
Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 1

New Connections
to the AMPL Modeling Language:

Spreadsheets and Callbacks

Robert Fourer
4er@ampl.com

AMPL Optimization Inc.
www.ampl.com — +1 773-336-6273

31st European Conference on Operational Research
Athens, Greece (online)— 11-14 July 2021

Software for Optimization, Session TD-53: Modelling Tools I

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 2

New Connections to the AMPL Modeling Language:
Spreadsheets and Callbacks

Optimization applications are
often concerned as much with
making connections as with
building models. This presentation
describes two connections
recently implemented in the
AMPL modeling language and
system. A direct spreadsheet
connection reads and writes xlsx-
format files, defining
correspondences between
common spreadsheet layouts and
AMPL’s algebraic data definitions.
Support is included for “two-
dimensional” spreadsheet tables in

which one index labels the
columns and one or more indices
label the rows. A solver callback
connection enables AMPL’s APIs
to communicate with algorithms
as they are running, uniting the
ease of modeling in AMPL with
the flexibility of programming to
customize algorithmic behavior.
This facility can be used to write
specialized routines that report
progress, change settings, and
generate constraints that cut off
fractional solutions.

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021

Direct interface to spreadsheet files
 Implementation as a new AMPL table handler
 Example: Multicommodity network flow

Callbacks from solvers
 Implementation in AMPL APIs for Python, C++, C#

 Python in Jupyter notebooks with AMPL cells

 Example: Custom solver stopping criterion
 Optimal pattern selection for roll cutting

 Example: Generation of subtour elimination cuts
 Minimum tour (TSP) of a network

3

Outline

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021

Read & write any .xlsx file
 Independent of the spreadsheet software used

 Works on all popular platforms (Windows, Linux, macOS)

 Bypasses database drivers such as ODBC

Use existing AMPL data-interface statements
 table for making associations between

AMPL model parameters and spreadsheet data

 read table and write table for
importing and exporting data

Now testing . . .
 Direct .csv file handler

4

Direct Spreadsheet Interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 5

Network Flow (symbolic data)
Direct spreadsheet interface

Given
𝑃 set of products
𝑁 set of network nodes
𝐴 ⊆ 𝑁 ൈ 𝑁 set of arcs connecting nodes

and
𝑢௜௝ capacity of arc from 𝑖 to 𝑗, for each ሺ𝑖, 𝑗ሻ ∈ 𝐴

𝑠௣௝ supply/demand of product 𝑝 at node 𝑗, for each 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁
> 0 implies supply, < 0 implies demand

𝑐௣௜௝ cost per unit to ship product 𝑝 on arc ሺ𝑖, 𝑗ሻ,
for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021

Determine
𝑋𝑝𝑖𝑗 amount of commodity 𝑝 to be shipped from node 𝑖 to node 𝑗,

for each 𝑝 ∈ 𝑃, ሺ𝑖, 𝑗ሻ ∈ 𝐴

to minimize
∑ ∑ 𝑐௣௜௝ 𝑋௣௜௝ሺ௜,௝ሻ∈஺௣∈௉

total cost of shipping

subject to
∑ 𝑋௣௜௝௣∈௉ ൑ 𝑢௜௝, for all ሺ𝑖, 𝑗ሻ ∈ 𝐴

total shipped on each arc must not exceed capacity

∑ 𝑋௣௜௝ሺ௜,௝ሻ∈஺ ൅ 𝑠௣௝ ൌ ∑ 𝑋௣௝௜ሺ௝,௜ሻ∈஺ , for all 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁

shipments in plus supply/demand must equal shipments out

6

Network Flow (symbolic model)
Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 7

