
Modeling, not Programming
INFORMS Annual — 10 November 2020 1

Modeling, not Programming
Model-Based Optimization in AMPL

Robert Fourer
4er@ampl.com

AMPL Optimization Inc.
www.ampl.com — +1 773-336-2675

Technology Tutorial
INFORMS Virtual Annual Meeting

10 November 2020

Modeling, not Programming
INFORMS Annual — 10 November 2020

Goals

Features

Applications

Steps

7

Optimization in Analytics

Modeling, not Programming
INFORMS Annual — 10 November 2020

Given a recurring need to make many interrelated decisions
 Purchases, production and shipment amounts, assignments, . . .

Consistently make highly desirable choices

By applying concepts of mathematical optimization
 Ways of describing problems (formulations)
 Ways of solving problems (algorithms)

8

Optimization Goals

Modeling, not Programming
INFORMS Annual — 10 November 2020

Large numbers of decision variables
 Thousands to millions

An objective function
 Minimize or maximize

Various constraint types
 10-20 distinct types, though large numbers of each type
 Few variables involved in each constraint

Numerous scenarios with different data
 Can’t characterize all possible solutions in advance

9

Optimization Features

Modeling, not Programming
INFORMS Annual — 10 November 2020

Energy and Utilities
 power networks, gas pipelines, hydroelectric power, water distribution

Production
 mining, steel, chemicals, oil refining, forestry and paper
 cars & trucks, paper products, processed foods

Transportation
 airlines, trucking, package delivery

Services
 supply chain, hospitals & medicine, construction management

Communications
 telecommunications, professional networking, file hosting

Finance
 software tools, investment management, commodity management

Advanced Technologies
 artificial intelligence, distributed computing, biotechnology

10

Optimization Applications

Modeling, not Programming
INFORMS Annual — 10 November 2020

Optimization Development Steps

Communicate with Client

Build Model or Method

Solve Cases

Analyze Solutions

Report Results

Prepare Scenarios

11

Modeling, not Programming
INFORMS Annual — 10 November 2020

Communicate with Client

Build Model or Method

Solve Cases

Analyze Solutions

Report Results

Prepare Scenarios

12

Optimization Development Cycle

Modeling, not Programming
INFORMS Annual — 10 November 2020

Goals for optimization practitioners
 Repeat the cycle quickly and reliably

 Get results before client loses interest

 Deploy effectively for application
 Update as needed

Goals for optimization software
 Promote fast prototyping
 Facilitate integration with application systems
 Encourage long-term maintenance

13

Optimization Development Cycle

Modeling, not Programming
INFORMS Annual — 10 November 2020

Modeling, not programming

Comparison of approaches
 Optimization: Model-based or method-based?
 Model-based optimization:

Modeling language or programming language?
 Modeling languages: Declarative or executable?

Case studies
 Packing shipments
 Designing aircraft
 Managing power grids
 Assigning students to classes

14

Overview

Modeling, not Programming
INFORMS Annual — 10 November 2020

Approaches to Optimization
Method-based approach

 Program a method (algorithm) for computing solutions

Model-based approach
 Formulate a description (model) of the desired solutions

Which should you prefer?
 For simple problems, any approach can work
 But the application development cycle

introduces complications . . .

15

Modeling, not Programming
INFORMS Annual — 10 November 2020

Motivation
 Ship products efficiently

to meet demands

Context
 a transportation network

 locations
 links

 supplies at locations
 demands at locations
 capacities on links
 shipping costs on links

Example:
Supply Chain Optimization

16

Modeling, not Programming
INFORMS Annual — 10 November 2020

Supply Chain Optimization
Decide

 how much of each product to ship on each link

So that
 shipping costs are kept low
 shipments on each link respect capacity of the link
 supplies, demands, and shipments are in balance at each location

Two approaches . . .

