
Model-Based Optimization
DecisionCAMP — 18 September 2019 1

Model-Based Optimization with AMPL:
New Connections to Analytics Tools and Environments

Robert Fourer
4er@ampl.com

AMPL Optimization Inc.
www.ampl.com — +1 773-336-2675

INFORMS Annual Meeting
Seattle — 20-23 October 2019

Session TD58a, Technology Tutorials

Model-Based Optimization
DecisionCAMP — 18 September 2019

Why AMPL?
 Mathematical optimization:

Model-based vs. method-based approaches
 Model-based optimization:

Modeling language vs. programming language approaches
 Modeling languages for optimization:

Declarative vs. executable approaches

New in AMPL
 Direct spreadsheet interface
 Solver callbacks
 Jupyter notebooks
 Beyond the desktop . . .

3

Outline

Model-Based Optimization
DecisionCAMP — 18 September 2019 4

Mathematical Optimization

Model-Based Optimization
DecisionCAMP — 18 September 2019

Approaches to Optimization
Method-based approach

 Program a method (algorithm) for computing solutions

Model-based approach
 Formulate a description (model) of the desired solutions

Which should you prefer?
 For simple problems, any approach can be easy
 But real optimization problems must be revised . . .

 to get the formulation right
 to address new client requirements
 to address new circumstances

Model-Based Optimization
DecisionCAMP — 18 September 2019

Motivation
 Ship products efficiently

to meet demands

Context
 a transportation network

 nodes representing cities
 arcs representing roads

 supplies at nodes
 demands at nodes
 capacities on arcs
 shipping costs on arcs

Example:
Multi-Product Optimal Network Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Multi-Product Network Flow
Decide

 how much of each product to ship on each arc

So that
 shipping costs are kept low
 shipments on each arc respect capacity of the arc
 supplies, demands, and shipments are in balance at each node

Consider the two approaches . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Method-Based Approach
Program a method to build a shipping plan

 a method says how to compute a solution

Order-driven
 Develop rules for how each order should be met

 Given some demand and given available capacity,
determine where to ship it from and which route to use

 Fill orders one by one, according to the rules
 Decrement capacity as each one is filled

Route-driven
 Repeat until all demands are met

 Choose a shipping route and a product
 Add as much flow as possible of that product along that route

without exceeding supply, demand, or capacity

Program refinements to the method to get better results . . .

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Method-Based Refinements
Develop rules for choosing good routes

 Generate batches of routes
 Apply routes in some systematic order

Improve the initial solution
 Local optimization: swaps and other simple improvements
 Local-search metaheuristics:

simulated annealing, tabu search, GRASP
 Population-based metaheuristics:

evolutionary methods, particle swarm optimization

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Model-Based Approach
Formulate a minimum shipping cost model

 a model says what conditions a solution should satisfy
 Identify amounts shipped

as the decisions of the model (variables)
 Specify feasible shipment amounts

by writing equations that the variables must satisfy (constraints)
 Write total shipping cost

as a summation over the variables (objective)
 Collect costs, capacities, supplies, demands (data)

Send to a solver that computes optimal solutions
 Handles broad problem classes efficiently

 Ex: Linear constraints and objective, continuous or integer variables

 Recognizes and exploits special cases
 Available ready to run, without programming

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Given
𝑃 set of products
𝑁 set of network nodes
𝐴 ⊆ 𝑁 ൈ 𝑁 set of arcs connecting nodes

and
𝑢௜௝ capacity of arc from 𝑖 to 𝑗, for each ሺ𝑖, 𝑗ሻ ∈ 𝐴

𝑠௣௝ supply/demand of product 𝑝 at node 𝑗, for each 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
> 0 implies supply, < 0 implies demand

𝑐௣௜௝ cost per unit to ship product 𝑝 on arc ሺ𝑖, 𝑗ሻ,
for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴

