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The Evolution of Computationally
Practical Linear Programming

Although a recognizable simplex approach to
linear programming was being studied by Dantzig
and others by 1947, the initially proposed
algorithms were (and have remained)
computationally impractical. Drawing on a series
of obscure RAND technical reports, this talk tells
the story of how the “revised” simplex method
subsequently emerged to make today’s powerful
solvers possible. The presentation concludes by
considering how the earlier, impractical simplex
algorithms have come to be adopted by almost all
textbooks, while computationally practical
versions remain known mainly to experts.
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1948

Programming of
Interdependent Activities 11:
Mathematical Model

< George B. Dantzig
% Econometrica 17 (1949)

“Linear Programming”

I called my first paper: Programming in a Linear
Structure. In the summer #1948, Koopmans
and 1 visited the RAND Corporation. One day
we took a walk near the Santa Monica beach.
Koopmans said: “Why not shorten Programming
in a Linear Structure to Linear Programming?”

I replied: “That’s it! From now on that will be
its name.” Later that same day I save a talk at

RAND entitled Linear Programming.

PROGRAMMING OF INTERDEPENDENT ACTIVITIES
II MATHEMATICAL MODEL'

By Georee B. Dantzia

Activities (or production processes) are considered as building blocks
out of which a technology is constructed. Postulates are developed by
which activities may be combined. The main part of the paper is con-
cerned with the discrete type model and the use of a linear maximization
function for finding the *“ optimum” program. The mathematical problem
associated with this approach is developed first in general notation and.-
then in terms of a dynamic system of equations expressed in matrix nota-
tion. Typical problems from the fields of inter-industry relations,trans-
portation, nutrition, warehouse storage, and air transport are given in the
last section.

INTRODUCTION

TaE MULTITUDE of activities in which a large organization or a nation
engages can be viewed not only as fixed objects but as representative
building blocks of different kinds that might be recombined in varying
amounts to form new blocks. If a structure can be reared of these blocks
that is mutually self-supporting, the resulting edifice can be thought of
as a technology. Usually the very elementary blocks have a wide variety
of forms and quite irregular characteristics over time. Often they are
combined with other blocks so that they will have “nicer’” characteristics
when used to build a complete system. Thus the science of program-
ming, if it may be called a science, is concerned with the adjustment of
the levels of a set of given activities (production processes) so that they
remain mutually consistent and satisfy certain optimum properties.

It is highly desirable to have formal rules by which activities can be
combined to form composite activities and an economy. These rules are
set forth here as a set of postulates regarding reality. Naturally other
postulates are possible; those selected have been chosen with a wide
class of applications in mind and with regard to the limitations of present
day computational techniques. The reader’s attention is drawn to the
last section of this report where a number of applications of the mathe-
matical model are discussed. These are believed to be of sufficient interest
in themselves, and may lend concreteness to the development which
follows:

POSTULATES OF A LINEAR TECHNOLOGY

PoSTULATE I: There exisls a set {A} of activities.

PosTULATE 11: All activities take place within a téime span 0 to Lo.

1 A revision of a paper presented before the Madison Meeting of the Econo-
metric Society on September 9, 1948. This is the second of two papers on this

subject, both appearing in this issue. The first paper, with sub-title ‘‘General
Discussion,” will be referred to by Roman numeral I.
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1948

Programming of
Interdependent Activities II:
Mathematical Model

< George B. Dantzig
% Econometrica 17 (1949)

“Linear Programming”
< Formulations & applications
< No algorithm

“It is proposed to solve linear
programming problems . . . by means
of large scale digital computers . . . .
Several computational procedures
have been evolved so far and research

is continuing actively in this field.”

PROGRAMMING OF INTERDEPENDENT ACTIVITIES
II MATHEMATICAL MODEL'

By Georee B. Dantzia

Activities (or production processes) are considered as building blocks
out of which a technology is constructed. Postulates are developed by
which activities may be combined. The main part of the paper is con-
cerned with the discrete type model and the use of a linear maximization
function for finding the *“ optimum” program. The mathematical problem
associated with this approach is developed first in general notation and.-
then in terms of a dynamic system of equations expressed in matrix nota-
tion. Typical problems from the fields of inter-industry relations,trans-
portation, nutrition, warehouse storage, and air transport are given in the
last section.

