
Model-Based Optimization
DecisionCAMP — 18 September 2019 1

Model-Based Optimization with AMPL:
New Connections to Analytics Tools and Environments

Robert Fourer
4er@ampl.com

AMPL Optimization Inc.
www.ampl.com — +1 773-336-2675

INFORMS Annual Meeting
Seattle — 20-23 October 2019

Session TD58a, Technology Tutorials

Model-Based Optimization
DecisionCAMP — 18 September 2019

Why AMPL?
 Mathematical optimization:

Model-based vs. method-based approaches
 Model-based optimization:

Modeling language vs. programming language approaches
 Modeling languages for optimization:

Declarative vs. executable approaches

New in AMPL
 Direct spreadsheet interface
 Solver callbacks
 Jupyter notebooks
 Beyond the desktop . . .

3

Outline

Model-Based Optimization
DecisionCAMP — 18 September 2019 4

Mathematical Optimization

Model-Based Optimization
DecisionCAMP — 18 September 2019

Approaches to Optimization
Method-based approach

 Program a method (algorithm) for computing solutions

Model-based approach
 Formulate a description (model) of the desired solutions

Which should you prefer?
 For simple problems, any approach can be easy
 But real optimization problems must be revised . . .

 to get the formulation right
 to address new client requirements
 to address new circumstances

Model-Based Optimization
DecisionCAMP — 18 September 2019

Motivation
 Ship products efficiently

to meet demands

Context
 a transportation network

 nodes representing cities
 arcs representing roads

 supplies at nodes
 demands at nodes
 capacities on arcs
 shipping costs on arcs

Example:
Multi-Product Optimal Network Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Multi-Product Network Flow
Decide

 how much of each product to ship on each arc

So that
 shipping costs are kept low
 shipments on each arc respect capacity of the arc
 supplies, demands, and shipments are in balance at each node

Consider the two approaches . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Method-Based Approach
Program a method to build a shipping plan

 a method says how to compute a solution

Order-driven
 Develop rules for how each order should be met

 Given some demand and given available capacity,
determine where to ship it from and which route to use

 Fill orders one by one, according to the rules
 Decrement capacity as each one is filled

Route-driven
 Repeat until all demands are met

 Choose a shipping route and a product
 Add as much flow as possible of that product along that route

without exceeding supply, demand, or capacity

Program refinements to the method to get better results . . .

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Method-Based Refinements
Develop rules for choosing good routes

 Generate batches of routes
 Apply routes in some systematic order

Improve the initial solution
 Local optimization: swaps and other simple improvements
 Local-search metaheuristics:

simulated annealing, tabu search, GRASP
 Population-based metaheuristics:

evolutionary methods, particle swarm optimization

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Model-Based Approach
Formulate a minimum shipping cost model

 a model says what conditions a solution should satisfy
 Identify amounts shipped

as the decisions of the model (variables)
 Specify feasible shipment amounts

by writing equations that the variables must satisfy (constraints)
 Write total shipping cost

as a summation over the variables (objective)
 Collect costs, capacities, supplies, demands (data)

Send to a solver that computes optimal solutions
 Handles broad problem classes efficiently

 Ex: Linear constraints and objective, continuous or integer variables

 Recognizes and exploits special cases
 Available ready to run, without programming

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Given
𝑃 set of products
𝑁 set of network nodes
𝐴 ⊆ 𝑁 𝑁 set of arcs connecting nodes

and
𝑢 capacity of arc from 𝑖 to 𝑗, for each 𝑖, 𝑗 ∈ 𝐴

𝑠 supply/demand of product 𝑝 at node 𝑗, for each 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
> 0 implies supply, < 0 implies demand

𝑐 cost per unit to ship product 𝑝 on arc 𝑖, 𝑗 ,
for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

11

Model-Based Formulation
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped from node 𝑖 to node 𝑗,

for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

to minimize
∑ ∑ 𝑐 𝑋, ∈∈

total cost of shipping

subject to
∑ 𝑋∈ 𝑢 , for all 𝑖, 𝑗 ∈ 𝐴

on each arc, total shipped must not exceed capacity

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

at each node, shipments in plus
supply/demand must equal shipments out

12

Model-Based Formulation (cont’d)
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Additional restrictions imposed by the user
 Cost has fixed and variable parts

 Each arc incurs a cost if it is used for shipping

 Shipments cannot be too small
 Not too many arcs can be used

Additional data for the problem
𝑑 fixed cost for using the arc from 𝑖 to 𝑗, for each 𝑖, 𝑗 ∈ 𝐴

𝑚 smallest total that may be shipped on any arc used

𝑛 largest number of arcs that may be used

Example revised:
Complications in Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Method-Based (cont’d)
What has to be done?

