
Modeling, not Programming
INFORMS Annual — 10 November 2020 1

Modeling, not Programming
Model-Based Optimization in AMPL

Robert Fourer
4er@ampl.com

AMPL Optimization Inc.
www.ampl.com — +1 773-336-2675

Technology Tutorial
INFORMS Virtual Annual Meeting

10 November 2020

Modeling, not Programming
INFORMS Annual — 10 November 2020

Goals

Features

Applications

Steps

7

Optimization in Analytics

Modeling, not Programming
INFORMS Annual — 10 November 2020

Given a recurring need to make many interrelated decisions
 Purchases, production and shipment amounts, assignments, . . .

Consistently make highly desirable choices

By applying concepts of mathematical optimization
 Ways of describing problems (formulations)
 Ways of solving problems (algorithms)

8

Optimization Goals

Modeling, not Programming
INFORMS Annual — 10 November 2020

Large numbers of decision variables
 Thousands to millions

An objective function
 Minimize or maximize

Various constraint types
 10-20 distinct types, though large numbers of each type
 Few variables involved in each constraint

Numerous scenarios with different data
 Can’t characterize all possible solutions in advance

9

Optimization Features

Modeling, not Programming
INFORMS Annual — 10 November 2020

Energy and Utilities
 power networks, gas pipelines, hydroelectric power, water distribution

Production
 mining, steel, chemicals, oil refining, forestry and paper
 cars & trucks, paper products, processed foods

Transportation
 airlines, trucking, package delivery

Services
 supply chain, hospitals & medicine, construction management

Communications
 telecommunications, professional networking, file hosting

Finance
 software tools, investment management, commodity management

Advanced Technologies
 artificial intelligence, distributed computing, biotechnology

10

Optimization Applications

Modeling, not Programming
INFORMS Annual — 10 November 2020

Optimization Development Steps

Communicate with Client

Build Model or Method

Solve Cases

Analyze Solutions

Report Results

Prepare Scenarios

11

Modeling, not Programming
INFORMS Annual — 10 November 2020

Communicate with Client

Build Model or Method

Solve Cases

Analyze Solutions

Report Results

Prepare Scenarios

12

Optimization Development Cycle

Modeling, not Programming
INFORMS Annual — 10 November 2020

Goals for optimization practitioners
 Repeat the cycle quickly and reliably

 Get results before client loses interest

 Deploy effectively for application
 Update as needed

Goals for optimization software
 Promote fast prototyping
 Facilitate integration with application systems
 Encourage long-term maintenance

13

Optimization Development Cycle

Modeling, not Programming
INFORMS Annual — 10 November 2020

Modeling, not programming

Comparison of approaches
 Optimization: Model-based or method-based?
 Model-based optimization:

Modeling language or programming language?
 Modeling languages: Declarative or executable?

Case studies
 Packing shipments
 Designing aircraft
 Managing power grids
 Assigning students to classes

14

Overview

Modeling, not Programming
INFORMS Annual — 10 November 2020

Approaches to Optimization
Method-based approach

 Program a method (algorithm) for computing solutions

Model-based approach
 Formulate a description (model) of the desired solutions

Which should you prefer?
 For simple problems, any approach can work
 But the application development cycle

introduces complications . . .

15

Modeling, not Programming
INFORMS Annual — 10 November 2020

Motivation
 Ship products efficiently

to meet demands

Context
 a transportation network

 locations
 links

 supplies at locations
 demands at locations
 capacities on links
 shipping costs on links

Example:
Supply Chain Optimization

16

Modeling, not Programming
INFORMS Annual — 10 November 2020

Supply Chain Optimization
Decide

 how much of each product to ship on each link

So that
 shipping costs are kept low
 shipments on each link respect capacity of the link
 supplies, demands, and shipments are in balance at each location

Two approaches . . .

17

Modeling, not Programming
INFORMS Annual — 10 November 2020

Method-Based Approach
Program a method to build a shipping plan

 method: says how to compute a solution

Order-driven
 Develop rules for how each order should be met

 Given some demand and given available capacity,
determine where to ship it from and which route to use

 Fill orders one by one, according to the rules
 Decrement capacity as each one is filled

Route-driven
 Repeat until all demands are met

 Choose a shipping route and a product
 Add as much flow as possible of that product along that route

without exceeding supply, demand, or capacity

Supply-Chain Optimization

18

Modeling, not Programming
INFORMS Annual — 10 November 2020

Method-Based Approach
Program refinements to the method to get better results . . .