17

Modeling, not Programming
INFORMS Annual — 10 November 2020

Method-Based Approach
Program a method to build a shipping plan

 method: says how to compute a solution

Order-driven
 Develop rules for how each order should be met

 Given some demand and given available capacity,
determine where to ship it from and which route to use

 Fill orders one by one, according to the rules
 Decrement capacity as each one is filled

Route-driven
 Repeat until all demands are met

 Choose a shipping route and a product
 Add as much flow as possible of that product along that route

without exceeding supply, demand, or capacity

Supply-Chain Optimization

18

Modeling, not Programming
INFORMS Annual — 10 November 2020

Method-Based Approach
Program refinements to the method to get better results . . .

Enhance the method
 Fill large order first, or
 Consider the least expensive routes first

Improve the initial solution
 Look for simple exchanges that reduce cost

Apply metaheuristic concepts
 Systematically search for local improvements

 simulated annealing, tabu search, GRASP

 Combine solutions to evolve better ones
 evolutionary methods, particle swarm optimization

. . . usually no optimal method is available

Supply-Chain Optimization

19

Modeling, not Programming
INFORMS Annual — 10 November 2020

Model-Based Approach
Formulate a minimum shipping cost model

 model: says what a solution should satisfy
 Identify amounts shipped

as the decisions of the model (variables)
 Specify feasible shipment amounts

by writing equations that the variables must satisfy (constraints)
 Write total shipping cost

as a summation over the variables (objective)
 Collect costs, capacities, supplies, demands (data)

Send to a solver that computes solutions
 Available ready to run, without programming
 Handles very broad problem classes efficiently

 Ex: Linear constraints and objective, continuous or integer variables

 Exploits provably optimal algorithms

Supply-Chain Optimization

20

Modeling, not Programming
INFORMS Annual — 10 November 2020

Given
𝑃 set of products
𝑁 set of network locations
𝐴 ⊆ 𝑁 𝑁 set of links connecting locations

and
𝑢 capacity of link from 𝑖 to 𝑗, for each 𝑖, 𝑗 ∈ 𝐴

𝑠 supply/demand of product 𝑝 at location 𝑗, for each 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
> 0 implies supply, < 0 implies demand

𝑐 cost per unit to ship product 𝑝 on link 𝑖, 𝑗 ,
for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

21

Model-Based Formulation
Supply-Chain Optimization

Modeling, not Programming
INFORMS Annual — 10 November 2020

Determine
𝑋𝑝𝑖𝑗 amount of product 𝑝 to be shipped from location 𝑖 to location 𝑗,

for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

to minimize
∑ ∑ 𝑐 𝑋, ∈∈

total cost of shipments

subject to
∑ 𝑋∈ 𝑢 , for all 𝑖, 𝑗 ∈ 𝐴

on each link, total shipped must not exceed capacity

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

at each location, shipments in plus
supply/demand must equal shipments out

22

Model-Based Formulation (cont’d)
Supply-Chain Optimization

Modeling, not Programming
INFORMS Annual — 10 November 2020

Additional restrictions imposed by the user
 Cost has fixed and variable parts

 Each link incurs a cost if it is used for shipping

 Shipments cannot be too small
 Not too many links can be used

Additional data for the problem
𝑑 fixed cost for using the link from 𝑖 to 𝑗, for each 𝑖, 𝑗 ∈ 𝐴

𝑚 smallest total that may be shipped on any link used

𝑛 largest number of links that may be used

Complications:
Supply Chain Optimization

23

Modeling, not Programming
INFORMS Annual — 10 November 2020

Method-Based (cont’d)
What has to be done?

 Revise or re-think the solution approach
 Update or re-implement the method

What are the challenges?
 In this example,

 Shipments have become more interdependent
 Good routes are harder to identify
 Improvements are harder to find

 In general,
 Even small changes to a problem can necessitate

major changes to the method and its implementation
 Each problem change requires more method development

. . . and problem changes are frequent!

