
EURO 2021

Progress on Functions in AMPL

David M. Gay

AMPL Optimization, Inc.

Albuquerque, New Mexico, U.S.A.

dmg@ampl.com

http://www.ampl.com

1

Small nonlinear example using a function

ampl: var x; s.t. c: sin(x) = .5;

ampl: solve;

MINOS 5.51: optimal solution found.

...

ampl: print x; print asin(.5);

0.5235987755982988

0.5235987755982989

ampl: display x - asin(.5);

x - asin(0.5) = -1.11022e-16

2

Load Library

When the builtin functions do not suffice, AMPL’s

load command can introduce libraries of “imported”

functions that have been compiled from suitable

programming languages, such as C, C++, and Fortran.

For example, the GNU Scientific Library, compiled for

use with load, is available from https://ampl.com/

resources/extended-function-library .

More generally,

https://ampl.com/netlib/ampl/solvers/funclink

provides details for compiling your own function

library.

3

Why should functions be expressed in AMPL?

• Many MIP solvers permit “callback” functions to

influence their solution algorithms. Introducing

functions expressed in AMPL would permit

making better interfaces to such solvers. The plan

is to allow “problem” declarations to list AMPL

functions that should be visible to solver callbacks.

•• AMPL functions might simplify some scripts.

• AMPL functions might help express some

nonlinear problems.

4

Recursive function example: factorial

function fact(n)

{

if n <= 2 then {

if n <= 1 then

let n := 1;

return n;

}

return n * fact(n-1);

}

5

Running the fact function

ampl: display{i in 0..5} fact(i);

fact(i) [*] :=

0 1

1 1

2 2

3 6

4 24

5 120

;

6

“show” command for a function

ampl: show fact;

function fact(param n)

{

if n <= 2 then {

if n <= 1 then

let n := 1;

return n;

}

return n*fact(n - 1);

}

7

Parsing challenge with domains

AMPL function declarations have long been allowed to

specify a domain for each argument, e.g.,

function hypot(Reals,Reals);

It is nice to allow

function foo(a,b) { return a + 2*b; }

which is easy to handle if the arguments are unbound

symbols. The argument list of an AMPL function

should be a new context, but for imported functions

we must allow set expressions for domains. Various

remedies are possible; for now, new keyword “new”

indicates that a parameter name has a new meaning.
8

Keyword new

File foo:

param a; let a := 4.2;

function foo(a,b) { return a + b; }

Invoking “ampl foo” gives output

foo1, line 2 (offset 32):

syntax error

context: function >>> foo(a, <<< b) { return a +

But “function foo(new a, b)”

or “function foo(param a, b)” is OK.

9

Local context

param a; let a := 4.2;

function foo(new a,b) { return a + b; }

show foo;

display a;

...gives output

function foo(param a, param b)

{

return a + b;

}

a = 4.2

10

Declarations within contexts now allowed

param a := 1.2;

{ param a := 3.4;

print ’Inner context 1: a =’, a;

{ param a := 5.6;

print ’Inner context 2: a =’, a;

}

print ’Back to inner context 1: a =’, a;

}

print ’Outermost context: a =’, a;

11

Output from Declarations within contexts

Inner context 1: a = 3.4

Inner context 2: a = 5.6

Back to inner context 1: a = 3.4

Outermost context: a = 1.2

12

Declarations within looping contexts

Within a looping context, newly declared entities

retain their values until the conext ends.

param a := 1.2;

{ for{i in 1..3} {

param a default 3.7;

let a := a + 1;

display i, a;

}

display a;

}

print ’Outermost context: a =’, a;

13

Output from Declarations within looping contexts

i = 1

a = 4.7

i = 2

a = 5.7

i = 3

a = 6.7

a = 1.2

Outermost context: a = 1.2
14

Commands within function bodies

For AMPL functions used in AMPL scripts, all

commands are allowed in function bodies. AMPL

functions in models and callbacks will not be allowed

to declare variables or execute commands other than

let, return, and flow-of-control commands. In

addition, functions in models will not be allowed to

have OUT args.

15

Declaring arguments to functions

Arguments can be declared immediately:

function foo(set S, param p{S})

or first listed, then declared:

function foo(p, S; set S; param p{S})

either of which could restrict the indexing set of p in

the body of foo, in which

index(p) = S.

S would have to have cardinality no larger than that of

the indexing set of the var or param passed as p.

16

Indexing of Arrays

Array arguments can specify indexing...

function foo(set S, param p{S})

or allow indexing to be inherited from passed

parameters:

function foo(param p{dimen 1})

In the former case, argument S to foo might have

different subscripts outside and inside foo.

This distinction is a recent idea, not yet properly

implemented.

17

Calling an AMPL Function

To call an AMPL function from a callback, one would

use a helper function, e.g.,

amplfunc("foo", "rR", 3.7, x, n);

to call

function foo(param c, param x{1..alength(x)});

Arguments to amplfunc include the name of the

function, a character string indicating the types of the

arguments, and the arguments themselves, with each

array argument followed by the number of elements in

the array.