Enhance the method
 Fill large order first, or
 Consider the least expensive routes first

Improve the initial solution
 Look for simple exchanges that reduce cost

Apply metaheuristic concepts
 Systematically search for local improvements

 simulated annealing, tabu search, GRASP

 Combine solutions to evolve better ones
 evolutionary methods, particle swarm optimization

. . . usually no optimal method is available

Supply-Chain Optimization

19

Modeling, not Programming
INFORMS Annual — 10 November 2020

Model-Based Approach
Formulate a minimum shipping cost model

 model: says what a solution should satisfy
 Identify amounts shipped

as the decisions of the model (variables)
 Specify feasible shipment amounts

by writing equations that the variables must satisfy (constraints)
 Write total shipping cost

as a summation over the variables (objective)
 Collect costs, capacities, supplies, demands (data)

Send to a solver that computes solutions
 Available ready to run, without programming
 Handles very broad problem classes efficiently

 Ex: Linear constraints and objective, continuous or integer variables

 Exploits provably optimal algorithms

Supply-Chain Optimization

20

Modeling, not Programming
INFORMS Annual — 10 November 2020

Given
𝑃 set of products
𝑁 set of network locations
𝐴 ⊆ 𝑁 ൈ 𝑁 set of links connecting locations

and
𝑢௜௝ capacity of link from 𝑖 to 𝑗, for each ሺ𝑖, 𝑗ሻ ∈ 𝐴

𝑠௣௝ supply/demand of product 𝑝 at location 𝑗, for each 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
> 0 implies supply, < 0 implies demand

𝑐௣௜௝ cost per unit to ship product 𝑝 on link ሺ𝑖, 𝑗ሻ,
for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴

21

Model-Based Formulation
Supply-Chain Optimization

Modeling, not Programming
INFORMS Annual — 10 November 2020

Determine
𝑋𝑝𝑖𝑗 amount of product 𝑝 to be shipped from location 𝑖 to location 𝑗,

for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴

to minimize
∑ ∑ 𝑐௣௜௝ 𝑋௣௜௝ሺ௜,௝ሻ∈஺௣∈௉

total cost of shipments

subject to
∑ 𝑋௣௜௝௣∈௉ ൑ 𝑢௜௝, for all ሺ𝑖, 𝑗ሻ ∈ 𝐴

on each link, total shipped must not exceed capacity

∑ 𝑋௣௜௝ሺ௜,௝ሻ∈஺ ൅ 𝑠௣௝ ൌ ∑ 𝑋௣௝௜ሺ௝,௜ሻ∈஺ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

at each location, shipments in plus
supply/demand must equal shipments out

22

Model-Based Formulation (cont’d)
Supply-Chain Optimization

Modeling, not Programming
INFORMS Annual — 10 November 2020

Additional restrictions imposed by the user
 Cost has fixed and variable parts

 Each link incurs a cost if it is used for shipping

 Shipments cannot be too small
 Not too many links can be used

Additional data for the problem
𝑑௜௝ fixed cost for using the link from 𝑖 to 𝑗, for each ሺ𝑖, 𝑗ሻ ∈ 𝐴

𝑚 smallest total that may be shipped on any link used

𝑛 largest number of links that may be used

Complications:
Supply Chain Optimization

23

Modeling, not Programming
INFORMS Annual — 10 November 2020

Method-Based (cont’d)
What has to be done?

 Revise or re-think the solution approach
 Update or re-implement the method

What are the challenges?
 In this example,

 Shipments have become more interdependent
 Good routes are harder to identify
 Improvements are harder to find

 In general,
 Even small changes to a problem can necessitate

major changes to the method and its implementation
 Each problem change requires more method development

. . . and problem changes are frequent!