INTRODUCTION

TaE MULTITUDE of activities in which a large organization or a nation
engages can be viewed not only as fixed objects but as representative
building blocks of different kinds that might be recombined in varying
amounts to form new blocks. If a structure can be reared of these blocks
that is mutually self-supporting, the resulting edifice can be thought of
as a technology. Usually the very elementary blocks have a wide variety
of forms and quite irregular characteristics over time. Often they are
combined with other blocks so that they will have “nicer’” characteristics
when used to build a complete system. Thus the science of program-
ming, if it may be called a science, is concerned with the adjustment of
the levels of a set of given activities (production processes) so that they
remain mutually consistent and satisfy certain optimum properties.

It is highly desirable to have formal rules by which activities can be
combined to form composite activities and an economy. These rules are
set forth here as a set of postulates regarding reality. Naturally other
postulates are possible; those selected have been chosen with a wide
class of applications in mind and with regard to the limitations of present
day computational techniques. The reader’s attention is drawn to the
last section of this report where a number of applications of the mathe-
matical model are discussed. These are believed to be of sufficient interest
in themselves, and may lend concreteness to the development which
follows:

POSTULATES OF A LINEAR TECHNOLOGY

PoSTULATE I: There exisls a set {A} of activities.

PosTULATE 11: All activities take place within a téime span 0 to Lo.

1 A revision of a paper presented before the Madison Meeting of the Econo-
metric Society on September 9, 1948. This is the second of two papers on this

subject, both appearing in this issue. The first paper, with sub-title ‘‘General
Discussion,” will be referred to by Roman numeral I.
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1949

Maximization of a Linear
Function of Variables Subject to
Linear Inequalities
< George B. Dantzig
< Activity Analysis of Production
and Allocation (1951)

“Simplex Method”

The term Simplex Method arose out of a
discussion with T. Motzkin who felt that
the approach that I was using in the
geometry of the columns was best described

as a movementfrom one simp]ex to a

neighboring one.

Crarrer XXI1

MAXIMIZATION OF A LINEAR FUNCTION OF VARIABLES
SUBJECT TO LINEAR INEQUALITIES!

By GrorGe B. Danrtzic

The general probleém indicated in the title is easily transformed, by any
one of several methods, to one which maximizes s linear form of non-
negative variables subject to a system of linear equalities. For exam-
ple, consider the linear inequality az + by 4+ ¢ > 0. The linear in-
equality can be replaced by a linear equality in nonnegative variables
by writing, instead, a(x; — x) + by — y2) + ¢ — z = 0, where z; 2 0,
232 0,412 0,22 0,2= 0. The basic problem throughout this chapter
will be considered in the following form:

ProBLEM: Find the values ¢f A1, Ag, -+ , M which maximize the linear
Jorm
(63} Moy hgep o Mt
subject to the conditions that
(2) rz0 G=12+--,m)
and

Mair + Ng@iz + o Mty = by,
3) Maz1 + Na@oe + -+ Naazn = by,

Mamt + Moz ++ - F MNaGn = by
where a;j, by, cj are constants (1 =1,2, +++ ,m;j=1,2 -+ n).

1 The author wishes to acknowledge that his work on this subject stemmed from
discussions in the spring of 1947 with Marshall X. Wood, in ion with Air
Force programming methods. The general nature of the “simplex” approach (as
the method discussed here is known) was stimulated by discussions with Leonid
Hurwics.