11

Model-Based Formulation
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped from node 𝑖 to node 𝑗,

for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴

to minimize
∑ ∑ 𝑐௣௜௝ 𝑋௣௜௝ሺ௜,௝ሻ∈஺௣∈௉

total cost of shipping

subject to
∑ 𝑋௣௜௝௣∈௉ ൑ 𝑢௜௝, for all ሺ𝑖, 𝑗ሻ ∈ 𝐴

on each arc, total shipped must not exceed capacity

∑ 𝑋௣௜௝ሺ௜,௝ሻ∈஺ ൅ 𝑠௣௝ ൌ ∑ 𝑋௣௝௜ሺ௝,௜ሻ∈஺ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

at each node, shipments in plus
supply/demand must equal shipments out

12

Model-Based Formulation (cont’d)
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Additional restrictions imposed by the user
 Cost has fixed and variable parts

 Each arc incurs a cost if it is used for shipping

 Shipments cannot be too small
 Not too many arcs can be used

Additional data for the problem
𝑑௜௝ fixed cost for using the arc from 𝑖 to 𝑗, for each ሺ𝑖, 𝑗ሻ ∈ 𝐴

𝑚 smallest total that may be shipped on any arc used

𝑛 largest number of arcs that may be used

Example revised:
Complications in Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Method-Based (cont’d)
What has to be done?

 Revise or re-think the solution approach
 Update or re-implement the algorithm

What are the challenges?
 In this example,

 Shipments have become more interdependent
 Good routes are harder to identify
 Improvements are harder to find

 In general,
 Even small revisions to a problem can necessitate

major changes to the method and its implementation
 Each problem revision requires more method development

. . . and revisions are frequent!

Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

What has to be done?
 Update the objective expression
 Formulate additional constraint equations
 Send back to the solver

What are the challenges?
 In this example,

 New variables and expressions to represent fixed costs
 New constraints to impose shipment and arc-use limits

 In general,
 The formulation tends to get more complicated
 A new solver type or solver options may be needed

. . . but it’s easier to revise formulations than methods
. . . and a few solver types handle most cases

15

Model-Based (cont’d)
Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped on arc ሺ𝑖, 𝑗ሻ,

for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴
𝑌𝑖𝑗 1 if any amount is shipped from node 𝑖 to node 𝑗,

0 otherwise, for each ሺ𝑖, 𝑗ሻ ∈ 𝐴

to minimize
∑ ∑ 𝑐௣௜௝ 𝑋௣௜௝ሺ௜,௝ሻ∈஺௣∈௉ ൅ ∑ 𝑑௜௝ 𝑌௜௝ሺ௜,௝ሻ∈஺

total cost of shipments

16

Model-Based Formulation (revised)
Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

Subject to
∑ 𝑋௣௜௝௣∈௉ ൑ 𝑢௜௝𝑌௜௝, for all ሺ𝑖, 𝑗ሻ ∈ 𝐴

when the arc from node 𝑖 to node 𝑗 is used for shipping,
total shipments must not exceed capacity, and 𝑌௜௝ must be 1

∑ 𝑋௣௜௝ሺ௜,௝ሻ∈஺ ൅ 𝑠௣௝ ൌ ∑ 𝑋௣௝௜ሺ௝,௜ሻ∈஺ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

shipments in plus supply/demand must equal shipments out

∑ 𝑋௣௜௝௣∈௉ ൒ 𝑚𝑌௜௝, for all ሺ𝑖, 𝑗ሻ ∈ 𝐴

when the arc from node 𝑖 to node 𝑗 is used for shipping,
total shipments from 𝑖 to 𝑗 must be at least 𝑚

∑ 𝑌௜௝ሺ௜,௝ሻ∈஺ ൑ 𝑛

At most 𝑛 arcs can be used

17

Model-Based Formulation (revised)
Complications

Model-Based Optimization
DecisionCAMP — 18 September 2019

Applications of heuristic methods
 Simple heuristics

 Greedy algorithms, local improvement methods

 Metaheuristics
 Evolutionary methods, simulated annealing, tabu search, GRASP, . . .

Situations hard to formulate mathematically
 Difficult combinatorial constraints
 Black-box objectives and constraints

Extemely large, intensive applications
 Routing huge fleets of delivery trucks
 Finding shortest routes in mapping apps
 Training neural networks on gigantic datasets

. . . and it appeals to programmers

18

Method-Based Remains Popular for . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Diverse industries
 Manufacturing, distribution, supply-chain management
 Air and rail operations, trucking, delivery services
 Medicine, medical services
 Refining, electric power flow, gas pipelines, hydropower
 Finance, e-commerce, . . .