Complications

24

Modeling, not Programming
INFORMS Annual — 10 November 2020

What has to be done?
 Update the objective expression
 Formulate additional constraint equations
 Send back to the solver

What are the challenges?
 In this example,

 New variables and expressions to represent fixed costs
 New constraints to impose shipment and arc-use limits

 In general,
 The formulation tends to get more complicated
 A new solver type or solver options may be needed

. . . but it’s easier to update formulations than methods
. . . and a few solver types handle many formulations

25

Model-Based (cont’d)
Complications

Modeling, not Programming
INFORMS Annual — 10 November 2020

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped on link 𝑖, 𝑗 ,

for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴
𝑌𝑖𝑗 1 if any amount is shipped from location 𝑖 to location 𝑗,

0 otherwise, for each 𝑖, 𝑗 ∈ 𝐴

to minimize
∑ ∑ 𝑐 𝑋, ∈∈ ∑ 𝑑 𝑌, ∈

total varying plus fixed cost of shipments

26

Model-Based Formulation (revised)
Complications

Modeling, not Programming
INFORMS Annual — 10 November 2020

Subject to
∑ 𝑋∈ 𝑢 𝑌 , for all 𝑖, 𝑗 ∈ 𝐴

when the link from location 𝑖 to location 𝑗 is used,
total shipments must not exceed capacity, and 𝑌 must be 1

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

shipments in plus supply/demand must equal shipments out

∑ 𝑋∈ 𝑚𝑌 , for all 𝑖, 𝑗 ∈ 𝐴

when the link from node 𝑖 to node 𝑗 is used,
total shipments from 𝑖 to 𝑗 must be at least 𝑚

∑ 𝑌, ∈ 𝑛

At most 𝑛 links can be used

27

Model-Based Formulation (revised)
Complications

Modeling, not Programming
INFORMS Annual — 10 November 2020

Approaches to
Model-Based Optimization
Translate between two forms of the problem

 Modeler’s form
 Symbolic description, easy for people to work with

 Solver’s form
 Explicit data structure, easy for solvers to compute with

Programming language approach
 Write a computer program to generate the solver’s form

Modeling language approach
 Write the model formulation

in a form that a computer can read and translate

32

Modeling, not Programming
INFORMS Annual — 10 November 2020

Algebraic modeling languages
 Designed for “algebraic” formulations

as seen in our model-based examples
 Good fit to many applications and many solvers

Executable approach
 Write a computer program . . .

 that resembles an optimization model
 that can be executed to drive a solver

Declarative approach
 Write a model description . . .

 in a language specialized for optimization
 that can be translated to the solver’s form

35

Approaches to Modeling Languages

Modeling, not Programming
INFORMS Annual — 10 November 2020

Example:
Supply Chain Optimization
Executable approach: gurobipy

 Based on the Python programming language
 Designed to look like algebraic notation

 Generates problems for the Gurobi solver

Declarative approach:
 Based directly on algebraic notation

 Designed specifically for optimization

 Generates problems for Gurobi and other solvers

36

Modeling, not Programming
INFORMS Annual — 10 November 2020

Given
𝑃 set of products
𝑁 set of network nodes
𝐴 ⊆ 𝑁 𝑁 set of arcs connecting nodes

and
𝑢 capacity of arc from 𝑖 to 𝑗, for each 𝑖, 𝑗 ∈ 𝐴

𝑠 supply/demand of product 𝑝 at node 𝑗, for each 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
> 0 implies supply, < 0 implies demand

𝑐 cost per unit to ship product 𝑝 on arc 𝑖, 𝑗 ,
for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

37

Formulation: Data
Multi-Product Flow

Modeling, not Programming
INFORMS Annual — 10 November 2020 38

Statements: Data
gurobipy
 Assign values to Python

lists and dictionaries

products = ['Pencils', 'Pens']

nodes = ['Detroit', 'Denver',
'Boston', 'New York', 'Seattle']

arcs, capacity = multidict({
('Detroit', 'Boston'): 100,
('Detroit', 'New York'): 80,
('Detroit', 'Seattle'): 120,
('Denver', 'Boston'): 120,
('Denver', 'New York'): 120,
('Denver', 'Seattle’): 120 })