Network Flow in AMPL
Symbolic data and model

set PRODUCTS;
set NODES;

set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

param inflow {PRODUCTS,NODES};
param cost {PRODUCTS,ARCS} >= 0;

var Flow {PRODUCTS,ARCS} >= 0;

minimize TotalCost:
sum {p in PRODUCTS, (i,j) in ARCS} cost[p,i,j] * Flow[p,i,j];

subject to Capacity {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];

subject to Conservation {p in PRODUCTS, j in NODES}:
sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
sum {(j,i) in ARCS} Flow[p,j,i];

Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 8

Data Instance
in AMPL text format
set PRODUCTS := Bands Coils ;
set NODES := Detroit Denver Boston 'New York' Seattle ;

param: ARCS: capacity:

Boston 'New York' Seattle :=
Detroit 100 80 120
Denver 120 120 120 ;

param inflow:

Detroit Denver Boston 'New York' Seattle :=
Bands 50 60 -50 -50 -10
Coils 60 40 -40 -30 -30;

param cost:

[Bands,*,*] Boston 'New York' Seattle :=
Detroit 10 20 60
Denver 40 40 30

[Coils,*,*] Boston 'New York' Seattle :=
Detroit 20 20 80
Denver 60 70 30 ;

Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 9

Data Instance
in spreadsheet ranges

Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 10

Data Handling
Script file (input)

model netflow1.mod;

table Products IN "amplxl" "netflow1.xlsx" "Items":
PRODUCTS <- [ITEMS];

table Nodes IN "amplxl" "netflow1.xlsx":
NODES <- [NODES];

table Capacity IN "amplxl" "netflow1.xlsx":
ARCS <- [FROM,TO], capacity;

table Inflow IN "amplxl" "netflow1.xlsx":
[ITEMS,NODES], inflow;

table Cost IN "amplxl" "netflow1.xlsx":
[ITEMS,FROM,TO], cost;

load amplxl.dll;

read table Products; read table Nodes;
read table Capacity; read table Inflow; read table Cost;

Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 11

Data Handling
Script file (output)

option solver gurobi;
solve;

table Results OUT "amplxl" "netflow1.xlsx":
[ITEMS,FROM,TO], Flow;

table Summary OUT "amplxl" "netflow1.xlsx":
{(i,j) in ARCS} -> [FROM,TO],
sum {p in PRODUCTS} Flow[p,i,j] ~ TotFlow,
sum {p in PRODUCTS} Flow[p,i,j] / capacity[i,j] ~ "%Used";

write table Results;
write table Summary;

Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 12

Data Results
in spreadsheet ranges

Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021

All existing features supported
 Indexed collections of tables
 Dynamic file, range & header names in tables
 read table, write table in loops and conditionals

New spreadsheet-specific features
 Recognize both sheet and range names
 Properly interpret empty data cells
 Process “two-dimensional” spreadsheet tables

13

And There’s More . . .
Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 14

Data Instance (revisited)
“1D” spreadsheet ranges

Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 15

Data Instance (revisited)
“2D” spreadsheet ranges

Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 16

Data Handling (revisited)
Script file (input)

model netflow1.mod;

table Products IN "amplxl" "netflow2.xlsx" "Items":
PRODUCTS <- [ITEMS];

table Nodes IN "amplxl" "netflow2.xlsx":
NODES <- [NODES];

table Capacity IN "amplxl" "netflow2.xlsx" "2D":
ARCS <- [FROM,TO], capacity;

table Inflow IN "amplxl" "netflow2.xlsx" "2D":
[ITEMS,NODES], inflow;

table Cost IN "amplxl" "netflow2.xlsx" "2D":
[ITEMS,FROM,TO], cost;

load amplxl.dll;

read table Products; read table Nodes;
read table Capacity; read table Inflow; read table Cost;

Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 17

Data Handling
Script file (output)

option solver gurobi;
solve;

table Results OUT "amplxl" "netflow1.xlsx" "2D":
[ITEMS,FROM,TO], Flow;

table Summary OUT "amplxl" "netflow1.xlsx":
{(i,j) in ARCS} -> [FROM,TO],
sum {p in PRODUCTS} Flow[p,i,j] ~ TotFlow,
sum {p in PRODUCTS} Flow[p,i,j] / capacity[i,j] ~ "%Used";

write table Results;
write table Summary;

Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 18

Data Results
“2D” spreadsheet ranges

Direct spreadsheet interface

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 19

Callbacks from Solvers
Generic implementation in AMPL APIs

 In multiple languages: Python, C++, C#
 For multiple solvers: CPLEX, Gurobi, Xpress

 based on our AMPL-enabled distribution

 With multiple generic callback types: MIPNODE, MIPSOL, . . .