Complications

24

Modeling, not Programming
INFORMS Annual — 10 November 2020

What has to be done?
 Update the objective expression
 Formulate additional constraint equations
 Send back to the solver

What are the challenges?
 In this example,

 New variables and expressions to represent fixed costs
 New constraints to impose shipment and arc-use limits

 In general,
 The formulation tends to get more complicated
 A new solver type or solver options may be needed

. . . but it’s easier to update formulations than methods
. . . and a few solver types handle many formulations

25

Model-Based (cont’d)
Complications

Modeling, not Programming
INFORMS Annual — 10 November 2020

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped on link ሺ𝑖, 𝑗ሻ,

for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴
𝑌𝑖𝑗 1 if any amount is shipped from location 𝑖 to location 𝑗,

0 otherwise, for each ሺ𝑖, 𝑗ሻ ∈ 𝐴

to minimize
∑ ∑ 𝑐௣௜௝ 𝑋௣௜௝ሺ௜,௝ሻ∈஺௣∈௉ ൅ ∑ 𝑑௜௝ 𝑌௜௝ሺ௜,௝ሻ∈஺

total varying plus fixed cost of shipments

26

Model-Based Formulation (revised)
Complications

Modeling, not Programming
INFORMS Annual — 10 November 2020

Subject to
∑ 𝑋௣௜௝௣∈௉ ൑ 𝑢௜௝𝑌௜௝, for all ሺ𝑖, 𝑗ሻ ∈ 𝐴

when the link from location 𝑖 to location 𝑗 is used,
total shipments must not exceed capacity, and 𝑌௜௝ must be 1

∑ 𝑋௣௜௝ሺ௜,௝ሻ∈஺ ൅ 𝑠௣௝ ൌ ∑ 𝑋௣௝௜ሺ௝,௜ሻ∈஺ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

shipments in plus supply/demand must equal shipments out

∑ 𝑋௣௜௝௣∈௉ ൒ 𝑚𝑌௜௝, for all ሺ𝑖, 𝑗ሻ ∈ 𝐴

when the link from node 𝑖 to node 𝑗 is used,
total shipments from 𝑖 to 𝑗 must be at least 𝑚

∑ 𝑌௜௝ሺ௜,௝ሻ∈஺ ൑ 𝑛

At most 𝑛 links can be used

27

Model-Based Formulation (revised)
Complications

Modeling, not Programming
INFORMS Annual — 10 November 2020

Approaches to
Model-Based Optimization
Translate between two forms of the problem

 Modeler’s form
 Symbolic description, easy for people to work with

 Solver’s form
 Explicit data structure, easy for solvers to compute with

Programming language approach
 Write a computer program to generate the solver’s form

Modeling language approach
 Write the model formulation

in a form that a computer can read and translate

32

Modeling, not Programming
INFORMS Annual — 10 November 2020

Algebraic modeling languages
 Designed for “algebraic” formulations

as seen in our model-based examples
 Good fit to many applications and many solvers

Executable approach
 Write a computer program . . .

 that resembles an optimization model
 that can be executed to drive a solver

Declarative approach
 Write a model description . . .

 in a language specialized for optimization
 that can be translated to the solver’s form

35

Approaches to Modeling Languages

Modeling, not Programming
INFORMS Annual — 10 November 2020

Example:
Supply Chain Optimization
Executable approach: gurobipy

 Based on the Python programming language
 Designed to look like algebraic notation

 Generates problems for the Gurobi solver

Declarative approach:
 Based directly on algebraic notation

 Designed specifically for optimization

 Generates problems for Gurobi and other solvers

36

Modeling, not Programming
INFORMS Annual — 10 November 2020

Given
𝑃 set of products
𝑁 set of network nodes
𝐴 ⊆ 𝑁 ൈ 𝑁 set of arcs connecting nodes

and
𝑢௜௝ capacity of arc from 𝑖 to 𝑗, for each ሺ𝑖, 𝑗ሻ ∈ 𝐴

𝑠௣௝ supply/demand of product 𝑝 at node 𝑗, for each 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
> 0 implies supply, < 0 implies demand

𝑐௣௜௝ cost per unit to ship product 𝑝 on arc ሺ𝑖, 𝑗ሻ,
for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴

37

Formulation: Data
Multi-Product Flow

Modeling, not Programming
INFORMS Annual — 10 November 2020 38

Statements: Data
gurobipy
 Assign values to Python

lists and dictionaries

products = ['Pencils', 'Pens']

nodes = ['Detroit', 'Denver',
'Boston', 'New York', 'Seattle']

arcs, capacity = multidict({
('Detroit', 'Boston'): 100,
('Detroit', 'New York'): 80,
('Detroit', 'Seattle'): 120,
('Denver', 'Boston'): 120,
('Denver', 'New York'): 120,
('Denver', 'Seattle’): 120 })

Multi-Product Flow

AMPL
 Define symbolic model

sets and parameters

set PRODUCTS := Pencils Pens ;

set NODES := Detroit Denver
Boston 'New York' Seattle ;

param: ARCS: capacity:
Boston 'New York' Seattle :=

Detroit 100 80 120
Denver 120 120 120 ;

set PRODUCTS;
set NODES;

set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

 Provide data later
in a separate file

Modeling, not Programming
INFORMS Annual — 10 November 2020

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped from node 𝑖 to node 𝑗,

for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴

to minimize
∑ ∑ 𝑐௣௜௝ 𝑋௣௜௝ሺ௜,௝ሻ∈஺௣∈௉

total cost of shipping

subject to
∑ 𝑋௣௜௝௣∈௉ ൑ 𝑢௜௝, for all ሺ𝑖, 𝑗ሻ ∈ 𝐴

total shipped on each arc must not exceed capacity

∑ 𝑋௣௜௝ሺ௜,௝ሻ∈஺ ൅ 𝑠௣௝ ൌ ∑ 𝑋௣௝௜ሺ௝,௜ሻ∈஺ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

shipments in plus supply/demand must equal shipments out

42

Formulation: Model
Multi-Product Flow

Modeling, not Programming
INFORMS Annual — 10 November 2020 43

Statements: Model
gurobipy

m = Model('netflow')

flow = m.addVars(products, arcs, obj=cost, name="flow")

m.addConstrs(
(flow.sum('*',i,j) <= capacity[i,j] for i,j in arcs), "cap")

m.addConstrs(
(flow.sum(p,'*',j) + inflow[p,j] == flow.sum(p,j,'*')

for p in products for j in nodes), "node")

Multi-Product Flow

∑ 𝑋௣௜௝ሺ௜,௝ሻ∈஺ ൅ 𝑠௣௝ ൌ ∑ 𝑋௣௝௜ሺ௝,௜ሻ∈஺ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

Modeling, not Programming
INFORMS Annual — 10 November 2020 46

Statements: Model (cont’d)
AMPL

var Flow {PRODUCTS,ARCS} >= 0;

minimize TotalCost:
sum {p in PRODUCTS, (i,j) in ARCS} cost[p,i,j] * Flow[p,i,j];

subject to Capacity {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];

subject to Conservation {p in PRODUCTS, j in NODES}:
sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
sum {(j,i) in ARCS} Flow[p,j,i];

Multi-Product Flow

∑ 𝑋௣௜௝ሺ௜,௝ሻ∈஺ ൅ 𝑠௣௝ ൌ ∑ 𝑋௣௝௜ሺ௝,௜ሻ∈஺ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

Modeling, not Programming
INFORMS Annual — 10 November 2020 47

Solution
gurobipy

m.optimize()

if m.status == GRB.Status.OPTIMAL:
solution = m.getAttr('x', flow)

for p in products:
print('\nOptimal flows for %s:’ % p)
for i,j in arcs:

if solution[p,i,j] > 0:
print('%s -> %s: %g' % (i, j, solution[p,i,j]))

Multi-Product Flow

Solved in 0 iterations and 0.00 seconds
Optimal objective 5.500000000e+03

Optimal flows for Pencils:
Detroit -> Boston: 50
Denver -> New York: 50
Denver -> Seattle: 10

Optimal flows for Pens: ...