The author is indebted to T. C. Koopmans, whose constructive observations
regarding properties of the simplex led directly to a proof of the method in the early
fall of 1947. Emil D. Schell assisted in the preparation of various versions of this
chapter. Jack Laderman has written a set of detailed working instructions and has
tested this and other d techni on several )
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1949

Maximization of a Linear
Function of Variables Subject to
Linear Inequalities

< George B. Dantzig
< Activity Analysis of Production
and Allocation (1951)
“Simplex Method”

< Proof of convergence
< No computers

“As a practical computing matter the
iterative procedure of shifting from
one basis to the next is not as

”»

laborious as would first appear . . .

Crarrer XXI1

MAXIMIZATION OF A LINEAR FUNCTION OF VARIABLES
SUBJECT TO LINEAR INEQUALITIES!

By GrorGe B. Danrtzic

The general probleém indicated in the title is easily transformed, by any
one of several methods, to one which maximizes s linear form of non-
negative variables subject to a system of linear equalities. For exam-
ple, consider the linear inequality az + by 4+ ¢ > 0. The linear in-
equality can be replaced by a linear equality in nonnegative variables
by writing, instead, a(x; — x) + by — y2) + ¢ — z = 0, where z; 2 0,
232 0,412 0,22 0,2= 0. The basic problem throughout this chapter
will be considered in the following form:

ProBLEM: Find the values ¢f A1, Ag, -+ , M which maximize the linear
Jorm
(63} Moy hgep o Mt
subject to the conditions that
(2) rz0 G=12+--,m)
and

Mair + Natiz +- o+ Mlia = by,
3) Maz1 + Na@oe + -+ Naazn = by,

M1 + Nalmg + -+ -+ Nalmn = by
where a;j, by, cj are constants (1 =1,2, +++ ,m;j=1,2 -+ n).

1 The author wishes to acknowledge that his work on this subject stemmed from
discussions in the spring of 1947 with Marshall X. Wood, in ion with Air
Force programming methods. The general nature of the “simplex” approach (as
the method discussed here is known) was stimulated by discussions with Leonid
Hurwics.

The author is indebted to T. C. Koopmans, whose constructive observations
regarding properties of the simplex led directly to a proof of the method in the early
fall of 1947. Emil D. Schell assisted in the preparation of various versions of this
chapter. Jack Laderman has written a set of detailed working instructions and has
tested this and other d techni on several )
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1953

An Introduction to

Linear Programming
<+ W.W. Cooper, A. Henderson
< A. Charnes

“Simplex Tableau”
< Symbolic description

< Numerical example

“As far as computations are concerned
it is most convenient to arrange the
data at each stage in a ‘simplex

tableau’ as shown in Table 1.12”

“12A  Orden suggested this efficient

arrangement developed by himself,

Dantzig, and Hoffman.”

An
INTRODUCTION
to
LINEAR
PROGRAMMING

PART I - An Economic Introduction
to Linear Programming

By W. W. COOPER and The Late A. HENDERSON

PART II « Lectures on the
Mathematical Theory
of Linear Programming

By A. CHARNES

NEW YORK - JOHN WILEY & SONS, INC.
LONDON + CHAPMAN & HALL, LIMITED
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Terminology

Linear program
Minimize c¢-x
Subjectto Ax=Db

x=0

m constraints on n variables: m < n

Data
b= (by,...,bn)
c=(cq,.-.,Cpn)
A = [a;], with m rows a’ and n columns a;

Variables
x=(x1,..., %)
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Terminology (cont’d)

Basis

% B, IV, sets of basic and nonbasic column indices
X |Bl=m,|[N|=n—m
< C3g, Xg, corresponding subvectors of ¢, x

Basis matrix
< B, nonsingular |B| X |B| submatrix of A

o Bl = [z j1, with |B| rows z' and |B| columns z
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Tableau Simplex Method
Setupa (|B|+ 1) X (V| + 1) table of values

Yij, i €B, j € N: the transformed columns y; = B™'q;
Yio = X;, i € B: the basic solution x5z = B™1b
Yoj = dj, j € N': the reduced costs ¢; — €3y