18

Recursive functions versus recursive sets and params

AMPL has long allowed recursive set and parameter

definitions, such as

param factorial{i in integer[0, Infinity)}

= if i < 2 then i else i*factorial[i-1];

Recursive set and parameter definitions effectively

cache their computed values, so are automatically

efficient. A purely recursive function may be much less

efficient.

19

Ackermann’s function

Famous example from recursive-function theory:

recursive Ackermann’s function

function Acker(m,n)

{

if m == 0 then return n + 1;

if n == 0 then return Acker(m-1,1);

return Acker(m-1, Acker(m,n-1));

}

20

Recursive param variant of Ackermann’s function

param nM default 20;

param nN default 200000;

set M = 0 .. nM;

set N = 0 .. nN;

param Ackermann{m in M, n in N} =

if m == 0 then n + 1

else if n == 0 then Ackermann[m-1,1]

else Ackermann[m-1, Ackermann[m,n-1]];

#Ackermann[4,1] = 65533

#Ackermann[4,2] runs out of 32-bit memory

21

Returning sets

set A; set B; set C;

function foo(set S, set T) returns set

{ return S union T; }

data; set A := a b c; set B := x y;

display A, B;

display foo(A, B);

gives output

set A := a b c;

set B := x y;

set foo(A,B) := a b c x y;

22

Returning tuples as well

Sometimes it is useful to return sets...

set S; set T;

param p{S};

...

let T := argmaxset(p);

T = {t in S: p[t] == max{i in S} p[i]}

or tuples of values and sets

let (t,T) := argmax(p);

T = {t in S: p[t] == max{i in S} p[i]}

and t = p[s] for s in T

23

Closures

For use in callbacks, our plan is to convey “closures”

with functions in .nl files. This will permit the

functions to access values from outer contexts.

Whether changes to these values are communicated

back to the AMPL session will be governed by a new

option, just as option send suffixes determines

whether suffix values in .sol files are returned to the

AMPL session.

24

AD for AMPL functions

AMPL itself (aside from imported functions) has been

a primitive recursive language. For example, .nl files

do not contain loops — all loops have been expanded

by the AMPL processor before it writes the .nl file.

This allows the AMPL/solver interface library (ASL)

to set up structures needed for automatic

differentiation in the course of reading the .nl file.

Imported functions participate by providing first and

possibly second partial derivatives for their numeric

arguments.

25

AD for AMPL functions (cont’d)

AMPL functions appearing in objectives and

constraints could be fully (and mutually) recursive,

which will require the ASL to use techniques commonly

used in various AD packages (such as ADOL-C and

Sacado) to store partials and other details in

dynamically allocated arrays. This is more general but

also somewhat slower and takes more memory.

26

Function arguments in AMPL scripts

Imported functions (made available with load

commands) can presently only be called with numeric

or string arguments. Given the declarations

set S; param p{S};

function foo;

imported function foo could only be provided all of

param p by a call of the form

call foo(card(S), {i in S} p[i]);

(next slide)

27

Function arguments in AMPL scripts (cont’d)

But an AMPL function foo, declared with

function foo(param p{dimen 1});

or

function foo(param p{dimen 1}) { ... }

or

set S; # ...

function foo(param p{S}) { ... }

could simply be called by

call foo(p);

28

Function arguments in AMPL scripts (cont’d)

Within foo, p’s declared and actual indexing sets could

be accessed by the (provisionally named) new builtin

functions index and dataindex, as in

index(p)

and

dataindex(p)

so

sum{i in index(p)} p[i]

would be the sum of all components of p.

29

Status

The initial slides in this talk show output on my

laptop. Tuple assignments and returning tuples and

functions work now. The “new” keyword may

disappear, in favor of “param” or “set”.

We intend to make 64-bit “beta” binaries for Linux,

MacOSX, and MS Windows available from the AMPL

web site, https://ampl.com. The “beta” binaries will

use the usual AMPL licensing mechanism and will

work with current AMPL licenses. Initially AMPL

functions will only work in AMPL scripts. Extensions

to the solver-interface library (ASL) are further in the

future.
30

Some references

The AMPL web site

https://ampl.com

has more on AMPL, including pointers to papers on

AMPL and on the AMPL/solver interface library

(ASL). When available, pointers to beta copies of

AMPL with function extensions will appear on the

AMPL web site.

For more on AD (automatic differentiation), see

http://www.autodiff.org

31

Load library example

Example: gsl log1p(x) computes log(1 + x), avoiding

the roundoff error that would occur in computing 1 + x

for small |x|.

ampl: load amplgsl.dll;

ampl: function gsl log1p;

ampl: display log(1 + 5e-16), gsl log1p(5e-16);

log(1 + 5e-16) = 4.44089e-16

gsl log1p(5e-16) = 5e-16

ampl: print log(1 + 1.2e-17), gsl log1p(1.2e-17);

0 1.2e-17

32

Out args

An imported function can have “out args”, arguments

to which the function provides values. For example, if

file foo contains

load swap.dll;

param a; param b;

data; param a := 1.2; param b := 3.4;

function swap(INOUT, INOUT);

display a, b;

display swap(a,b); ## or "call swap(a,b);"

display a, b;

then invoking “ampl foo” produces the output...

33

Output from “ampl foo”

a = 1.2

b = 3.4

swap(a, b) = 1

a = 3.4

b = 1.2

34