Multi-Product Flow

AMPL
 Define symbolic model

sets and parameters

set PRODUCTS := Pencils Pens ;

set NODES := Detroit Denver
Boston 'New York' Seattle ;

param: ARCS: capacity:
Boston 'New York' Seattle :=

Detroit 100 80 120
Denver 120 120 120 ;

set PRODUCTS;
set NODES;

set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

 Provide data later
in a separate file

Modeling, not Programming
INFORMS Annual — 10 November 2020

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped from node 𝑖 to node 𝑗,

for each 𝑝 ∈ 𝑃, 𝑖, 𝑗 ∈ 𝐴

to minimize
∑ ∑ 𝑐 𝑋, ∈∈

total cost of shipping

subject to
∑ 𝑋∈ 𝑢 , for all 𝑖, 𝑗 ∈ 𝐴

total shipped on each arc must not exceed capacity

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

shipments in plus supply/demand must equal shipments out

42

Formulation: Model
Multi-Product Flow

Modeling, not Programming
INFORMS Annual — 10 November 2020 43

Statements: Model
gurobipy

m = Model('netflow')

flow = m.addVars(products, arcs, obj=cost, name="flow")

m.addConstrs(
(flow.sum('*',i,j) <= capacity[i,j] for i,j in arcs), "cap")

m.addConstrs(
(flow.sum(p,'*',j) + inflow[p,j] == flow.sum(p,j,'*')

for p in products for j in nodes), "node")

Multi-Product Flow

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

Modeling, not Programming
INFORMS Annual — 10 November 2020 46

Statements: Model (cont’d)
AMPL

var Flow {PRODUCTS,ARCS} >= 0;

minimize TotalCost:
sum {p in PRODUCTS, (i,j) in ARCS} cost[p,i,j] * Flow[p,i,j];

subject to Capacity {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];

subject to Conservation {p in PRODUCTS, j in NODES}:
sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
sum {(j,i) in ARCS} Flow[p,j,i];

Multi-Product Flow

∑ 𝑋, ∈ 𝑠 ∑ 𝑋, ∈ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

Modeling, not Programming
INFORMS Annual — 10 November 2020 47

Solution
gurobipy

m.optimize()

if m.status == GRB.Status.OPTIMAL:
solution = m.getAttr('x', flow)

for p in products:
print('\nOptimal flows for %s:’ % p)
for i,j in arcs:

if solution[p,i,j] > 0:
print('%s -> %s: %g' % (i, j, solution[p,i,j]))

Multi-Product Flow

Solved in 0 iterations and 0.00 seconds
Optimal objective 5.500000000e+03

Optimal flows for Pencils:
Detroit -> Boston: 50
Denver -> New York: 50
Denver -> Seattle: 10

Optimal flows for Pens: ...

Modeling, not Programming
INFORMS Annual — 10 November 2020 48

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 9.0.3: optimal solution; objective 5500
2 simplex iterations

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Modeling, not Programming
INFORMS Annual — 10 November 2020 49

Solution (cont’d)
AMPL

ampl: model netflow.mod;
ampl: data netflow.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 12.10.0.0: optimal solution; objective 5500
0 dual simplex iterations (0 in phase I)

ampl: display Flow;

Flow [Pencils,*,*]
: Boston 'New York' Seattle :=
Denver 0 50 10
Detroit 50 0 0

[Pens,*,*]
: Boston 'New York' Seattle :=
Denver 10 0 30
Detroit 30 30 0
;

Multi-Product Flow

Modeling, not Programming
INFORMS Annual — 10 November 2020

Concept
 Create an algebraic modeling language

inside a general-purpose programming language
 Redefine operators like + and <=

to return constraint objects rather than simple values

Advantages
 Complete application development in one language
 Direct access to advanced solver features

Disadvantages
 Programming languages are not designed for describing models

 Constraint descriptions can be awkward
 Special methods may be required for efficiency

 Modeling and programming bugs are hard to separate

50

Executable
Algebraic Modeling Languages

Modeling, not Programming
INFORMS Annual — 10 November 2020

Concept
 Design a language for describing optimization models
 Connect to external applications via . . .