Choose an entering variable
pEN: Yy, <0

Choose a leaving variable
q € B: Yq0/Yap = MiN Yio/Yip

Yip>0
“Pivot” on the tableau

Yij < Yij — YqjYVip/Yqp: subtracts multiples of row q from other rows

Yip < _yip/yqpa Yap < 1/yqp
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Impracticalities

Computational inefficiency
<+ |B| X [V'| = m(n — m) additions & multiplications
< |B| X | V| numbers to write and store

Numerical instability
< Fixed rules for choosing p and q
% risking small denominatorsin y;; — ¥4 ¥ip/Vap

< causing loss of precision in pivot steps
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1953

The Generalized Simplex Method
Jfor Minimizing a Linear Form under
Linear Inequality Restraints

< George B. Dantzig,
Alex Orden, Philip Wolfe

< Project RAND Research
Memorandum RM-1264

“Lexicographic Simplex Method”
< Prevent cycling due to degeneracy
< Adapt computations accordingly

“The k+ 1% iterate is closely related
to the kt by simple transformations
that constitute the computational

algorithm [6], .. .”

U. S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

/ Notes on Linear Programming: FPari I
TEE GENERALIZED SIMPLEK METHOD
for
MINTKIZING A LINEAR FORM UNDEL
LIKEAR INEQUALITY RESTRAINTS
George B. Dantzig
Alex Orden
Philip Wolfe
me-1264

ASTIA Document Number AD 1141%

k Rev. 5 April 1954

Assigned 10 __ TSRS ST

This is @ working poper. It may be expanded, modified, or with-
drawn at any time. The views, conclusions, and recommendations
expressed herein do not necessarily reflect the official views or
policies of the United States Air Force.

The Q—ﬂ n Déa-,;am

1700 MAIN ST, + SANTA MONICA + CALIFORNIA ===

Copyright, 1953
The RAND Corporation
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1953

Computational Algorithm of the
Revised Simplex Method

< George B. Dantzig

< Project RAND Research
Memorandum RM-1266

“Revised Simplex Method”

< Tableau replaced by basis inverse
< Computations streamlined

“The transformation of just the
inverse (rather than the entire matrix
of coefficients with each cycle) has
been developed because it has several
important advantages over the old
method: . . .”

U. S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

Notes on Linear Programming -- Part ITI:
COMPUTATIONAL ALGORITHM
OF THE

REVISED SIMPLEX METHOD

George B. Dantzig

RM-1266
ASTIA Document Number AD 114136

26 October 1953

This is o working paper. It may be expanded, modified, or with-
drawn at any fime. The views, i nd recomment
expressed herein do not necessarily reflect the official views or
policies of the United States Air Force.

7t RAND o

11

1700 MAIN ST. + SANTA MONICA + CALIFORNIA

Copyright 1953
‘The RAND Corporation
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Revised Simplex Method

Given a matrix of inverse values
zij, | € B, j € B: the basis inverse B~

= x;, i € B (the basic solution)
m;, i € B (the dual prices)

Zio

Zoj

Choose an entering variable
p € N: cp—zo-ap<0

Choose a leaving variable
Yip = z'- a,

€ B: z,9/ = min z;y/y;
q q0 yqp Yip>0 lO/ylp

“Pivot” on the inverse

Zij < Zij — ZqjZip/Zqp+ subtracts multiples of row q from other rows

Zip < —Zip/Zgp> Zqp < 1/Zqp
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Advantages

Smaller update

“. . . In the original method (roughly) m x n
new elements have to be recorded each
time. In contrast, the revised method (by
making extensive use of cumulative sums of
products) requires the recording of about

m? elements . . ..”

Zij < Zij ~ ZqjZip/ Zqp

Sparse operations

“In most practical problems the original
matrix of coefficients is largely composed of
zero elements. . . . The revised method
works with the matrix in its original form

and takes direct advantage of these zeros.”

dp =cp.—z

Yip =2 *Qyp

Robert Fourer, How Linear Programming Became Pr:
IFORS 2021 Virtual, Seoul, Korea — 23-27 Augus
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Impracticalities

Inefficiency
% |B| X |B| = m? additions & multiplications
< |B| X |B| numbers to write and store

Numerical instability
< Fixed rules for choosing p and q
< risking small denominators in z;; — 242y /Zgy

< causing loss of precision in pivot steps

However. ..