19

Model-Based Has Been Adopted in . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Diverse industries

Diverse fields
 Operations research & management science
 Business analytics
 Engineering & science
 Economics & finance

20

Model-Based Has Been Adopted in . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Diverse industries

Diverse fields

Diverse kinds of users
 Anyone who took an “optimization” class
 Anyone else with a technical background
 Newcomers to optimization

These have in common . . .
 Analysts inclined toward modeling; focus is

 more on what should be solved
 less on how it should be solved

 Good algebraic formulations for off-the-shelf solvers
 Emphasis on fast prototyping and long-term maintenance

21

Model-Based Has Been Adopted by . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Approaches to
Model-Based Optimization
Two foms of an optimization problem

 Modeler’s form
 Mathematical description, easy for people to work with

 Solver’s form
 Explicit data structure, easy for solvers to compute with

Programming language approach
 Write a program to generate the solver’s form

Modeling language approach
 Write a model formulation

in a language that a computer can read and translate

Model-Based Optimization
DecisionCAMP — 18 September 2019

Write a program to generate the solver’s form
 Read data and compute objective & constraint coefficients
 Send the solver the data structures it needs
 Receive solution data structure for viewing or processing

Some attractions
 Ease of embedding into larger systems
 Access to advanced solver features

Serious disadvantages
 Difficult environment for modeling

 program does not resemble the modeler’s form
 model is not separate from data

 Very slow modeling cycle
 hard to check the program for correctness
 hard to distinguish modeling from programming errors

23

Programming Language Approach

Model-Based Optimization
DecisionCAMP — 18 September 2019

Use a computer language to describe the modeler’s form
 Write your model
 Prepare data for the model
 Let the computer translate to & from the solver’s form

Manageable drawbacks
 Need to learn a new language
 Incur overhead in translation
 Create valuable formulations that must be protected?

Great advantages
 Faster modeling cycles
 More reliable modeling
 More maintainable applications

24

Modeling Language Approach

Model-Based Optimization
DecisionCAMP — 18 September 2019

Most popular today
 Computer language based on algebraic formulations
 Both familiar and general

25

Algebraic Modeling Languages

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped from node 𝑖 to node 𝑗,

for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴

to minimize
∑ ∑ 𝑐௣௜௝ 𝑋௣௜௝ሺ௜,௝ሻ∈஺௣∈௉

total cost of shipping

subject to

∑ 𝑋௣௜௝௣∈௉ ൑ 𝑢௜௝ , for all ሺ𝑖, 𝑗ሻ ∈ 𝐴
on each arc, total shipped must not exceed capacity

∑ 𝑋௣௜௝ሺ௜,௝ሻ∈஺ ൅ 𝑠௣௝ ൌ ∑ 𝑋௣௝௜ሺ௝,௜ሻ∈஺ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
at each node, shipments in plus
supply/demand must equal shipments out

Model-Based Optimization
DecisionCAMP — 18 September 2019

Approaches to
Modeling Languages for Optimization
Executable approach

 Simulate an algebraic modeling language
inside a general-purpose programming language

 Redefine operators like + and <=
to return constraint objects rather than simple values

Declarative approach
 Design a language specifically for optimization modeling
 Extend with basic programming concepts: loops, tests, assignments
 Access from popular programming languages via APIs

Model-Based Optimization
DecisionCAMP — 18 September 2019

Example:
Multi-Product Optimal Network Flow
Executable approach: gurobipy

 Based on the Python programming language
 Generates problems for the Gurobi solver

Declarative approach:
 Based on algebraic notation (like our sample formulation)
 Designed specifically for optimization
 Generates problems for Gurobi and other solvers

Model-Based Optimization
DecisionCAMP — 18 September 2019

Given
𝑃 set of products
𝑁 set of network nodes
𝐴 ⊆ 𝑁 ൈ 𝑁 set of arcs connecting nodes

and
𝑢௜௝ capacity of arc from 𝑖 to 𝑗, for each ሺ𝑖, 𝑗ሻ ∈ 𝐴

𝑠௣௝ supply/demand of product 𝑝 at node 𝑗, for each 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
> 0 implies supply, < 0 implies demand