 extensions for scripting and data transfer
 APIs for programming languages

Disadvantages
 Adds a system between application and solver

Advantages
 Designed for building and using optimization models

 Streamlines model building and processing
 Promotes validation and maintenance of models

 Not specific to one programming language or solver

51

Declarative
Algebraic Modeling Languages

Modeling, not Programming
INFORMS Annual — 10 November 2020

gurobipy
 Everything can be developed in Python
 Part of the Gurobi package

 Free solver-independent alternatives (Pyomo, PuLP, Python-MIP)

AMPL
 Prototypes can be developed in AMPL

 Modeling language extended with loops, tests, assignments

 Application programming interfaces (APIs)
for integrating AMPL with popular programming languages
 C++, C#, Java, MATLAB, Python, R

52

Integration with Applications
Algebraic Modeling Languages

Modeling, not Programming
INFORMS Annual — 10 November 2020

gurobipy
 Works closely with the Gurobi solver:

callbacks during optimization, fast re-solves after problem changes
 Supports Gurobi’s extended expressions:

min/max, and/or, if-then-else

AMPL
 Supports all popular solvers
 Extends to general nonlinear and logic expressions

 Connects to nonlinear function libraries and user-defined functions
 Automatically computes nonlinear function derivatives
 Connects to global optimization and constraint programming solvers

53

Integration with Solvers
Algebraic Modeling Languages

Modeling, not Programming
INFORMS Annual — 10 November 2020

Case Studies
Young’s Plant Farm

 Packing shipments

Motion Robotics
 Designing aircraft

ABB
 Managing power grids

New York Education Department
 Assigning students to classes

54

Modeling, not Programming
INFORMS Annual — 10 November 2020 55

Case: Young’s Plant Farm
Packing Shipments

Modeling, not Programming
INFORMS Annual — 10 November 2020 56

Situation
 Grows plants of many kinds and sizes
 Ships to retailers on their own trucks

 Large customers include Walmart, Lowe’s

 Plants are packed on special rolling racks
 3 feet wide, 4 feet long, 7 feet tall
 4 to 12 shelves

Goal
 Generate good packing plans for a day’s orders

 Don’t use more racks than needed

 Finish in time to get the orders out

Packing

Modeling, not Programming
INFORMS Annual — 10 November 2020 57

Approaches considered
 Spreadsheet “by hand”
 Algebraic modeling language + integer linear solver

Choice of AMPL
 Dramatically better solutions
 Numerous economies

 Faster solutions using many fewer people
 Faster loading of racks
 Fewer trucks required

 Selection of solvers

Evaluation
Packing

Modeling, not Programming
INFORMS Annual — 10 November 2020 60

Development
 Original model built by Prof. Rafay Ishfaq of Auburn University
 Extended to handle larger orders by AMPL Optimization

Optimization
 Implemented using AMPL model, data, and scripts
 Minimum size: low 100s of thousands of variables & constraints

Maximum size: 100 million variables & constraints
 Solve time: 10 to 45 minutes

Deployment
 VBA-modified spreadsheet for data prep and result reporting
 One replenishment specialist uses the tool multiple times a day

. . . considering adaptations to new use cases

Implementation
Packing

Modeling, not Programming
INFORMS Annual — 10 November 2020 61

Case: Motion Robotics
Designing Aircraft

Modeling, not Programming
INFORMS Annual — 10 November 2020 62

Situation
 Develops and sells electric flying vehicles

 Drones and related infrastructure (such as docking stations)
 Electric motors using a highly efficient

radial (vs. traditional axial) design

 Designs drones for specific applications

Goal
 Create new electric aircraft
 Evaluate over many possibilities

 Design: propulsion, aerodynamics, structures
 Architecture: rotor size, battery capacity, etc.
 Flight path: initial & final position, velocity, etc.