Modeling, not Programming
INFORMS Annual — 10 November 2020 48

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 9.0.3: optimal solution; objective 5500
2 simplex iterations

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Modeling, not Programming
INFORMS Annual — 10 November 2020 49

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.10.0.0: optimal solution; objective 5500
0 dual simplex iterations (0 in phase I)

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Modeling, not Programming
INFORMS Annual — 10 November 2020

Concept
 Create an algebraic modeling language

inside a general-purpose programming language
 Redefine operators like + and <=

to return constraint objects rather than simple values

Advantages
 Complete application development in one language
 Direct access to advanced solver features

Disadvantages
 Programming languages are not designed for describing models

 Constraint descriptions can be awkward
 Special methods may be required for efficiency

 Modeling and programming bugs are hard to separate

50

Executable
Algebraic Modeling Languages

Modeling, not Programming
INFORMS Annual — 10 November 2020

Concept
 Design a language for describing optimization models
 Connect to external applications via . . .

 extensions for scripting and data transfer
 APIs for programming languages

Disadvantages
 Adds a system between application and solver

Advantages
 Designed for building and using optimization models

 Streamlines model building and processing
 Promotes validation and maintenance of models

 Not specific to one programming language or solver

51

Declarative
Algebraic Modeling Languages

Modeling, not Programming
INFORMS Annual — 10 November 2020

gurobipy
 Everything can be developed in Python
 Part of the Gurobi package

 Free solver-independent alternatives (Pyomo, PuLP, Python-MIP)

AMPL
 Prototypes can be developed in AMPL

 Modeling language extended with loops, tests, assignments

 Application programming interfaces (APIs)
for integrating AMPL with popular programming languages
 C++, C#, Java, MATLAB, Python, R

52

Integration with Applications
Algebraic Modeling Languages

Modeling, not Programming
INFORMS Annual — 10 November 2020

gurobipy
 Works closely with the Gurobi solver:

callbacks during optimization, fast re-solves after problem changes
 Supports Gurobi’s extended expressions:

min/max, and/or, if-then-else

AMPL
 Supports all popular solvers
 Extends to general nonlinear and logic expressions

 Connects to nonlinear function libraries and user-defined functions
 Automatically computes nonlinear function derivatives
 Connects to global optimization and constraint programming solvers

53

Integration with Solvers
Algebraic Modeling Languages

Modeling, not Programming
INFORMS Annual — 10 November 2020

Case Studies
Young’s Plant Farm

 Packing shipments

Motion Robotics
 Designing aircraft

ABB
 Managing power grids

New York Education Department
 Assigning students to classes

54

Modeling, not Programming
INFORMS Annual — 10 November 2020 55

Case: Young’s Plant Farm
Packing Shipments

Modeling, not Programming
INFORMS Annual — 10 November 2020 56

Situation
 Grows plants of many kinds and sizes
 Ships to retailers on their own trucks

 Large customers include Walmart, Lowe’s

 Plants are packed on special rolling racks
 3 feet wide, 4 feet long, 7 feet tall
 4 to 12 shelves

Goal
 Generate good packing plans for a day’s orders

 Don’t use more racks than needed

 Finish in time to get the orders out

Packing

Modeling, not Programming
INFORMS Annual — 10 November 2020 57

Approaches considered
 Spreadsheet “by hand”
 Algebraic modeling language + integer linear solver

Choice of AMPL
 Dramatically better solutions
 Numerous economies

 Faster solutions using many fewer people
 Faster loading of racks
 Fewer trucks required

 Selection of solvers

Evaluation
Packing

Modeling, not Programming
INFORMS Annual — 10 November 2020 60

Development
 Original model built by Prof. Rafay Ishfaq of Auburn University
 Extended to handle larger orders by AMPL Optimization

Optimization
 Implemented using AMPL model, data, and scripts
 Minimum size: low 100s of thousands of variables & constraints

Maximum size: 100 million variables & constraints
 Solve time: 10 to 45 minutes

Deployment
 VBA-modified spreadsheet for data prep and result reporting
 One replenishment specialist uses the tool multiple times a day

. . . considering adaptations to new use cases

Implementation
Packing

Modeling, not Programming
INFORMS Annual — 10 November 2020 61

Case: Motion Robotics
Designing Aircraft

Modeling, not Programming
INFORMS Annual — 10 November 2020 62

Situation
 Develops and sells electric flying vehicles

 Drones and related infrastructure (such as docking stations)
 Electric motors using a highly efficient

radial (vs. traditional axial) design

 Designs drones for specific applications

Goal
 Create new electric aircraft
 Evaluate over many possibilities

 Design: propulsion, aerodynamics, structures
 Architecture: rotor size, battery capacity, etc.
 Flight path: initial & final position, velocity, etc.