 Revise or re-think the solution approach
 Update or re-implement the algorithm

What are the challenges?
 In this example,

 Shipments have become more interdependent
 Good routes are harder to identify
 Improvements are harder to find

 In general,
 Even small revisions to a problem can necessitate

major changes to the method and its implementation
 Each problem revision requires more method development

. . . and revisions are frequent!

Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

What has to be done?
 Update the objective expression
 Formulate additional constraint equations
 Send back to the solver

What are the challenges?
 In this example,

 New variables and expressions to represent fixed costs
 New constraints to impose shipment and arc-use limits

 In general,
 The formulation tends to get more complicated
 A new solver type or solver options may be needed

. . . but it’s easier to revise formulations than methods
. . . and a few solver types handle most cases

15

Model-Based (cont’d)
Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped on arc 𝑖, 𝑗 ,

for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴
𝑌𝑖𝑗 1 if any amount is shipped from node 𝑖 to node 𝑗,

0 otherwise, for each 𝑖, 𝑗 ∈ 𝐴

to minimize
∑ ∑ 𝑐 𝑋, ∈∈ ∑ 𝑑 𝑌, ∈

total cost of shipments

16

Model-Based Formulation (revised)
Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

Subject to
∑ 𝑋∈ 𝑢 𝑌 , for all 𝑖, 𝑗 ∈ 𝐴

when the arc from node 𝑖 to node 𝑗 is used for shipping,
total shipments must not exceed capacity, and 𝑌 must be 1

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

shipments in plus supply/demand must equal shipments out

∑ 𝑋∈ 𝑚𝑌 , for all 𝑖, 𝑗 ∈ 𝐴

when the arc from node 𝑖 to node 𝑗 is used for shipping,
total shipments from 𝑖 to 𝑗 must be at least 𝑚

∑ 𝑌, ∈ 𝑛

At most 𝑛 arcs can be used

17

Model-Based Formulation (revised)
Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

Applications of heuristic methods
 Simple heuristics

 Greedy algorithms, local improvement methods

 Metaheuristics
 Evolutionary methods, simulated annealing, tabu search, GRASP, . . .

Situations hard to formulate mathematically
 Difficult combinatorial constraints
 Black-box objectives and constraints

Extemely large, intensive applications
 Routing huge fleets of delivery trucks
 Finding shortest routes in mapping apps
 Training neural networks on gigantic datasets

. . . and it appeals to programmers

18

Method-Based Remains Popular for . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Diverse industries
 Manufacturing, distribution, supply-chain management
 Air and rail operations, trucking, delivery services
 Medicine, medical services
 Refining, electric power flow, gas pipelines, hydropower
 Finance, e-commerce, . . .

19

Model-Based Has Been Adopted in . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Diverse industries

Diverse fields
 Operations research & management science
 Business analytics
 Engineering & science
 Economics & finance

20

Model-Based Has Been Adopted in . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Diverse industries

Diverse fields

Diverse kinds of users
 Anyone who took an “optimization” class
 Anyone else with a technical background
 Newcomers to optimization

These have in common . . .
 Analysts inclined toward modeling; focus is

 more on what should be solved
 less on how it should be solved

 Good algebraic formulations for off-the-shelf solvers
 Emphasis on fast prototyping and long-term maintenance

21

Model-Based Has Been Adopted by . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Approaches to
Model-Based Optimization
Two foms of an optimization problem

 Modeler’s form
 Mathematical description, easy for people to work with

 Solver’s form
 Explicit data structure, easy for solvers to compute with

Programming language approach
 Write a program to generate the solver’s form

Modeling language approach
 Write a model formulation

in a language that a computer can read and translate

Model-Based Optimization
DecisionCAMP — 18 September 2019

Write a program to generate the solver’s form
 Read data and compute objective & constraint coefficients
 Send the solver the data structures it needs
 Receive solution data structure for viewing or processing

Some attractions
 Ease of embedding into larger systems
 Access to advanced solver features

Serious disadvantages
 Difficult environment for modeling

 program does not resemble the modeler’s form
 model is not separate from data

 Very slow modeling cycle
 hard to check the program for correctness
 hard to distinguish modeling from programming errors

23

Programming Language Approach

Model-Based Optimization
DecisionCAMP — 18 September 2019

Use a computer language to describe the modeler’s form
 Write your model
 Prepare data for the model
 Let the computer translate to & from the solver’s form

Manageable drawbacks
 Need to learn a new language
 Incur overhead in translation
 Create valuable formulations that must be protected?