Sample uses
 Implementing a solver stopping criterion

 optimal pattern selection for roll cutting

 Adding user-generated constraints
 minimum tour (TSP) of a network

Examples in Python
 Jupyter notebooks with AMPL cells

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 20

Pattern Selection for Roll Cutting
Given

 Raw rolls of a large (fixed) width
 Demands for various (smaller) ordered widths
 Selected cutting patterns that may be used

Determine
 Number of times to cut each pattern

So that
 Demands are met (or slightly exceeded)
 Number of raw rolls cut is minimized

Callbacks from Solvers

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021

Generate many “good” cutting patterns
 Example: solve knapsack subproblems

Solve integer program using all patterns generated
 Apply a solver for a “reasonable” amount of time

 Return the best (possibly optimal) solution found

. . . using a callback to implement an adaptive stopping rule

21

Solution Strategy
Roll Cutting

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 22

Stopping Rule
Data

 Times 𝑡ଵ ൏ tଶ ൏ tଷ etc.
 Optimality gap tolerances 𝑔ଵ ൏ 𝑔ଶ ൏ 𝑔ଷ etc.

Execution
 When elapsed time reaches 𝑡௜ . . .
 Increase the gap tolerance to 𝑔௜

Callbacks from Solvers

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 23

Implementation Highlights
Stopping rule data in Python dictionary

stopdict = { 'time' : (15, 30, 60),
'gaptol' : (.0002, .002, .02)

}

Stopping Rule

Callback class (constructor)

class MyCallback(ampls.GenericCallback):

def __init__(self, stoprule):
super(MyCallback, self).__init__()
self._stoprule = stoprule
self._current = 0
self._continueOpt = True

.......

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 24

Implementation Highlights
Callback class (process callback, update gap tolerance)

def run(self):
where = self.getAMPLWhere()
if where == ampls.Where.MIPNODE:

runtime = self.getValue(ampls.Value.RUNTIME).dbl
if runtime >= self._stoprule['time'][self._current]:

self._continueOpt = True
return -1

return 0

def setCurrentGap(self):
gaptolpct = 100*self._stoprule['gaptol'][self._current]
stoptime = self._stoprule['time'][self._current]
print("Increasing gap tolerance to "

f"{gaptolpct:.2f}% after {stoptime:.1f} seconds")
ampls_model.setAMPLsParameter(ampls.SolverParams.DBL_MIPGap,

self._stoprule['gaptol'][self._current])
self._current += 1

Stopping Rule

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 25

Implementation Highlights
Solve using callbacks
Export

Master.option['relax_integrality'] = 0

ampls_model = Master.exportModel(solver, ["return_mipgap=5"])

Initialize with stopping rule

callback = MyCallback(stopdict)
ampls_model.setCallback(callback)

Invoke solver

while callback._continueOpt:
callback._continueOpt = False
ampls_model.optimize()
if callback._continueOpt:

callback.setCurrentGap()

Import solution from solver

Master.importSolution(ampls_model)

Stopping Rule

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 26

Roll-Cutting Notebook

https://ampl.com/dl/Notebooks/patgen_callback.zip

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021

Given
 A set of locations (“nodes”)
 Distances between pairs of locations (“arcs”)

Choose
 A subset of arcs having minimum total distance

So that
 Exactly two arcs meet each node (adjacency)
 At least two arcs connect every subset of nodes

to the other nodes (subtour elimination)

