C++
 ABB can easily build AMPL into the GridView product

Power Grid Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Production data
 Power generation units

 Location
 Fuel, design, age, capacity
 Ramp-up and ramp-down times

 Renewable energy sources

Transmission network data
 Nodes: units, sources, substations, customers

 Supply at plants and other sources
 Demand at customers

 Arcs: power lines
 Transmission capacities

Cost data

60

Formulation (data)
Power Grid Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Decision variables
 For each unit, in each time period

 On or off (discrete)
 Level of output (continuous)

 For each critical path through the grid, in each time period
 Capacity

61

Formulation (variables)
Power Grid Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Objectives
 For short-term operation management

 Minimize total operating costs

 For long-term investment planning
 Minimize total operating and investment costs

Constraints
 Balance of supply and demand
 Capacity restriction on power lines
 Ramp-up and ramp-down times
 Contingencies for generation and transmission

62

Formulation (model)
Power Grid Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Implementation
Development

 Prototype at University of Tennessee, Knoxville
 Full AMPL implementation by 3 analysts at ABB

Optimization
 Mixed-integer linear solver
 Millions of variables
 Tens of thousands of integer variables
 10 minutes to solve

Deployment
 30+ customer companies
 Hundreds of customer-side users

Power Grid Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Case: MTR HK / Strategis Partners
Passenger Flow Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Passenger Flow Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Passenger Flow Management
Situation

 Large public train operator
 2 million passengers in 2 hours each weekday afternoon
 Arrivals exceed capacity

 More passengers arrive on a platform than a train can handle

 Measures are in place that can limit entry to station & platforms

Goal
 Decide where and when to implement passenger-limiting measures
 Balance platform use throughout the system

Model-Based Optimization
DecisionCAMP — 18 September 2019

Evaluation
Approaches

 Old: Best guesses of experience managers
 New: Modeling language for optimization,

R to manipulate input data and display results

Choice of AMPL
 Ease of use

 Convenient model syntax
 Speed of processing

 Ease of embedding
 AMPL is easily built into an R application,

using AMPL’s API (application programming interface) for R

Passenger Flow Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Data
 Design of the train network
 Passenger entry and intended exit stations

 Supplied by the ticketing system

 Platform capacities

Decision variables
 For each time interval, at each station, for each train service:

 How many passengers to allow in to the platform
 How many passengers to expect out at the platform

68

Formulation (data and variables)
Passenger Flow Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Objective
 Minimize aggregate passenger travel times across the network

Constraints
 Train travel times
 Train capacities
 Station concourse capacities

69

Formulation (objective and constraints)
Passenger Flow Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Implementation
Passenger Flow Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Implementation
Development

 Strategis Partners consulting firm
 AMPL and R implementation by 2 analysts

Optimization
 Free open-source mixed-integer linear solver
 15 core stations
 250,000 variables and constraints
 20 minutes to solve

Deployment
 2 users at MTR HK run as needed
 Extensions and enhancements planned

 using machine learning to forecast passenger flows
 expanding to more stations

Passenger Flow Management

Model-Based Optimization
DecisionCAMP — 18 September 2019

Case: Dropbox
Sales Representative Assignment

Model-Based Optimization
DecisionCAMP — 18 September 2019

Sales Representative Assignment
Situation

 Cloud storage provider
 Over 500 million users upload 1.2 billion files every day
 Tens of thousands of large business customer accounts
 Hundreds of sales representatives worldwide

 enough to cover most but not all accounts

Goal
 Assign accounts to representatives

 Assign each representative a similar number and quality of accounts
 Give priority to assigning higher quality accounts

Model-Based Optimization
DecisionCAMP — 18 September 2019

Evaluation
Approaches considered

 Manual system
 Spreadsheet-based solvers
 Automated system using model-based optimization

Choice of AMPL
 Ease of use
 Speed
 Reliability
 Ability to handle large problems

Sales Rep Assignment

Model-Based Optimization
DecisionCAMP — 18 September 2019

Data
 Quality score for each customer account

 predicted revenue increase if contacted by a representative

 Location of each representative

Decision variables
 For each account 𝑖 and representative 𝑗,

𝑋 1 if account 𝑖 is assigned to representative 𝑗
𝑋 0 otherwise

75

Formulation (data and variables)
Sales Rep Assignment

Model-Based Optimization
DecisionCAMP — 18 September 2019

Objective
 Maximize total score of all assigned accounts

Constraints
 At most 15% variance between representatives in . . .

 number of accounts assigned
 quality of accounts assigned

 Assigned accounts must be near the representative’s location
 All subaccounts of a business must have the same representative

76

Formulation (objective and constraints)
Sales Rep Assignment

Model-Based Optimization
DecisionCAMP — 18 September 2019

Implementation
Development

 Implementation by 3 analysts at Dropbox

Optimization
 Mixed-integer linear solver
 10,000 zero-one variables
 3-6 hours to solve for largest region

Deployment
 5-10 sales leaders are direct users
 AMPL is embedded in Dropbox’s systems

 Customer data is extracted from Salesforce
 Customer scores are computed using the scikit-learn Python toolbox
 An AMPL script reads the file of score data
 Results from optimization are written to an Excel spreadsheet

Sales Rep Assignment