Great advantages
 Faster modeling cycles
 More reliable modeling
 More maintainable applications

24

Modeling Language Approach

Model-Based Optimization
DecisionCAMP — 18 September 2019

Most popular today
 Computer language based on algebraic formulations
 Both familiar and general

25

Algebraic Modeling Languages

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped from node 𝑖 to node 𝑗,

for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

to minimize
∑ ∑ 𝑐 𝑋, ∈∈

total cost of shipping

subject to

∑ 𝑋∈ 𝑢 , for all 𝑖, 𝑗 ∈ 𝐴
on each arc, total shipped must not exceed capacity

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
at each node, shipments in plus
supply/demand must equal shipments out

Model-Based Optimization
DecisionCAMP — 18 September 2019

Approaches to
Modeling Languages for Optimization
Executable approach

 Simulate an algebraic modeling language
inside a general-purpose programming language

 Redefine operators like + and <=
to return constraint objects rather than simple values

Declarative approach
 Design a language specifically for optimization modeling
 Extend with basic programming concepts: loops, tests, assignments
 Access from popular programming languages via APIs

Model-Based Optimization
DecisionCAMP — 18 September 2019

Example:
Multi-Product Optimal Network Flow
Executable approach: gurobipy

 Based on the Python programming language
 Generates problems for the Gurobi solver

Declarative approach:
 Based on algebraic notation (like our sample formulation)
 Designed specifically for optimization
 Generates problems for Gurobi and other solvers

Model-Based Optimization
DecisionCAMP — 18 September 2019

Given
𝑃 set of products
𝑁 set of network nodes
𝐴 ⊆ 𝑁 𝑁 set of arcs connecting nodes

and
𝑢 capacity of arc from 𝑖 to 𝑗, for each 𝑖, 𝑗 ∈ 𝐴

𝑠 supply/demand of product 𝑝 at node 𝑗, for each 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
> 0 implies supply, < 0 implies demand

𝑐 cost per unit to ship product 𝑝 on arc 𝑖, 𝑗 ,
for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

28

Formulation: Data
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 29

Statements: Data
gurobipy
 Assign values to Python

lists and dictionaries

products = ['Pencils', 'Pens']

nodes = ['Detroit', 'Denver',
'Boston', 'New York', 'Seattle']

arcs, capacity = multidict({
('Detroit', 'Boston'): 100,
('Detroit', 'New York’): 80,
('Detroit', 'Seattle’): 120,
('Denver', 'Boston'): 120,
('Denver', 'New York'): 120,
('Denver', 'Seattle’): 120 })

Multi-Product Flow

AMPL
 Define symbolic model

sets and parameters

set PRODUCTS := Pencils Pens ;

set NODES := Detroit Denver
Boston 'New York' Seattle ;

param: ARCS: capacity:
Boston 'New York' Seattle :=

Detroit 100 80 120
Denver 120 120 120 ;

set PRODUCTS;
set NODES;

set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

 Provide data later
in a separate file

Model-Based Optimization
DecisionCAMP — 18 September 2019 30

Statements: Data (cont’d)
gurobipy

inflow = {
('Pencils', 'Detroit'): 50,
('Pencils', 'Denver'): 60,
('Pencils', 'Boston'): -50,
('Pencils', 'New York'): -50,
('Pencils', 'Seattle'): -10,
('Pens', 'Detroit'): 60,
('Pens', 'Denver'): 40,
('Pens', 'Boston'): -40,
('Pens', 'New York'): -30,
('Pens', 'Seattle'): -30 }

Multi-Product Flow

AMPL

param inflow {PRODUCTS,NODES};

param inflow (tr):
Pencils Pens :=

Detroit 50 60
Denver 60 40
Boston -50 -40

'New York' -50 -30
Seattle -10 -30 ;