𝑐௣௜௝ cost per unit to ship product 𝑝 on arc ሺ𝑖, 𝑗ሻ,
for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴

28

Formulation: Data
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 29

Statements: Data
gurobipy
 Assign values to Python

lists and dictionaries

products = ['Pencils', 'Pens']

nodes = ['Detroit', 'Denver',
'Boston', 'New York', 'Seattle']

arcs, capacity = multidict({
('Detroit', 'Boston'): 100,
('Detroit', 'New York’): 80,
('Detroit', 'Seattle’): 120,
('Denver', 'Boston'): 120,
('Denver', 'New York'): 120,
('Denver', 'Seattle’): 120 })

Multi-Product Flow

AMPL
 Define symbolic model

sets and parameters

set PRODUCTS := Pencils Pens ;

set NODES := Detroit Denver
Boston 'New York' Seattle ;

param: ARCS: capacity:
Boston 'New York' Seattle :=

Detroit 100 80 120
Denver 120 120 120 ;

set PRODUCTS;
set NODES;

set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

 Provide data later
in a separate file

Model-Based Optimization
DecisionCAMP — 18 September 2019 30

Statements: Data (cont’d)
gurobipy

inflow = {
('Pencils', 'Detroit'): 50,
('Pencils', 'Denver'): 60,
('Pencils', 'Boston'): -50,
('Pencils', 'New York'): -50,
('Pencils', 'Seattle'): -10,
('Pens', 'Detroit'): 60,
('Pens', 'Denver'): 40,
('Pens', 'Boston'): -40,
('Pens', 'New York'): -30,
('Pens', 'Seattle'): -30 }

Multi-Product Flow

AMPL

param inflow {PRODUCTS,NODES};

param inflow (tr):
Pencils Pens :=

Detroit 50 60
Denver 60 40
Boston -50 -40

'New York' -50 -30
Seattle -10 -30 ;

Model-Based Optimization
DecisionCAMP — 18 September 2019 31

Statements: Data (cont’d)
gurobipy

cost = {
('Pencils', 'Detroit', 'Boston'): 10,
('Pencils', 'Detroit', 'New York'): 20,
('Pencils', 'Detroit', 'Seattle'): 60,
('Pencils', 'Denver', 'Boston'): 40,
('Pencils', 'Denver', 'New York'): 40,
('Pencils', 'Denver', 'Seattle'): 30,
('Pens', 'Detroit', 'Boston'): 20,
('Pens', 'Detroit', 'New York'): 20,
('Pens', 'Detroit', 'Seattle'): 80,
('Pens', 'Denver', 'Boston'): 60,
('Pens', 'Denver', 'New York'): 70,
('Pens', 'Denver', 'Seattle'): 30 }

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 32

Statements: Data (cont’d)
AMPL

param cost {PRODUCTS,ARCS} >= 0;

Multi-Product Flow

param cost

[Pencils,*,*] (tr) Detroit Denver :=
Boston 10 40
'New York' 20 40
Seattle 60 30

[Pens,*,*] (tr) Detroit Denver :=
Boston 20 60
'New York' 20 70
Seattle 80 30 ;

Model-Based Optimization
DecisionCAMP — 18 September 2019

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped from node 𝑖 to node 𝑗,

for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴

to minimize
∑ ∑ 𝑐௣௜௝ 𝑋௣௜௝ሺ௜,௝ሻ∈஺௣∈௉

total cost of shipping

subject to
∑ 𝑋௣௜௝௣∈௉ ൑ 𝑢௜௝, for all ሺ𝑖, 𝑗ሻ ∈ 𝐴

total shipped on each arc must not exceed capacity

∑ 𝑋௣௜௝ሺ௜,௝ሻ∈஺ ൅ 𝑠௣௝ ൌ ∑ 𝑋௣௝௜ሺ௝,௜ሻ∈஺ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

shipments in plus supply/demand must equal shipments out

33

Formulation: Model
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 34

Statements: Model
gurobipy

m = Model('netflow')

flow = m.addVars(products, arcs, obj=cost, name="flow")

m.addConstrs(
(flow.sum('*',i,j) <= capacity[i,j] for i,j in arcs), "cap")

m.addConstrs(
(flow.sum(p,'*',j) + inflow[p,j] == flow.sum(p,j,'*')

for p in products for j in nodes), "node")