“In contrast, the revised method (by making
extensive use of cumulative sums of
products) requires the recording of about
m? elements (and an alternative method [5]

can reduce thistom .. .).”
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1953

Alternate Algorithm for the
Revised Simplex Method

< George B. Dantzig,
Wm. Orchard-Hays

< Project RAND Research
Memorandum RM-1268

“Product Form for the Inverse”
< Fully exploit sparsity of coefficients
< Solve practical problems

“Using the I.B.M. Card Programmed
Calculator, . . . where the inverse
matrix is needed at one stage and its
transpose at another, this is achieved
simply by turning over the deck of

cards representing the inverse.”

U.S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

Notes on Linear Progz
ALTERNATE ALGORITHM F
o

ETHO,
Using a Product Form

George B. Dantzicz
Wm. Orehard-Hays

Assigned to

This is @ working paper. It may be expanded, modified, or with-
drawn at any time. The views, conclusions, and recommendations
expressed herein do not necessarily reflect the official views or
policies of the United States Air Force.

1k

74 RN D g

1700 MAIN S1. + SANTA MONICA » CALIFORNIA

Robert Fourer, How Linear Programming Became Practical
IFORS 2021 Virtual, Seoul, Korea — 23-27 August 2021




Product-Form Simplex Method

Given

xp (the basic solution)

B~ = E;'E}, - E; 'E;! (factorization of the basis inverse)
Choose an entering variable

= cgE 'Ept - ESTEY
pPEN:¢c,—m-a,<0

Choose a leaving variable
Yp = E'Ex2y - Ey 'Er
q €B: xg/Ygp = yrgiglo Xi/Yip
Update

< add a factor E}; derived from Yp

< update the basic solution: xg = xg —(X4/Ygp) Vp

Robert Fourer, How Linear Programming Became Practical
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Factorization of the Inverse

Form of the factors 10017 00
0100 00

<+ E;!isan identity matrix 0010 00

0 00050 0

except for one column 00 034 10
0000 01

Computation of the factors

< Gauss-Jordan elimination

< Elimination ordering can be chosen to promote sparsity and stability

Storage of the factors
< nonzeros only, in (row,value) pairs

< diagonal element first

Update of the factors

% Ej4, is an identity matrix except for y,, in one column

Robert Fourer, How Linear Programming Became Practical
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Practical Simplex Method

Given

xg (the basic solution)
a factorization of B suitable for solving equations fast

Choose an entering variable
solve BT = c3
PEN:cp—m-a,<0

Choose a leaving variable
solve By, = a,

q € B: Xq/Yqp = yrir;i>no Xi/Yip

Update

/7

< update factorization to reflect change of basis
« update basic solution to Xz — (X4/Yqp) ¥p

Robert Fourer, How Linear Programming Became Practical
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1963

Linear Programming
and Extensions

< George B. Dantzig

“.. . the simplex algorithm . . . starts
with a canonical form, consists of a
sequence of pivot operations, and
forms the main subroutine of the

simplex method.”

“Because some readers might find that
the matrix notation of §8.5 [The
Simplex Algorithm in Matrix Form]
obscures the computational aspects,

we have tended to avoid its use here.”

LINEAR

PROGRAMMING AND

EXTENSIONS

by GEORGE B. DANTZIG

THE RAND CORPORATION

and

UNIVERSITY OF CALIFORNIA, BERKELEY

1963
PRINCETON UNIVERSITY PRESS
PRINCETON, NEW JERSEY
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Tableau Simplex Method Revisited
Simple

< No linear algebra

< No matrices & inverses

< All computations in one “pivot” step
< Easy to set up for hand calculation

Familiar
<+ Textbooks presented it
< Students learned it
< Some students wrote new textbooks. . .