Model-Based Optimization
DecisionCAMP — 18 September 2019 31

Statements: Data (cont’d)
gurobipy

cost = {
('Pencils', 'Detroit', 'Boston'): 10,
('Pencils', 'Detroit', 'New York'): 20,
('Pencils', 'Detroit', 'Seattle'): 60,
('Pencils', 'Denver', 'Boston'): 40,
('Pencils', 'Denver', 'New York'): 40,
('Pencils', 'Denver', 'Seattle'): 30,
('Pens', 'Detroit', 'Boston'): 20,
('Pens', 'Detroit', 'New York'): 20,
('Pens', 'Detroit', 'Seattle'): 80,
('Pens', 'Denver', 'Boston'): 60,
('Pens', 'Denver', 'New York'): 70,
('Pens', 'Denver', 'Seattle'): 30 }

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 32

Statements: Data (cont’d)
AMPL

param cost {PRODUCTS,ARCS} >= 0;

Multi-Product Flow

param cost

[Pencils,*,*] (tr) Detroit Denver :=
Boston 10 40
'New York' 20 40
Seattle 60 30

[Pens,*,*] (tr) Detroit Denver :=
Boston 20 60
'New York' 20 70
Seattle 80 30 ;

Model-Based Optimization
DecisionCAMP — 18 September 2019

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped from node 𝑖 to node 𝑗,

for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

to minimize
∑ ∑ 𝑐 𝑋, ∈∈

total cost of shipping

subject to
∑ 𝑋∈ 𝑢 , for all 𝑖, 𝑗 ∈ 𝐴

total shipped on each arc must not exceed capacity

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

shipments in plus supply/demand must equal shipments out

33

Formulation: Model
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 34

Statements: Model
gurobipy

m = Model('netflow')

flow = m.addVars(products, arcs, obj=cost, name="flow")

m.addConstrs(
(flow.sum('*',i,j) <= capacity[i,j] for i,j in arcs), "cap")

m.addConstrs(
(flow.sum(p,'*',j) + inflow[p,j] == flow.sum(p,j,'*')

for p in products for j in nodes), "node")

Multi-Product Flow

for i,j in arcs:
m.addConstr(sum(flow[p,i,j] for p in products) <= capacity[i,j],

"cap[%s,%s]" % (i,j))

m.addConstrs(
(quicksum(flow[p,i,j] for i,j in arcs.select('*',j)) + inflow[p,j] ==
quicksum(flow[p,j,k] for j,k in arcs.select(j,'*'))

for p in products for j in nodes), "node") al
te

rn
at

iv
es

Model-Based Optimization
DecisionCAMP — 18 September 2019 35

(Note on Summations)
gurobipy quicksum

m.addConstrs(
(quicksum(flow[p,i,j] for i,j in arcs.select('*',j)) + inflow[p,j] ==
quicksum(flow[p,j,k] for j,k in arcs.select(j,'*'))

for p in commodities for j in nodes), "node")

Model-Based Optimization
DecisionCAMP — 18 September 2019 36

Statements: Model (cont’d)
AMPL

var Flow {PRODUCTS,ARCS} >= 0;

minimize TotalCost:
sum {p in PRODUCTS, (i,j) in ARCS} cost[p,i,j] * Flow[p,i,j];

subject to Capacity {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];

subject to Conservation {p in PRODUCTS, j in NODES}:
sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
sum {(j,i) in ARCS} Flow[p,j,i];

Multi-Product Flow

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

Model-Based Optimization
DecisionCAMP — 18 September 2019 37

Solution
gurobipy

m.optimize()

if m.status == GRB.Status.OPTIMAL:
solution = m.getAttr('x', flow)

for p in products:
print('\nOptimal flows for %s:’ % p)
for i,j in arcs:

if solution[p,i,j] > 0:
print('%s -> %s: %g' % (i, j, solution[p,i,j]))

Multi-Product Flow

Solved in 0 iterations and 0.00 seconds
Optimal objective 5.500000000e+03

Optimal flows for Pencils:
Detroit -> Boston: 50
Denver -> New York: 50
Denver -> Seattle: 10

Optimal flows for Pens: ...