Multi-Product Flow

for i,j in arcs:
m.addConstr(sum(flow[p,i,j] for p in products) <= capacity[i,j],

"cap[%s,%s]" % (i,j))

m.addConstrs(
(quicksum(flow[p,i,j] for i,j in arcs.select('*',j)) + inflow[p,j] ==
quicksum(flow[p,j,k] for j,k in arcs.select(j,'*'))

for p in products for j in nodes), "node") al
te

rn
at

iv
es

Model-Based Optimization
DecisionCAMP — 18 September 2019 35

(Note on Summations)
gurobipy quicksum

m.addConstrs(
(quicksum(flow[p,i,j] for i,j in arcs.select('*',j)) + inflow[p,j] ==
quicksum(flow[p,j,k] for j,k in arcs.select(j,'*'))

for p in commodities for j in nodes), "node")

Model-Based Optimization
DecisionCAMP — 18 September 2019 36

Statements: Model (cont’d)
AMPL

var Flow {PRODUCTS,ARCS} >= 0;

minimize TotalCost:
sum {p in PRODUCTS, (i,j) in ARCS} cost[p,i,j] * Flow[p,i,j];

subject to Capacity {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];

subject to Conservation {p in PRODUCTS, j in NODES}:
sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
sum {(j,i) in ARCS} Flow[p,j,i];

Multi-Product Flow

∑ 𝑋௣௜௝ሺ௜,௝ሻ∈஺ ൅ 𝑠௣௝ ൌ ∑ 𝑋௣௝௜ሺ௝,௜ሻ∈஺ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

Model-Based Optimization
DecisionCAMP — 18 September 2019 37

Solution
gurobipy

m.optimize()

if m.status == GRB.Status.OPTIMAL:
solution = m.getAttr('x', flow)

for p in products:
print('\nOptimal flows for %s:’ % p)
for i,j in arcs:

if solution[p,i,j] > 0:
print('%s -> %s: %g' % (i, j, solution[p,i,j]))

Multi-Product Flow

Solved in 0 iterations and 0.00 seconds
Optimal objective 5.500000000e+03

Optimal flows for Pencils:
Detroit -> Boston: 50
Denver -> New York: 50
Denver -> Seattle: 10

Optimal flows for Pens: ...

Model-Based Optimization
DecisionCAMP — 18 September 2019 38

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

option solver gurobi;
ampl: solve;

Gurobi 8.1.0: optimal solution; objective 5500
2 simplex iterations

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 39

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

option solver cplex;
ampl: solve;

CPLEX 12.9.0.0: optimal solution; objective 5500
0 dual simplex iterations (0 in phase I)

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019 40

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

option solver xpress;
ampl: solve;

XPRESS 8.6.0(32.01.08): Optimal solution found
Objective 5500, 1 simplex iteration

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

gurobipy
 Everything can be developed in Python

 Extensive data, visualization, deployment tools available

 Limited modeling features also in C++, C#, Java

AMPL
 Modeling language extended with loops, tests, assignments
 Application programming interfaces (APIs) for calling AMPL

from C++, C#, Java, MATLAB, Python, R
 Efficient methods for data interchange

41

Integration with Applications
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

gurobipy
 Works closely with the Gurobi solver:

callbacks during optimization, fast re-solves after problem changes
 Supports Gurobi’s extended expressions:

min/max, and/or, if-then-else, univariate nonlinear

AMPL
 Supports all popular solvers
 Extends to general nonlinear and logic expressions

 Connects to nonlinear function libraries and user-defined functions
 Automatically computes nonlinear function derivatives
 Connects to global optimization and constraint programming solvers

42

Integration with Solvers
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Easily accommodated
 Add variables to the model
 Add a term to the objective
 Update one constraint and add two
 Send to the same solver

43

Complications
Multi-Product Flow

Model-Based Optimization
DecisionCAMP — 18 September 2019

Direct spreadsheet interface
Solver callbacks
Jupyter notebooks
Beyond the desktop . . .