Design

Modeling, not Programming
INFORMS Annual — 10 November 2020 63

Approaches considered
 Spreadsheet (not realistic)
 Simulation and machine learning
 Python-based design optimization system
 Algebraic modeling language + nonlinear solver

Choice of AMPL
 Formal optimization model

 Generality to implement complex physics equations
 Best results within a reasonable time frame

 Variety of solvers
 Ability to deploy via API

 Import data
 Run many optimizations in parallel

Evaluation
Design

Modeling, not Programming
INFORMS Annual — 10 November 2020

Development
 Suggested by a professor at a local university
 Implemented by two analysts at Motion Robotics
 1D prototypes built within months
 Expanded to 2D with many complicating factors

Optimization
 7 minutes for a solve

 Tested five nonlinear solvers, chose LOQO

 AMPL scripts for core application
 Python API for data & results

Deployment
 Parallel runs on 2,000 nodes in a cluster
 Connections to MATLAB, TensorFlow, etc.

Implementation
Design

67

Modeling, not Programming
INFORMS Annual — 10 November 2020

Case: ABB
Managing Power Grids

68

Modeling, not Programming
INFORMS Annual — 10 November 2020

Case: ABB
Power Grid Management

69

Modeling, not Programming
INFORMS Annual — 10 November 2020

Power Grid Management
Situation

 A power grid operator providing electrical service
 Two kinds of decisions

 Unit commitment: When to turn power plants on and off
 Network flow: How to transmit power over the grid to meet demand

Goal
 Simulate optimal decisions to support planning

 Transmission network expansion
 Plant addition and retirement
 Integration of renewable energy sources

70

Modeling, not Programming
INFORMS Annual — 10 November 2020

Evaluation
Approaches considered

 C++ for entire GridView system
 Modeling language for optimization, C++ for user interfaces

Choice of AMPL
 Ease of modeling

 ABB can formulate complex and powerful models
 Customers can understand the AMPL formulations
 Customers can customize models for their particular situations

 Ease of embedding
 AMPL has an API (application programming interface) for C++
 ABB can easily build AMPL into the GridView product

Power

71

Modeling, not Programming
INFORMS Annual — 10 November 2020

Implementation
Development

 Prototype at University of Tennessee, Knoxville
 Full AMPL implementation by three analysts at ABB

Optimization
 Mixed-integer linear solver
 Millions of variables
 Tens of thousands of integer variables
 10 minutes to solve

Deployment
 30+ customer companies
 Hundreds of customer-side users

Power

75

Modeling, not Programming
INFORMS Annual — 10 November 2020

Case: New York Education Department
Assigning Students to Classes

76

Modeling, not Programming
INFORMS Annual — 10 November 2020

Situation
 Covid-19 closed New York State public schools in Spring 2020
 Now the schools want to reopen for Fall
 To limit the spread of the virus . . .

 classrooms can hold only a limited number of students
 state is offering “blended” instruction:

“cohorts” of students can attend only 1-3 days each week

Goal
 Create a tool for making workable assignments
 Make the tool usable by school principals, on short notice
 Support many simultaneous users . . .

Assignment

77

Modeling, not Programming
INFORMS Annual — 10 November 2020

Assignment

78

Modeling, not Programming
INFORMS Annual — 10 November 2020

Approaches considered
 Every principal figures out how to make their own assignment
 Algebraic modeling language + integer linear solver

Choice of AMPL
 Fast prototyping and development
 Flexibility of solver choice
 Python API for deployment in easy-to-use web tool

Evaluation
Assignment

79

Modeling, not Programming
INFORMS Annual — 10 November 2020

Development
 Dr. Howard Karloff, Vice President, Goldman Sachs

 model completed in a few days

 Caleb Ren, Harvard University student
 Filipe Brandão, AMPL Optimization

Optimization
 Tens of thousands of variables
 1 to 4 minutes to solve

Deployment
 Easy-to-use web tool for data input and result reporting

 click “submit” to run

 Python application parses data, runs AMPL and Gurobi
 new AWS container spawned for each submission
 application built in 2 weeks

Implementation
Assignment

82