Model-Based Optimization
DecisionCAMP — 18 September 2019 38

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

option solver gurobi;
ampl: solve;

Gurobi 8.1.0: optimal solution; objective 5500
2 simplex iterations

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 39

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

option solver cplex;
ampl: solve;

CPLEX 12.9.0.0: optimal solution; objective 5500
0 dual simplex iterations (0 in phase I)

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 40

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

option solver xpress;
ampl: solve;

XPRESS 8.6.0(32.01.08): Optimal solution found
Objective 5500, 1 simplex iteration

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

gurobipy
 Everything can be developed in Python

 Extensive data, visualization, deployment tools available

 Limited modeling features also in C++, C#, Java

AMPL
 Modeling language extended with loops, tests, assignments
 Application programming interfaces (APIs) for calling AMPL

from C++, C#, Java, MATLAB, Python, R
 Efficient methods for data interchange

41

Integration with Applications
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

gurobipy
 Works closely with the Gurobi solver:

callbacks during optimization, fast re-solves after problem changes
 Supports Gurobi’s extended expressions:

min/max, and/or, if-then-else, univariate nonlinear

AMPL
 Supports all popular solvers
 Extends to general nonlinear and logic expressions

 Connects to nonlinear function libraries and user-defined functions
 Automatically computes nonlinear function derivatives
 Connects to global optimization and constraint programming solvers

42

Integration with Solvers
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Easily accommodated
 Add variables to the model
 Add a term to the objective
 Update one constraint and add two
 Send to the same solver

43

Complications
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Direct spreadsheet interface
Solver callbacks
Jupyter notebooks
Beyond the desktop . . .

49

New in AMPL

Model-Based Optimization
DecisionCAMP — 18 September 2019

Read & write any .xlsx file
 Independent of the spreadsheet software used

 Works on all popular platforms (Windows, Linux, macOS)

 Bypasses database drivers such as ODBC

Use existing AMPL data-interface statements
 table for making associations between

AMPL model parameters and spreadsheet data

 read table and write table for
importing and exporting data

50

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 51

Example: Multi-Product Flow
Model

set PRODUCTS;
set NODES;

set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

param inflow {PRODUCTS,NODES};
param cost {PRODUCTS,ARCS} >= 0;

var Flow {PRODUCTS,ARCS} >= 0;

minimize TotalCost:
sum {p in PRODUCTS, (i,j) in ARCS} cost[p,i,j] * Flow[p,i,j];

subject to Capacity {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];

subject to Conservation {p in PRODUCTS, j in NODES}:
sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
sum {(j,i) in ARCS} Flow[p,j,i];

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 52

Example: Multi-Product Flow
Data in text file
set PRODUCTS := Pencils Pens ;
set NODES := Detroit Denver Boston 'New York' Seattle ;

param: ARCS: capacity:

Boston 'New York' Seattle :=
Detroit 100 80 120
Denver 120 120 120 ;

param inflow:

Detroit Denver Boston 'New York' Seattle :=
Pencils 50 60 -50 -50 -10
Pens 60 40 -40 -30 -30;

param cost:

[Pencils,*,*] Boston 'New York' Seattle :=
Detroit 10 20 60
Denver 40 40 30

[Pens,*,*] Boston 'New York' Seattle :=
Detroit 20 20 80
Denver 60 70 30 ;

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 53

Example: Multi-Product Flow
Data in spreadsheet file

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 54

Example: Multi-Product Flow
Script file (input)

model netflow1.mod;

table Products IN "amplxl" "netflow1.xlsx" "Items":
PRODUCTS <- [ITEMS];

table Nodes IN "amplxl" "netflow1.xlsx":
NODES <- [NODES];

table Capacity IN "amplxl" "netflow1.xlsx":
ARCS <- [FROM,TO], capacity;

table Inflow IN "amplxl" "netflow1.xlsx":
[ITEMS,NODES], inflow;

table Cost IN "amplxl" "netflow1.xlsx":
[ITEMS,FROM,TO], cost;

load amplxl.dll;

read table Products; read table Nodes;
read table Capacity; read table Inflow; read table Cost;

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 55

Example: Multi-Product Flow
Script file (output)

option solver gurobi;
solve;

table Results OUT "amplxl" "netflow1.xlsx":
[ITEMS,FROM,TO], Flow;

table Summary OUT "amplxl" "netflow1.xlsx":
{(i,j) in ARCS} -> [FROM,TO],
sum {p in PRODUCTS} Flow[p,i,j] ~ TotFlow,
sum {p in PRODUCTS} Flow[p,i,j] / capacity[i,j] ~ "%Used";

write table Results;
write table Summary;

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 56

Example: Multi-Product Flow
Results in spreadsheet file

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019

All existing features supported
 Indexed collections of tables
 Dynamic file, range & header names in tables
 read table, write table in loops and conditionals