49

New in AMPL

Model-Based Optimization
DecisionCAMP — 18 September 2019

Read & write any .xlsx file
 Independent of the spreadsheet software used

 Works on all popular platforms (Windows, Linux, macOS)

 Bypasses database drivers such as ODBC

Use existing AMPL data-interface statements
 table for making associations between

AMPL model parameters and spreadsheet data

 read table and write table for
importing and exporting data

50

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 51

Example: Multi-Product Flow
Model

set PRODUCTS;
set NODES;

set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

param inflow {PRODUCTS,NODES};
param cost {PRODUCTS,ARCS} >= 0;

var Flow {PRODUCTS,ARCS} >= 0;

minimize TotalCost:
sum {p in PRODUCTS, (i,j) in ARCS} cost[p,i,j] * Flow[p,i,j];

subject to Capacity {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];

subject to Conservation {p in PRODUCTS, j in NODES}:
sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
sum {(j,i) in ARCS} Flow[p,j,i];

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 52

Example: Multi-Product Flow
Data in text file
set PRODUCTS := Pencils Pens ;
set NODES := Detroit Denver Boston 'New York' Seattle ;

param: ARCS: capacity:

Boston 'New York' Seattle :=
Detroit 100 80 120
Denver 120 120 120 ;

param inflow:

Detroit Denver Boston 'New York' Seattle :=
Pencils 50 60 -50 -50 -10
Pens 60 40 -40 -30 -30;

param cost:

[Pencils,*,*] Boston 'New York' Seattle :=
Detroit 10 20 60
Denver 40 40 30

[Pens,*,*] Boston 'New York' Seattle :=
Detroit 20 20 80
Denver 60 70 30 ;

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 53

Example: Multi-Product Flow
Data in spreadsheet file

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 54

Example: Multi-Product Flow
Script file (input)

model netflow1.mod;

table Products IN "amplxl" "netflow1.xlsx" "Items":
PRODUCTS <- [ITEMS];

table Nodes IN "amplxl" "netflow1.xlsx":
NODES <- [NODES];

table Capacity IN "amplxl" "netflow1.xlsx":
ARCS <- [FROM,TO], capacity;

table Inflow IN "amplxl" "netflow1.xlsx":
[ITEMS,NODES], inflow;

table Cost IN "amplxl" "netflow1.xlsx":
[ITEMS,FROM,TO], cost;

load amplxl.dll;

read table Products; read table Nodes;
read table Capacity; read table Inflow; read table Cost;

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 55

Example: Multi-Product Flow
Script file (output)

option solver gurobi;
solve;

table Results OUT "amplxl" "netflow1.xlsx":
[ITEMS,FROM,TO], Flow;

table Summary OUT "amplxl" "netflow1.xlsx":
{(i,j) in ARCS} -> [FROM,TO],
sum {p in PRODUCTS} Flow[p,i,j] ~ TotFlow,
sum {p in PRODUCTS} Flow[p,i,j] / capacity[i,j] ~ "%Used";

write table Results;
write table Summary;

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019 56

Example: Multi-Product Flow
Results in spreadsheet file

Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019

All existing features supported
 Indexed collections of tables
 Dynamic file, range & header names in tables
 read table, write table in loops and conditionals

To come: Data not limited to relational tables
 Support for two-dimensional spreadsheet tables
 Extensions for handling higher-dimensional data

57

And There’s More . . .
Direct spreadsheet interface

Model-Based Optimization
DecisionCAMP — 18 September 2019

Current example
 AMPL Python API (amplpy, from us)

 Gurobi Python API (gurobipy, from Gurobi Optimization)

Coming soon
 AMPL Python API (amplpy, from us)

 AMPL Gurobi connector (amplpy_gurobi, from us)

. . . connectors for other solvers, too

58

Solver Callbacks

Model-Based Optimization
DecisionCAMP — 18 September 2019 59

AMPL Python API
Principles

 APIs for “all” popular languages
 C++, C#, Java, MATLAB, Python, R

 Common overall design
 Common implementation core in C++
 Customizations for each language and its data structures

Python support: amplpy
 Versions: 2.7, 3.3 and up
 Data structures: Lists, dictionaries, dataframes
 Libraries: Pandas, Bokeh
 Easy installation: pip install amplpy

Example
 Roll cutting by pattern generation . . .