Design

Modeling, not Programming
INFORMS Annual — 10 November 2020 63

Approaches considered
 Spreadsheet (not realistic)
 Simulation and machine learning
 Python-based design optimization system
 Algebraic modeling language + nonlinear solver

Choice of AMPL
 Formal optimization model

 Generality to implement complex physics equations
 Best results within a reasonable time frame

 Variety of solvers
 Ability to deploy via API

 Import data
 Run many optimizations in parallel

Evaluation
Design

Modeling, not Programming
INFORMS Annual — 10 November 2020

Development
 Suggested by a professor at a local university
 Implemented by two analysts at Motion Robotics
 1D prototypes built within months
 Expanded to 2D with many complicating factors

Optimization
 7 minutes for a solve

 Tested five nonlinear solvers, chose LOQO

 AMPL scripts for core application
 Python API for data & results

Deployment
 Parallel runs on 2,000 nodes in a cluster
 Connections to MATLAB, TensorFlow, etc.

Implementation
Design

67

Modeling, not Programming
INFORMS Annual — 10 November 2020

Case: ABB
Managing Power Grids

68

Modeling, not Programming
INFORMS Annual — 10 November 2020

Case: ABB
Power Grid Management

69

Modeling, not Programming
INFORMS Annual — 10 November 2020

Power Grid Management
Situation

 A power grid operator providing electrical service
 Two kinds of decisions

 Unit commitment: When to turn power plants on and off
 Network flow: How to transmit power over the grid to meet demand

Goal
 Simulate optimal decisions to support planning

 Transmission network expansion
 Plant addition and retirement
 Integration of renewable energy sources

70

Modeling, not Programming
INFORMS Annual — 10 November 2020

Evaluation
Approaches considered

 C++ for entire GridView system
 Modeling language for optimization, C++ for user interfaces

Choice of AMPL
 Ease of modeling

 ABB can formulate complex and powerful models
 Customers can understand the AMPL formulations
 Customers can customize models for their particular situations

 Ease of embedding
 AMPL has an API (application programming interface) for C++
 ABB can easily build AMPL into the GridView product

Power

71

Modeling, not Programming
INFORMS Annual — 10 November 2020

Implementation
Development

 Prototype at University of Tennessee, Knoxville
 Full AMPL implementation by three analysts at ABB

Optimization
 Mixed-integer linear solver
 Millions of variables
 Tens of thousands of integer variables
 10 minutes to solve

Deployment
 30+ customer companies
 Hundreds of customer-side users

Power

75

Modeling, not Programming
INFORMS Annual — 10 November 2020

Case: New York Education Department
Assigning Students to Classes

76

Modeling, not Programming
INFORMS Annual — 10 November 2020

Situation
 Covid-19 closed New York State public schools in Spring 2020
 Now the schools want to reopen for Fall
 To limit the spread of the virus . . .

 classrooms can hold only a limited number of students
 state is offering “blended” instruction:

“cohorts” of students can attend only 1-3 days each week

Goal
 Create a tool for making workable assignments
 Make the tool usable by school principals, on short notice
 Support many simultaneous users . . .

Assignment

77

Modeling, not Programming
INFORMS Annual — 10 November 2020

Assignment

78

Modeling, not Programming
INFORMS Annual — 10 November 2020

Approaches considered
 Every principal figures out how to make their own assignment
 Algebraic modeling language + integer linear solver

Choice of AMPL
 Fast prototyping and development
 Flexibility of solver choice
 Python API for deployment in easy-to-use web tool

Evaluation
Assignment

79

Modeling, not Programming
INFORMS Annual — 10 November 2020

Development
 Dr. Howard Karloff, Vice President, Goldman Sachs

 model completed in a few days

 Caleb Ren, Harvard University student
 Filipe Brandão, AMPL Optimization

Optimization
 Tens of thousands of variables
 1 to 4 minutes to solve

Deployment
 Easy-to-use web tool for data input and result reporting

 click “submit” to run

 Python application parses data, runs AMPL and Gurobi
 new AWS container spawned for each submission
 application built in 2 weeks

Implementation
Assignment

82