But still impractical
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1968

Advanced

Linear-Programming Computing
Techniques
< William Orchard-Hays

“Except for [a few sections], the
contents of the book reflect actual and

extensive experience.”

“I hope that the many users of
mathematical programming systems
implemented on today’s large
computers find the book valuable as
background for the largely
undocumented algorithms embedded
in these systems. If it should also be
found useful as a course text, all

objectives will have been achieved.”

ADVANCED LINEAR-PROGRAMMING
COMPUTING TECHNIQUES

William Orchard-Hays

Vice President, Computer Applications Incorporated
Silver Spring, Maryland

McGRAW-HILL BOOK COMPANY q
New York San Francisco Toronto London Sydney
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Essential Simplex Method

Given

xg (the basic solution)
B (the basis)

Choose an entering variable
solve BT = c3
PEN:cp—m-a,<0

Choose a leaving variable
solve By, = a,

q € B: Xq/Yqp = yrir;i>no Xi/Yip

Update

/7

« update basic solution to Xz — (X4/Yqp) ¥p
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IFORS 2021 Virtual, Seoul, Korea — 23-27 August 2021

24




Essential Simplex Method

Course notes for use in teaching

< Optimization Methods I:
Solving Linear Programs by the Simplex Method

< https://www.4er.org/CourseNotes

Slides Available at ampl.com
Recent and upcoming events
< https://ampl.com/resources/calendar/

News & events archive

< https://ampl.com/resources/learn-more/news-and-events-archive/
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1978

History of Mathematical
Programming Systems
< William Orchard-Hays
< Design and Implementation
of Optimization Software,
H.J. Greenberg, ed.
“Overview of an Era”
< Better implementations
< More powerful computers

“One cannot clearly comprehend the
development of mathematical
programming software without
reference to the development of the

computing field itself.”

HISTORY OF MATHEMATICAL PROGRAMMING SYSTEMS

Wo. Orchard-Hays

International Institute for Applied Systems Analysis,
Laxenburg, Austria

OVERVIEW OF AN ERA

One canmot clearly comprehend the development of mathematical
programming software without reference to the development of the
computing field itself. There are two main reasons, one specific
and one general. First, mathematical programming and computing
have been contemporary in an almost uniquely exact sense. Their
histories parallel each other year by year in a remarkable way.
Furthermore, mathematical programming simply could not have de-—
veloped without computers. Although the converse is obviously mot
true, still linear programming was one of the important and de-
manding applications for computers from the outset. [ will not
try to trace early encouragement for the development of computers
which emanated from influential agencies of the U.S. government
and other quarters concerned with the application of LP and sim—
ilar techniques. I have heard this story from unimpeachable
sources but it antedates my personal experience and I might claim
too much credit for our field. I am aware of later influences on
computer technology for which we perhaps have not received suf-
ficient credit. I will peint out twe or three of these along the
way.

The second and more general reason for relating the two his-
tories closely is based on the lessons of histery itself. It is
easy to find fault with the way things have developed in the past,
whether political, cultural or technological. I predict that some
of you will be tempted to ask during this two weeks, "Put why did
you do it that way, who not this way?" While it may be possible
and even interesting to answer such questions—and I will try to
anticipate some--it is largely futile to dwell on what may be

Robert Fourer, How Linear Programming Became Practical
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1978

History of Mathematical
Programming Systems
< William Orchard-Hays

< Design and Implementation
of Optimization Software

First, mathematical programming and
computing have been contemporary in
an almost uniquely exact sense. Their
histories parallel each other year by

year in a remarkable way.

Furthermore, mathematical program-
ming simply could not have developed
without computers. Although the
converse is obviously not true, still
linear programming was one of the
important and demanding applications

for computers from the outset.

The quarter century from the late
1940s to the early 1970s constituted
an era, one of the most dynamic in the
history of mankind. Among the many
technological developments of that
period — and indeed of any period —
the computing field has been the most

virulent and astounding.