Model-Based Optimization
DecisionCAMP — 18 September 2019

Iterative scheme: Solve a series of problems
 Solve continuous relaxation using subset of “easy” patterns

 Add “most promising” pattern to the subset
 Minimize reduced cost given dual values
 Equivalent to a one-constraint (“knapsack”) problem

 Iterate as long as there are promising patterns
 Stop when minimum reduced cost is zero

 Form integer program using all patterns found
 Apply a solver for a “reasonable” amount of time

 Return the best (possibly optimal) solution found

. . . using a callback to implement a user-specified stopping rule

60

Roll Cutting by Pattern Generation
AMPL Python API

Model-Based Optimization
DecisionCAMP — 18 September 2019 61

Roll Cutting Implementation
Logic

 Iterative scheme in Python
 Modeling and solving in AMPL, via API calls
 Solution reporting in Python

AMPL objects
 Master is the cutting model with current pattern subset
 Sub is the one-constraint knapsack problem

AMPL Python API

Model-Based Optimization
DecisionCAMP — 18 September 2019 74

Python Callbacks from Gurobi
Example: User-Specified Stopping Rule

Data
 Times 𝑡ଵ ൏ tଶ ൏ tଷ etc.
 Optimality gap tolerances 𝑔ଵ ൏ 𝑔ଶ ൏ 𝑔ଷ etc.

Execution
 When elapsed time reaches 𝑡௜ . . .
 Increase the gap tolerance to 𝑔௜

Model-Based Optimization
DecisionCAMP — 18 September 2019

Support for all parts of an AMPL API application
 Python code cells

 Python data cells

 AMPL model cells

78

Jupyter Notebooks

Model-Based Optimization
DecisionCAMP — 18 September 2019

Alternative computing environments
 Cloud computing services

 High-performance compute clusters

 Containers

Alternatives for access to AMPL
 Streamlined / flexible licensing

 Free AMPL for courses with no licensing worries

 AMPL web server (coming soon)

80

Beyond the Desktop

Model-Based Optimization
DecisionCAMP — 18 September 2019

Flexible licensing for alternative computing environments
 For academic research and business applications
 Contact us to discuss your needs

Streamlined installation for traditional licensing setups
 Get a token, issue a command

81

Streamlined / Flexible Licensing

Model-Based Optimization
DecisionCAMP — 18 September 2019

Flexible licensing for alternative computing environments
 For academic research and business applications
 Contact us to discuss your needs

Streamlined installation for traditional licensing setups
 Get a token, issue a command

82

Streamlined / Flexible Licensing

Model-Based Optimization
DecisionCAMP — 18 September 2019

Streamlined for quick setup
 Short online application form for each course offering
 AMPL & solvers in one compressed file for each platform

 No problem size limitations

 Freely install on any computer supporting the course
 Freely distribute to students for their own computers

 Times out after your specified course end date

Includes top-quality solvers
 CPLEX, Gurobi, Xpress, Knitro, BARON, MINOS, ILOG CP,

SNOPT, CONOPT, LOQO, LGO, (soon) LINDO Global

Used this year in 685 courses, 312 universities, 53 countries
 Details and application form at ampl.com/courses.html

83

AMPL for Courses

Model-Based Optimization
DecisionCAMP — 18 September 2019

Development environment
 AMPL modeling environment in a web browser

 Selection of solvers
 Tour of examples
 Up to 1000 concurrent users

 User accounts with file storage
 For trial and purchase

Deployment alternatives
 Support for solver cloud platforms

 Gurobi Instant Cloud available now

 AMPL cloud platforms under development
. . . contact us for details

84

AMPL Cloud Services (coming soon)