To come: Data not limited to relational tables
 Support for two-dimensional spreadsheet tables
 Extensions for handling higher-dimensional data

57

And There’s More . . .
Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019

Current example
 AMPL Python API (amplpy, from us)

 Gurobi Python API (gurobipy, from Gurobi Optimization)

Coming soon
 AMPL Python API (amplpy, from us)

 AMPL Gurobi connector (amplpy_gurobi, from us)

. . . connectors for other solvers, too

58

Solver Callbacks

Model-Based Optimization
DecisionCAMP — 18 September 2019 59

AMPL Python API
Principles

 APIs for “all” popular languages
 C++, C#, Java, MATLAB, Python, R

 Common overall design
 Common implementation core in C++
 Customizations for each language and its data structures

Python support: amplpy
 Versions: 2.7, 3.3 and up
 Data structures: Lists, dictionaries, dataframes
 Libraries: Pandas, Bokeh
 Easy installation: pip install amplpy

Example
 Roll cutting by pattern generation . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Iterative scheme: Solve a series of problems
 Solve continuous relaxation using subset of “easy” patterns

 Add “most promising” pattern to the subset
 Minimize reduced cost given dual values
 Equivalent to a one-constraint (“knapsack”) problem

 Iterate as long as there are promising patterns
 Stop when minimum reduced cost is zero

 Form integer program using all patterns found
 Apply a solver for a “reasonable” amount of time

 Return the best (possibly optimal) solution found

. . . using a callback to implement a user-specified stopping rule

60

Roll Cutting by Pattern Generation
AMPL Python API

Model-Based Optimization
DecisionCAMP — 18 September 2019 61

Roll Cutting Implementation
Logic

 Iterative scheme in Python
 Modeling and solving in AMPL, via API calls
 Solution reporting in Python

AMPL objects
 Master is the cutting model with current pattern subset
 Sub is the one-constraint knapsack problem

AMPL Python API

Model-Based Optimization
DecisionCAMP — 18 September 2019 74

Python Callbacks from Gurobi
Example: User-Specified Stopping Rule

Data
 Times 𝑡 t t etc.
 Optimality gap tolerances 𝑔 𝑔 𝑔 etc.

Execution
 When elapsed time reaches 𝑡 . . .
 Increase the gap tolerance to 𝑔

Model-Based Optimization
DecisionCAMP — 18 September 2019

Support for all parts of an AMPL API application
 Python code cells

 Python data cells

 AMPL model cells

78

Jupyter Notebooks

Model-Based Optimization
DecisionCAMP — 18 September 2019

Alternative computing environments
 Cloud computing services

 High-performance compute clusters

 Containers

Alternatives for access to AMPL
 Streamlined / flexible licensing

 Free AMPL for courses with no licensing worries

 AMPL web server (coming soon)

80

Beyond the Desktop

Model-Based Optimization
DecisionCAMP — 18 September 2019

Flexible licensing for alternative computing environments
 For academic research and business applications
 Contact us to discuss your needs

Streamlined installation for traditional licensing setups
 Get a token, issue a command

81

Streamlined / Flexible Licensing

Model-Based Optimization
DecisionCAMP — 18 September 2019

Flexible licensing for alternative computing environments
 For academic research and business applications
 Contact us to discuss your needs

Streamlined installation for traditional licensing setups
 Get a token, issue a command

82

Streamlined / Flexible Licensing

Model-Based Optimization
DecisionCAMP — 18 September 2019

Streamlined for quick setup
 Short online application form for each course offering
 AMPL & solvers in one compressed file for each platform

 No problem size limitations

 Freely install on any computer supporting the course
 Freely distribute to students for their own computers

 Times out after your specified course end date

Includes top-quality solvers
 CPLEX, Gurobi, Xpress, Knitro, BARON, MINOS, ILOG CP,

SNOPT, CONOPT, LOQO, LGO, (soon) LINDO Global

Used this year in 685 courses, 312 universities, 53 countries
 Details and application form at ampl.com/courses.html

83

AMPL for Courses

Model-Based Optimization
DecisionCAMP — 18 September 2019

Development environment
 AMPL modeling environment in a web browser

 Selection of solvers
 Tour of examples
 Up to 1000 concurrent users

 User accounts with file storage
 For trial and purchase

Deployment alternatives
 Support for solver cloud platforms

 Gurobi Instant Cloud available now

 AMPL cloud platforms under development
. . . contact us for details

84

AMPL Cloud Services (coming soon)