.. . the nature of the computing
industry, profession, and technology
has by now been determined — all
their essential features have existed for
perhaps five years. One hopes that
some of the more recent
developments will be applied more
widely and effectively but the
technology that now exists is pretty
much what will exist, leaving aside a
few finishing touches to areas already

well developed, such as

minicomputers and networks.
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1981

Reminiscences About the
Origins of Linear Programming
< George B. Dantzig

< Operations Research Letters
1(1982)

“Linear programming is viewed
as a revolutionary development”
System of linear inequalities
Objective function

Practical computational method

“Before closing let me tell some
stories about how various linear

programming terms arose.”

Volume |, Number 2

REMINISCENCES ABOUT THE ORIGINS OF LINEAR PROGRAMMING *

George B. DANTZIG

Department of Operations Research, Stanford University, Stanford, CA 94305, US.A,

Received September 1981
Revised October 1981

The author recalls the carly days of linear programming. the contributions of von Neumann, Leontiel, Koopmans and

others.
Lincar P is viewed as a revoluti

OPERATIONS RESEARCH LETTERS April 1982

objectives and 1o find, by means of the simplex method, optimal policy decisions for o broad closs of practical decision

problems of great mmi;y.

Linear programming, simplex method, history

Since its conception in 1947 in connection with the
planning activities of the military, linear programming
has come into wide use. In academic circles mathemati-
am.mmnsl:. l:ldtllns:!mngohy lh:namtnl

hers of M. ists, have
written hundreds of bocks on the subject and, of course,
an unaccountable number of articles,

giving us the ability for the first time to state general

programming methods using desk calculators.
In 1946 I was the Mathematical Advisor to the U.S. Air
Force Comptroller. I had just formally completed my
Ph.D. and was looking for un academic position. In
order to entice me into nrt taking another job, col-
leagues challenged me to see what could be done to
mechanize the planning provess. I wae asked to find a

Interestingly mu;h, m spm of its wnde
ng was un-

Itmnpdmml'm' llutmetl\ltlwootthm
individuals may have been aware of its potential—for
example Fourier in 1823 and de la Vallee Poussin in
1911, But these were isolated cases. Their works were
soon forgotten. Kantorovich in 1939 made an extensive
proposal that was neglected by the U.S.5.R. It was only
after the riajor developments in mathematical program-
ming-had taken place in the West that Kantorovich's
paper became known around 1959, To give some idea of
how meager the research effort was: Motzkin in his
Ph.D. thesis lists only 42 papers before 1936 on linear
inequality systems by such authors as Stokes, Dines,
McCoy and Farkas.

My own contributions to the field grew out of my
World War II experience. 1 had become an expert on

* This research was partially supported by the Depariment of
Energy Contract AMO3-765F00326, PA No. DE-AT03-
76ER72018; Office of Naval Research Contract NO0D14-75-
'C-0267: National Science Foundation Grants MCS-7681259,
MCS-7926009 and ECS-8012974.

0167-6377/82,/0000-0000,/502.75 © 1982 North-Holland

way pute more rapidly a time-staged deployment,
training and logistical supply program. In those days
mechanization meant using analog devices or punch
card equipment,

Consistent with my training as a mathematician, I
set out to formulate a model, [ was fascinated by the
work cf Wassily Leontief who proposed in 1932 a
simple matrix structure which he ~alled the nterindustry
Tnput=Cuiput Model of the American Economy. It was
simple in concept and could be implemented in suffi-
cient detail to be useful for practical planning. I soon
saw that it had to be generalized. Leontiel's was a
steady-state model and what was needed was a highly
dynamic model, one that could change over time. In
Leontief's model there was a one-to-one correspondence
between the production processes and the items pro-
duced by thesc processes, What was needed was a
model with many alternative activities. The application
was to be large scale with hundreds of items and activi-
ties. Finally it had to be computable. Once the model
was formulated, there had to be a practical way to
compute what quantities of these mmuu o mpn m
that was i with their resp p 1tpi
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