27

Minimum Tour (TSP)
Callbacks from Solvers

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021

Start with only adjacency constraints
For each feasible solution found,

 Check for subtours

 Add an elimination constraint for each subtour found

 Continue with the optimization

. . . using a callback to add the elimination constraints

28

Solution Strategy
Minimum Tour

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 29

Implementation Highlights
Set a few execution parameters

solver = "cplex"
tspFile = "TSP/ch150.tsp"

PLOTSUBTOURS = True

Minimum Tour

Read TSPLIB file into a dictionary

def getDictFromTspFile(tspFile):

p = tsp.load(tspFile)

nnodes = len(list(p.get_nodes()))
formatString = f"{{:0{ceil(log10(nnodes+1))}d}}"

nodes = {formatString.format(value) : p.node_coords[index+1]
for index, value in enumerate(p.get_nodes())}

return nodes

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 30

Implementation Highlights
Create AMPL object, load model and data

Create AMPL object and set solver

ampl = AMPL()
ampl.option["solver"] = solver

Load model in AMPL

tspAMPLModel = _ampl_cells[0]
ampl.eval(tspAMPLModel)

Read TSPLIB file and pass data to AMPL

nodes = getDictFromTspFile(tspFile)

df = DataFrame(index=[('NODES')], columns=['hpos', 'vpos’])
df.setValues(nodes)
ampl.setData(df, "NODES")

Minimum Tour

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 31

Implementation Highlights
Define callback

class MyCallback(ampls.GenericCallback):
def __init__(self):
Constructor, simply sets the iteration number to 0
super().__init__()
self.iteration = 0

def run(self):
try:

For each solution
if self.getAMPLWhere() == ampls.Where.MIPSOL:

self.iteration += 1
print(f"\nIteration {self.iteration}: Finding subtours")
sol = self.getSolutionVector()
arcs = [xvars[i] for i,value in enumerate(sol) if value > 0]
subTours = findSubTours(set(arcs), set(vertices))
if len(subTours) == 1:

print("No subtours detected. Not adding any cut")
return 0

Minimum Tour

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 32

Implementation Highlights
Define callback (cont’d)

class MyCallback(ampls.GenericCallback):
...

def run(self):
...

for subTour in subTours:
st1 = set(subTour)
nst1 = set(vertices) - st1
externalArcs = [(i,j) if i < j else (j,i)

for i in st1 for j in nst1]
varsExternalArcs = [xinverse[(i,j)]

for (i,j) in externalArcs]
coeffs = [1 for i in range(len(varsExternalArcs))]
varsExternalArcs = sorted(varsExternalArcs)
self.addLazyIndices(varsExternalArcs , coeffs,

ampls.CutDirection.GE, 2)
if len(subTours) == 2:

return 0
print("Continue solving")

return 0

Minimum Tour

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 33

Implementation Highlights
Run subtour elimination

Export the model using ampls
model = ampl.exportModel(solver)
model.enableLazyConstraints()

Get the global maps between solver vars and AMPL entities
varMap = model.getVarMapFiltered("X")
inverse = model.getVarMapInverse()
xvars = ...
xinverse = ...
vertices = ...

Assign the callback
callback = MyCallback()
model.setCallback(callback)

Start the optimization
model.optimize()

Import the solution back to AMPL
ampl.importSolution(model)

Minimum Tour

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 34

Minimum Tour Notebook

https://ampl.com/dl/Notebooks/mintour_callback.zip

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021

Direct spreadsheet interface
 implementation by Nicolau Santos

 Included in all AMPL distributions

 Details at ampl.com/resources/new-features/spreadsheets/

Solver callbacks
 implementation by Christian Valente, Filipe Brandão

 Available for beta testing

 Write to support@ampl.com for details

35

Availability

Robert Fourer, AMPL Connections: Spreadsheets & Callbacks
EURO 2021 Athens (online) — 11-14 July 2021 36

